Math 1410, Spring 2020
 Determinant Properties and Applications - Pandemic Lockdown Style

Sean Fitzpatrick

Overview

(1) Recap

(2) Properties of Determinants
(3) The adjugate formula for the inverse

Warm-Up $\quad \operatorname{det}(B)=b_{12} C_{12}+b_{22} C_{22}+b_{32} C_{32}$
Compute the determinant of the given matrices, possibly a titer dor $b_{y_{2}} C_{x_{2}}$ a row operation: $2\left(-2^{2+1}\left|\begin{array}{cc}4 & 0 \\ -1 & -2\end{array}\right|+(-3)\left(P^{2+2}\left|\begin{array}{cc}1 & 0 \\ R_{2}-2 R_{1} \rightarrow R_{2}\end{array}\right|+54^{2+3}\left|\begin{array}{cc}1 & 1 \\ g-1\end{array}\right|\right.\right.$

$$
\begin{aligned}
& \text { - } A=\left[\begin{array}{ccc}
1 & 4 & 0 \\
2 & -3 & 5 \\
0 & -1 & -2
\end{array}\right] \\
& \operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 4 & 0 \\
0 & -11 & 5 \\
0 & -1 & -2
\end{array}\right| \\
& \text { - } B=\left[\begin{array}{cccc}
3 & {[0)^{1,2} \underline{2}_{2}} & 1 \\
-2 & 1 & 1 & 3 \\
0 & -1 & 2 & -3 \\
4 & 0 & 1 & 0
\end{array}\right] \\
& =1(-1)\left|\begin{array}{cc}
-11 & 5 \\
-1 & -2
\end{array}\right| \\
& \operatorname{det}\left(M_{22}\right)=22-(-5)=27
\end{aligned}
$$

$$
\begin{aligned}
& =-2-12=-14 \text {. }
\end{aligned}
$$

Effect of row operations

$$
\begin{aligned}
R_{1}+R_{2} & \rightarrow R_{2} \\
-R_{1}+R_{2} & \rightarrow R_{2} \\
R_{1}-R_{2} & \rightarrow R_{2}
\end{aligned}
$$

Theorem:
(1) If \underline{B} is obtained from A using the row operation $R_{i} \leftrightarrow R_{i}$, then $\operatorname{det} B=-\operatorname{det} A$.
(2) If B is obtained from A using the row operation $k R_{i} \rightarrow R_{i}$, then $\operatorname{det} B=k \operatorname{det} A$.
(3) If B is obtained from A using the row operation $R_{i}+k R_{j} \rightarrow R_{i}$, then det $B=\operatorname{det} A . \quad K R_{j}-R_{i} \rightarrow R_{i}$
Note: these effects are most easily observed in elementary matrices! y..

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\operatorname{det}(I)=1} \xrightarrow{\operatorname{det}(B)=-1} \\
& R_{3} \rightarrow 5 n_{3} \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& R_{1}-4 R_{3} \rightarrow R_{1} \\
& {\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Examples

$$
B=E_{1} E_{3} E_{1} E_{1} A
$$

(1) Suppose B is obtained from A using the following row operations:

$$
A \xrightarrow{(1)} B_{1} \xrightarrow{\left(O-B_{2}\right)} B_{3} \oplus B
$$

$$
\operatorname{det} B_{1_{1}}=\operatorname{det} B_{2}
$$

$$
R_{3}+3 R_{2} \rightarrow R_{3}
$$

$\left\{\begin{array}{c}0 R_{3}+3 R_{2} \rightarrow R_{3} \\ \text { If } \operatorname{det} B=-7 \text {, what is } \operatorname{det} A \text { ? }\end{array}\right.$

$$
\begin{aligned}
& \alpha_{l}+s_{1} \alpha_{u}+(A)=0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det} B^{4}=\operatorname{det} B_{3} & =-\operatorname{det} B_{2} \\
& =-1 / 4 \operatorname{det}(A)
\end{aligned}
$$

(2) If A is a 4×4 matrix and $\operatorname{det} A=-3$, what is the value of $\operatorname{det}(2 A)$?

$$
\begin{aligned}
&-\frac{1}{4} \operatorname{det}(A)=\operatorname{det}(B)=-7 \Rightarrow \operatorname{det}(A)=28 \\
& \begin{array}{cl}
A & \\
x_{2} 2 R_{1} \rightarrow R_{1}, R_{2} \\
\times 2 & 2 R_{2} \rightarrow R_{2} \\
\times 2 & \operatorname{det}(2 A)
\end{array}=2^{4}(-3) \\
& \times 2 R_{3} \rightarrow R_{3}=16(-3) \\
&=-48
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{1}{4} R_{1} \rightarrow R_{1} \\
& \text { - } R_{2} \rightarrow 4 R-R_{2} \\
& \text { (-) } R_{2} \leftrightarrow R_{3}
\end{aligned}
$$

Properties of Determinants

Theorem:

Let A and B be $n \times n$ matrices. Then:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \quad|A B|=|A||B|$
(2) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(3) $\operatorname{det}(k A)=\frac{k^{n}}{=} \operatorname{det}(A)$

$$
\begin{aligned}
& \text { - cant say anything } \\
& \text { about } \operatorname{det}(A+B)
\end{aligned}
$$

Theorem:

A matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. Furthermore, if A is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

$$
\begin{array}{ll}
A A^{-1}=I & |A|\left|A^{-1}\right|=1 \\
\left|A A^{-1}\right|=|I| & \therefore\left|A^{-1}\right|=1 /|A|
\end{array}
$$

Examples
A, B are 3×3.
Given that $\operatorname{det} A=3$ and $\operatorname{det} B=-2$, what is the value of:

$$
\begin{aligned}
& \begin{aligned}
& (A \cdot A \cdot B \cdot B \cdot B) \\
& =|A||A||B||B||B| \\
& =|A|^{2}|B|^{3}=3^{2}(-2)^{3}=-72 \\
= & \operatorname{det}\left(\underline{B}^{-1} A B B\right) \\
& =\frac{1}{\operatorname{det}(B)}\left(B^{-1}\right) \operatorname{det}(A) \operatorname{det}(B) \\
\operatorname{det}\left(2 A B^{-1}\right) & \operatorname{det} \mid B)=3 \\
& =\operatorname{det}(2 A) \operatorname{det}\left(B^{-1}\right) \\
& =2^{3}|A| \cdot \frac{1}{|B|}=\frac{3(3)}{-2}=-12 .
\end{aligned}
\end{aligned}
$$

More examples
What can you say about $\operatorname{det} A$ if:

$$
\begin{aligned}
& \left.\begin{array}{l}
A^{2}=A \\
A^{4}=I \\
P A=P \text {, where } P \text { is invertible. }
\end{array} \quad \quad x^{4}=1 \Rightarrow x \right\rvert\, \neq 0 \\
& A^{2}=A \quad l|P A|=|P| \\
& A \cdot A=A \quad \begin{array}{ll}
|P| A \left\lvert\,=\frac{|P|}{|P|}\right. \\
|A| \cdot A|=|A| & \therefore|A|=1 .
\end{array}
\end{aligned}
$$

or $|A|^{2}-|A|=0$

$$
\begin{aligned}
& \text { or }|A|(|A|-1)=0 \\
& |A|=0 \text { or } 1
\end{aligned}
$$

The cofactor matrix (Determinants and \mathbf{A}^{-1})
Recall: given an $n \times n$ matrix A, the (i, j) cofactor is the \hat{A}^{-1} $C_{i j}=(-1)^{i+j}$ get $M_{i j}$, where $M_{i j}$ is the (i, j) minor. The matrix of cofactors of A is the matrix $\operatorname{cof}(A)$ whose (i, j) entry is $C_{i j}$. Example: find

$$
\begin{array}{ll}
\operatorname{cof}(A) \text { if } A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & +_{4} & -2 \\
1 & -1 & 0
\end{array}\right] . & c_{22}=+\left|\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right|=-3 \\
c_{11}=(-1)^{1+1} & c_{23}=-\left|\begin{array}{cc}
2 & -1 \\
1 & -2 \\
-1 & 0
\end{array}\right|=-2
\end{array}\left|=10+\left|\begin{array}{cc}
-1 & 3 \\
4 & -2
\end{array}\right|=-10 .\right.
$$

The adjugate matrix
Definition:
The adjugate of an $n \times n$ matrix A is given by $\operatorname{adj}(A)=\operatorname{cof}(A)^{T}$.
Theorem:
For any $n \times n$ matrix A,

$$
A \cdot\left(\frac{1}{|A|}, \operatorname{adj}(A)\right)=I
$$

$$
A \cdot \operatorname{adj}(A)=\operatorname{det}(A) I_{n} \cdot \therefore A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & -2 & -4 \\
-3 & -3 & 1 \\
-10 & 4 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
-2 & -3 & -10 \\
-2 & -3 & 4 \\
-4 & 1 & 8
\end{array}\right]=\operatorname{adj}(A)} \\
& A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 4 & -2 \\
1 & -1 & 0
\end{array}\right] \quad A \cdot \operatorname{adj}(A)=\left[\begin{array}{ccc}
-14 & 0 & 0 \\
0 & -14 & 0 \\
0 & 0 & -14
\end{array}\right]=(14) I_{3}
\end{aligned}
$$

Examples
Use the formula $A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$ to compute the inverse of:

$$
\begin{aligned}
& \text { (1) } A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
3 & 0 & 2 \\
0 & 1 & 4
\end{array}\right] \longleftarrow \text { Exercise } \\
& \text { (2) } A=\left[\begin{array}{ccc}
1^{+} & 0 & x \\
0^{-} & -x & 2 \\
\frac{1}{x} & 0 & 3^{\prime}
\end{array}\right] \quad A^{-1}=\frac{1}{x^{3}-3 x}\left(\begin{array}{ccc}
-3 x & 0 & x^{2} \\
2 x & 3-x^{2} & -2 \\
x^{2} & 0 & -x
\end{array}\right) \\
& \operatorname{cof}(A)=\left(\begin{array}{ccc}
-3 x+2 x & x^{2} \\
0 & 3-x^{2} & 0 \\
x^{2} & -2 & -x
\end{array}\right) \\
& |A|=-x\left|\begin{array}{ll}
1 & x \\
x & 3
\end{array}\right| \\
& =-x\left(3-x^{2}\right) \\
& \begin{array}{l}
=-x\left(3-x^{2}\right) \\
=x^{3}-3 x=x\left(x^{2}-3\right)
\end{array}
\end{aligned}
$$

Cramer's Rule

Suppose we have a system of n equations in n unknowns, written as $A \vec{x}=\vec{b}$. $\operatorname{det} A=0$, then A is not invertible, and this system has either no sotution, or infinitely many solutions. If $\operatorname{det} A \neq 0$, then

$$
\vec{x}=A^{-1} \vec{b}=\frac{1}{|A|} \operatorname{adj}(A) \vec{b} .
$$

Result: if A_{i} denotes the matrix obtained by replacing column i of A by \vec{b}, then

$$
x_{i}=\frac{\operatorname{det} A_{D}}{\operatorname{det} A}
$$

for $i=1,2, \ldots, n$. (Theoretically and historically interesting, but not very practical.)

Example
Use Cramer's rule to solve the system:

$$
\begin{aligned}
& (\cos \theta) x-(\sin \theta) y=4 \\
& (\sin \theta) x+(\cos \theta) y=W
\end{aligned}
$$

where θ is an angle and W is some unknown (but presumably very important) number.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& A_{1}=\left[\begin{array}{cc}
4 & -\sin \theta \\
\omega & \cos \theta
\end{array}\right] \\
& |A|=\cos ^{2} \theta+\sin ^{2} \theta \\
& \left|A_{1}\right|=4 \cos \theta+w \sin \theta=x \\
& =1 \\
& A_{L}=\left[\begin{array}{ll}
\cos \theta & 4 \\
\sin \theta & \omega
\end{array}\right] \\
& =w \cos \theta-4 \sin \theta=y \text {. }
\end{aligned}
$$

