Math 1410, Spring 2020
 Matrix Transformations, Part 2

Sean Fitzpatrick

Overview

(1) Recap
(2) Transformations of the plane
(3) Null space and column space

Warm-Up

Assume T is a linear transformation.
(1) Given $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-4 \\ 5\end{array}\right]$, find $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$
(2) Given $T(\vec{a})=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right], T(\vec{b})=\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]$ and $T(\vec{c})=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, find

$$
T(2 \vec{a}-3 \vec{b}+5 \vec{c}) .
$$

Reminder: T is linear if $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ and $T(k \vec{x})=k T(\vec{x})$ for any vectors \vec{x}, \vec{y} and scalar k.

Is it linear?

For each map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, decide if it's linear:
(1) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x-3 y \\ x+4 y\end{array}\right]$
(2) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}4 x y \\ 2 x+y\end{array}\right]$
(3) $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x+1 \\ x-3 y+2\end{array}\right]$

Examples

(1) If $T(\vec{x})=A \vec{x}$ for $A=\left[\begin{array}{cc}2 & -3 \\ -1 & -2 \\ 5 & 4\end{array}\right]$, what are the domain and codomain of T ?
(2) For T as above, compute $T(\hat{\imath})$ and $T(\hat{\jmath})$
(3) What if $A=\left[\begin{array}{lll}2 & -1 & 5 \\ 4 & -2 & 3\end{array}\right]$?
(1) If $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}3 x-2 y \\ -x+4 y+5 z \\ 7 x-2 y-6 z\end{array}\right]$, for what matrix is $T(\vec{x})=A \vec{x}$?

More examples

(1) Determine the matrix of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, given that

$$
T(\hat{\imath})=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], T(\hat{\jmath})=\left[\begin{array}{c}
-3 \\
5
\end{array}\right], T(\hat{k})=\left[\begin{array}{c}
-7 \\
6
\end{array}\right] .
$$

(2) Determine the matrix of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given that

$$
T\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4
\end{array}\right], T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Maps from \mathbb{R}^{2} to \mathbb{R}^{2}

When A is 2×2 we can visualize everything in terms of geometric vectors in the plane. We can use matrices to describe transformations, like stretches, rotations, and reflections. (But not translations.)

Example

Describe the effect of the transformation with matrix $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]$ in terms of what it does to the unit square $(0 \leq x, y \leq 1)$

Transformation matrices

- Stretches: $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & k\end{array}\right],\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]=k I_{2}$. (This is just scalar multiplication.)
- Reflections: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Rotations: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- Shears: $\left[\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$

Examples

Determine the matrix transformation that:
(1) Stretches horizontally by a factor of 2 , rotates by 90°, and then reflects across the x axis.
(2) Reflects across the line $y=x$, stretches vertically be a factor of 3 , then reflects across the y axis.

Column space

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. The range of T is the set of all $\vec{y} \in \mathbb{R}^{m}$ that are equal to $T(\vec{x})$ for some $\vec{x} \in \mathbb{R}^{n}$. In other words: if $T(\vec{x})=A \vec{x}$, the range of T is the set of all \vec{y} for which the system $A \vec{x}=\vec{y}$ is consistent.
Recall: if $A=\left[\begin{array}{llll}A_{1} & A_{2} & \cdots & A_{n}\end{array}\right]$ (in terms of columns) then

$$
A \vec{x}=x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} .
$$

So the range of T is all linear combinations of the columns of A. (This is why range is also called column space.)

Examples

Determine the range of:
(1) $S(\vec{x})=A \vec{x}, A=\left[\begin{array}{cc}1 & 2 \\ 3 & 6 \\ -2 & -4\end{array}\right]$
(2) $T(\vec{x})=B \vec{x}, B=\left[\begin{array}{ccc}1 & -3 & 2 \\ -1 & 3 & 5\end{array}\right]$

Null space

The null space of a linear transformation $T(\vec{x})=A \vec{x}$ is the set of all vectors \vec{x} such that $T(\vec{x})=\overrightarrow{0}$. In other words, it's the set of all solutions to the homogeneous system $A \vec{x}=\overrightarrow{0}$. Both null space and column space are examples of subspaces. Given a subspace, we often want to find a basis for it. This is a sort of "minimal generating set" of vectors. A basis for the null space is the set of basic solutions to $A \vec{x}=\overrightarrow{0}$.

Example

Determine the null space and column space of the transformation T with matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
-1 & -2 & 2 & 5 \\
2 & 4 & -1 & -4
\end{array}\right]
$$

