
Polynomials

In order to do what we need to do, it turns out polynomials will be key, so, lets spend a
bit of time recalling some basics.
Recall that a polynomial (over R or C) is just an expression of the form:

P(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

where each of the ai are numbers (in R or C).

The degree of a polynomial is the largest number n such that an 6= 0.

A degree n polynomial is monic if an = 1.

The roots of P(x) are the values λ (in C) for which P(λ) = 0.

P(x) = x2 − 5x + 6 = (x − 2)(x − 3)

is a degree 2 monic polynomial with roots 2 and 3.
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Polynomial Long Division

Given two polynomials N(x) and D(x) with D(x) 6= 0 there are polynomials Q(x) and
R(x) (the quotient and the remainder) such that

N(x) = Q(x)D(x) + R(x)

and the degree of R(x) is strictly less than the degree of D(x).

We say that D(x) divides N(x) if N(x) = Q(x)D(x) or equivalently in the above, if
R(x) = 0.

Proposition
(x − λ) divides P(x) if and only if P(λ) = 0

Example:
With N(x) = x2 + 3x + 3 and D(x) = (x + 2) we have:

x2 + 3x + 3 = (x + 1)(x + 2) + 1

so Q(x) = (x + 1) and R(x) = 1.
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Polynomial GCD/LCM

The greatest common divisor of two polynomials A(x) and B(x) is the largest degree
(monic) polynomial D(x) such that

D(x)|A(x) D(x)|B(x)

The least common multiple of two polynomials A(x) and B(x) is the lowest degree
(monic) polynomial L(x) such that

A(x)|L(x) B(x)|L(x)

The following gives an alternative characterization of the gcd/lcm:

Theorem
If P(x) is any polynomial that divides A(x) and B(x) then P(x) divides the gcd of A(x)
and B(x).
If P(x) is any polynomial that is divisible by both A(x) and B(x) then P(x) is divisible
by the lcm of A(x) and B(x).

Example:
With A(x) = (x + 5)2(x + 2) and B(x) = (x + 5)(x + 3) the gcd is (x + 5) and the lcm
is (x + 5)2(x + 2)(x + 3).
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Euclidean Algorithm (Special case)
We say that two polynomial have no common factors if their gcd is 1.

Lemma
If P1(x) and P2(x) are polynomials with no common factors then there exists polynomials
S1(x) and S2(x) so that

S1(x)P1(x) + S2(x)P2(x) = 1

Proof We prooceed by induction on the sum of the degrees of P1(x) and P2(x).
In the base case, both are degree 0, but if P1(x) = 0 = P2(x), they have common factors
(everything), so at least one of them is a non-zero constant. Which covers the base case.
For the inductive case, without loss of generality suppose P1(x) has degree not smaller
than that of P2(x).By the division algorithm we can write:

P1(x) = Q(x)P2(x) + R(x)

where R(x) has degree less than P1(x). We then know that R(x) and P2(x) also have no
common factors, because any common factor would need to be one of P1(x) aswell.
So by induction there exists S2(x) and S3(x) so that

S3(x)P2(x) + S1(x)R(x) = 1

but then

1 = S3(x)P2(x) + S1(x)R(x) = S1(x)P1(x) + (S3(x)− S1(x)Q(x))P2(x)

which by setting S2(x) = S3(x)− S1(x)Q(x) gives the result.
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Evaluating Polynomials at a Linear Transformation/Matrix

If P(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 is a polynomial, so ai ∈ R (or C) then for any
linear transformation L : V → V (respectively any square matrix) when we write P(L) we
mean:

P(L) = anL
n + an−1L

n−1 + · · ·+ a1L + a0IdV

where we recall that

L` =

`︷ ︸︸ ︷
L ◦ L ◦ · · · ◦ L ◦ L : V → V

Notice that P(L) : V → V is a linear transformation because it is a linear combination of
linear transformations!

P(L)(~v) = anL
n(~v) + an−1L

n−1(~v) + · · ·+ a1L + a0IdV (~v)

= anL(L(L(· · · (L(~v)) · · · ))) + · · ·+ a1L(~v) + a0~v

Notice:
L` ◦ Lr = L`+r

and by convention
L0 = IdV .

Math 3410 (University of Lethbridge) Spring 2018 5 / 25



Examples
We can do all the calculations with the associated matricies if we prefer.
Consider

A =

(
1 1
0 1

)
If we have P(x) = x3 + 2x2 + x + 3 then

P(A) = A3 + 2A2 + A + 3Id2

=

(
1 1
0 1

)3

+ 2

(
1 1
0 1

)2

+

(
1 1
0 1

)
+ 3

(
1 0
0 1

)
=

(
1 3
0 1

)
+

(
2 4
0 2

)
+

(
1 1
0 1

)
+

(
3 0
0 3

)
=

(
7 8
0 7

)
and so

P(A)((1, 2)) =

(
7 8
0 7

)(
1
2

)
= (23, 14)

In practice we won’t ever need to actually evaluate complicated polynomials at linear
transformations, they are mostly a theoretical tool for proving things.
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We are now going to give a few basic technical results about evaluating polynomials and
linear transformations.
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Lemma If P(x) and Q(x) are any two polynomials and R(x) = P(x)Q(x) is their
product then

P(L) ◦ Q(L) = R(L)

Proof Idea: This follows from the distributive rule for compositions:

(arL
r + · · · + a1L + a0Id) ◦ (b`L

` + · · · + b1L + b0Id)

The way we expand this product is the same as for polynomials.

Lemma
If P(x) and Q(x) are any two polynomials and L : V → V is any linear transformation
then:

P(L) ◦ Q(L) = Q(L) ◦ P(L)

Proof Idea: Use the above and that P(x)Q(x) = R(x) = Q(x)P(x).

Corollary
If we factor P(X ) = Q1(x)Q2(x) · · ·Qm(x) then

P(L) = Q1(L) ◦ · · · ◦ Qm(L)

and the order of factors can be changed.
Proof Idea: This follows from the above by induction

A very important case is if we factor P(X ) =
∏

(x − λi ) then

P(L) = (L− λ1Idn) ◦ · · · ◦ (L− λmIdn)

and the order in which the roots are presented doesn’t matter because these commute.
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Lemma
Suppose L : V → V is any linear transformation.
For any polynomials P1(x) and P2(x) with P1(x)|P2(x) we have

Ker (P1(L)) ⊂ Ker (P2(L)) Im (P2(L)) ⊂ Im (P1(L))

Proof Sketch If we write P2(x) = Q(x)P1(x) then P2(L) = Q(L) ◦ P1(L) = P1(L) ◦Q(L)
and we note that we always have

Ker(M) ⊂ Ker(N ◦M) and Im(M ◦ N) ⊂ Im(M).

In the first case, because if ~v ∈ Ker(M) then N ◦M(~v) = N(~0) = ~0.
In the second case, because if ~v ∈ Im(M ◦N) so that ~v = M ◦N(~w) then ~v = M(N(~w)).
This now gives us the result.
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Lemma If P(x) and Q(x) are any two polynomials and L : V → V is any linear
transformation then:

P(L) ◦ Q(L)

is injective (respectively surjective, respectively bijective) if and only if each of P(L) and
Q(L) is injective (respectively surjective, respectively bijective)

Proof sketch:
First note: f and g injective (resp. surjective, bijective) implies f ◦ g injective (resp.
surjective, bijective). These are useful facts about functions

Next note: f ◦ g injective (resp. surjective) implies g injective (resp. f surjective). These
are useful facts about functions

Next note that because P(L) ◦ Q(L) = Q(L) ◦ P(L) we can apply these results in both
orders to conclude the if and only if statements.
Again an important case is if we factor P(X ) =

∏
(x − λi ) then P(L) is injective

(respectively surjective, respectively bijective) if and only if all of
(L− λ1Idn), . . . , (L− λmIdn) are.
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Lemma
Suppose P(x) is any polynomial, and L : V → V any linear transformation. If L(~v) = λ~v
then P(L)(~v) = P(λ)~v .

Proof:
First we claim that for all ` we have L`(~v) = λ`~v , we prove this by induction.
The base case ` = 0 is, we leave it as an exercise
For the inductive case we assume ` > 0 and that L`−1(~v) = λ`−1~v then we have:

L`(~v) = L`−1(L(~v)) = L`−1(λ~v) = λL`−1(~v) = λ(λ`−1~v)

and so
L`(~v) = λ`~v

by induction.
To complete the proof, now we may calculate that

P(L)(~v) = a`L
`(~v) + · · ·+ a1L(~v) + a0IdV(~v)

= a`λ
`~v + · · ·+ a1λ~v + a0~v

= (a`λ
` + · · ·+ a1λ+ a0)~v

= P(λ)~v

which is the result.
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Polynomial Invariants of Linear Transformations

In order to describe what we can do, in terms of finding a nice basis, in the case of a
linear transformation

L : V → V ,

it is useful to first take stalk of what we can not change, things that can’t change, are
called invariants.

For L : V →W , we could not change the rank!
In this context, L : V → V , we will look for more invariants (though we still can’t change
the rank).
The extra invariants we shall use will come primarily from polynomials we associate to L.
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Associating Polynomials to a Linear Transformation

The key strategy for giving invariants of linear transformations L : V → V is to associate
to any such transformation a pair of polynomials.

That is, given L we will define polynomials:

charL(x) = xn + an−1x
n−1 + · · ·+ a0

minL(x) = xm + bm−1x
m−1 + · · ·+ b0

These polynomials will be the key invariants of linear transformations. (An invariant just
means a quantity which can be associated to L that doesn’t depend on any choices and
so somehow gives information about L) That is:

The coefficients: ai are invariants (a0 and an − 1 especially important and well
known, though we won’t discuss this).

The coefficients: bi are invariants.

The roots of the polynomials are invariants.

The multiplicities of the roots are invariants.

The key usefulness of these invariants is that because we can not change them, they
ultimately tell us the limits of what we can do.
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Suppose L : V → V is any linear transformation on a finite dimensional vector space V .
Pick any basis ~e1, . . . , ~en for V and let A be the matrix associated to L in this basis.
Lemma
The polynomial

det(xIdn − A)

does not depend on the choice of basis for V .
This is A4Q4a

Define the characteristic polynomial of L to be

charL(x) = det(xIdn − A)

If the polynomial depended on the basis, then it wouldn’t be an invariant, but as it does
not, it is.
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Suppose L : V → V is any linear transformation on an n-dimensional vector space V .
Lemma
There exists a non-zero polynomials P(x) such that P(L) = 0V ,V .
Proof The vector space of linear transformations has dimension n2 (because n by n matricies do)

but Idn, L, L2, . . . , Ln
2

is a list of n2 + 1 vectors, hence is linearly dependent. This dependence
gives

bn2Ln
2

+ bn2−1L
n2−1 + · · · + b1L + b0Idn = 0

and so

P(x) = bn2xn
2

+ bn2−1x
n2−1 + · · · + b1x + b0

is such a polynomial.

Lemma
There exists a smallest integer ` such that there exists a non-zero polynomial P(x) of
degree ` such that P(L) = 0V ,V .
Proof-idea This is the well ordering principal.

Lemma
Among polynomials of this smallest degree ` there exists a unique non-zero polynomial
P(x) such that P(L) = 0V ,V and the lead coefficient is 1.
Proof-idea By dividing by the lead coefficient we can ensure the lead is 1,

If P(x) and Q(x) are two such polynomials, then their difference would have degree at most

`− 1, and still have P(L) − Q(L) = 0 hence the difference must be the zero-polynomial so the

solution is unique.

Math 3410 (University of Lethbridge) Spring 2018 15 / 25



The minimal polynomial, minL(x), of a linear transformation L : V → V is the lowest
degree non-zero monic polynomial P such that

P(L) : V → V ,

is the zero transformation, that is P(L) = 0V ,V .

Such a thing exists by the previous few lemmas.

The minimal polynomial is primarily a theoretical gadget to prove things.
For complicated matricies we almost never compute it directly.
We will see how to compute it indirectly from the Jordan canonical form later.
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Examples
Consider

A =

(
1 1
0 1

)
The characteristic polynomial is the determinant of

det

((
x − 1 −1

0 x − 1

))
= (x − 1)2

We notice that

A2 − 2A + Id2 =

(
1 2
0 1

)
− 2

(
1 1
0 1

)
+

(
1 0
0 1

)
=

(
0 0
0 0

)
So that with P(x) = x2 − 2x + 1 we have P(A) = 0.

By noticing that with Q(x) = x − a we have

Q(A) =

(
1− a 1

0 1− a

)
6=
(

0 0
0 0

)
We conclude that

minA(x) = x2 − 2x + 1
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Theorem
Let L : V → V be any linear transformation of a finite dimensional vector space. If P(x)
is any polynomial so that P(L) = 0 then minL(x)|P(x).

Proof: By the polynomial division algorithm (long division) we can write:

P(x) = Q(x)minL(x) + R(x)

where the degree of R(x) is strictly less than the degree of minL(x).
By definition minL(x)|P(x) if and only if R(x) = 0.
Now note that:

R(L) = P(L)− Q(L)minL(L) = 0− Q(L)0 = 0

hence R(L) is a polynomial of strictly lower degree than minL(x) such that minL(L) = 0.
It follows that R(x) = 0, and hence minL(x)|P(x).

This gives us a useful characterization of the minimal polynomial, and we shall use it to
prove things about it.
Fact: minL(x) is the unique monic polynomial that satisfies this property.
(This is a short exercise in polynomial algebra, we will not use it for anything.)
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Factors of the Characteristic Polynomial

Lemma
λ is a root of charL(x) if and only if L− λIdV is not injective, that is
Ker(L− λIdV) 6= {~0}.
Equivalently, x − λ divides charL(x) if and only if L− λIdV is not injective.
This is on the assignment.

Lemma
L− λIdV is not injective if and only if there exists ~0 6= ~v ∈ V with L(~v) = λ~v
This is on the assignment.

Lemma
λ is a root of charL(x) if and only if there exists ~v ∈ V with L(~v) = λ~v
This is on the assignment.

You have possibly seen the above before in the context of eigenvalues for matricies.
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Factors of the Minimal Polynomial

Lemma
Suppose P(x) divides minL(x) then P(L) is not injective.
(This applies in particular when P(x) = x − λ.)
Proof:
Write minL(x) = P(x)Q(x)
We note that Q(L) 6= 0, because it has strictly lower degree than minL(x), and thus
there is a vector ~v ∈ V with ~w = Q(L)(~v) 6= ~0.
We claim P(L)(~w) = ~0. Indeed we know that

P(L)(~w) = P(L)(Q(L)(~v)) = P(L) ◦ Q(L)(~v) = minL(L)(~v) = ~0,

and so P(L) is not injective.
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Lemma
If P(L) is not injective, then P(x) and minL(x) have a common factor.
(In particular if L− λIdV is not injective then x − λ divides minL(x).)
Proof:
Assume for the purpose of contradiction that P(x) and minL(x) have no common factors
then we may write

1 = S1(x)P(x) + S2(x)minL(x).

Now because P(L) is not injective, there exists ~0 6= ~v ∈ V with P(L)(~v) = ~0.
Now we compute:

~v = IdV (~v)

= (S1(L)P(L) + S2(L)minL(L))(~v) choice of S1(x) and S2(x)

= (S1(L)P(L))(~v) minL(L)) = 0

= S1(L)(P(L)(~v)) definition of composition

= S1(L)(~0) P(L)(~v) = ~0

= ~0

But this is a contradiction.
In the linear case the only possible common factor is the whole polynomial.
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Factors of the Minimal Polynomial vs the Characteristic Polynomial

Theorem
For any linear transformation L : V → V the roots of charL(x) and minL(x) are the same.
That is, they are precisely the values λ such that L− λIdV is not injective.

Proof:
We have just shown that the roots of minL(x) are precisely those λ for which L− λIdn

are not injective.
But we have already seen that these are precisely the roots of charL(x).

What sort of relationship do you think exists between minL(x) and charL(x)?
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Examples

Consider (
0 1
0 0

) (
0 0
0 0

)
Both have characteristic polynomial x2. The first has minimal polynomial x2, the second
has minimal polynomial x .

Theorem (Very special case of a later result)
If the minimal and characteristic polynomial of a matrix are both x2 then there exists a
basis so that the matrix for L is (

0 1
0 0

)
If the minimal polynomial of a matrix is x , then the matrix is the zero matrix.

Idea: Let ~v be any vector such that L(~v) 6= ~0.

Then ~e1 = L(~v), ~e2 = ~v is a basis with respect to which the matrix is

(
0 1
0 0

)
Theorem(we will not prove, and you don’t need)
For 2 by 2 and 3 by 3 matricies the characteristic and minimal polynomials determine if
two matricies are similar. So A and B are similar if and only if both the
characteristic/minimal polynomials are identical.
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Examples

Consider 
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Both have characteristic polynomial x4 and minimal polynomial x2, but they are not
similar.
Why?
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Natural Questions About Characteristic and Minimal Polynomials

Given some description of a linear transformation L : Rn → Rn, find its minimal and
characteristic polynomials.
For the characteristic polynomial you must know the definition, for the minimal
polynomial we will come back to this.

Given some description of a linear transformation L : V → V , find its minimal and
characteristic polynomials.
Translate this to a question about matricies!

What information do the coefficients contain? are there formulas for these? what
sorts of properties do they have?
These questions are open ended, we will mostly ignore these.

What information do the roots contains? are there formulas for these? what sorts of
properties do they have?
These questions are open ended, we will come back to this.
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