Eigenvalues and Eigenvectors March 26, 2020

Math 1410 Linear Algebra

Math 1410 Linear Algebra Eigenvalues and Eigenvectors March 26, 2020

Warm-up

- Recall: for any $n \times n$ matrix A, we get a transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x}$.
- Each input vector \vec{x} gets transformed to some output vector \vec{y} .
- Usually both the the direction and magnitude of $\vec{y} = A\vec{x}$ are different.

Now a warm-up exercise:

Let
$$A = \begin{bmatrix} 6 & 2 \\ -6 & -1 \end{bmatrix}$$
, and define $T(\vec{x}) = A\vec{x}$.
1. Compute $T\left(\begin{bmatrix} 1 \\ -2 \end{bmatrix} \right)$
2. Compute $T\left(\begin{bmatrix} -2 \\ 3 \end{bmatrix} \right)$

3. Reflect on the results.

Multiplication operators

For any scalar λ , we can consider the function $f_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ given by $f_{\lambda}(\vec{x}) = \lambda \vec{x}$.

This is just scalar multiplication.

Note f_{λ} is also a matrix transformation: $f_{\lambda} = f_{A}$, where

$$A = \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix} = \lambda I_n,$$

where I_n is the $n \times n$ identity matrix.

Invariant directions for matrix transformations

For the matrix $A = \lambda I_n$, $A\vec{x}$ is always parallel to \vec{x} . For other matrices, there may be no vectors with this property: for example, if A is the rotation matrix in \mathbb{R}^2 (unless θ is a multiple of 2π).

In other cases, $A\vec{x}$ is parallel to \vec{x} for some vectors but not others. For example, the shear

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}1&1\\0&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}.$$

Recommended reference: Understanding Linear Algebra by David Austin.

Eigenvalues and eigenvectors

Definition

For any $n \times n$ matrix A, we say that a scalar λ is an eigenvalue for A if there exists a non-zero vector \vec{x} , called an eigenvector, such that

$$A\vec{x} = \lambda\vec{x}$$

Example Show that $\begin{bmatrix} 4\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1 \end{bmatrix}$ are eigenvectors of $A = \begin{bmatrix} 2 & -4\\-1 & 5 \end{bmatrix}$.

Eigenvectors and characteristic directions

Theorem

Suppose \vec{x} is an eigenvector of an $n \times n$ matrix A, with eigenvalue λ . Then for any scalar $k \neq 0$, $k\vec{x}$ is also an eigenvector of A, corresponding to the same eigenvalue.

Finding eigenvalues and eigenvectors

Let A be an $n \times n$ matrix, and suppose λ is an eigenvalue of A. Then there exists a non-zero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. That is, $\vec{x} \neq 0$ and

$$A\vec{x} - \lambda\vec{x} = (A - \lambda I_n)\vec{x} = 0.$$

Theorem A scalar $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if det $(A - \lambda I_n) = 0$

The characteristic polynomial

Definition

For any $n \times n$ matrix A, we define its characteristic polynomial by

$$c_A(x) = \det(xI_n - A).$$

Note: The eigenvalues of A are precisely the zeros of the characteristic polynomial of A.

Finding the characteristic polynomial

Example

Find the characteristic polynomial of $A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

-

_

Find the eigenvalues of:

1.
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

2.
$$B = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$

3.
$$C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Finding eigenvectors

- Suppose λ is an eigenvalue of A.
- Then $A\vec{v} = \lambda\vec{v}$ for some nonzero vector \vec{v} .
- That means \vec{v} is a solution to $(A \lambda I)\vec{x} = \vec{0}$.

So we find eigenvectors by solving homogeneous systems!

Find the eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix}$$
.

Find the eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & -1 \\ 5 & 1 & 3 \end{bmatrix}$$
.

Find the eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ 10 & 8 & -3 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
.