Math 1410, Spring 2020
 Matrix Inverses

Sean Fitzpatrick

Overview

(1) Recap

(2) The inverse of a matrix
(3) Computing the inverse

Warm-Up

$$
\begin{array}{lll}
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right], & B=\left[\begin{array}{ccc}
3 & 0 & -1 \\
-1 & 2 & 3
\end{array}\right] & I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
C=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2 \\
2 & -2
\end{array}\right] & D=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] & I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Compute the products:

$$
A B, B A, B C, C B, A D, D A, I_{2} A, I_{2} B, B I_{3}, I_{3} C
$$

Compare $A(B C)$ with $(A B) C$

Properties

Theorem:

Assuming each product below is defined,
(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(A+B) C=A C+B C$
(1) $A(k B)=(k A) B=k(A B)$ for any scalar k
(5) $I_{m} A=A$ and $A I_{n}=A$

Matrix inverses

For real numbers a and b, if $a \neq 0$ and $a x=b$, we know $x=\frac{b}{a}$. If A is a matrix, \vec{b} is a vector, and $A \vec{x}=\vec{b}$, can we similarly solve for \vec{x} ? Short answer: no. Longer answer: sometimes. Sort of.

Definition:

A square $(n \times n)$ matrix A is invertible if $A B=I_{n}=B A$ for some B. We call B the inverse of A, and write $B=A^{-1}$.

Example

For $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right], D=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, we saw that $A D=I_{2}$ and $D A=I_{2}$.
So $D=A^{-1}$. Suppose $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}7 \\ -5\end{array}\right]$. How can we use D to solve for $\vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$?

Block multiplication

Given A, an $m \times n$ matrix, and B, an $n \times p$ matrix, write $B=\left[\begin{array}{llll}B_{1} & B_{2} & \cdots & B_{p}\end{array}\right]$, where the B_{i} are columns of B. Then

$$
A B=A\left[\begin{array}{lll}
B_{1} & B_{2} & \cdots B_{p}
\end{array}\right]=\left[\begin{array}{llll}
A B_{1} & A B_{2} & \cdots & A B_{p}
\end{array}\right] .
$$

Suppose A, B are both $n \times n$, and $A B=I_{n}$. Then

$$
A B_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], A B_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, A B_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

Finding $B=A^{-1}$ amounts to solving (!) these systems of equations.

The inverse algorithm

Let A be an $n \times n$ matrix.
(1) Form the augmented matrix $\left[A \mid I_{n}\right]$
(2) Use row operations until you reach [$R \mid B$], where R is the RREF of A.
(3) If R has a row of zeros, then A is not invertible.
(9) If $R=I_{n}$, then $B=A^{-1}$.

Examples

Compute the inverses (if possible) of:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
3 & -5 \\
2 & 7
\end{array}\right] \\
B=\left[\begin{array}{ccc}
1 & 3 & -2 \\
-1 & -2 & 4 \\
5 & 13 & -14
\end{array}\right] \\
C=\left[\begin{array}{ccc}
1 & 0 & -4 \\
2 & 1 & -5 \\
0 & 1 & 2
\end{array}\right]
\end{gathered}
$$

Invertible matrix theorem

Theorem:

Let A be an $n \times n$ matrix. The following statements are all equivalent to the statement " A is invertible":
(1) The rank of A is n.
(2) The RREF of A is equal to I_{n}.
(3) The system $A \vec{x}=\vec{b}$ is consistent for every $n \times 1$ vector \vec{b}.
(9) The only solution to the system $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=\overrightarrow{0}$.
(5) There is a matrix B such that $A B=I_{n}$.
(0) There is a matrix C such that $C A=I_{n}$.

Properties of the inverse

Let A and B be invertible matrices.
(1) The inverse of A is unique.
(2) A^{-1} is also invertible, and $\left(A^{-1}\right)^{-1}=A$.
(3) $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
(9) For any nonzero scalar $k, k A$ is invertible, and $(k A)^{-1}=\frac{1}{k} A^{-1}$.
(5) For any $n \times 1$ vector \vec{b}, the unique solution to $A \vec{x}=\vec{b}$ is $\vec{x}=A^{-1} \vec{b}$.

Examples

(1) Show that if A, B, C are invertible, then $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.
(2) Show that if $A^{3}=4 I_{n}$, then A is invertible.
(3) Show that if $A^{2}-3 A+2 I_{n}=0$, then A is invertible.
(9) Simplify the expression $B(A B)^{-1}(A B)^{2} B^{-1}$.

