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2 Elementary row operations

3 Reduced row-echelon form
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Warm-up
What can you say about the set of solutions to each pair of equations
below? (You might find it helpful to sketch the lines.)

1

x − 2y = 5
−4x + 8y = −10

2

4x + y = 6
12x + 3y = 18

3

3x − y = 4
x + 2y = 2
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The augmented matrix

If we’re going to be solving lots of linear systems (and we are), then it gets
tedious quickly to keep track of all the variables. A “key idea”: write only
the coefficients, and keep track of variables by position. We organize
everything in a rectangular array, called a matrix.

Example
System of equations:

2x − y + 4z = 7
−5x + 7y + 8z = 11
3x − 2y + 81z = 12

Augmented matrix: 2 −1 4 7
−5 7 8 11
3 −2 81 12

 .
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From matrix to system

It’s important to be able to convert in both directions:

Example
Write down the system (in variables x1, x2, x3, x4) corresponding to the
augmented matrix  3 −2 1 4 6

1 0 2 −7 12
0 3 4 0 −38

 .
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Elementary row operations

There are three elementary operations on the rows of a matrix,
corresponding to the elementary operations on equations:

1 Swap any two rows: write Ri ↔ Rj
2 Multiply a row by a nonzero constant (rescale): write cRj → Rj
3 Add a multiple of one row to another: write Ri + cRj → Ri
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Gaussian elimination

There is a standard algorithm for solving a system using row operations:
By swapping rows and/or rescaling, get a 1 in row 1, column 1. (This
is possible unless column 1 consists entirely of zeros.)
By adding multiples of row 1 to the other rows, create zeros in all
other entries of column 1.
Move to row 2, column 2, and repeat (until you reach the last row or
column).
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Example

For the system below, write down the augmented matrix, and use
Gaussian elimination to simplify.

2x − 4y + 2z = 8
x − 3y − z = 5
−x + 2y + z = 3

Then, solve the system, if possible.
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Avoiding pitfalls

Be careful of minus signs!

Once first column looks like


1
0
0
...
0

, stop using R1!

To get next leading one, either divide, or use rows below.
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RREF

How do we know when to stop the algorithm?
Gaussian elimination works down and to the right, creating zeros and
leading ones.
Once each row “starts” with a leading one (first nonzero entry), and
leading ones in lower rows are to the right of leading ones in higher
rows, (only zeros below each leading one) you’re in row-echelon
form.
Row-echelon form is not unique. From any REF you can probably
solve by back-substitution.
Eliminating non-zero entries above each leading one leads to reduced
row-echelon form. This is unique, and as simplified as possible.
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Examples

Which matrices are in REF? RREF? If neither, what’s the next step?2 1 0
0 1 2
0 0 1

 1 0 −2
0 1 3
0 0 0

 1 0 1
0 0 1
0 0 0


 1 0 2 3

0 1 −1 1
0 0 0 1




0 1 0 0 −2
0 0 1 1 3
0 0 0 2 1
0 0 0 0 0
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