Properties of Eigenvalues and Eigenvectors March 31, 2020

Math 1410 Linear Algebra

Warm-up

$$
X I=\left[\begin{array}{lll}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right]
$$

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 1 & -1 \\ 5 & 1 & 3\end{array}\right]$.

$$
\begin{aligned}
& C_{A}(x)=\operatorname{det}(x I-A) \\
& =\left|\begin{array}{cc}
x-3 & 0 \\
-1 & 0 \\
-5 & x-1 \\
-1 & 1 \\
-1 & x-3
\end{array}\right|=(x-3)\left(\left.\begin{array}{cc}
x-1 & 1 \\
-1 & x-3
\end{array} \right\rvert\,\right) \\
& \lambda=3, \lambda=2 \text { (twice) " }=(x-3)\left(x^{2}-4 x+3+1\right) \\
& \begin{array}{l}
\lambda=2 \text { (twice) }=(x-3)(x-4 x+4)=(x-3)(x-2)^{2} \\
\text { "Multiplicity } 2 "=(x-3)\left(x^{2}-4 x+4\right)
\end{array} \\
& \overrightarrow{\lambda=3}:(A-3 I)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & -1 \\
5 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & 11 & 5 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 / 11 \\
0 & 1 & 5 / 11 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

\therefore For $\lambda=3, \quad \vec{x}_{1}=\left[\begin{array}{c}\frac{1}{11} z \\ -\frac{5}{11} z \\ z\end{array}\right] \begin{aligned} & \text { For } z=11 \\ & \vec{x}=\left[\begin{array}{c}1 \\ -5 \\ 11\end{array}\right]\end{aligned}$
Check:

$$
A \vec{x}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
1 & 1 & -1 \\
5 & 1 & 3
\end{array}\right)\left[\begin{array}{c}
1 \\
-5 \\
11
\end{array}\right]=\left[\begin{array}{c}
3 \\
-15 \\
33
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-5 \\
11
\end{array}\right] .
$$

$$
\left.\begin{array}{rl}
\lambda=2: & A-2 I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & -1 \\
5 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right)
\end{array}\right]
$$

Eigenvalues and eigenvectors

Definition

For any $n \times n$ matrix A, we say that a scalar λ is an eigenvalue for A if there exists a non-zero vector \vec{x}, called an eigenvector, such that

$$
A \vec{x}=\lambda \vec{x}
$$

Definition
For any $n \times n$ matrix A, we define its characteristic polynomial by

$$
c_{A}(x)=\underbrace{\operatorname{det}\left(x I_{n}-A\right)}_{\text {polyrumial }}=0
$$

The eigenvalues of A are the roots of $c_{A}(x)$.
The eigenvector(s) corresponding to an eigenvalue λ are the basic solutions to $(A-\lambda I) \vec{x}=\overrightarrow{0}$.

Example
Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 2 & 3 & -1 \\ 10 & 8 & -3\end{array}\right]$

$$
\begin{aligned}
C_{A}(x) & =\operatorname{det}(x I-A)=\left|\begin{array}{ccc}
x-4 & -2 & 1 \\
-2 & x-3 & 1 \\
-10 & -8 & x+3
\end{array}\right| \\
& \left.=(x-4)\left|\begin{array}{cc}
x-3 & \mid \\
-8 & x+3
\end{array}\right| \begin{array}{cc}
(-2)(-1)^{1+2} & \\
+2 & 1 \\
-2 & 1 \\
-10 & x+3
\end{array}|+1| \begin{array}{cc}
-2 & x-3 \\
-10 & -8
\end{array} \right\rvert\, \\
& =(x-4)\left(x^{2}-9+8\right)+2(-2 x-6+10)+(16+10 x-30) \\
& =(x-4)\left(x^{2}-1\right)+\quad \begin{aligned}
&-4(x-2)+10 x-14 \\
&=(x-4)(x-1)(x+1)+6(x-1) \\
&=(x-1)\left(x^{2}-3 x-4 x+2\right. \\
&=(x-1)(x-1)(x-2)
\end{aligned} \\
& =1, \lambda=2 .
\end{aligned}
$$

$$
\lambda=1
$$

(multiplicty 2)

$$
A-1 I=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & 3 & -1 \\
10 & 8 & -3
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\text { A- } I=\left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & 2 & -1 \\
10 & 8 & -1
\end{array}\right] \begin{aligned}
& R_{1}-R_{2} \rightarrow R_{1} \\
& R_{3}-5 R_{2} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & -1 \\
0 & -2 & 1
\end{array}\right]
$$

$\xrightarrow{\text { RncF }}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0\end{array}\right] \quad(A-I) \vec{x}=0$

$$
\vec{x}=\left[\begin{array}{c}
0 \\
y \\
2 y
\end{array}\right] \quad \begin{aligned}
& y=1 \Rightarrow \vec{x}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \\
& {\left[\begin{array}{c}
0 \\
2 z
\end{array}\right]} \\
& (z=2)
\end{aligned}
$$

$\lambda=2$: exarcige.

$$
A \vec{x}=\left[\begin{array}{ccc}
4 & 2 & -1 \\
2 & 3 & -1 \\
10 & 8 & -3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Case of triangular matrices
Let A be an upper-triangular $n \times n$ matrix.
What can we say about the trace, determinant, and eigenvalues of
A ? What about eigenvectors?
Examples:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 2 & 1 \\
0 & 4 & -2 \\
0 & 0 & -5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \underbrace{\hat{\imath}_{i},}_{\lambda=2} \frac{\hat{k}_{\lambda}}{\lambda=3}} \\
& \operatorname{det}(A)_{1}=-60 \quad \operatorname{det}\left(A_{2}\right)=12 \quad \operatorname{det}\left(A_{3}\right)=0 \quad \operatorname{det}\left(A_{4}\right)=12 \\
& C_{A_{1}}(x)=\left|\begin{array}{ccc}
x-3 & -2 & -1 \\
0 & x-4 & 2 \\
0 & 0 & x+5
\end{array}\right| \\
& A_{1}-3 I=\left[\begin{array}{ccc}
0 & 2 & 1 \\
0 & 1 & -2 \\
0 & 0 & -2
\end{array}\right]^{\text {pREF }}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& =(x-3)(x-4)(x+5) \\
& \lambda=3,4,-5 \\
& \text { Ergenvedor } \hat{\imath}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Similar matrices
Definition

$$
A \sim B \Leftrightarrow B \sim A
$$

We say that two matrices A and B are similar if there exists an invertible matrix P such that $B=P^{-1} A P$.

$$
\begin{array}{ll}
B=P^{-1} A P & P B P^{-1}=A \\
P B=A P & Q^{\prime} B Q=A
\end{array} \quad\left(Q=7^{-1}\right)
$$

Theorem
If A and B are similar matrices, then they have the same trace, determinant, and eigenvalues.

$$
\begin{aligned}
& \text { determinant, and eigenvalues. } \\
& \begin{aligned}
& \left.|B|=\left|P^{-1} A P\right|=|P||A||P|=\frac{1}{D}|A| P \right\rvert\, \\
& P^{-1}(A-\lambda I) P=P^{-1} A P-P^{-1} \lambda I I P \\
&=B-\lambda I \\
& B-\lambda I \sim A-\lambda I
\end{aligned}
\end{aligned}
$$

Triangularization

Theorem

Every $n \times n$ matrix A is similar to a triangular matrix. $B=P^{-1} A P$
Note \#1: you might think that this is our ticket to easily finding eigenvalues. But no - the process for finding a triangular matrix similar to A typically involves finding eigenvalues and eigenvectors. (And in some cases generalized eigenvectors!)

Note \#2: this theorem isn't quite true if we work only over the real numbers.

Diagonalization $\quad \varepsilon g$: want $\quad A^{10}$, and $A=P D P^{-1}$ We say that an $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix; that is, if there exists an invertible matrix P such that $D=P^{-1} A P$ is diagonal.
Note: since similar matrices have the same eigenvalues, we must have

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Theorem

An $n \times n$ matrix A is diagonalizable if and only if there exists a basis of \mathbb{R}^{n} consisting of eigenvectors of A.

Example
Determine whether or not the matrix $A=\left[\begin{array}{ccc}2 & 0 & 2 \\ 0 & 2 & -1 \\ 1 & -1 & 4\end{array}\right]$ can be diagonalized.

$$
\begin{aligned}
C_{A}(x) & =\left|\begin{array}{ccc}
x-2 & 0 & -2 \\
0 & x-2 & 1 \\
-1 & 1 & x-4
\end{array}\right|=(x-2)\left|\begin{array}{cc}
x-2 & 1 \\
1 & x-4
\end{array}\right|-1\left|\begin{array}{cc}
0 & -2 \\
x-2 & 1
\end{array}\right| \\
& =(x-2)\left(x^{2}-6 x+8-1\right)+1(-2)(x-2) \\
& =(x-2)\left(x^{2}-6 x+7-2\right) \quad P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\vec{x}_{1} & \vec{x}_{2} & \vec{x}_{3} \\
1 & 1 & 1
\end{array}\right] \\
& =(x-2)\left(x^{2}-6 x+5\right) \\
& =(x-2)\left(x_{1}-1\right)(x-5) \quad P^{-1} A P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]=1
\end{aligned}
$$

Case of distinct eigenvalues

Theorem
If $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of a matrix A, then the corresponding eigenvectors $\vec{x}_{1}, \ldots, \vec{x}_{m}$ are linearly independent.

Fact: Any set of n linearly independent vectors forms a basis of \mathbb{R}^{n}.

Repeated eigenvalues

In general a matrix A will have characteristic polynomial

$$
c_{A}(x)=\left(x-\lambda_{1}\right)^{k_{1}}\left(x-\lambda_{2}\right)^{k_{2}} \cdots\left(x-\lambda_{m}\right)^{k_{m}}
$$

where $\lambda_{1}, \ldots, \lambda_{m}$ are the eigenvalues and k_{1}, \ldots, k_{m} are the multiplicities of the eigenvalues.

Definition
Given an eigenvalue λ of a matrix A, we define the eigenspace $E(\lambda, A)$ of A with respect to λ by

$$
E(\lambda, A)=\left\{\vec{x} \mid\left(A-\lambda I_{n}\right) \vec{x}=0\right\}=\operatorname{null}(A-\lambda I) .
$$

Note: we always have $1 \leq \operatorname{dim} E\left(\lambda_{j}, A\right) \leq k_{j}$ for each j. A matrix A is diagonalizable if and only if $\operatorname{dim} E\left(\lambda_{j}, A\right)=k_{j}$ for each $j=1,2, \ldots, k$.

Example

Determine whether or not the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -3 & 2 & 3 \\ -1 & 2 & 2\end{array}\right]$ is diagonalizable.
-try it: post on the forum!

Example

Determine whether or not the matrix $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -2 & -2 & 2 \\ -5 & -10 & 7\end{array}\right]$ is diagonalizable.

Powers of matrices

Suppose we wanted to find A^{7}, where A was the matrix from the last slide. Finding this by hand would take a very long time. (For large matrices and high powers, even a computer will take a long time.)
However, we know that $A=P D P^{-1}$, where $P=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 5\end{array}\right]$.

Polynomials of matrices

Suppose $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is a polynomial and we want to compute $p(A)$, where A is diagonalizable.

Symmetric matrices
Recall: an $n \times n$ matrix A is symmetric if $A^{T}=A$.
Theorem
Suppose A is a symmetric matrix. If \vec{x}_{1} and \vec{x}_{2} are eigenvalues of A corresponding to eigenvalues $\lambda_{1} \neq \lambda_{2}$, then $\vec{x}_{1} \cdot \vec{x}_{2}=0$.

Theorem
If A is an $n \times n$ symmetric matrix, then there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of A.

$$
\begin{array}{r}
\vec{x}_{1}, \bar{x}_{2}, \ldots, \vec{x}_{n} \quad A \vec{x}_{i}=\lambda_{i} \vec{x}_{i} \\
\vec{x}_{i} \cdot \vec{x}_{j}= \begin{cases}1 & , f i=j \quad\left(\left\|\vec{x}_{i}\right\|=1\right) \\
0 & \text { if } i=j\end{cases}
\end{array}
$$

using these to $P, P^{-1}=P^{\top}$ (P is orkhganal)

Example

Given $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$, find an orthogonal matrix P such that $P^{T} A P$ is diagonal.

Example

Sketch the curve defined by the equation $3 x^{2}+2 x y+3 y^{2}=1$.

