Math 1410, Spring 2020
 Solving Systems of Equations

Sean Fitzpatrick

Overview

(1) Warm-Up
(2) Solving systems
(3) Examples
(4) Homogeneous systems of equations

Examples

Which matrices are in REF? RREF? If neither, what's the next step?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Gauss-Jordan Elimination

- Forward steps: perform Gaussian elimination to reach row-echelon form.
- You could solve by back substitution at this stage.
- (If there's no solution, you should already be able to tell.)
- Back substitution can be tricky if there are parameters involved.
- Backward steps: starting with right-most leading one, create zeros above, working up and to the left.

Example 1

Solve the system:

$$
\begin{aligned}
2 x-y+4 z & =3 \\
x-y+2 z & =-2 \\
-2 x+3 y-z & =0
\end{aligned}
$$

Example 2

Solve the system:

$$
\begin{aligned}
x-2 y+3 z & =4 \\
2 x-3 y+4 z & =-1 \\
x-3 y+5 z & =13
\end{aligned}
$$

Example 3

Solve the system:

$$
\begin{aligned}
2 x-5 y & =6 \\
x-4 y & =4 \\
-3 x+10 y & =-7
\end{aligned}
$$

Example 4

Solve the system:

$$
\begin{aligned}
x_{1}-3 x_{2}+5 x_{4} & =4 \\
2 x_{1} & -4 x_{2}+6 x_{3}-2 x_{4}
\end{aligned}=-9
$$

Homogeneous systems

Definition:

A system of linear equations is homogeneous if all the constant terms (right-hand sides) are zero.

Example

$$
\begin{aligned}
& 3 x-5 y+2 z=0 \\
& 2 x+2 y+4 z=0
\end{aligned}
$$

For homogeneous systems, existence of solutions is not in question. (Why?) Instead, we're interested in whether solutions are unique.

Example

Solve the homogeneous system

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}-4 x_{4}=0 \\
-2 x_{1}+4 x_{2}-3 x_{3}-5 x_{4}=0 \\
-x_{1}+2 x_{2}+x_{3}-13 x_{4}=0
\end{gathered}
$$

Vector solutions

It can be convenient to write our solutions in vector form. For later work with matrices, we use column vectors. Instead of giving solutions for
$x_{1}, x_{2}, \ldots, x_{n}$ separately, we collect things into a vector $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$.

Vector solutions, continued

This can be notationally convenient. Instead of

$$
\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2}+\cdots & +\cdots & +a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & +\cdots & +a_{2 n} x_{n} & = & b_{2} \\
\vdots & & \vdots & & & & \vdots & \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots & +\cdots a_{m n} x_{n} & = & b_{m}
\end{array}
$$

write

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

or simply, $A \vec{x}=\vec{b}$.

Basic solutions

For a homogeneous system with parameters $t_{1}, t_{2}, \ldots, t_{k}$ in the vector solution, the basic solutions are obtained by setting one parameter equal to 1 , and the others to 0 . Notice that if \vec{v} and \vec{w} are both solutions to $A \vec{x}=\overrightarrow{0}$, then so is $s \vec{v}+t \vec{w}$ for any real numbers s, t.

Example

Find the basic solutions to

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}-4 x_{4}=0 \\
-2 x_{1}+4 x_{2}-3 x_{3}-5 x_{4}=0 \\
-x_{1}+2 x_{2}+x_{3}-13 x_{4}=0
\end{gathered}
$$

