Math 1410, Spring 2020
 Determinants

Sean Fitzpatrick

Overview

(1) Recap
(2) Computing Determinants
(3) Determinants and row operations

Warm-Up

Compute the determinant of the given matrices:
(1) $A=\left[\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right]$
(2) $B=\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & -1 & 4 \\ 0 & 1 & -5\end{array}\right]$

Minors and Cofactors

Given an $n \times n$ matrix $A=\left[a_{i j}\right]$,

- The (i, j) minor of A is the $(n-1) \times(n-1)$ matrix $M_{i j}$ obtained by deleting row i and column j of A
- The (i, j) cofactor of A is the number $C_{i j}$ defined by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} M_{i j} .
$$

Note: $(-1)^{i+j}$ equals +1 if $i+j$ is even, and -1 if $i+j$ is odd. (Now do some examples, Sean)

The Determinant $(n \times n)$

Definition:

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The determinant of A is the number $\operatorname{det} A$ given by

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n},
$$

where $C_{i j}$ refers to the (i, j) cofactor of A.

The sum above is called a cofactor expansion. Note that if A is 4×4 or larger, this definition is recursive: each $C_{i j}$ is a 3×3 determinant, which must be computed using cofactor expansion in terms of 2×2 determinants.

Example

Compute the determinant of

$$
A=\left[\begin{array}{cccc}
2 & 1 & 0 & 4 \\
0 & -1 & 2 & 3 \\
3 & 0 & 5 & -2 \\
1 & 2 & -1 & 0
\end{array}\right]
$$

Laplace expansion theorem

Theorem:
The determinant can be computed using cofactor expansion along any row.

In fact, it turns out $\operatorname{det} A=\operatorname{det} A^{T}$ for any $n \times n$ matrix A, so we can also do cofactor expansion along any column.

Example

Compute the determinant of $A=\left[\begin{array}{cccc}2 & 1 & -1 & 3 \\ 0 & 5 & 0 & 0 \\ 3 & 0 & 1 & -2 \\ 4 & -4 & 0 & 1\end{array}\right]$

Triangular matrices

Definition:

A matrix $A=\left[a_{i j}\right]$ is called upper-triangular if $a_{i j}=0$ whenever $i>j$, and lower-triangular if $a_{i j}=0$ whenever $i<j$. A matrix $D=\left[d_{i j}\right]$ is called diagonal if $d_{i j}=0$ whenever $i \neq j$.

An upper triangular matrix has all zeros below the main diagonal. A lower triangular matrix has all zeros above the main diagonal. A diagonal matrix has zeros both above and below the main diagonal. It also counts as triangular.

Examples

Examples

- This is a slide containing very little, other than to let us know that Sean is about to write some triangular matrices on the board, and then compute their determinants.

Examples

- This is a slide containing very little, other than to let us know that Sean is about to write some triangular matrices on the board, and then compute their determinants.
- OK, this slide also contains a theorem: if A is a triangular matrix, then $\operatorname{det} A$ is given by the product of the diagonal entries of A :

$$
\operatorname{det} A=a_{11} a_{22} \cdots a_{n n}
$$

Effect of row operations

Moral of the story so far:

- Determinants are generally hard to compute. (Well, not so much hard as annoying.)
- Except if the matrix is triangular. Then determinants are easy.
- We know how to put a matrix into triangular form. (Row echelon form is triangular!)
- Looks like we'd better figure out what row operations do to a determinant!

Theorem:

(1) If B is obtained from A using the row operation $R_{i} \leftrightarrow R_{j}$, then $\operatorname{det} B=-\operatorname{det} A$.
(2) If B is obtained from A using the row operation $k R_{i} \rightarrow R_{i}$, then $\operatorname{det} B=k \operatorname{det} A$.
(3) If B is obtained from A using the row operation
$R_{i}+k R_{j} \rightarrow R_{i}$, then $\operatorname{det} B=\operatorname{det} A$.

Examples

Compute the determinant of:
(1) $A=\left[\begin{array}{ccc}2 & 6 & -4 \\ -1 & 2 & 3 \\ 2 & 5 & 1\end{array}\right]$
(2) $B=\left[\begin{array}{ccc}6 & -3 & 1 \\ -2 & 1 & 4 \\ 2 & 5 & -3\end{array}\right]$ (Is there a more efficient option than finding triangular form?)
(3) $C=\left[\begin{array}{cccc}1 & 2 & 0 & -5 \\ 0 & 3 & -2 & 1 \\ -1 & 3 & 0 & -4 \\ -2 & 1 & -3 & 5\end{array}\right]$

Properties of Determinants

Theorem:
Let A and B be $n \times n$ matrices. Then:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(3) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$

Theorem:
A matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. Furthermore, if A is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

