Math 1410, Spring 2020
 Determinant Properties and Applications - Pandemic Lockdown Style

Sean Fitzpatrick

Overview

(1) Recap

(2) Properties of Determinants
(3) The adjugate formula for the inverse

Warm-Up

Compute the determinant of the given matrices, possibly after doing a row operation:
(1) $A=\left[\begin{array}{ccc}1 & 4 & 0 \\ 2 & -3 & 5 \\ 0 & -1 & -2\end{array}\right]$
(2) $B=\left[\begin{array}{cccc}3 & 0 & -2 & 1 \\ -2 & 1 & 1 & 3 \\ 0 & -1 & 2 & -3 \\ 4 & 0 & 1 & 0\end{array}\right]$

Effect of row operations

Theorem:

(1) If B is obtained from A using the row operation $R_{i} \leftrightarrow R_{j}$, then $\operatorname{det} B=-\operatorname{det} A$.
(2) If B is obtained from A using the row operation $k R_{i} \rightarrow R_{i}$, then $\operatorname{det} B=k \operatorname{det} A$.
(3) If B is obtained from A using the row operation $R_{i}+k R_{j} \rightarrow R_{i}$, then $\operatorname{det} B=\operatorname{det} A$.

Note: these effects are most easily observed in elementary matrices!

Examples

(1) Suppose B is obtained from A using the folloing row operations:
(1) $\frac{1}{4} R_{1} \rightarrow R_{1}$
(2) $R_{2}-4 R_{1} \rightarrow R_{2}$
(3) $R_{2} \leftrightarrow R_{3}$
(1) $R_{3}+3 R_{2} \rightarrow R_{3}$

If $\operatorname{det} B=-7$, what is $\operatorname{det} A$?
(2) If A is a 4×4 matrix and $\operatorname{det} A=-3$, what is the value of $\operatorname{det}(2 A)$?

Properties of Determinants

Theorem:

Let A and B be $n \times n$ matrices. Then:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(3) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$

Theorem:

A matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. Furthermore, if A is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Examples

Given that $\operatorname{det} A=3$ and $\operatorname{det} B=-2$, what is the value of:
(1) $\operatorname{det}\left(A^{2} B^{3}\right)$
(2) $\operatorname{det}\left(B^{-1} A B\right)$
(3) $\operatorname{det}\left(2 A B^{-1}\right)$

More examples

What can you say about $\operatorname{det} A$ if:
(1) $A^{2}=A$
(2) $A^{4}=I$
(3) $P A=P$, where P is invertible.

The cofactor matrix

Recall: given an $n \times n$ matrix A, the (i, j) cofactor is the number $C_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}$, where $M_{i j}$ is the (i, j) minor. The matrix of cofactors of A is the matrix $\operatorname{cof}(A)$ whose (i, j) entry is $C_{i j}$. Example: find $\operatorname{cof}(A)$ if $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 4 & -2 \\ 1 & -1 & 0\end{array}\right]$.

The adjugate matrix

Definition:

The adjugate of an $n \times n$ matrix A is given by $\operatorname{adj}(A)=\operatorname{cof}(A)^{T}$.

Theorem:
For any $n \times n$ matrix A,

$$
A \cdot \operatorname{adj}(A)=\operatorname{det}(A) I_{n}
$$

Examples

Use the formula $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$ to compute the inverse of:
(1) $A=\left[\begin{array}{ccc}2 & 1 & -3 \\ 3 & 0 & 2 \\ 0 & 1 & 4\end{array}\right]$
(2) $A=\left[\begin{array}{ccc}1 & 0 & x \\ 0 & -x & 2 \\ x & 0 & 3\end{array}\right]$.

Cramer's Rule

Suppose we have a system of n equations in n unknowns, written as $A \vec{x}=\vec{b}$. If $\operatorname{det} A=0$, then A is not invertible, and this system has either no solution, or infinitely many solutions. If $\operatorname{det} A \neq 0$, then

$$
\vec{x}=A^{-1} \vec{b}=\frac{1}{|A|} \operatorname{adj}(A) \vec{b}
$$

Result: if A_{i} denotes the matrix obtained by replacing column i of A by \vec{b}, then

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}
$$

for $i=1,2, \ldots, n$. (Theoretically and historically interesting, but not very practical.)

Example

Use Cramer's rule to solve the system:

$$
\begin{aligned}
& (\cos \theta) x-(\sin \theta) y=4 \\
& (\sin \theta) x+(\cos \theta) y=W,
\end{aligned}
$$

where θ is an angle and W is some unknown (but presumably very important) number.

