Math 1410, Spring 2020 Matrix Inverses

Sean Fitzpatrick

Overview

2 The inverse of a matrix

Warm-Up

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 0 & -1 \\ -1 & 2 & 3 \end{bmatrix} \qquad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 4 \\ -3 & 2 \\ 2 & -2 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Compute the products:

 $AB, BA, BC, CB, AD, DA, I_2A, I_2B, BI_3, I_3C.$

Compare A(BC) with (AB)C

Properties

Theorem:

Assuming each product below is defined,

$$(BC) = (AB)C$$

$$(B+C) = AB + AC$$

$$(A+B)C = AC + BC$$

•
$$A(kB) = (kA)B = k(AB)$$
 for any scalar k

$$I_m A = A \text{ and } AI_n = A$$

Matrix inverses

For real numbers a and b, if $a \neq 0$ and ax = b, we know $x = \frac{b}{a}$. If A is a matrix, \vec{b} is a vector, and $A\vec{x} = \vec{b}$, can we similarly solve for \vec{x} ? Short answer: no. Longer answer: sometimes. Sort of.

Definition:

A square $(n \times n)$ matrix A is *invertible* if $AB = I_n = BA$ for some B. We call B the *inverse* of A, and write $B = A^{-1}$.

Example

For
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, we saw that $AD = I_2$ and $DA = I_2$.
So $D = A^{-1}$. Suppose $A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \end{bmatrix}$. How can we use D to solve for $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$?

Block multiplication

Given A, an $m \times n$ matrix, and B, an $n \times p$ matrix, write $B = \begin{bmatrix} B_1 & B_2 & \cdots & B_p \end{bmatrix}$, where the B_i are columns of B. Then

$$AB = A \begin{bmatrix} B_1 & B_2 & \cdots & B_p \end{bmatrix} = \begin{bmatrix} AB_1 & AB_2 & \cdots & AB_p \end{bmatrix}.$$

Suppose A, B are both $n \times n$, and $AB = I_n$. Then

$$AB_{1} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, AB_{2} = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \cdots, AB_{n} = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$$

Finding $B = A^{-1}$ amounts to solving (!) these systems of equations.

The inverse algorithm

Let A be an $n \times n$ matrix.

- Form the augmented matrix [$A \mid I_n$]
- **②** Use row operations until you reach $[R \mid B]$, where R is the RREF of A.
- \bullet If R has a row of zeros, then A is not invertible.
- If $R = I_n$, then $B = A^{-1}$.

Examples

٥

۲

۲

Compute the inverses (if possible) of:

$$A = \begin{bmatrix} 3 & -5\\ 2 & 7 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 3 & -2\\ -1 & -2 & 4\\ 5 & 13 & -14 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & -4\\ 2 & 1 & -5\\ 0 & 1 & 2 \end{bmatrix}$$

Invertible matrix theorem

Theorem:

Let A be an $n \times n$ matrix. The following statements are all equivalent to the statement "A is invertible":

• The rank of A is n.

2 The RREF of
$$A$$
 is equal to I_n .

- **③** The system $A\vec{x} = \vec{b}$ is consistent for every $n \times 1$ vector \vec{b} .
- The only solution to the system $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.
- There is a matrix B such that $AB = I_n$.
- There is a matrix C such that $CA = I_n$.

Properties of the inverse

Let A and B be invertible matrices.

- **①** The inverse of A is unique.
- 2 A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 3 AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- So For any nonzero scalar k, kA is invertible, and $(kA)^{-1} = \frac{1}{k}A^{-1}$.
- So For any $n \times 1$ vector \vec{b} , the *unique* solution to $A\vec{x} = \vec{b}$ is $\vec{x} = A^{-1}\vec{b}$.

Examples

- **(**) Show that if A, B, C are invertible, then $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.
- **2** Show that if $A^3 = 4I_n$, then A is invertible.
- Show that if $A^2 3A + 2I_n = 0$, then A is invertible.
- Simplify the expression $B(AB)^{-1}(AB)^2B^{-1}$.