Math 1410, Spring 2020 Matrix Algebra

Sean Fitzpatrick

Overview

(1) Recap

(2) Basic matrix algebra
(3) Matrix multiplication

4 The inverse of a matrix

Warm-Up

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 4 & 0
\end{array}\right], \vec{v}=\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-2 \\
1 \\
4
\end{array}\right] . \text { Confirm that } \\
& A(2 \vec{v}+\vec{w})=2(A \vec{v})+A \vec{w} .
\end{aligned}
$$

Basic matrix products

- An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns.
- A row vector is a $1 \times k$ matrix $R=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{k}\end{array}\right]$ consisting of a single row.
- A column vector is a $k \times 1$ matrix $C=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{k}\end{array}\right]$ consisting of a single column.
- The product $R C$ is a dot product: $R C=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}$. $(R$ and C must have the same number of entries)
- To compute $A \vec{x}$ where A is $m \times n$ and \vec{x} is $n \times 1$, multiply each row in A by \vec{x}.

Addition and scalar multiplication

This works exactly like you'd expect. Given matrices $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ of the same size, define

$$
A+B=\left[a_{i j}+b_{i j}\right] .
$$

For any scalar c, define $c A=\left[c a_{i j}\right]$. Aside: what do we mean by " $=$ "?

Examples

Let $A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 5 & 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-7 & 2 \\ 5 & -1\end{array}\right], C=\left[\begin{array}{ccc}0 & 5 & -4 \\ 3 & -2 & 1\end{array}\right]$. Compute:
$A+C, 3 B, 2 A-3 C$. What can you say about $A+B$, and $C+A$?

Properties

Let A, B, and C be matrices of the same size. Then:
(1) $A+B=B+A$
(2) $A+(B+C)=(A+B)+C$
(3) $A+0=A$ (here 0 is the zero matrix)
(9) $c(A+B)=c A+c B$
(3) $(c+d) A=c A+d A$
(0) $c(d A)=(c d) A$

Examples

Given $A=\left[\begin{array}{cc}2 & -3 \\ 0 & 4\end{array}\right], B=\left[\begin{array}{cc}1 & -5 \\ 4 & -3\end{array}\right], C=\left[\begin{array}{cc}2 & 0 \\ 3 & -1\end{array}\right]$, compute

$$
(2 A-3 B)-4(A-B+C)+3(A+C)
$$

With A, B, C as above, find X such that

$$
4(X-A)+B=2 C
$$

Recap

So far we know:
(1) How to multiply a row by a column.
(2) To multiply A by \vec{x}, multiply each row of A by \vec{x}. Arrange results in a column vector.

Example

Calculate $A \vec{x}$, where $A=\left[\begin{array}{cc}1 & -4 \\ 3 & 2 \\ 5 & 0\end{array}\right], \vec{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

General products

We now want to compute $A B$, where A and B are matrices. We still do "row times column", using rows from A, columns from B. Need each row in A to have same length as each column in B : if A is $m \times n, B$ is $n \times p$.
The product $A B$ is size $m \times p$. Its (i, j)-entry is the (dot) product of row i from A and column j from B.
Note: write $B=\left[\begin{array}{llll}\vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{p}\end{array}\right]$ where \vec{b}_{j} is column j of B. Then

$$
A B=A\left[\begin{array}{llll}
\vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{p}
\end{array}\right]=\left[\begin{array}{llll}
A \vec{b}_{1} & A \vec{b}_{2} & \cdots & A \vec{b}_{p}
\end{array}\right] .
$$

Examples

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
3 & 0 & -1 \\
-1 & 2 & 3
\end{array}\right] \\
C=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2 \\
2 & -2
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
\end{gathered}
$$

Compute, if possible:

$$
A B, A C, A^{2}, B C, C B, C A, A D, D A
$$

Compare $A(B C)$ with $(A B) C$

Properties

Definition:

I_{n} denotes the $n \times n$ identity matrix. The diagonal entries of I_{n} (when $i=j$) all equal 1 ; all other entries are 0 .

Theorem:
Assuming each product below is defined,
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(A+B) C=A C+B C$
(9) $A(k B)=(k A) B=k(A B)$ for any scalar k
(6) $I_{m} A=A$ and $A I_{n}=A$

Matrix inverses

For real numbers a and b, if $a \neq 0$ and $a x=b$, we know $x=\frac{b}{a}$. If A is a matrix, \vec{b} is a vector, and $A \vec{x}=\vec{b}$, can we similarly solve for \vec{x} ? Short answer: no. Longer answer: sometimes. Sort of.

Definition:

A square $(n \times n)$ matrix A is invertible if $A B=I_{n}=B A$ for some B. We call B the inverse of A, and write $B=A^{-1}$.

Example

For $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right], D=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, we saw that $A D=I_{2}$ and $D A=I_{2}$. So
$D=A^{-1}$. Suppose $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}7 \\ -5\end{array}\right]$. How can we use D to solve for $\vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$?

