Eigenvalues and Eigenvectors March 26, 2020

Math 1410 Linear Algebra

Warm-up

- Recall: for any $n \times n$ matrix A, we get a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(\vec{x})=A \vec{x}$.
- Each input vector \vec{x} gets transformed to some output vector \vec{y}.
- Usually both the the direction and magnitude of $\vec{y}=A \vec{x}$ are different.

Now a warm-up exercise:
Let $A=\left[\begin{array}{cc}6 & 2 \\ -6 & -1\end{array}\right]$, and define $T(\vec{x})=A \vec{x}$.

1. Compute $T\left(\left[\begin{array}{c}1 \\ -2\end{array}\right]\right)$
2. Compute $T\left(\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right)$
3. Reflect on the results.

Multiplication operators

For any scalar λ, we can consider the function $f_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f_{\lambda}(\vec{x})=\lambda \vec{x}$.

This is just scalar multiplication.
Note f_{λ} is also a matrix transformation: $f_{\lambda}=f_{A}$, where

$$
A=\left[\begin{array}{cccc}
\lambda & 0 & \cdots & 0 \\
0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda
\end{array}\right]=\lambda I_{n},
$$

where I_{n} is the $n \times n$ identity matrix.

Invariant directions for matrix transformations

For the matrix $A=\lambda I_{n}, A \vec{x}$ is always parallel to \vec{x}.
For other matrices, there may be no vectors with this property: for example, if A is the rotation matrix in \mathbb{R}^{2} (unless θ is a multiple of $2 \pi)$.

In other cases, $A \vec{x}$ is parallel to \vec{x} for some vectors but not others.
For example, the shear

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Recommended reference: Understanding Linear Algebra by David Austin.

Eigenvalues and eigenvectors

Definition
For any $n \times n$ matrix A, we say that a scalar λ is an eigenvalue for A if there exists a non-zero vector \vec{x}, called an eigenvector, such that

$$
A \vec{x}=\lambda \vec{x}
$$

Example
Show that $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are eigenvectors of $A=\left[\begin{array}{cc}2 & -4 \\ -1 & 5\end{array}\right]$.

Eigenvectors and characteristic directions

Theorem
Suppose \vec{x} is an eigenvector of an $n \times n$ matrix A, with eigenvalue λ. Then for any scalar $k \neq 0, k \vec{x}$ is also an eigenvector of A, corresponding to the same eigenvalue.

Finding eigenvalues and eigenvectors

Let A be an $n \times n$ matrix, and suppose λ is an eigenvalue of A. Then there exists a non-zero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$. That is, $\vec{x} \neq 0$ and

$$
A \vec{x}-\lambda \vec{x}=\left(A-\lambda I_{n}\right) \vec{x}=0 .
$$

Theorem
A scalar $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$

The characteristic polynomial

Definition
For any $n \times n$ matrix A, we define its characteristic polynomial by

$$
c_{A}(x)=\operatorname{det}\left(x I_{n}-A\right) .
$$

Note: The eigenvalues of A are precisely the zeros of the characteristic polynomial of A.

Finding the characteristic polynomial
Example
Find the characteristic polynomial of $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & 3 & 2 \\ 1 & 2 & 0\end{array}\right]$.

Examples

Find the eigenvalues of:

1. $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
2. $B=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$
3. $C=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

Finding eigenvectors

- Suppose λ is an eigenvalue of A.
- Then $A \vec{v}=\lambda \vec{v}$ for some nonzero vector \vec{v}.
- That means \vec{v} is a solution to $(A-\lambda I) \vec{x}=\overrightarrow{0}$.

So we find eigenvectors by solving homogeneous systems!

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & -5 \\ -5 & 1\end{array}\right]$.

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 1 & -1 \\ 5 & 1 & 3\end{array}\right]$.

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 2 & 3 & -1 \\ 10 & 8 & -3\end{array}\right]$

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

