Math 1410, Spring 2020
 Matrix Transformations

Sean Fitzpatrick

Overview

(1) Recap

(2) Matrix Transformations
(3) Transformations of the plane

Warm-Up

(1) Show that if $A^{3}=4 I_{n}$, then A is invertible.
(2) Show that if $A^{2}-3 A+2 I_{n}=0$, then A is invertible.
(3) Simplify the expression $B(A B)^{-1}(A B)^{2} B^{-1}$.
(9) Find the inverse of $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$.

Invertible matrix theorem

Theorem:

Let A be an $n \times n$ matrix. The following statements are all equivalent to the statement " A is invertible":
(1) The rank of A is n.
(2) The RREF of A is equal to I_{n}.
(3) The system $A \vec{x}=\vec{b}$ is consistent for every $n \times 1$ vector \vec{b}.
(9) The only solution to the system $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=\overrightarrow{0}$.
(5) There is a matrix B such that $A B=I_{n}$.
(0) There is a matrix C such that $C A=I_{n}$.

Properties of the inverse

Let A and B be invertible matrices.
(1) The inverse of A is unique.
(2) A^{-1} is also invertible, and $\left(A^{-1}\right)^{-1}=A$.
(3) $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
(9) For any nonzero scalar $k, k A$ is invertible, and $(k A)^{-1}=\frac{1}{k} A^{-1}$.
(5) For any $n \times 1$ vector \vec{b}, the unique solution to $A \vec{x}=\vec{b}$ is $\vec{x}=A^{-1} \vec{b}$.

Matrix-vector products, again

Recall: if A is an $m \times n$ matrix, and \vec{x} is an $n \times 1$ vector, then $\vec{y}=A \vec{x}$ is an $m \times 1$ vector. Let \mathbb{R}^{n} (sometimes, $\mathbb{R}^{n, 1}$) denote the set of all $n \times 1$ column vectors. Then any $m \times n$ matrix A can be used to define a function

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

defined by $T(\vec{x})=A \vec{x}$. What properties does this function have?

Examples

Let $A=\left[\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right]$, and let $T(\vec{x})=A \vec{x}$. Compute the value of T on:

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Repeat the above for $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$.

Properties

Theorem:
Let A be an $m \times n$ matrix, and define $T(\vec{x})=A \vec{x}$. Then:
(1) T is a function from \mathbb{R}^{n} to \mathbb{R}^{m}
(2) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ for all \vec{x}, \vec{y}
(3) $T(c \vec{x})=c T(\vec{x})$ for all vectors \vec{x} and scalars c

Note: any function between vector spaces (e.g. $\mathbb{R}^{n}, \mathbb{R}^{m}$) with these properties is called a linear transformation. It turns out any linear transformation can be expressed as a matrix transformation.

Examples

(1) Show that for any linear transformation, $T(\overrightarrow{0})=\overrightarrow{0}$.
(2) Given $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-4 \\ 5\end{array}\right]$, find $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$
(3) Given $T(\vec{a})=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right], T(\vec{b})=\left[\begin{array}{c}0 \\ -2 \\ 5\end{array}\right]$ and $T(\vec{c})=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, find

$$
T(2 \vec{a}-3 \vec{b}+5 \vec{c})
$$

Examples

(1) If $T(\vec{x})=A \vec{x}$ for $A=\left[\begin{array}{cc}2 & -3 \\ -1 & -2 \\ 5 & 4\end{array}\right]$, what are the domain and codomain of T ?
(2) For T as above, compute $T(\hat{\imath})$ and $T(\hat{\jmath})$
(3) What if $A=\left[\begin{array}{lll}2 & -1 & 5 \\ 4 & -2 & 3\end{array}\right]$?
(9) If $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}3 x-2 y \\ -x+4 y+5 z \\ 7 x-2 y-6 z\end{array}\right]$, for what matrix is $T(\vec{x})=A \vec{x}$?

Maps from \mathbb{R}^{2} to \mathbb{R}^{2}

When A is 2×2 we can visualize everything in terms of geometric vectors in the plane. We can use matrices to describe transformations, like stretches, rotations, and reflections. (But not translations.)

Example

Describe the effect of the transformation with matrix $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]$ in terms of what it does to the unit square $(0 \leq x, y \leq 1)$

Transformation matrices

- Stretches: $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & k\end{array}\right],\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]=k I_{2}$. (This is just scalar multiplication.)
- Reflections: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Rotations: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- Shears: $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$

Examples

Determine the matrix transformation that:
(1) Stretches horizontally by a factor of 2 , rotates by 90°, and then reflects across the x axis.
(2) Reflects across the line $y=x$, stretches vertically be a factor of 3 , then reflects across the y axis.

