
Our goal remains to find a good basis for L : V → V , the first stage will be to find an
easy to compute direct sum decomposition.

The idea we are motivated by is something which you have seen before:

Let L : V → V be a linear transformation.

Fix λ ∈ R (or λ ∈ C) recall that if

~v ∈ Ker(L− λIdV )

then L(~v) = λ~v .

We call such a kernel (when it has positive dimension) an Eigenspace.
We call such a non-zero vector an eigenvectors.
We call the values λ for which these non-zero vectors exist an eigenvalue.

You have seen (hopefully!), though perhaps not in this language, that sometimes, these
eigenspaces let us find basis where the matrix is really nice.

The result was that when you had a basis of eigenvectors you could use them to find an
invertible P so that

P−1AP

was diagonal. This was just a change of basis.
On the assignment you will prove a couple things about the case of eigenvectors
independently of what we are about to do.
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Generalized Eigenspaces
Let L : V → V be a linear transformation.

As before, fix λ ∈ R (or λ ∈ C).

For any k > 0 if Ker
(
(L− λIdV )k

)
6= {~0} then we call it a generalized eigenspace.

Note that if Ker(L− λIdV ) = {~0} then for all k we have Ker
(
(L− λIdV )k

)
= {~0}

(Why?), and hence the values λ are exactly the roots of both the characteristic and
minimal polynomial.

Note Because every polynomial factors completely over C, every linear transformation of
finite positive dimensional vector spaces has eigenvalues in C.
In principal, whenever we are talking about L, we might need to ‘extend scalars’ to
pretend we are working over Cn and with complex matricies rather than over Rn and real
matricies.
In practice, you won’t actually notice this is happening..

In the following we will talk alot about

Ker(P(L))

for arbitrary polynomials L, these are just slight generalizations of generalized eigenspaces.
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Generalized Eigenspaces are Invariant

Lemma
Suppose L : V → V is any linear transformation. For any polynomials P(x) and Q(x) all
the subspaces

Ker (P(L)) and Im (P(L))

are Q(L)-invariant.
Note This includes the case Q(x) = x , so they are L-invariant.
Proof Idea Recalling that P(L) and Q(L) commute, this result follows from the
assignment.

The important cases for us are when P(x) = (x − λ)k
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Lemma
Suppose L : V → V is any linear transformation. For any two polynomials P1(x) and
P2(x) with no common factors we have:

Ker (P1(L)) ∩Ker (P2(L)) = {~0} and Im (P2(L)) ∩Ker (P1(L)) = Ker (P1(L))

Proof: For the first claim recall that we have polynomials S1(x) and S2(x) so that

S1(x)P1(x) + S2(x)P2(x) = 1 ⇒ S1(L) ◦ P1(L) + S2(L) ◦ P2(L) = IdV

From this it follows that if ~v ∈ Ker (P1(L)) ∩Ker (P2(L)) then

~v = Id(~v) = (S1(L) ◦ P1(L) + S2(L) ◦ P2(L))(~v) = S1(L)(~0) + S2(L)(~0) = ~0

For the second claim, Now, for every ~v ∈ Ker (P1(L)) we also get

~v = Id(~v)

= (S1(L) ◦ P1(L) + S2(L) ◦ P2(L))(~v)

= P2(L) ◦ S2(L)(~v) ∈ Im (P2(L))

Which shows ~v ∈ Im (P2(L)).
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Generalized Eigenspaces are Complementary.
Theorem
Suppose L : V → V is any linear transformation. If P1(x) and P2(x) are any polynomials
with no common factors then:

Ker(P1(L) ◦ P2(L)) = Ker(P1(L))⊕Ker(P2(L))

Proof Idea:
We know that Ker(P1(L)) and Ker(P2(L)) are subspaces of Ker(P1(L) ◦ P2(L)).
We must show they satisfy conditions to give direct sum, as before write

P1(x)S1(x) + P2(x)S2(x) = 1

so that given any ~v ∈ Ker(P1(L) ◦ P2(L)) we have

~v = P2(L) ◦ S2(L)(~v) + P1(L) ◦ S1(L)(~v)

Then P2(L) ◦ S2(L)(~v) ∈ Ker(P1(L)) because

P1(L)(P2(L) ◦ S2(L)(~v)) = S2(L)(P1(L) ◦ P2(L)(~v)) = S2(L)(~0).

Likewise, P1(L) ◦ S1(L)(~v) ∈ Ker(P2(L)).

The uniqueness of the expression for ~v follows from the fact that

Ker(P1(L)) ∩Ker(P2(L)) = {~0}.

using A2(proofs)Q4b.
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Decomposition into Generalized Eigenspaces

Theorem
Suppose L : V → V is any linear transformation.
Suppose minL(x) = P1(x) · · ·Pr (x) is any factorization of the minimal polynomial such
that the Pi (x) have no common factors then

V = Ker (P1(L))⊕ · · · ⊕Ker (Pr (L))

is an L-invariant direct sum decomposition.
Proof Idea
This follows from the previous theorem by induction, and the observation that

V = Ker(minL(L)) = Ker(P1(L) ◦ · · · ◦ Pr (L))

= Ker(P1(L))⊕Ker(P2(L) ◦ · · · ◦ Pr (L))

= Ker(P1(L))⊕Ker(P2(L))⊕Ker(P3(L) ◦ · · · ◦ Pr (L))

...

= Ker (P1(L))⊕ · · · ⊕Ker (Pr (L))

Which gives the result.
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Generalized Eigenspaces Give Invariant Direct Sum Decomposition.

Theorem
Suppose L : V → V is any linear transformation of a finite dimensional vector space.
Suppose λ1, . . . , λr are the roots of the characteristic/minimial polynomial of L. Then

V = Uλ1 ⊕ · · · ⊕ Uλr

is an invariant direct sum decomposition. where Uλi = Ker((L− λi )
mλi ) and

minL(x) =
r∏

i=1

(x − λi )
mλi

Proof This is a special case of the previous result because (x − λi )
mλi and (x − λj)

mλj

have no common factors when λi 6= λj .

The above is the result we have been after, it is the first stage in getting a good basis for
V !!!
Step 1 of finding the Jordan form will be working towards finding this kernels!!
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Characteristic and Minimal Polynomials
Recalling that the characteristic polynomial for L is simply the product of the
characteristic polynomial of each factor it would be useful to check what those are

Lemma
The characteristic polynomial for L acting on

Ker ((L− λ)mλ)

is
(x − λ)Dim(Ker((L−λ)mλ ).

Proof: Indeed, we know that λ is the only root of the characteristic polynomial for L
acting on this factor because for any other value µ 6= λ we have

Ker(L− µId) ∩Ker ((L− λ)mλ) = {~0}

so L− µId is injective.
Because the characteristic polynomial has degree equal to the dimension, and only a
single root, this is the only form it could have.

The above will be usefull for identifying characteristic polynomials by looking at matricies
in Jordan form, but it is also useful because it tells us

what dimension we need each generalized eigenspace to be
while trying to find the Jordan form
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Likewise, recalling that the minimial polynomial for L is simply the LCM of the minimal
polynomial of each factor it would be useful to check what those are.

Recall that we are looking at vector spaces

Ker ((L− λIdV )mλ)

where (x − λ)mλ was a factor of the minimal polynomial.

Lemma
If V is finite dimensional then mλ is the smallest integer such that

∀n > mλ,Ker ((L− λIdV )n) = Ker ((L− λIdV )mλ) .

and so the minimial polynomial for L acting on Ker ((L− λ)mλ) is (x − λ)mλ .
Proof: If there was any nλ > mλ for which Ker ((L− λIdV )nλ) has larger dimension
than Ker ((L− λIdV )mλ) then the previous theorem would also imply

V =
⊕
λ

Ker ((L− λIdV )nλ)

But the dimension of V is the sum of the dimensions of the pieces... so these can’t get
any bigger.
The claim about the minimial polynomial follows from the previous lemma, as λ can be
its only root, and the above definition which verifies the multiplicity.

Lemma
With notation as above, mλi ≤ dim(Vλi ).
Proving this directly is a bonus question on the assignment.
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Characteristic Polynomials.

Lemma
Suppose L : V → V is any linear transformation of a finite dimensional vector space.
Suppose λ1, . . . , λr are the roots of the characteristic/minimial polynomial of L. Then:

charL(x) =
r∏

i=1

(x − λi )
dim(Uλi

) and minL(x) =
r∏

i=1

(x − λi )
mλi

where mλ is the smallest value with ∀n > mλ,Ker ((L− λIdV )n) = Ker ((L− λIdV )mλ).
Proof:
This follows from the formula for combining characteristic polynomials/minimial
polynomials for invariant direct sum decompositions together with our the fact that for
each factor the characteristic polynomial is (x − λi )

dλ and the minimal polynomial is
(x − λi )

mλ , hence have no common factors.

Theorem(Cayley-Hamilton)
Suppose L : V → V is any linear transformation of a finite dimensional vector space, then

minL(x)|charL(x)

Proof That mλi ≤ Dim(Vλi ) gives it to us immediately.
This is the second proof we have for this theorem.
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What we have so far.
Because we have a canonical direct sum decomposition, in fact, a direct sum
decomposition that we know how to compute!, we are now interested in studying
canonical forms for each piece of that decomposition.

We must now look at the case:

charL(x) = (x − λ)n charL(x) = (x − λ)m

Lemma
If the linear transformation L has characteristic and minimal polynomials P(x) and Q(x)
respectively then

L− λIdV

has characteristic and minimal polynomials P(x + λ) and Q(x + λ).
This is on the assigment.

This reduces us to the case

charL(x) = xn charL(x) = xm

You will ultimiately prove the result for this case on the assignment, but we explain what
it is.
If the matrix for L− λIdV in some basis is A, and A is really nice.
Then the matrix for L in the same basis is

A + λIdn
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Example

Consider the matrix

A =


0 6 −5 3
−2 7 −2 4
−1 2 2 2
1 −2 1 1


Find a matrix P such that P−1AP is simple.

We first need to find kernels of (A− λId)m

Step 1 find characteristic polynomial and factor:

x4 − 10x3 + 37x2 − 60x + 36 = (x − 2)2(x − 3)2

So the λ we need are 2 and 3.
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Example - Continued

Step 2 Find matricies to find Kernels of:

(A− 2I ) =


−2 6 −5 3
−2 5 −2 4
−1 2 0 2
1 −2 1 −1

 (A− 3I ) =


−3 6 −5 3
−2 4 −2 4
−1 2 −1 2
1 −2 1 −2


Making a mistake at this step sucks!!
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Example - Continued
Step 3a Row reduce and find a basis for kernel of (A− 2I ):

−2 6 −5 3
−2 5 −2 4
−1 2 0 2
1 −2 1 −1


R4↔ R1

R2 + 2R4→ R2
R3 + R4→ R3
R1 + 2R4→ R4

⇒


1 −2 1 −1
0 1 0 2
0 0 1 1
0 2 −3 1


R1 + 2R2− R3→ R1

R2→ −R2

R4− 2R2→ R4

⇒


1 0 0 2
0 1 0 2
0 0 1 1
0 0 −3 −3


R4 + 3R3→ R4

⇒


1 0 0 2
0 1 0 2
0 0 1 1
0 0 0 0


a basis for this kernel is (−2,−2,−1, 1).
If you find that you have no non-trivial solutions you made a mistake.
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Example - Continued

Step 3 b Become a little bit sad that you didn’t find enough vectors in the basis, we
wanted 2, but only found 1.

Step 3 c Compute (A− 2I )2 and row reduce

(A− 2I )2 =


0 2 1 5
0 1 4 6
0 0 3 3
0 0 −2 −2

 R1↔ R2
R1− 2R2→ R2
R3 + R4→ R3

⇒


0 1 4 6
0 0 −7 −7
0 0 1 1
0 0 −2 −2


R1− 4R3→ R1

R2↔ R
R2 + 7R3→ R3
R4 + 2R3→ R4

⇒


0 1 0 2
0 0 1 1
0 0 0 0
0 0 0 0


a basis for this kernel is (1, 0, 0, 0), (0,−2,−1, 1). The original vector (−2,−2,−1, 1)
will be in this kernel, but it may not be one of your basis vectors!
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Example - Continued

Step 3 d Rejoice at having found enough vectors!

Step 3 e Pick a good basis for the kernel We will actually do this later.

Step 3 f Repeat Step 3 a for each eigenvector.
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Example - Continued

Step 3a Row reduce and find a basis for kernel of (A− 3I ):
−3 6 −5 3
−2 4 −2 4
−1 2 −1 2
1 −2 1 −2


R4↔ R1

R2 + 2R4→ R2
R3 + R4→ R3
R1 + 3R4→ R4

1 −2 1 −2
0 0 0 0
0 0 0 0
0 0 −2 −3


a basis for this kernel is: (2, 1, 0, 0), (7, 0,−3, 2).

Step 3b Rejoice at having 2 vectors already!
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Intermission - What we know so far

Ker(A− 2Id)2 = Span((1, 0, 0, 0), (0,−2,−1, 1))

Ker(A− 3Id) = Span((2, 1, 0, 0), (7, 0,−3, 2))

R4 = Span((1, 0, 0, 0), (0,−2,−1, 1))⊕ Span((2, 1, 0, 0), (7, 0,−3, 2))

and if we use this basis to describe A, the change of basis matrix is

P =


1 0 2 7
0 −2 1 0
0 −1 0 −3
0 1 0 2


and so we know

P−1AP =


? ? 0 0
? ? 0 0
0 0 ∗ ∗
0 0 ∗ ∗


We find (

? ?
? ?

)
and respectively

(
∗ ∗
∗ ∗

)
By looking at what A does to (1, 0, 0, 0), (0,−2,−1, 1) (respectively
(2, 1, 0, 0), (7, 0,−3, 2)).
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Intermission - what are the blocks
We can check that

A(1, 0, 0, 0) = (0,−2,−1, 1) = 0(1, 0, 0, 0) + 1(0,−2,−1, 1)

and that

A(0,−2,−1, 1) = (4,−8,−4, 4) = −4(1, 0, 0, 0) + 4(0,−2,−1, 1)

so (
? ?
? ?

)
=

(
0 −4
1 4

)
This isn’t quite what we wanted, because we didn’t carefully pick the basis!

We can also check that
A(2, 1, 0, 0) = 3(2, 1, 0, 0)

and that
A(7, 0,−3, 2) = 3(7, 0,−3, 2)

and so (
∗ ∗
∗ ∗

)
=

(
3 0
0 3

)
This is what we wanted.
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Return to Step 3 e

Step 3 e Pick a good basis for the kernel.
How do we do that?
The observation is that the matrix for A acting on Span((1, 0, 0, 0), (0,−2,−1, 1)) was(

? ?
? ?

)
=

(
0 −4
1 4

)
We notice that the characteristic polynomial of this matrix is

(x − 2)2

However, if we look at (A− 2I ) it will be the matrix(
0 −4
1 4

)
− 2

(
1 0
0 1

)
=

(
−2 −4
1 2

)
and the characteristic polynomial of this matrix is x2!!

We will return to this in a moment, but that case of a simple characterist polynomial is
important.
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We say a linear transformation is nilpotent if there exists m so that Lm = 0.
From the assignment we know L is nilpotent if and only if charL(x) = xn.

Theorem
If L : V → V is nilpotent, so if charL(x) = xn, then there exists a basis for V such that
the matrix for L has the form: 

A1 0 · · · 0

0 A2

. . .

.

.

.
. . .

. . .
.
.
.

0 Ar−1 0
0 · · · 0 Ar


Where each of that Ai has the form:

0 1 0 · · · 0
0 0 1 0

.

.

.
. . .

. . .
. . .

.

.

.
0 1 0

0 1
0 · · · 0


This is on the assigment

Corollary
If the characteristic polynomial of L is instead (x − λ)n then the blocks Ai above instead
have λ on the diagonal.
This is also on the assigment
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Back to the misbehaving 2x2 block
The idea behind this was to use a decomposition with basis of the forms

L`(~v), . . . , L2(~v), L(~v), ~v

so if we apply this to

A− 2I =

(
−2 −4
1 2

)
pick any vector ~v , how about (1, 0), then (A− 2I )(~v) = (−2, 1) and so the matrix in the
basis

(−2, 1), (1, 0)

In that order is (
0 1
0 0

)
=

(
−2 1
1 1

)(
−2 −4
1 2

)(
0 1
1 1

)−1

So the matrix for A in the basis
(−2, 1), (1, 0)

is (
0 1
0 0

)
+ 2

(
1 0
0 1

)
=

(
2 1
0 2

)
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Example - Continued

So what we should have done originally when picking the basis for

Ker(A− 2Id)2 = Span((1, 0, 0, 0), (0,−2,−1, 1))

Was use a basis like
(A− 2Id)~v , ~v

Where
~v ∈ Ker(A− 2Id)2 \Ker(A− 2Id)

so lets say:
(A− 2Id)(1, 0, 0, 0), (1, 0, 0, 0)

which is the basis
(−2,−2,−1, 1), (1, 0, 0, 0)

Taking this into account we find


−2 1 2 7
−2 0 1 0
−1 0 0 −3
1 0 0 2


−1

0 6 −5 3
−2 7 −2 4
−1 2 2 2
1 −2 1 1



−2 1 2 7
−2 0 1 0
−1 0 0 −3
1 0 0 2

 =


2 1 0 0
0 2 0 0
0 0 3 0
0 0 0 3
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We will work through completely some examples shortly, but for now I want to walk us
through the process we will use to go from arbitrary matrix

A

to finding a basis with respect to which the matrix is just a bunch of blocks:

A1 0 · · · 0

0 A2

. . .
...

. . .
. . .

...
0 Ar−1 0

0 · · · 0 Ar


where each Ai is of the form: 

λi 1 0 ··· 0
0 λi 1 0

...
. . .

. . .
. . .

...
λi 1 0

λi 1
0 ··· λi


where some or all of the λi may be the same or different.
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Finding the Decomposition
1 Compute the characteristic polynomial charL(x).
2 Factor charL(x) =

∏
(x − λ)dλ , the multiplicities are important.

3 Find the kernels Ker((L− λId)j) until you get dimension dλ.
The power j when this first happens is the multiplicity mλ for minimal polynomial.

4 If mλ = dλ or if mλ = 1 then you are done!! Expect this in questions you get.
If not, you need to carefully look at how the ranks change as you increase j to figure
out how many Jordan Blocks of each length there are.

Finding the Basis - Do this for each Ker((L− λId)mλ) - There are a few cases:

(a) If mλ = 1, pick any basis ~v1, . . . , ~vk for Ker((L− λId)), done!.
(b) If mλ = dλ then pick any element ~v ∈ Ker((L− λId)mλ) \Ker((L− λId)mλ−1).

The basis is (L− λId)mλ−1(~v), (L− λId)mλ−2(~v), . . . , ~v done!.
(c) Otherwise...

Keep repeating (b) on largest ` where

Ker((L− λId)`) \ Span(Ker((L− λId)`−1), vectors already picked)

is not empty.
keeping doing this until you have a basis you will get k lists like in (b):

(L− λId)mλ−1(~v1), . . . , ~v1, (L− λId)`2−1(~v2), . . . , ~v2, . . . . . . , (L− λId)`k (~vk), . . . , ~vk

This list will have dλ vectors total!! and each `i ≤ mλ.
Note: You can always use option (c), and if you are going to you can skip steps 3/4
in the finding the decomposition part above.
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Result
Having done what is on the previous slide, for each root λ you will have dλ many vectors
(multiplicity from characteristic polynomial).
Combining these for all λ that are roots you get a basis in which your matrix will be in
Jordan form.
For questions I ask you it will basically be the case that either mλ = 1 and the block
looks like:

λIddλ

or dλ = mλ and the block looks like
λ 1 0 ··· 0
0 λ 1 0

...
. . .

. . .
. . .

...
λ 1 0

λ 1
0 ··· λ


Though in principal, otherwise for each of the chains (L− λId)`i−1(~vi ), . . . , ~vi you get
such a block So you could get something like(

λ 1 0 0 0
0 λ 0 0 0
0 0 λ 1 0
0 0 0 λ 0
0 0 0 0 λ

)
which would correspond to the ordered basis

(L− λId)(~v1), ~v1, (L− λId)(~v2), ~v2, ~v3
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Find the Jordan form for A, and a basis of R3 for which the matrix is in this Jordan form
when

A =

 3 −2 −2
−1 4 −1
−3 6 2


Note: the characteristic polynomial of A is

charA(x) = (x − 2)2(x − 5)
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Change of Basis Matrix

If A is the original matrix and B is the matrix in Jordan form.
Then

B = P−1AP

where P is the matrix whose columns are the vectors ~e1, . . . , ~en which put the matrix in
Jordan form.

The order of the vectors ~e1, . . . , ~en is essential to actually getting the
matrix in the same shape as what you said B would be.
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Things to Look out for in the Process

Finding the Jordan form is a long process, it is easy to make mistakes, most of these can
be detected by something going wrong.

If λ is a root of charL(x) it is not possible that

Ker(L− λId) = {~0}

there must be a non-zero vector.

If (x − λ)2 divides charL(x) it is not possible that

Dim(Ker((L− λId)2)) = 1

because more generally if (x − λ)k divides charL(x) then

Dim(Ker((L− λId)k)) ≥ k

If you pick a vector ~v ∈ Ker((L− λId)2), then it will always be the case that

(L− λId)(~v) ∈ Ker(L− λId)
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Reading off Minimal and Characterisitic Polynomials

Though our proofs already tell us how to read off the characteristic and minimal
polynomials from the Jordan form of a matrix, it is useful to quickly go over a good way
to remind yourself.

Group blocks by diagonal entry.

The total number of each diagonal entry gives characteristic polynomial.

The largest block for each diagonal entry gives the minimal polynomial.

Can you read off the answers for:
2 1 0 0 0
0 2 0 0 0
0 0 3 1 0
0 0 0 3 0
0 0 0 0 4



3 1 0 0 0
0 3 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2



2 1 0 0 0
0 2 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 4



2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2



2 1 0 0 0
0 2 0 0 0
0 0 3 1 0
0 0 0 3 0
0 0 0 0 4



3 1 0 0 0
0 3 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2



2 1 0 0 0
0 2 0 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 4



2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2
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Criterion for Diagonalizability

Theorem
Suppose L : V → V is a linear transformation of a finite dimensional vector space then L
is diagonalizable if and only if V has a basis which consists of eigenvectors which occurs
if and only if all roots of minL(x) have multiplicity 1.
This follows from our work on the Jordan form

The easiest case to idenfity when this will happen is given by the following. (It is easy to
identify because the characteristic polynomial is easier to compute than the minimial
polynomial).

Theorem
If the roots of charL(x) all have multiplicity 1, then so to do the roots of minL(x) and
hence L will be diagonalizable.
This follows from our work on the Jordan form
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What invariants distinguish matricies?
You will never need to actually make use of this, though in principal it helps compute
Jordan decompositions in the most general case.
The main theoretic result here is it tells you what extra invariants fully determine the
Jordan form.
Theorem
If L is nilpotent, then the collection of numbers:

rk = rank(Lk)

determine the dimensions of the blocks Ai appearing.
Proof Idea
For k > 0 the difference between rk and rk+1 tells you the exact number of the blocks
(the matricies Ai ) which have dimension at least k.
This is because every time you take a power of the standard unipotent block the rank
drops by 1 until it reaches 0.

Theorem
The numbers rk satisfy:

n = r0 ≥ r1 ≥ · · · ≥ rn = 0

moreover
n ≥ null(L) = r1 − r0 ≥ r2 − r1 ≥ · · · ≥ rn − rn+1 = 0

and any set of ri satisfying the above can occur.
The first claim follows from the above, the converse is essentially by construction.
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Natural Questions About Jordan Canonical Form

How do I identify the Jordan canonical form of a matrix/linear transformation?
You should know the process,
for large matricies it is not typical to do it by hand
You should expect either dλ = mλ or mλ = 1 for examples I have you do.

How do I find a basis for the Jordan canonical form?
As above, You should expect either dλ = mλ or mλ = 1 for examples I have you do.

How can I identify the Characteristic/Minimal polynomial of a matrix in Jordan
form?
The connection to the sizes of the blocks is key

How can I write down a matrix in Jordan form that has specific
Characteristic/Minimal polynomial?
The connection to the sizes of the blocks is key

What information is hidden in the Jordan canonical form?
This is open ended, a number of applications have been on the assignments.

What information is hidden in the basis that realizes it?
This is open ended, a number of applications have been on the assignments.
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