Math 1410, Spring 2020
 Introduction to Matrix Algebra

Sean Fitzpatrick

Overview

(1) Introduction
(2) Linear Systems as Matrix-Vector Equations
(3) Matrix algebra

Warm-Up

Find the general solution to the homogeneous ystem

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}-4 x_{4}=0 \\
-2 x_{1}+4 x_{2}-3 x_{3}+5 x_{4}=0 \\
-x_{1}+2 x_{2}-3 x_{3}-2 x_{4}=0
\end{gathered} .
$$

Vector solutions

It can be convenient to write our solutions in vector form. For later work with matrices, we use column vectors. Instead of giving solutions for
$x_{1}, x_{2}, \ldots, x_{n}$ separately, we collect things into a vector $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$. For
homogeneous systems this lets us easily determine the basic solutions. If our general solution has parameters $t_{1}, t_{2}, \ldots, t_{k}$, the basic solutions are obtained by setting one parameter equal to 1 , and the others to 0 .

Vector solutions, continued

This can be notationally convenient. A system

$$
\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & +\cdots & +a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & +\cdots & +a_{2 n} x_{n} & = & b_{2} \\
\vdots & & \vdots & & & & \vdots & \\
\vdots \\
a_{m 1} x_{1} & +a_{m 2} x_{2}+\cdots & +\cdots & a_{m n} x_{n} & = & b_{m}
\end{array}
$$

has three main pieces:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \text { and } \vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Matrix-vector product

We want to write our system in the form $A \vec{x}=\vec{b}$. How do we define the product $A \vec{x}$?

- As a linear combination:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
x_{1 n} \\
x_{2 n} \\
\vdots \\
x_{m n}
\end{array}\right]
$$

- Using row-times-column "dot products":

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots a_{m n} x_{n}
\end{array}\right] .
$$

- Both produce the same result! (Let's try an example or two.)

Properites of the product

Let A be an $m \times n$ matrix, and let \vec{x} be an $k \times 1$ column vector.
(1) The product $A \vec{x}$ is only defined if $k=n$
(2) The result is an $m \times 1$ column vector.
(3) For $n \times 1$ vectors $\vec{v}, \vec{w}, A(\vec{v}+\vec{w})=A \vec{v}+A \vec{w}$.
(9) For any $n \times 1$ vector \vec{v} and scalar $c, A(c \vec{v})=c(A \vec{v})$.

Matrix-Vector Form

With our new notation, we can write a system of equations as $A \vec{x}=\vec{b}$.

- This is notationally convenient: it's an easy way to refer to a general system of equations.
- It's meant to remind you of the case of one equation with one variable: $a x=b$.
- It can be used to quickly establish facts about systems.

Examples

Example

Verify that $\vec{x}=\left[\begin{array}{c}2 \\ -1 \\ -3\end{array}\right]$ is a solution to

$$
\left[\begin{array}{ccc}
3 & -1 & 2 \\
-2 & 2 & -5 \\
4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
9 \\
5
\end{array}\right]
$$

Example

Show that if \vec{v} is a solution to the homeneous system $A \vec{x}=\overrightarrow{0}$, and \vec{w} is a solution to the non-homogeneous system $A \vec{x}=\vec{b}$, then $\vec{v}+\vec{w}$ is also a solution to $A \vec{x}=\vec{b}$.

Rank and structure of solutions

The rank of a matrix is the number of leading ones in reduced row-echelon form. Given a system $A \vec{x}=\vec{b}$ where A is $m \times n$, note:

- There are m equations.
- There are n variables.
- If $\operatorname{rank}(A)=r$, then the general solution to $A \vec{x}=\overrightarrow{0}$ has $k=n-r$ parameters.
- If $\operatorname{rank}(A \mid \vec{b})=\operatorname{rank}(A)$, the system $A \vec{x}=\vec{b}$ is consistent, and the general solution can be written as $\vec{x}=\vec{x}_{p}+\vec{x}_{h}$, where \vec{x}_{p} is a particular solution to $A \vec{x}=\vec{b}$, and \vec{x}_{h} is the general solution to the homogeneous system $A \vec{x}=\overrightarrow{0}$.
- If $\operatorname{rank}(A \mid \vec{b})>\operatorname{rank}(A)$, then the system is inconsistent.

Examples

Determine the rank of A, and solve $A \vec{x}=\vec{b}$, where
(1) $A=\left[\begin{array}{ccc}-2 & 1 & 3 \\ 1 & 0 & -2 \\ 0 & 1 & -1\end{array}\right], \vec{b}=\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]$
(2) $A=\left[\begin{array}{lllc}1 & -2 & 2 & 0 \\ 2 & -3 & 7 & -2\end{array}\right], \vec{b}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$

Matrices

By now, we've seen plenty of matrices. A matrix is just a rectangular array of numbers, arranged into rows and columns. If a matrix has m rows and n columns, we say it has size (or shape) $m \times n$. Some examples of matrices:

$$
A=\left[\begin{array}{ccc}
2 & -5 & 0 \\
\ln (42) & 1410 & 2020
\end{array}\right], B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right], C=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Particular entries in a matrix are referenced by row and column. We write $a_{i j}$ for the (i, j)-entry of a matrix A.

Addition and scalar multiplication

This works exactly like you'd expect. Given matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ of the same size, define

$$
A+B=\left[a_{i j}+b_{i j}\right] .
$$

For any scalar c, define $c A=\left[c a_{i j}\right]$. Aside: what do we mean by " $=$ "?

Properties

Let A, B, and C be matrices of the same size. Then:
(1) $A+B=B+A$
(2) $A+(B+C)=(A+B)+C$
(3) $A+0=A$ (here 0 is the zero matrix)
(9) $c(A+B)=c A+c B$
(3) $(c+d) A=c A+d A$
(0) $c(d A)=(c d) A$

