Math 1410, Spring 2020 Lines and Planes

January 24, 2020

Overview

3 Projection and distance

Warm-up

- **(**) Compute the cross product of $\vec{v} = \langle 3, -1, 4 \rangle$ and $\vec{w} = \langle 2, 0, -1 \rangle$.
- Find a vector equation for the line through P = (1, 2, 3) and Q = (3, -1, 4)

Vector and parametric equations of lines

Points on a line in space are given in terms of a **parameter** (usually t — we can think of motion in a straight line, with t as time).

• The vector equation of a line through $P_0 = (x_0, y_0, z_0)$ in the direction of $\vec{v} = \langle a, b, c \rangle$ is

$$\langle x,y,z
angle = \langle x_{0},y_{0},z_{0}
angle + t\left\langle a,b,c
ight
angle$$
 ,

or $\vec{x} = \vec{x}_0 + t\vec{v}$, for short.

- Sometimes see \vec{r} or $\vec{r}(t)$ instead of \vec{x} .
- Equating coefficients in the vector equation gives the *parametric* equations:

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct.$$

Find the vector equations of the lines:

- **(**) Through the point $P_0 = (2, -5, 1)$ in the direction of $\vec{v} = \langle 6, -7, 3 \rangle$
- 2 Through the points P = (4, 5, -3) and Q = (-1, 8, 2).
- Through the point $P_0 = (4, 5, -9)$ and parallel to the line

$$\vec{r}(t) = \langle 3-4t, -6+8t, 2-7t \rangle$$
.

Comparing lines: intersecting, parallel, skew

- Two lines in \mathbb{R}^3 are **parallel** if their direction vectors are parallel.
- Not all parallel lines intersect: some are skew.
- Checking for intersection leads to a system of equations. (Use a different parameter for each line.)

Example

Determine if the following pairs of lines are parallel, skew, or if they intersect.

0

$$ec{r_1}(s) = \langle 3,-2,4
angle + s \, \langle 4,-2,6
angle \ ec{r_2}(t) = \langle 2,2,2
angle + t \, \langle -6,3,-9
angle$$

$$egin{aligned} ec{r_1}(s) &= \langle 3,1,1
angle + s\, \langle 2,-1,3
angle \ ec{r_2}(t) &= \langle 1,0,-1
angle + t\, \langle 1,2,1
angle \end{aligned}$$

Orthogonal projection

Given vectors \vec{u} (not equal to $\vec{0}$) and \vec{v} , often useful to write \vec{v} as the sum of a vector *parallel* to \vec{u} , and a vector *orthogonal* to \vec{u} .

Vector \vec{a} called the **projection** of \vec{v} onto \vec{u} . Notation and formula:

$$\operatorname{proj}_{\vec{u}} \vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^2}\right) \vec{u}.$$

Orthogonal decomposition

Given $\vec{v} = \langle 3, -1 \rangle$ and $\vec{w} = \langle 2, 5 \rangle$, find vectors \vec{a} and \vec{b} such that:

- \vec{a} is parallel to \vec{v}
- **2** \vec{b} is orthogonal to \vec{v}

Distance

Example

• Find the distance from the point P = (3, 1, 2) to the line

$$\langle x, y, z \rangle = \langle 0, 2, -1 \rangle + t \langle 2, -1, 2 \rangle.$$

Ind the distance between the parallel lines

 $ec{r_1}(t) = \langle 2, -1, 3
angle + t \langle 1, 2, 3
angle$, and $ec{r_2}(t) = \langle -4, 1, 3
angle + t \langle 2, 4, 6
angle$.

Two ways to describe a plane:

- A point, and two vectors parallel to the plane.
- **2** A point, and *one* vector perpendicular to the plane.

Second option is simpler. Suppose $\vec{n} = \langle a, b, c \rangle$ is perpendicular to the plane. Suppose also $P_0 = (x_0, y_0, z_0)$ and P = (x, y, z) are in the plane. Then $\overrightarrow{P_0P}$ is parallel to the plane, so $\vec{n} \cdot \overrightarrow{P_0P} = 0$.

Finding equations

Find the equation of the plane:

- **()** Through $P_0 = (2, -1, 3)$ and perpendicular to $\vec{n} = \langle 5, -3, 4 \rangle$
- Perpendicular to the line $\vec{r}(t) = \langle 3 + 2t, -5 + 3t, -2 9t \rangle$, and containing the origin.
- Solution Containing the points P = (1, 0, 4), Q = (2, -1, 3), R = (5, 2, 4)

Ontaining the lines

$$egin{aligned} ec{r_1(s)} &= \langle 0,1,2
angle + s \, \langle 4,-2,1
angle \ ec{r_2(t)} &= \langle -2,-3,7
angle + t \, \langle 3,1,-2
angle \end{aligned}$$

(We found that these intersect at $P_0 = (4, -1, 3)$.)