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Warm-up
Use the quadratic formula to solve the equation

x2 − 4x + 5 = 0.
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The complex number system
We define the set of complex numbers, denoted C, as

C = {x + iy | x, y ∈ R},

where i denotes a (non-real) number with the property that
i2 = −1.
▶ Complex numbers date back to 16th-century Italy, and

Cardano’s Ars Magna (1545).
▶ Used (relucantly) by Bombelli to solve equations in 1572.
▶ Largely ignored as nonsense for 250 years. (Some dabbling by

Euler around 1770.)
▶ Acceptance follows geometric interpretation by Gauss,

Argand, and others at the end of the 18th century.
▶ Most development of the subject (by Cauchy, Riemann, et al)

took place between 1814 and 1851.
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Bombelli and the cubic
▶ It’s easy to assume that complex numbers arose out of the

need to solve quadratic equations like x2 + 1 = 0 or
x2 − 4x + 5 = 0.

▶ This is historically false: geometrically no solutions were
expected. (The equation y = x2 − 4x + 5 = (x − 2)2 + 1
describes a parabola that lies above the x axis.)

▶ First compelling reason was the cubic equation x3 = 3px + 2q.
▶ Cubic formula due to Cardano:

x =
3
√

q +
√

q2 − p3 +
3
√

q −
√

q2 − p3

▶ Result is a real number even if there are negative numbers
under the square roots.
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The Argand Plane
Geometrically, we identify z = x + iy ∈ C with (x, y) ∈ R2. This
visualization is usually called the Argand plane or Gauss plane,
after the mathematicians who introducded this point of view.
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Addition of complex numbers
Addition is the same as the addition of geometric vectors in R2:
If z1 = x1 + iy1 and z2 = x2 + iy2, then we define

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Examples:
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Properties of addition
Addition in C follows the same rules as addition in R (or R2):
▶ z1 + z2 = z2 + z1 for all z1, z2 ∈ C.
▶ z1 + (z2 + z3) = (z1 + z2) + z3 for all z1, z2, z3 ∈ C
▶ 0 + z = z + 0 = z for all z ∈ C, where 0 = 0 + i0.
▶ Given z = x + iy, if we define −z = −x − iy, then

z + (−z) = −z + z = 0.
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Multiplication of complex numbers
A big difference between C and R2 (algebraically) is that we can
multiply complex numbers.
Given z = x + iy and w = u + iv, zw is computed using “FOIL”,
where we remember that i2 = −1:

zw = (x+ iy)(u+ iv) = xu+ ixv+ iyu+ i2yv = (xu− yv)+ i(xv+ yu)

Examples:
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Multiplicative inverses
Given z ∈ C with z ̸= 0, can we find a complex number z−1 (or
1/z) such that zz−1 = 1?
Say z = x + iy and w = u + iv satisfy zw = 1. Then

zw = (xu − yv) + i(xv + yu) = 1 = 1 + i0,

which gives a system of equations in u and v:

xu − yv = 1 and xv + yu = 0.

Solving (Cramer’s Rule, anyone?) gives u =
x

x2 + y2 and

v =
−y

x2 + y2 , which suggests:

1
x + iy =

x
x2 + y2 − i y

x2 + y2 .
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Properties of complex multiplication
The previous slide tells us every nonzero complex number has a
multiplicative inverse. We can check that the following properties
(the same ones R has!) all hold:
▶ z1z2 = z2z1 for all z1, z2 ∈ C.
▶ z1(z2z3) = (z1z2)z3 for all z1, z2, z3 ∈ C.
▶ 1z = z1 = z for all z ∈ C, where 1 = 1 + i0.
▶ For all z ̸= 0, there exists z−1 ∈ C such that zz−1 = z−1z = 1
▶ z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C
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Elements of complex numbers
For any z = x + iy ∈ C, we define the following:
▶ The real part of z, Re z = x.
▶ The imaginary part of z, Im z = y.
▶ The complex conjugate of z, z = x − iy.
▶ The modulus of z, |z| =

√
x2 + y2.

▶ The argument of z, arg z = θ, where tan θ = y
z .
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Division in C
We saw above that for every non-zero z ∈ C, we can define
z−1 = x

x2+y2 + i −y
x2+y2 such that zz−1 = 1.

In principle, this allows us to define division, but the result is hard
to remember. Instead, we note the following:
Theorem
For all z ∈ C, zz = |z|2.

Proof.

How does it help? |z|2 = x2 + y2 is a real number, and we know
how to divide by real numbers. Dividing can be done by
“multiplying by the conjugate”.
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Examples
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A matrix model for C
If you find the idea of defining a number i such that i2 = −1,
consider the following:
Let V denote the set of all 2 × 2 matrices. Let 1 =

[
1 0
0 1

]
∈ V,

and recall that this matrix satisfies A1 = 1A = A for all A ∈ V.
Now, let U ⊆ V denote the subset

U =

{[
x y
−y x

] ∣∣∣∣ x, y ∈ R
}
.

Notice that if A ∈ U, then A = x1 + yi, where i =
[

0 1
−1 0

]
.
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The polar form of a complex number
Given z = x + iy, we have |z| =

√
x2 + y2, and if

θ = arg z = tan−1(y/x), then basic trigonometry tells us

x = |z| cos θ
y = |z| sin θ

Thus, if we let r = |z|, we can write any z ∈ C in polar form as

z = r cos θ + ir sin θ.

Note: For the above to be well-defined, we have to define a
“branch” of the argument: there are infinitely many values of θ
that work. We’ll require θ ∈ (−π, π]. (Some texts take
θ ∈ [0, 2π).)
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Euler’s Formula
Euler’s identity is one of the most remarkable formulas in
mathematics: we define the complex exponential eiθ by

eiθ = cos θ + i sin θ.

This is usually taken as a definition, although there are several
motivations for it. In particular, using the angle addition
trigonometric identities, we find that

ei(α+β) = cos(α+ β) + i sin(α+ β)

= cosα cosβ − sinα sinβ + i(sinα cosβ + cosα sinβ)

= (cosα+ i sinα)(cosβ + i sinβ)
= eiαeiβ

Another famous result, called de Moivre’s theorem, asserts that for
all natural numbers n,

(eiθ)n = (cos θ + i sin θ)n = cos nθ + i sin nθ = einθ.
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Polar form, again
If we introduce polar coordinates r =

√
x2 + y2 and θ ∈ (−π, π]

such that tan θ = y/x, we can write

z = |z| cos θ + i|z| sin θ = reiθ,

with the help of Euler’s theorem. This form of a complex number
can be very convenient. For one thing, we will see that it makes
finding roots of complex numbers much easier. For another, it
gives us a geometric interpretation of complex multiplication.
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The Fundamental Theorem of Algebra
Complex numbers don’t just allow us to solve quadratic or cubic
equations involving real numbers. In fact, we have the following
remarkable theorem:
Theorem
Let p(z) = a0 + a1z + a2z2 + · · ·+ anzn be any polynomial with
complex coefficients a0, a1, . . . , an ∈ C, n ≥ 1. Then p has a root.
Consequence: every polynomial – even with complex coefficients –
can be completely factored over C.
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