Math 1410, Spring 2020
 Lines in three dimensions

January 24, 2020

Overview

(1) Recap
(2) Cross products
(3) Lines

Warm-up

For the vectors $\vec{u}=\langle 3,-14\rangle, \vec{v}=\langle-2,-2,5\rangle, \vec{w}=\langle 0,4,-3\rangle$, find:
(1) $\vec{u} \cdot(2 \vec{v}-\vec{w})$
(2) $(2 \vec{u}) \cdot \vec{v}-\vec{u} \cdot \vec{w}$
(3) A value of c such that \vec{u} is orthogonal to $\vec{v}+c \vec{w}$

Orthogonal vectors

Recall: for vectors $\vec{v}, \vec{w}, \vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta$, where θ is the angle between \vec{v} and \vec{w}. Most useful for us: when $\theta=\pi / 2$.

Definition:

We say that two vectors \vec{v}, \vec{w} are orthogonal if $\vec{v} \cdot \vec{w}=0$.

Cross products

- Defined for vectors in \mathbb{R}^{3} only.
- Produces a vector rather than a scalar.
- Cross product $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w}.
- Definition: if $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle, \vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$,

$$
\vec{v} \times \vec{w}=\left\langle v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right\rangle .
$$

(Easier to remember using "determinant trick".)

Example

Let $\vec{u}=\langle 3,-1,2\rangle, \vec{v}=\langle 0,2,-1\rangle, \vec{w}=\langle-2,0,4\rangle$. Find:

- $\vec{u} \times \vec{v}$
- $\vec{v} \times \vec{w}$
- $\vec{w} \times \vec{v}$

Properties

(1) $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}$
(2) $\vec{v} \times(c \vec{w})=(c \vec{v}) \times \vec{w}=c(\vec{v} \times \vec{w})$
(3) $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$
(9) $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w}.

Areas and angles

If the angle between \vec{v} and \vec{w} is θ,

$$
\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta
$$

The direction of $\vec{v} \times \vec{w}$ given by "right-hand rule". Useful to note: if \vec{v} and \vec{w} form 2 of 4 sides of a parallelogram, that parallelogram has area $A=\|\vec{v}\|\|\vec{w}\| \sin \theta$.

Examples

Let $P=(0,2,-1), Q=(3,1,-2), R=(4,-2,0), S=(7,-3,-1)$. Verify that the quadrilateral with these vertices is a parallelogram, and find its area. What about the triangle $\triangle P Q R$?

Lines the plane

We all know lines in the plane: $y=m x+b$ gives a line with slope m passing through $(0, b)$. Does slope make sense in \mathbb{R}^{3} ?

Example

Describe the line through the points $(1,-2)$ and $(3,4)$:
(1) Using a "slope-intercept" equation
(2) Using vectors

Lines in space

- In \mathbb{R}^{3}, to specify a line we need a point (on the line), and a direction (vector).
- Suppose $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $P=(x, y, z)$ are two points on a line in the direction of a vector $\vec{v}=\langle a, b, c\rangle$. What can we say about the vector $\overrightarrow{P_{0} P}$?

Vector and parametric equations

Points on a line in space are given in terms of a parameter (usually t we can think of motion in a straight line, with t as time).

- The vector equation of a line through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of $\vec{v}=\langle a, b, c\rangle$ is

$$
\langle x, y, z,\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle,
$$

or $\vec{x}=\vec{x}_{0}+t \vec{v}$, for short.

- Sometimes see \vec{r} or $\vec{r}(t)$ instead of \vec{x}.
- Equating coefficients in the vector equation gives the parametric equations:

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t .
\end{aligned}
$$

Examples

Find the vector equations of the lines:
(1) Through the point $P_{0}=(2,-5,1)$ in the direction of $\vec{v}=\langle 6,-7,3\rangle$
(2) Through the points $P=(4,5,-3)$ and $Q=(-1,8,2)$.
(3) Through the point $P_{0}=(4,5,-9)$ and parallel to the line

$$
\vec{r}(t)=\langle 3-4 t,-6+8 t, 2-7 t\rangle
$$

Comparing lines: intersecting, parallel, skew

- Two lines in \mathbb{R}^{3} are parallel if their direction vectors are parallel.
- Not all paralell lines intersect: some are skew.
- Checking for intersection leads to a system of equations. (Be sure to use a different parameter for each line.)

Example

Determine if the following pairs of lines are parallel, skew, or if they intersect.
(1) $\vec{r}_{1}(s)=\langle 3,-2,4\rangle+s\langle 4,-2,6\rangle$ and $\vec{r}_{2}(t)=\langle 2,2,2\rangle+t\langle-6,3,-9\rangle$
(2) $\vec{r}_{1}(s)=\langle 3,1,1\rangle+s\langle 2,-1,3\rangle$ and $\overrightarrow{r_{2}}(t)=\langle 1,0,-1\rangle+t\langle 1,2,1\rangle$
(3) $\vec{r}_{1}(s)=\langle 0,1,2\rangle+s\langle 4,-2,1\rangle$ and $\vec{r}_{2}(t)=\langle-2,-3,7\rangle+t\langle 3,1,-2\rangle$

Orthogonal projection

Given vectors \vec{u} (not equal to $\overrightarrow{0}$) and \vec{v}, often useful to write \vec{v} as the sum of a vector parallel to \vec{u}, and a vector orthogonal to \vec{u}.

Vector \vec{a} called the projection of \vec{v} onto \vec{u}. Notation and formula:

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}}\right) \vec{u} .
$$

Distance

Example

(1) Find the distance from the point $P=(3,1,2)$ to the line

$$
\langle x, y, z\rangle=\langle 0,2,-1\rangle+t\langle 2,-1,2\rangle .
$$

(2) Find the distance between the parallel lines

$$
\vec{r}_{1}(t)=\langle 2,-1,3\rangle+t\langle 1,2,3\rangle, \text { and } \vec{r}_{2}(t)=\langle-4,1,3\rangle+t\langle 2,4,6\rangle .
$$

