
One strategy to find Invariant Subspaces
Suppose we have a linear transformation L : V → V . and we pick any vector ~v ∈ V .
Consider the sets:

S~v,` = {~v , L(~v), . . . , L`−1(~v)}
As we increase `, the set gets bigger, so either, V is infinite dimensional, or eventually
they become linearly dependent.
Suppose such an ` is the smallest values such that

~v , L(~v), . . . , L`−1(~v), L`(~v)

is linearly dependent and define:

W~v = Span(S~v,`)

Note: L`(~v) ∈W~v .
Lemma
As defined above, W~v is L-invariant.
Proof: Let ~w ∈W~v be arbitrary.
Then ~w ∈ Span(S~v,`) and so we may write:

~w = b0~v + b1L(~v) + · · ·+ bn−1L
`−1(~v)

Then we have
L(~w) = b0L(~v) + b1L

2(~v) + · · ·+ bn−1L
`(~v)

but each vector on the right hand side is in W~v , hence L(~w) ∈W~v .
Note: there may not be an invariant complementary subspace.
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The matrix for L on W~v

Because, L`(~v) ∈W~v we know there exists a1, . . . , a` ∈ R so that

~0 = L`(~v) + a`−1L
`−1(~v) + · · · a1L(~v) + a0~v

Lemma
With W~v as defined above, the matrix for L acting on W~v with respect to the basis

~v , L(~v), . . . , L`−1(~v)

is 

0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


Proof:
For the first `− 1-columns simply L-sends the ith basis vector to the (i + 1)st.
For the last column, this is precisely the relation we assumed.
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Characteristic Polynomial for Rational Canonical Form
Theorem
Suppose L is a linear transformation acting on a vector space V with a matrix of the form:

A =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


the characteristic polynomial of A is

charA(x) = x` + a`−1x
`−1 + . . .+ a1x + a0

Proof Idea Proceed by induction computing the determinant of:

x · · · 0 a0

−1 x 0 a1

0 −1 x 0 a2

...
. . .

...
...

0 −1 x a`−2

0 · · · −1 x + a`−1


by expansion along the top row or first column. We leave this as an exercise
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Minimal Polynomial for Rational Canonical Form
Theorem
Suppose L is a linear transformation acting on a vector space V with a matrix of the form:

A =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


the minimal polynomial of A is: minA(x) = x` + a`−1x

`−1 + . . .+ a1x + a0

Proof Idea Consider P(x) = x` + a`−1x
`−1 + . . . + a1x + a0. We note

~0 = L`(~v) + a`−1L
`−1(~v) + · · · a1L(~v) + a0~v

and hence with we have P(L)(~v) = ~0 but then

P(L)(Li (~v)) = P(L) ◦ Li (~v) = Li ◦ P(L)(~v) = Li (~0) = ~0

and as ~v , L(~v), . . . , L`−1(~v) is a basis this proves P(L) = 0.
We now claim the minimal polynomial has degree at least `, consider any polynomial of lower
degree Q(x) = b`−1x

`−1 + . . . + b1x + b0 for which Q(L) = 0. Then Q(L)(~v) = 0 but

Q(L)(~v) = b`−1L
`−1(~v) + · · · b1L(~v) + b0~v

but these vectors are LI and so the bi = 0, and hence Q(x) = 0.
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Sufficient Condition for Complementary Subspaces

Everything about these spaces seems really easy to study.
There is one catch, we won’t always have an invariant complementary subspace.
But there is hope, because for at least one choice of ~v , there will be, this comes from the
following theorem.
Theorem
Suppose L : V → V is any linear transformation of a finite dimensional vector space, let
W~v be any subspace as above then if the dim(W~v ) is maximal (there is no ~v ′ with
dim(W~v ) < dim(W~v′)) then there exists a complementary subspace so that

V = W~v ⊕W2

Proof will be done on the next bunch of slides.

Corollary
There exists a collection ~v1, . . . , ~vr so that:

V = W~v1 ⊕ · · · ⊕W~vr

Proof Idea: We need to use the general inductive idea about cutting vector spaces up.
That is, just repeat the proceedure on W2.
We note that given any finite dimensional vector space V there must exist a ~v for which
dim(W~v ) is maximal.
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Proof: Sufficient Condition for Complementary Subspaces I
Warning: Proof is ugly, you do not need to know it!!
First: Let W ′ be any complementary subspace, ie suppose V = W~v ⊕W ′, and let

~e1, . . . , ~er

be a basis for W ′.

Then we know that in the basis ~v , L(~v), . . . , L`−1(~v), ~e1, . . . , ~er that we have a matrix of
the form: 

0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1

 B


 0


 C




The matrix C is r by r and B is ` by r , the zero block is r by `.
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Proof: Sufficient Condition for Complementary Subspaces II
Given the original matrix A

A =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

.

.

.
. . .

.

.

.
.
.
.

0 1 0 −a`−2

0 · · · 1 −a`−1



· · · ~b1 · · ·
· · · ~b2 · · ·

.

.

.

· · · ~b`−1 · · ·
· · · ~b` · · ·


 0


 C




We will use the change of basis matrix (where ~bi are the rows from B):

M =



 Id




· · · −~b2 · · ·
.
.
.

· · · −~b`−1 · · ·
· · · −~b` · · ·
· · · ~0 · · ·


 0


 Id




M−1 =



 Id




· · · ~b2 · · ·
.
.
.

· · · ~b`−1 · · ·
· · · ~b` · · ·
· · · ~0 · · ·


 0


 Id
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Proof: Sufficient Condition for Complementary Subspaces III
We want to calculate M−1AM, but first we calculate AM.

AM =



· · · ~0 · · ·
.
.
. Id


~at

.

.

.



· · · ~b1 · · ·
· · · ~b2 · · ·

.

.

.

· · · ~b`−1 · · ·
· · · ~b` · · ·


 0


 C







 Id




· · · −~b2 · · ·
.
.
.

· · · −~b`−1 · · ·
· · · −~b` · · ·
· · · ~0 · · ·


 ~0


 Id





=



· · · ~0 · · ·
.
.
. Id


~at

.

.

.



· · · ~b1 · · ·
· · · ~0 · · ·

.

.

.

· · · ~0 · · ·
· · · ~0 · · ·


 0


 C




The key is how block matricies multiply.
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Proof: Sufficient Condition for Complementary Subspaces IV
We now multiply by M−1

M−1AM =



 Id




· · · ~b2 · · ·
.
.
.

· · · ~b`−1 · · ·
· · · ~b` · · ·
· · · ~0 · · ·


 0


 Id







· · · ~0 · · ·
.
.
. Id


~at

.

.

.



· · · ~b1 · · ·
· · · ~0 · · ·

.

.

.

· · · ~0 · · ·
· · · ~0 · · ·


 0


 C





=



· · · ~0 · · ·
.
.
. Id


~at

.

.

.



· · · ~b1 + ~b2C · · ·
· · · ~b3C · · ·

.

.

.

· · · ~b`C · · ·
· · · ~0 · · ·


 0


 C




Again, the key is how block matricies multiply.
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Proof: Sufficient Condition for Complementary Subspaces V
This change of basis keeps the same subspace W~v but replaces W ′ by W ′′ by using a
new basis for the complementary space.
That is the new basis is:

~v , L(~v), . . . , L`−1(~v), ~e′1, . . . , ~e
′
r where ~e′j = ~ej −

`−2∑
i=1

(~bi+1, ~ej)L
i−1(~v)

where (~bi+1, ~ej) is just the j-th entrie of the row ~bi+1 from B.

In this basis we have the matrix for L of the form:

M−1AM =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


· · · ~b1 + ~b2C · · ·
· · · ~b2C · · ·

...

· · · ~b`C · · ·
· · · ~0 · · ·


 0


 C




Now: we may repeat the process, but at each stage we obtain one additional row
of zeros at the bottom.
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Proof: Sufficient Condition for Complementary Subspaces VI
By iterating the above process we may be sure that the matrix for L is of the form:

0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

.

.

.
. . .

.

.

.
.
.
.

0 1 0 −a`−2

0 · · · 1 −a`−1



· · · ~b · · ·
· · · ~0 · · ·

.

.

.

· · · ~0 · · ·
· · · ~0 · · ·


 0


 C




So there exists a complementary space W ′′′ where the matrix is as above.

Next need to kill off the ~b.
Note: It is possible to define a single matrix M′ at the start which accomplishes the whole
iterated process in a single step, the eventual result is that

~b =
∑̀
i=1

~biC
i−1.

The variant M′ to use has

~b′j = −
`−j∑
i=1

~bj+iC
i−1

We can likewise explicitly write out the new basis using these... what really matters is it exists!
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That is with M ′ defined by

M′ =



 Id





−(~b2 + ~b3C + · · · + ~b`C
`−1)

−(~b3 + ~b4C + · · · + ~b`C
`−2)

.

.

.

−(~b`−1 + ~b`C)

−(~b`)
~0


 0


 Id





M′
−1

=



 Id





(~b2 + ~b3C + · · · + ~b`C
`−1)

(~b3 + ~b4C + · · · + ~b`C
`−2)

.

.

.

(~b`−1 + ~b`C)

(~b`)
~0


 0


 Id




we have

M′
−1

AM′ =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1



~b1 + ~b2C + ~b3C2 + · · · + ~b`C
`−1

~0
~0
...

~0
~0


 0


 C




This is a direct thing to check, it works like the previous case, we leave this as an exercise.
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Proof: Sufficient Condition for Complementary Subspaces VII
Lemma If (b1, . . . , bn) = ~b 6= ~0 then we have a contradiction.

Define the vector ~u = (0, . . . , 0, b1, . . . , bn) that is, the first ` coordinates are 0, follwed by the entries of b.

A =



0 · · · 0 −a0
1 0 0 −a1
0 1 0 0 −a2

.

.

.

.
.
.

.

.

.

.

.

.
0 1 0 −a`−2
0 · · · 1 −a`−1



· · · ~b · · ·
· · · ~0 · · ·

.

.

.

· · · ~0 · · ·
· · · ~0 · · ·


 0


 C





~u =





0
0

.

.

.

0
0


~bt




Looking at the shape of A, we easily compute

~u =





0
0

.

.

.

0
0


~bt





A~u =





(~b,~b)
0

.

.

.

0
0


C~bt





A2~u =





(~b, C~b)

(~b,~b)

.

.

.

0
0


C2~bt





· · · A`−1~u =





(~b, C`−2~b)

(~b, C`−3~b)

.

.

.

(~b,~b)
0


C`−1~bt





A`~u =





(~b, C`−1~b)

(~b, C`−2~b)

.

.

.

(~b, C~b)

(~b,~b)


C`~bt




But these vectors are ` + 1 linearly independent vectors!

Why: The (~b, ~bt) entry will be a pivot for the last ` columns, ~bt gives a pivot somewhere in the first.
and so Dim(W~u) > Dim(W~v ) a contradiction.
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Proof: Sufficient Condition for Complementary Subspaces VIII
Now that we know ~b = 0, this tells us our matrix is actually of the form:

0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


0


 0


 C




and thus that we have a direct sum decompositon of

V = W~v ⊕W ′

where both spaces are L-invariant!

There are other proofs of the above result. This proof relies on one clever/ugly matrix
calculation.
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Now take a breath...
The point is that it is always possible to get a decomposition

V = W~v1
⊕ · · · ⊕W~vr

Which leads to a matrix structure

A =


A1

A2

. . .
Ar


where each Ai is of the form:

Ai =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


Note: The theorem gives us a strategy for finding the list of vectors, and a proceedure to
carry out the recursion, however, for large matricies the process of finding the maximal
blocks is a bit long to do by hand, as is computing the complementary invariant subspace
to do the recursion.
None the less, for small matricies this process will end up being part of the algorithm to
find the Jordan canonical form! We will revisit this when we come to it.
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Constructing Linear Transformations From Polynomials

So given any polynomial P(x) = x` + a`−1x
`−1 + . . .+ a1x + a0 there is a matrix with

minimal polynomial and characteristic polynomial P(X ).
If we denote the above matrix AP then we note the following:

If P1(x), . . . ,Pr (x) are a collection of polynomials then the matrix:

A =


AP1

AP2

. . .

APr


has characteristic polynomial charA(x) = P1(x) · P2(x) · · ·Pr (x)
and minimal polynomial minA(x) = LCM(P1(x),P2(x), . . . ,Pr (x))
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Existance of a Rational Canonical Form
Theorem
Every matrix is similar to one of the form

A =


AP1

AP2

. . .

APr


for some collection of polynomials P1(x), . . . ,Pr (x), such that

charA(x) = P1(x) · P2(x) · · ·Pr (x) minA(x) = LCM(P1(x),P2(x), . . . ,Pr (x))

Immediate from our previous work.

The above result is the main reason we did any of this, it will be useful when completing
the construction of the Jordan Canonical Form.

Theorem (Cayley-Hamilton)
For any linear transformation L : V → V on a finite dimensional vector space we have

minL(x)
∣∣∣charL(x).

Immediate from the above as the LCM divides the product.
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We will not prove this result, It is way outside the scope of this course.
Theorem (Rational Canonical Form - One Variation)
Suppose L : V → V is a linear transformation of finite dimensional vector spaces, with
characteristic polynomial P(x) and minimal polynomial Q(x), then there exist
polynomials.

Q1(x)|Q2(x)|Q3(x)| · · · |Qr (x) = Q(x)

such that P(x) = Q1(x)Q2(x)Q3(x) · · ·Qr (x) and a basis for V with respect to the
matrix for L is 

A1 0 · · · 0

0 A2

. . .

.

.

.
. . .

. . .
.
.
.

0 Ar−1 0
0 · · · 0 Ar


Where Ai is the matrix associated to Qi (x). All of Qi (x) and the change of basis matrix

have entries in the field of coefficients of L (namely if the original matrix for L had entries
in Q,Q[

√
2],R so can the new one, and so does the change of basis matrix.

The fact that we can do this without using complex numbers is in principal nice... but it
makes proving the above much harder.
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Important Consequence We Need

Completing the details of the following are a bonus question on the assignment

Theorem
If L : V → V has charL(x) = xn, then there exists a basis for V such that the matrix for
L has the form: 

A1 0 · · · 0

0 A2

. . .

.

.

.
. . .

. . .
.
.
.

0 Ar−1 0
0 · · · 0 Ar


Where each of that Ai has the form:

0 1 0 · · · 0
0 0 1 0

.

.

.
. . .

. . .
. . .

.

.

.
0 1 0

0 1
0 · · · 0



Corollary
If the characteristic polynomial of L is instead (x − λ)n then the blocks Ai above instead
have λ on the diagonal.
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Natural Questions About Rational Canonical Form

How do I identify the rational canonical form of a matrix/linear transformation?
We will not cover this, you do not need to know it.

How do I find a basis that does this?
We will not cover this in general, you do not need to know it.
In practice finding maximal W~v is easy (because random vectors will work with high
probability), My proof effectively gives an algorithm for finding the complementary
space.

So why did we do this?
The rational form is a really nice way to find a simple block decomposition, but it is
awkward to use in general.
We will end up only using it in the special case where charA(x) = xn, in which case
things will be simpler. All the ai = 0!!
So the next thing we need to talk about, is a decomposition that allows us to reduce
to the case charA(x) = xn.
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