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Examples

Which matrices are in REF? RREF? If neither, what’s the next step?2 1 0
0 1 2
0 0 1

 1 0 −2
0 1 3
0 0 0

 1 0 1
0 0 1
0 0 0


 1 0 2 3

0 1 −1 1
0 0 0 1




0 1 0 0 −2
0 0 1 1 3
0 0 0 2 1
0 0 0 0 0


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Gauss-Jordan Elimination

Forward steps: perform Gaussian elimination to reach row-echelon
form.

▶ You could solve by back substitution at this stage.
▶ (If there’s no solution, you should already be able to tell.)
▶ Back substitution can be tricky if there are parameters involved.

Backward steps: starting with right-most leading one, create zeros
above, working up and to the left.
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Example 1

Solve the system:

2x − y + 4z = 3
x − y + 2z = −2

−2x + 3y − z = 0
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Example 2

Solve the system:

x − 2y + 3z = 4
2x − 3y + 4z = −1
x − 3y + 5z = 13
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Example 3

Solve the system:
2x − 5y = 6
x − 4y = 4

−3x + 10y = −7
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Example 4

Solve the system:

x1 − 3x2 + 5x4 = 4
2x1 − 4x2 + 6x3 − 2x4 = −9
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Homogeneous systems

Definition:
A system of linear equations is homogeneous if all the constant terms
(right-hand sides) are zero.

Example
3x − 5y + 2z = 0
2x + 2y + 4z = 0

For homogeneous systems, existence of solutions is not in question.
(Why?) Instead, we’re interested in whether solutions are unique.
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Example

Solve the homogeneous system

x1 − 2x2 + x3 − 4x4 = 0
−2x1 + 4x2 − 3x3 − 5x4 = 0
−x1 + 2x2 + x3 − 13x4 = 0
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Vector solutions

It can be convenient to write our solutions in vector form. For later work
with matrices, we use column vectors. Instead of giving solutions for

x1, x2, . . . , xn separately, we collect things into a vector


x1
x2
...

xn

.
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Vector solutions, continued

This can be notationally convenient. Instead of

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

... ... ... ...
am1x1 + am2x2 + · · · + amnxn = bm

write 
a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn




x1
x2
...

xn

 =


b1
b2
...

bm

 ,

or simply, Ax⃗ = b⃗.
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Basic solutions

For a homogeneous system with parameters t1, t2, . . . , tk in the vector
solution, the basic solutions are obtained by setting one parameter equal
to 1, and the others to 0. Notice that if v⃗ and w⃗ are both solutions to
Ax⃗ = 0⃗, then so is s⃗v + tw⃗ for any real numbers s, t.
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Example

Find the basic solutions to

x1 − 2x2 + x3 − 4x4 = 0
−2x1 + 4x2 − 3x3 − 5x4 = 0
−x1 + 2x2 + x3 − 13x4 = 0
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