Matrices Built Around Invariant Subspaces

We say a subspace V_{1} of V is L-invariant, with respect to a linear transformation $L: V \rightarrow V$ if $L\left(V_{1}\right) \subset V_{1}$.

Suppose $L: V \rightarrow V$ is a linear transformation of a finite dimensional vector space and

$$
V=V_{1} \oplus V_{2}
$$

is a decomposition with V_{1} being L-invariant (V_{2} need not be).
Pick basis $\vec{e}_{1}, \ldots, \vec{e}_{\ell}$ for V_{1} and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ for V_{2}.
Recall we previously defined the induced maps:

$$
L_{11}: V_{1} \rightarrow V_{1}, L_{21}: V_{1} \rightarrow V_{2}, L_{12}: V_{2} \rightarrow V_{1}, L_{22}: V_{2} \rightarrow V_{2}
$$

and we denote by $A_{11}, A_{12}, A_{21}, A_{22}$ the respective matricies in this context.

Proposition

If V_{1} is L-invariant then $L_{21}=0$ is the zero map and hence $A_{21}=0$ and the matrix for L with respect to this basis is:

$$
A=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)
$$

This is immediate from how we construct the matrix for a block decomposition. We leave the details as an exercise.

Characteristic Polynomials

Lemma

Suppose $L: V \rightarrow V$ is a linear transformation of a finite dimensional vector space and

$$
V=V_{1} \oplus V_{2}
$$

is a decomposition with V_{1} being L-invariant (V_{2} need not be).
Denote by $L_{i}: V_{i} \rightarrow V_{i}$ the map induced by L. We have that:

$$
\operatorname{char}_{L}(x)=\prod_{i} \operatorname{char}_{L_{i}}(x)
$$

This follows directly from the fact that

$$
\operatorname{Det}\left(\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right)\right)=\operatorname{Det}(A) \operatorname{Det}(C)
$$

which is a bonus question on the assignment. warning the proof of the statement about determinants is a bit annoying notationally

Minimal Polynomials

Lemma

Suppose $L: V \rightarrow V$ is a linear transformation of a finite dimensional vector space and

$$
V=V_{1} \oplus V_{2}
$$

is a decomposition with V_{1} being L-invariant (V_{2} need not be).
Denote by $L_{i}: V_{i} \rightarrow V_{i}$ the map induced by L. We have that:

$$
\operatorname{LCM}\left(\min _{L_{i}}(x)\right) \mid \min _{L}(x)
$$

Proof Notice that for any polynomial P we have

$$
P\left(\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
P\left(A_{11}\right) & ? ? \\
0 & P\left(A_{22}\right)
\end{array}\right)
$$

It follows that because $\min _{\mathrm{A}}(A)=0$ then $\min _{\mathrm{A}}\left(A_{11}\right)=0$ and $\min _{\mathrm{A}}\left(A_{22}\right)=0$. Next recall that for any polynomial P, and matrix B that $P(B)=0$ implies $\min _{B}(x) \mid P(x)$, so in particular by the above we have $\min _{A_{11}}(x) \mid \min _{A}(x)$ and $\min _{A_{22}}(x) \mid \min _{\mathrm{A}}(x)$.
From the definition of LCM because $\min _{A_{11}}(x) \mid \min _{A}(x)$ and $\min _{A_{22}}(x) \mid \min _{A}(x)$ we know $\operatorname{LCM}\left(\min _{L_{1}}(x), \min _{L_{2}}(x)\right) \mid \min _{L}(x)$.
We note that we only get divisibility on the minimal polynomial because we do not know if the top right corner is 0 !

Example

If $L: V \rightarrow V$ is a linear transformation and $\overrightarrow{0} \neq \vec{v} \in V$ is a vector such that

$$
L(\vec{v})=\lambda \vec{v}
$$

Then the subspace $\operatorname{Span}(\vec{v})$ is L-invariant, and hence with $V_{1}=\operatorname{Span}(\vec{v})$ and V_{2} any complementary subspace we can find some basis for which the matrix is of the form:

$$
\left(\begin{array}{ll}
\lambda & A_{12} \\
0 & A_{22}
\end{array}\right)
$$

Theorem (we won't use this for anything)
For every linear transformation $L: V \rightarrow V$ there exists a basis in which the matrix is upper triangular.
Proof Idea The idea is by induction using the idea above.
Assume any $n-1$ by $n-1$ matrix can be put into upper triangular form. Consider A an n by n matrix.
Picking any root λ of the characteristic polynomial of A we can find an eigenvector and do the above.
The inductive hypothesis now says we can pick a basis for V_{2} such that A_{22} is upper triangular.
This gives the result.

Matrices Built Around Invariant Direct Sum Decompositions

Suppose $V=V_{1} \oplus V_{2}$, we say this is an L-invariant decomposition, with respect to a linear transformation $L: V \rightarrow V$, if both of V_{1} and V_{2} are L-invariant.
Pick basis $\vec{e}_{1}, \ldots, \vec{e}_{\ell}$ for V_{1} and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ for V_{2}.
As before we have

$$
L_{11}: V_{1} \rightarrow V_{1}, L_{21}: V_{1} \rightarrow V_{2}, L_{12}: V_{2} \rightarrow V_{1}, L_{22}: V_{2} \rightarrow V_{2}
$$

and we denote by $A_{11}, A_{12}, A_{21}, A_{22}$ the respective matricies in this context.

Theorem

If $V=V_{1} \oplus V_{2}$ is an L-invariant decomposition then both L_{21} and L_{12} are the zero maps and hence $A_{21}=0$ and $A_{12}=0$ and the matrix for L with respect to this basis is:

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right)
$$

Having both spaces be invariant is exactly the condition that guarentees the upper right and lower left blocks will be 0 .

Characteristic and Minimal Polynomials

Theorem

Suppose $L: V \rightarrow V$ is a linear transformation of a finite dimensional vector space and

$$
V=V_{1} \oplus \cdots \oplus V_{r}
$$

is a decomposition into L invariant subspaces.
Denote by $L_{i}: V_{i} \rightarrow V_{i}$ the map induced by L. We have that:

$$
\operatorname{char}_{L}(x)=\prod_{i} \operatorname{char}_{L_{i}}(x) \quad \min _{L}(x)=\operatorname{LCM}\left(\min _{L_{i}}(x)\right)
$$

Proof: The claim for $\operatorname{char}_{\iota}(x)$ is immediate from the invariant subspace case. We know that there are polynomials $P_{1}(x)$ and $P_{2}(x)$ so that

$$
Q(x):=\operatorname{LCM}\left(\min _{L_{1}}(x), \min _{L_{2}}(x)\right)=\min _{L_{1}}(x) P_{1}(x)=\min _{L_{2}}(x) P_{2}(x)
$$

Thus $Q\left(A_{11}\right)=\min _{L_{1}}\left(A_{11}\right) P\left(A_{11}\right)=0 P_{1}\left(A_{11}\right)=0$ and similarly $Q\left(A_{22}\right)=0$.
From this we conclude that

$$
Q(A)=0
$$

and thus that

$$
\min _{L}(x) \mid Q(x)=\operatorname{LCM}\left(\min _{L_{1}}(x), \min _{L_{2}}(x)\right)
$$

Combined with the fact that we already know $\operatorname{LCM}\left(\min _{L_{1}}(x), \min _{L_{2}}(x)\right) \mid \min _{L}(x)$ we get the equality.

Recursive Strategy For Finding Good Basis

- Find an invariant direct sum decompositon $V=V_{1} \oplus V_{2}$.
- Rewrite the matrix in that basis:

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right) .
$$

- Repeat the process seperately for A and B (study V_{1} and V_{2} on their own). Noting that any change of basis involving only V_{1} only effects A and not B and vice versa.
- Once we can no longer cut things into smaller pieces, find nice descriptions for each piece seperately.

This idea is ultimately why we can eventually get matricies into the form:

$$
A=\left(\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{r}
\end{array}\right)
$$

At which point we only need to worry about making the A_{i} look pretty.

Some Theorems About Invariant Subspaces

Lemma

If U_{1} and U_{2} are L-invariant subspaces, then $U_{1} \cap U_{2}$ is L-invariant.
Proof:
Note To show a subset U is L-invariant we need to show $L(U) \subset U$, which means we must check

$$
\forall \vec{v} \in L(U), \vec{v} \in U
$$

but $\vec{v} \in L(U)$ means $\vec{v}=L(\vec{u})$ for $\vec{u} \in U$, so we check

$$
\forall \vec{u} \in U, L(\vec{u}) \in U
$$

Let $\vec{u} \in U_{1} \cap U_{2}$ be arbitrary, we must prove that $L(\vec{u}) \in U$.
Since $\vec{u} \in U_{1} \cap U_{2}$ we know $\vec{u} \in U_{1}$, and since U_{1} is L-invariant this means $L(\vec{u}) \in U_{1}$.
Since $\vec{u} \in U_{1} \cap U_{2}$ we know $\vec{u} \in U_{2}$, and since U_{2} is L-invariant this means $L(\vec{u}) \in U_{2}$.
Since $L(\vec{u}) \in U_{1}$ and $L(\vec{u}) \in U_{2}$ we know $L(\vec{u}) \in U_{1} \cap U_{2}$, which gives the result.

Lemma

The subspaces $\operatorname{Ker}(L)$ and $\operatorname{Im}(L)$ are always L-invariant.
This is a direct consequence of an assignment question

Some NOT Theorems about Invariant Subspaces

Many things we wish were true about invariant subspaces sadly are not, here are some examples:

- Not every invariant subspace is part of an invariant direct sum decomposition. You are asked for an example of this on the assignment.
- If $U \subset V$ is L-invariant, and $W \subset U$, the subspace W doesn't need to be L-invariant.

Natural Questions About Invariant Subspaces

- Is this subspace invariant?

Check the definition, perhaps just by chiecking on a basis

- Is there an invariant complementary subspace?

This question is hard in general, we won't talk about it.

- Is this direct sum decomposition invariant?

Check by evaluating on a basis

- Find a non-trivial invariant subspace. We will explain a few ways to do this.
- Find a non-trivial invariant direct sum decomposition. We will explain basically one way to do this.

