Eigenvalues and Eigenvectors March 26, 2020

Math 1410 Linear Algebra

- Recall: for any $n \times n$ matrix A, we get a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(\vec{x})=A \vec{x}$.
- Each input vector \vec{x} gets transformed to some output vector \vec{y}.
- Usually both the the direction and magnitude of $\vec{y}=A \vec{x}$ are different.

Now a warm-up exercise:

Let $A=\left[\begin{array}{cc}6 & 2 \\ -6 & -1\end{array}\right]$, and define $T(\vec{x})=A \vec{x}$.

2. Compute $T\left(\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right)=\left[\begin{array}{cc}6 & 2 \\ -6 & -1\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{cc}-12+6 \\ 12 & -3\end{array}\right]=\left[\begin{array}{c}-6 \\ 9\end{array}\right]=3\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
3. Reflect on the results.

Multiplication operators

For any scalar λ, we can consider the function $f_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f_{\lambda}(\vec{x})=\lambda \vec{x}$.

This is just scalar multiplication.
Note f_{λ} is also a matrix transformation: $f_{\lambda}=f_{A}$, where

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
\lambda & 0 & \cdots & 0 \\
0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda
\end{array}\right]=\lambda I_{n},
\end{aligned} \begin{aligned}
& D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -4
\end{array}\right] \\
& D \hat{\imath}=2 \hat{\imath} \\
& D \hat{\imath}=3\} \\
& D \hat{k}=-4 \hat{k}
\end{aligned}
$$

where I_{n} is the $n \times n$ identity matrix.

$$
\begin{aligned}
& A \vec{x}=\left(\lambda I_{n}\right) \vec{x}=\lambda\left(I_{n} \vec{x}\right)=\lambda \vec{x} \\
& \quad \text { for any } \vec{x} .
\end{aligned}
$$

Invariant directions for matrix transformations

For the matrix $A=\lambda I_{n}, A \vec{x}$ is always parallel to \vec{x}.
For other matrices, there may be no vectors with this property: for example, if A is the rotation matrix in \mathbb{R}^{2} (unless θ is a multiple of $2 \pi)$.

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad A \vec{r} / \sigma \vec{\sigma}
$$

In other cases, $A \vec{x}$ is parallel to \vec{x} for some vectors but not others.
For example, the shear

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Recommended reference: Understanding Linear Algebra by David Austin.

Eigenvalues and eigenvectors
Definition
For any $n \times n$ matrix A, we say that a scalar (λ) an eigenvalue for A if there exists a non-zerovector \vec{x}, called an eigenvector, such that

$$
\vec{y}=A \vec{x}=\lambda \vec{x}
$$

Example
Show that $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are eigenvectors of $A=\left[\begin{array}{cc}2 & -4 \\ -1 & 5\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{rr}
2 & -4 \\
-1 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{cc}
8 & -4 \\
-4+5
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \lambda=1\left[\begin{array}{l}
4 \\
1
\end{array}\right]=1\left[\begin{array}{l}
4 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{rr}
2 & -4 \\
-1 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2+4 \\
-1-5
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6
\end{array}\right] \lambda=6 .}
\end{aligned}
$$

Eigenvectors and characteristic directions
Theorem
Suppose \vec{x} is an eigenvector of an $n \times n$ matrix A, with eigenvalue λ. Then for any scalar $k \neq 0, k \vec{x}$ is also an eigenvector of A, corresponding to the same eigenvalue.
Proof: Let \bar{x} be an eigenvector with eignualue λ. Then $A \vec{x}=\lambda \vec{x}$

$$
\begin{gathered}
\therefore A(k \vec{x})=k(A \vec{x})=k(\lambda \vec{x})=\lambda(k \vec{x}) \\
(k \neq 0)
\end{gathered}
$$

Finding eigenvalues and eigenvectors

Let A be an $n \times n$ matrix, and suppose λ is an eigenvalue of A.
Then there exists a non-zero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$. That is, $\vec{x} \neq 0$ and

$$
A \vec{x}-\lambda \vec{x}=\left(A-\lambda I_{n}\right) \vec{x}=\underline{0} .
$$

$(A-\lambda I) \vec{x}=\overrightarrow{0}, \vec{x} \neq \vec{O}$
homogeneous system
Nontrivial solutions
of and only of
$\therefore \operatorname{det}(A-\lambda I)=0$

Theorem
A scalar $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$

The characteristic polynomial
Definition
For any $n \times n$ matrix A, we define its characteristic polynomial by

$$
\begin{gathered}
c_{A}(x)=\operatorname{det}\left(x I_{n}-A\right)=(-1)^{n} \operatorname{det}(A-x I) \\
(\operatorname{not} A-x I)
\end{gathered}
$$

Note: The eigenvalues of A are precisely the zeros of the characteristic polynomial of A.

$$
C_{A}(x)=x^{n}-a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

- find zeros by factoring!

$$
C_{A}(x)=\left(x-\lambda_{1}\right)^{m_{1}}\left(x-\lambda_{2}\right)^{m_{2}} \ldots\left(x-\lambda_{k}\right)^{m_{2}}
$$

Finding the characteristic polynomial
Example
Find the characteristic polynomial of $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & 3 & 2 \\ 1 & 2 & 0\end{array}\right]$.

$$
\left.\begin{array}{rl}
C_{A}(x) & =\operatorname{det}(x I-A) \\
& =\left|\begin{array}{ccc}
x-2 & -3 & 1 \\
0 & x-3 & -2 \\
-1 & -2 & x
\end{array}\right|=(x-2)\left|\begin{array}{cc}
x-3 & -2 \\
-2 & x
\end{array}\right| \\
+0 & -1 \\
\hline & 1 \\
\hline-3 & 1 \\
\hline
\end{array} \right\rvert\,
$$

Examples
Find the eigenvalues of:

$$
\begin{aligned}
& x^{2}-4 x+4-1=x^{2}-4 x+3 \\
\left|\begin{array}{cc}
x-2 & -1 \\
-1 & x-2
\end{array}\right|= & (x-2)^{2}-1=(x-3)(x-1) \\
= & ((x-2 \mid-1)(x-2)+1) \\
= & (x-3)(x-1) \\
& \lambda=1, \lambda=3 .
\end{aligned}
$$

1. $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \quad\left|\begin{array}{cc}x-2 & -1 \\ -1 & x-2\end{array}\right|=(x-2)^{2}-1=(x-3)(x-1)$
2. $B=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$
3. $C=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]-$ rotation 90°

$$
\begin{aligned}
& C_{B}(x)=\operatorname{det}(x I-B)=\left|\begin{array}{cc}
x-3 & -1 \\
0 & x-3
\end{array}\right|=(x-3)^{2} \\
& \lambda=3 \\
& C_{C}(x)=\left|\begin{array}{cc}
x & +1 \\
-1 & x
\end{array}\right|=x^{2}+1=(x-i)(x+i)
\end{aligned}
$$

no real
eigenvalues

Finding eigenvectors

$$
A-3 I=\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

- Suppose λ is an eigenvalue of A.

$$
\stackrel{\omega}{\omega}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Then $A \vec{v}=\lambda \vec{v}$ for some nonzero vector \vec{v}.
- That means \vec{v} is a solution to $(A-\lambda /) \vec{x}=\overrightarrow{0}$.

So we find eigenvectors by solving homogeneous systems!
Eg: $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $\lambda=1, \lambda=3$.
For $\lambda=1$: solve $(A-1 I) \vec{x}=\overrightarrow{0}$

$$
\begin{array}{ll}
A-I=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\vec{V}=\left[\begin{array}{c}
x \\
-x
\end{array}\right]=x\left[\begin{array}{r}
1 \\
-1
\end{array}\right] & x+y=0 \Rightarrow y=- \\
p+x=1 & \therefore \vec{V}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{array}
$$

Example $\quad \hat{A} \vec{v}=\left[\begin{array}{cc}1 & -5 \\ -5 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}6 \\ -6\end{array}\right] \quad A \vec{\omega}=\left[\begin{array}{cc}1 & -5 \\ -5 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & -5 \\ -5 & 1\end{array}\right]$. $=\left[\begin{array}{l}-4 \\ -4\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & -5 \\
-5 & 1-\lambda
\end{array}\right| & =(1-\lambda)^{2}-25 \\
& =\lambda^{2}-2 \lambda+1-25 \\
\therefore \text { Eigenvalues are } & =\lambda^{2}-2 \lambda-24 \\
\lambda=6, \lambda=-4 . & \\
& =(\lambda-6)(\lambda+4)
\end{aligned}
$$

For $\lambda=6: \quad A-6 I=\left[\begin{array}{ll}-5 & -5 \\ -5 & -5\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \quad x+y=0$

$$
\vec{\nabla}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

For $\lambda=-4: A+4 I=\left[\begin{array}{cc}5 & -5 \\ -5 & 5\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right] x-y=0$

$$
\stackrel{\omega}{\omega}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 1 & -1 \\ 5 & 1 & 3\end{array}\right]$.

- Exercige!

Example

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 2 & 3 & -1 \\ 10 & 8 & -3\end{array}\right]$

Example
Note : $A^{\top}=A$
Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

$$
\begin{aligned}
& \left.\begin{array}{rl}
C_{A}(x) & \left.=\operatorname{det}(x I-A)=+\begin{array}{ccc}
x & -1 & -1 \\
-1 & x & -1 \\
1 & -1 & -1 \\
x
\end{array}|=x| \begin{array}{ccc}
1 & 1 & 0
\end{array}\right] \\
-1 & x
\end{array}|-(-1)| \begin{array}{cc}
-1 & -1 \\
-1 & x
\end{array} \right\rvert\, \\
& =x(x-1)(x+1)-2(x+1) \\
& =(x+1)(x(x-1)-2)=(x+1)\left(x^{2}-x-2\right)=(x+1)(x-2)(x+1) \\
& =(x+1)^{2}(x-2) \quad \lambda=-1, \lambda=2 \text {. } \\
& \begin{array}{ll}
\lambda=-1: & A-(-1) I=A+I=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
0 \\
\vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & \begin{array}{l}
x+y+z=0 \\
x=-y-z
\end{array}
\end{array} \\
& \text { (over to next page) }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=-1: \quad x+y+z=0 \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-y-z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]} \\
& y=1, z=0 \text { gives } \vec{V}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& y=0, z=1 \text { gives } \nabla_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& \lambda=2: A-L I=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] \begin{array}{c}
x=z \\
y=z
\end{array} \vec{V}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right] \begin{array}{cc}
R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}
\end{array}\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

