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Warm-up

Given vectors ~v = 〈2,−1, 3〉 and ~w = 〈−4, 5, 1〉, find:

1 ~v + ~w

2 3~v − 2~w

3 ‖~v‖
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Scalar multiplication

Recall: Given a real number c and a vector ~v = 〈a, b〉,

c~v = c 〈a, b〉 = 〈ca, cb〉 .

The story in R3 is similar:

c 〈x , y , z〉 = 〈cx , cy , cz〉 .

Some observations:

1 For any vector ~v , 0~v = ~0 and (−1)~v = −~v .

2 We have ~v + ~v = 2~v .

3 In general, a~v + b~v = (a + b)~v .

4 Also, c(~v + ~w) = c~v + c ~w .
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Scalar multiplication, geometrically

2~v = ~v + ~v , so 2~v is in the same direction as ~v , but twice as long.

In general, we have:

Theorem:

For any vector ~v and scalar (number) c ,

‖c~v‖ = |c | ‖~v‖ .
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Parallel vectors, unit vectors

Definition: Parallel vectors.

We say that two vectors ~v and ~w are parallel if ~w = c~v for some
scalar c.

Definition: Unit vector.

A vector ~u is a unit vector if ‖~u‖ = 1.

Unit vectors are useful when we care about direction, but not
magnitude.

Given ~v = 〈2, 3〉, what is a unit vector in the direction of ~v?
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Standard unit vectors

In R2:
ı̂ = 〈1, 0〉 , ̂ = 〈0, 1〉 .

In R3:
ı̂ = 〈1, 0, 0〉 , ̂ = 〈0, 1, 0〉 , k̂ = 〈0, 0, 1〉 .
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Using the standard unit vectors

Write the vector ~v = 〈4,−7, 6〉 in terms of the vectors ı̂, ̂, k̂ .
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Dot Products

The dot product provides the algebra – geometry bridge.

Definition:

Let ~v = 〈v1, v2〉 , ~w = 〈w1,w2〉 be vectors in R2. The dot product
~v · ~w is given by

~v · ~w = v1w1 + v2w2.

For ~v = 〈v1, v2, v3〉 , ~w = 〈w1,w2,w3〉 in R3, we similarly have

~v · ~w = v1w1 + v2w2 + v3w3.
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Examples

For ~v = 〈3,−4〉 , ~w = 〈6, 2〉:
Compute ~v · ~w
Compute ~v · (3~w)

Compute 3(~v · ~w)

For ~u = 〈2,−1, 3〉 , ~v = 〈−3,−1, 4〉 , ~w = 〈0, 1,−5〉:
Compute ~u · ~v + ~u · ~w
Compute ~u · (~v + ~w)
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Properties of the dot product

Theorem:

Let ~u, ~v , ~w be vectors, and let c be a scalar. Then:

1 ~v · ~w = ~w · ~v
2 ~u · (~v + ~w) = ~u · ~v + ~u · ~w
3 ~u · (c~v) = (c~u) · ~v = c(~u · ~v)

4 ~v · ~v = ‖~v‖2

5 ~v · ~w = ‖~v‖ ‖~w‖ cos(θ), where θ is the angle between ~v and ~w .
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Orthogonal vectors

The dot product lets us compute angles between vectors. Example:

~v = 〈2,−1〉 , ~w = 〈3, 2〉 .

Most useful for us: when θ = π/2.

Definition:

We say that two vectors ~v , ~w are orthogonal if ~v · ~w = 0.
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Example

Decide if the triangle with vertices P = (1, 0, 2), Q = (3,−1, 0),
R = (4, 3,−1) is a right-angled triangle.
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Orthogonal projection

This is probably the most important application of the dot product in Math
1410. To give it proper attention, we’ll hold it over to Thursday’s class.
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Cross products

Defined for vectors in R3 only.

Produces a vector rather than a scalar.

Cross product ~v × ~w is orthogonal to both ~v and ~w .

Definition: if ~v = 〈v1, v2, v3〉 , ~w = 〈w1,w2,w3〉,

~v × ~w = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉 .
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Example

Let ~u = 〈3,−1, 2〉 , ~v = 〈0, 2,−1〉 , ~w = 〈−2, 0, 4〉. Find:

~u × ~v
~v × ~w

~w × ~v
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Areas and angles

If the angle between ~v and ~w is θ,

‖~v × ~w‖ = ‖~v‖ ‖~w‖ sin θ.

The direction of ~v × ~w given by “right-hand rule”. Useful to note: if ~v
and ~w form 2 of 4 sides of a parallelogram, that parallelogram has area
A = ‖~v‖ ‖~w‖ sin θ.
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Examples

Let P = (0, 2,−1),Q = (3, 1,−2),R = (4,−2, 0), S = (7,−3,−1). Verify
that the quadrilateral with these vertices is a parallelogram, and find its
area. What about the triangle ∆PQR?
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