Math 1410, Spring 2020
 Lines and Planes

January 24, 2020

Overview

(1) Recap

(2) Examples with lines
(3) Projection and distance
(4) Planes in \mathbb{R}^{3}

Warm-up

(1) Compute the cross product of $\vec{v}=\langle 3,-1,4\rangle$ and $\vec{w}=\langle 2,0,-1\rangle$.
(2) Find a vector equation for the line through $P=(1,2,3)$ and $Q=(3,-1,4)$

Vector and parametric equations of lines

Points on a line in space are given in terms of a parameter (usually t we can think of motion in a straight line, with t as time).

- The vector equation of a line through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of $\vec{v}=\langle a, b, c\rangle$ is

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

or $\vec{x}=\vec{x}_{0}+t \vec{v}$, for short.

- Sometimes see \vec{r} or $\vec{r}(t)$ instead of \vec{x}.
- Equating coefficients in the vector equation gives the parametric equations:

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t .
\end{aligned}
$$

Finding equations

Find the vector equations of the lines:
(1) Through the point $P_{0}=(2,-5,1)$ in the direction of $\vec{v}=\langle 6,-7,3\rangle$
(2) Through the points $P=(4,5,-3)$ and $Q=(-1,8,2)$.
(3) Through the point $P_{0}=(4,5,-9)$ and parallel to the line

$$
\vec{r}(t)=\langle 3-4 t,-6+8 t, 2-7 t\rangle
$$

Comparing lines: intersecting, parallel, skew

- Two lines in \mathbb{R}^{3} are parallel if their direction vectors are parallel.
- Not all parallel lines intersect: some are skew.
- Checking for intersection leads to a system of equations. (Use a different parameter for each line.)

Example

Determine if the following pairs of lines are parallel, skew, or if they intersect.
(1)

$$
\begin{aligned}
& \vec{r}_{1}(s)=\langle 3,-2,4\rangle+s\langle 4,-2,6\rangle \\
& \vec{r}_{2}(t)=\langle 2,2,2\rangle+t\langle-6,3,-9\rangle
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \vec{r}_{1}(s)=\langle 3,1,1\rangle+s\langle 2,-1,3\rangle \\
& \vec{r}_{2}(t)=\langle 1,0,-1\rangle+t\langle 1,2,1\rangle
\end{aligned}
$$

Orthogonal projection

Given vectors \vec{u} (not equal to $\overrightarrow{0}$) and \vec{v}, often useful to write \vec{v} as the sum of a vector parallel to \vec{u}, and a vector orthogonal to \vec{u}.

Vector \vec{a} called the projection of \vec{v} onto \vec{u}. Notation and formula:

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}}\right) \vec{u} .
$$

Orthogonal decomposition

Given $\vec{v}=\langle 3,-1\rangle$ and $\vec{w}=\langle 2,5\rangle$, find vectors \vec{a} and \vec{b} such that:
(1) \vec{a} is parallel to \vec{v}
(2) \vec{b} is orthogonal to \vec{v}
(1) $\vec{a}+\vec{b}=\vec{w}$

Distance

Example

(1) Find the distance from the point $P=(3,1,2)$ to the line

$$
\langle x, y, z\rangle=\langle 0,2,-1\rangle+t\langle 2,-1,2\rangle .
$$

(2) Find the distance between the parallel lines

$$
\vec{r}_{1}(t)=\langle 2,-1,3\rangle+t\langle 1,2,3\rangle, \text { and } \vec{r}_{2}(t)=\langle-4,1,3\rangle+t\langle 2,4,6\rangle .
$$

Equations of planes

Two ways to describe a plane:
(1) A point, and two vectors parallel to the plane.
(2) A point, and one vector perpendicular to the plane.

Second option is simpler. Suppose $\vec{n}=\langle a, b, c\rangle$ is perpendicular to the plane. Suppose also $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $P=(x, y, z)$ are in the plane. Then $\overrightarrow{P_{0} P}$ is parallel to the plane, so $\vec{n} \cdot \overrightarrow{P_{0} P}=0$.

Finding equations

Find the equation of the plane:
(1) Through $P_{0}=(2,-1,3)$ and perpendicular to $\vec{n}=\langle 5,-3,4\rangle$
(2) Perpendicular to the line $\vec{r}(t)=\langle 3+2 t,-5+3 t,-2-9 t\rangle$, and containing the origin.
(3) Containing the points $P=(1,0,4), Q=(2,-1,3), R=(5,2,4)$
(9) Containing the lines

$$
\begin{aligned}
& \vec{r}_{1}(s)=\langle 0,1,2\rangle+s\langle 4,-2,1\rangle \\
& \vec{r}_{2}(t)=\langle-2,-3,7\rangle+t\langle 3,1,-2\rangle
\end{aligned}
$$

(We found that these intersect at $P_{0}=(4,-1,3)$.)

