Math 1410, Spring 2020
 Planes and Distances

January 24, 2020

Overview

(1) Recap
(2) Planes in \mathbb{R}^{3}
(3) Intersection problems

4 Distance problems

Warm-up

Given $\vec{u}=\langle 2,0,-1\rangle$ and $\vec{v}=\langle 1,3,-1\rangle$, find vectors \vec{a} and \vec{b} such that:

- \vec{a} is parallel to \vec{u}
- \vec{b} is orthgonal to \vec{u}
- $\vec{a}+\vec{b}=\vec{v}$

Vector \vec{a} is called the projection of \vec{v} onto \vec{u}. Notation and formula:

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}}\right) \vec{u} .
$$

Distance

Example

(1) Find the distance from the point $P=(3,1,2)$ to the line

$$
\langle x, y, z\rangle=\langle 0,2,-1\rangle+t\langle 2,-1,2\rangle .
$$

What is the point on the line that is closest to P ?
(2) Find the distance between the parallel lines

$$
\vec{r}_{1}(t)=\langle 2,-1,3\rangle+t\langle 1,2,3\rangle, \text { and } \vec{r}_{2}(t)=\langle-4,1,3\rangle+t\langle 2,4,6\rangle .
$$

Planes in \mathbb{R}^{3}

Two ways to describe a plane:
(1) A point, and two vectors parallel to the plane.
(2) A point, and one vector perpendicular to the plane.

Second option is simpler.

- Suppose $\vec{n}=\langle a, b, c\rangle$ is perpendicular to the plane.
- Suppose also $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $P=(x, y, z)$ are in the plane.
- Then $\overrightarrow{P_{0} P}$ is parallel to the plane, so $\vec{n} \cdot \overrightarrow{P_{0} P}=0$.

Finding equations

Find the equation of the plane:
(1) Through $P_{0}=(2,-1,3)$ and perpendicular to $\vec{n}=\langle 5,-3,4\rangle$
(2) Perpendicular to the line $\vec{r}(t)=\langle 3+2 t,-5+3 t,-2-9 t\rangle$, and containing the origin.
(3) Containing the points $P=(1,0,4), Q=(2,-1,3), R=(5,2,4)$
(9) Containing the lines

$$
\begin{aligned}
& \vec{r}_{1}(s)=\langle 0,1,2\rangle+s\langle 4,-2,1\rangle \\
& \vec{r}_{2}(t)=\langle-2,-3,7\rangle+t\langle 3,1,-2\rangle
\end{aligned}
$$

(We found that these intersect at $P_{0}=(4,-1,3)$ on Tuesday.)

Intersection: plane and a line

Suppose we have:
(1) A plane $a x+b y+c z=d$
(2) A line $\langle x, y, z\rangle=\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle$

How do we find what point (if any) they have in common?

Example

Find the point of intersection of the plane

$$
2 x-3 y+4 z=6
$$

and the line

$$
\langle x, y, z\rangle=\langle 2,-1,0\rangle+t\langle 1,1,-2\rangle .
$$

Intersection: two planes

Like parallel lines in \mathbb{R}^{2}, parallel planes in \mathbb{R}^{3} do not interesect, but any non-parallel planes do. What does the intersection look like? How do we find it?

Example

Find the intersection of the planes $x-2 y+3 z=2$ and $3 x-y-4 z=8$.
Two methods:
(1) Using cross products
(2) Solving a system

Distance: point to plane

- Yes, there's a formula in the book.
- Don't use it.
- The formula lets you get an answer without understanding what's going on. (That is not a good thing.)

Setup is similar to point-to-line distance, but we project onto a normal vector, not a direction vector. Given a point P and a plane $a x+b y+c z=d:$

- Choose a point P_{0} on the plane.
- Form the vector $\overrightarrow{P_{0} P}$. This goes from the plane to the point, but probably not at a right angle.
- Project $\overrightarrow{P_{0} P}$ onto the normal vector $\vec{n}=\langle a, b, c\rangle$. Result goes from plane to point, and is as short as possible.

Example

Example

Find the distance from the point $P=(1,4,1)$ to the plane $2 x-y+3 z=4$. Also find the point Q on the plane that is closest to P.

Two possible methods for solving the problem:
(1) Using projection
(2) Using a normal line

Distance: parallel planes

Example

Find the distance between the planes $2 x-3 y+z=4$ and $2 x-3 y+z=10$.

Distance: skew lines

Example

Find the distance between the skew lines

$$
\begin{aligned}
& \overrightarrow{r_{1}}(s)=\langle 3,1,1\rangle+s\langle 2,-1,3\rangle \\
& \overrightarrow{r_{2}}(t)=\langle 1,0,-1\rangle+t\langle 1,2,1\rangle
\end{aligned}
$$

Bonus opportunity: find the two points (one on each line) that have this minimum distance.

