Math 1410, Spring 2020 Matrix Transformations

Sean Fitzpatrick

Overview

Warm-Up

- Show that if $A^3 = 4I_n$, then A is invertible.
- 2 Show that if $A^2 3A + 2I_n = 0$, then A is invertible.
- Simplify the expression $B(AB)^{-1}(AB)^2B^{-1}$.
- Find the inverse of $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$.

Invertible matrix theorem

Theorem:

Let A be an $n \times n$ matrix. The following statements are all equivalent to the statement "A is invertible":

• The rank of A is n.

2 The RREF of
$$A$$
 is equal to I_n .

- **③** The system $A\vec{x} = \vec{b}$ is consistent for every $n \times 1$ vector \vec{b} .
- The only solution to the system $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.
- There is a matrix B such that $AB = I_n$.
- There is a matrix C such that $CA = I_n$.

Properties of the inverse

Let A and B be invertible matrices.

- **①** The inverse of A is unique.
- 2 A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 3 AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- So For any nonzero scalar k, kA is invertible, and $(kA)^{-1} = \frac{1}{k}A^{-1}$.
- So For any $n \times 1$ vector \vec{b} , the *unique* solution to $A\vec{x} = \vec{b}$ is $\vec{x} = A^{-1}\vec{b}$.

Recall: if A is an $m \times n$ matrix, and \vec{x} is an $n \times 1$ vector, then $\vec{y} = A\vec{x}$ is an $m \times 1$ vector. Let \mathbb{R}^n (sometimes, $\mathbb{R}^{n,1}$) denote the set of all $n \times 1$ column vectors. Then any $m \times n$ matrix A can be used to define a *function*

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

defined by $T(\vec{x}) = A\vec{x}$. What properties does this function have?

Let
$$A = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$$
, and let $T(\vec{x}) = A\vec{x}$. Compute the value of T on:
 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
Repeat the above for $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$.

Properties

Theorem:

Let A be an $m \times n$ matrix, and define $T(\vec{x}) = A\vec{x}$. Then:

① T is a function from \mathbb{R}^n to \mathbb{R}^m

2
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$
 for all \vec{x}, \vec{y}

T(
$$c\vec{x}$$
) = $cT(\vec{x})$ for all vectors \vec{x} and scalars c

Note: any function between vector spaces (e.g. \mathbb{R}^n , \mathbb{R}^m) with these properties is called a linear transformation. It turns out any linear transformation can be expressed as a matrix transformation.

When A is 2×2 we can visualize everything in terms of geometric vectors in the plane. We can use matrices to describe *transformations*, like stretches, rotations, and reflections. (But not translations.)

Example

Describe the effect of the transformation with matrix $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ in terms of what it does to the *unit square* ($0 \le x, y \le 1$)

Transformation matrices

• Stretches:
$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$, $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = kI_2$. (This is just scalar multiplication.)
• Reflections: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
• Rotations: $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
• Shears: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Determine the matrix transformation that:

- Stretches horizontally by a factor of 2, rotates by 90° , and then reflects across the x axis.
- **②** Reflects across the line y = x, stretches vertically be a factor of 3, then reflects across the y axis.