Math 1410, Spring 2020
 Operations on Matrices

Sean Fitzpatrick

Overview

(1) Recap

(2) Transpose
(3) Trace
(4) Determinants

Warm-Up

Determine the matrix transformation that:
(1) Reflects across the y axis, stretches vertically by a factor of 3 , and then rotates by 45°.
(2) Reflects across the line $y=x$, stretches vertically be a factor of 3 , then reflects across the y axis.

Transpose of a matrix

- The transpose of a matrix swaps its rows and columns.
- If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix, then A^{T} is the $n \times m$ matrix whose (i, j) entry is $a_{j i}$.
Examples: on the board.

Why transpose?

Why should we care about transpose?

- Admittedly, it's one of several things we teach you to compute in Math 1410, and make you wait until later courses to really understand.
- Later, it gets related to dual vectors and dual operators, and is important in things like quantum mechanics.
- It gives us an easy way to turn columns into rows and vice versa: sometimes we write $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$ instead of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ because it fits better on the page.
- It also connects with the dot product: we can write $\vec{v} \cdot \vec{w}=(\vec{v})^{T} \vec{w}$.

Properties

In each case, assume that A and B have the right size for the operation to be defined. (True if both are $n \times n$ but things work for non-square matrices too.)
(1) $(A+B)^{T}=A^{T}+B^{T}$
(2) $(k A)^{T}=k A^{T}$
(3) $(A B)^{T}=B^{T} A^{T}$
(9) $\left(A^{T}\right)^{T}=A$
(6) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$, if A is invertible.

Symmetric and antisymmetric matrices

An $n \times n$ matrix A is symmetric if

$$
A^{T}=A
$$

and antisymmetric if

$$
A^{T}=-A
$$

What can we say about the entries of A in each case?

Constructing symmetric matrices

(1) Show that $A+A^{T}$ is symmetric, and $A-A^{T}$ is antisymmetric, for any $n \times n$ matrix A
(2) Show that $A A^{T}$ and $A^{T} A$ are symmetric for any matrix A.
(3) Show that any square matrix A can be written as the sum of a symmetric and an antisymmetric matrix.

Trace of a matrix

The trace of a matrix is simply the sum of its diagonal entries. If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix, then

$$
\operatorname{tr}(A)=\sum_{k=1}^{n} a_{k k}=a_{11}+a_{22}+\cdots+a_{n n}
$$

(If A is $m \times n$ with $m \neq n$, sum to whichever of m, n is smaller.) Examples? On the board!

Properties of the trace

($\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(2) $\operatorname{tr}(k A)=k \operatorname{tr}(A)$
(0) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ (as long as both products are defined)
(-) $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$
Note: on the set of all $m \times n$ matrices, the pairing

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)
$$

defines a sort of "dot product".

Introduction

The determinant is a function that assigns a number to any square matrix A. We denote this number by $\operatorname{det} A$ or $|A|$. We'll define $\operatorname{det} A$ recursively, starting with 2×2 matrices, and then showing how to reduce the determinant of a larger matrix to smaller ones. There is a general formula, but it's........ complicated.

The 2×2 case

You've already learned how to compute these, back when we did cross products! Given $A=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right], \operatorname{det} A=a d-b c$:

$$
\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|=a d-b c .
$$

Note:
(1) If $\vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is parallel to $\vec{v}\left[\begin{array}{l}c \\ d\end{array}\right]$, then $\operatorname{det} A=0$.
(2) Otherwise, $\operatorname{det} A$ calculates (up to sign) the area of the parallelogram spanned by \vec{v} and \vec{w}.

The 3×3 case

This is also not a big leap from cross products:

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

You might recall that this is the same as the scalar triple product $\vec{a} \cdot(\vec{b} \times \vec{c})$. Example: compute the determinant of $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & 1 \\ -1 & 0 & 5\end{array}\right]$.

Minors and Cofactors

Given an $n \times n$ matrix $A=\left[a_{i j}\right]$,

- The (i, j) minor of A is the $(n-1) \times(n-1)$ matrix $M_{i j}$ obtained by deleting row i and column j of A
- The (i, j) cofactor of A is the number $C_{i j}$ defined by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} M_{i j} .
$$

Note: $(-1)^{i+j}$ equals +1 if $i+j$ is even, and -1 if $i+j$ is odd. (Now do some examples, Sean)

Next steps

- In general, we define $\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}$ (cofactor expansion along first row). (Each cofactor $C_{1 j}$ is a determiant one smaller than A)
- Then we prove (OK, state assertively) that we can actually expand any row or column of A.
- Then we'll observe that determinants of triangular matrices are really easy.
- Finally, we'll see what happens to the determinant if we use row operations to get a matrix into triangular form.

