Math 1410, Spring 2020 Introduction to Vectors

January 24, 2020

Cartesian coordinates

We will work mainly in two and three dimensions. We write:

- $\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}$ set of all points in the plane
- $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ set of all points in "space"
- Can define \mathbb{R}^4 , \mathbb{R}^5 , etc. similarly, but can't draw them.

Distance comes from the **Pythagorean theorem**. In \mathbb{R}^2 , the distance from (x_1, y_1) to (x_2, y_2) is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In \mathbb{R}^3 , we just have to add the *z*-coordinate:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Vectors

A vector is a "directed line segment". It has *magnitude* and *direction*. The *position* of a vector usually doesn't matter. Given points P and Q we write $\vec{v} = \vec{PQ}$ for the vector *from* P to Q. (Tail at P, tip at Q.) The **magnitude** of \vec{v} is just the distance from tip to tail. We write $\|\vec{v}\|$ for the magnitude of \vec{v} .

Vector notation

We can't do much by just drawing arrows. Let $P = (x_1, y_1), Q = (x_2, y_2)$ be two points in the plane. We write $\vec{v} = \overrightarrow{PQ}$ in *component form* as $\vec{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$. Equivalent notation is the *column vector* $\vec{v} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$. Magnitude becomes $\|\vec{v}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Examples

Let
$$P = (1,2)$$
 and $Q = (3,-4)$. Find:
(a) \overrightarrow{PQ}
(c) \overrightarrow{QP}
(c) $\left\|\overrightarrow{PQ}\right\|$
Exercise: Repeat the above for $P = (1,-2,4)$ and $Q = (3,0,-2)$.
Exercise: If $\overrightarrow{PQ} = \langle 3,-1,5 \rangle$ and $Q = (2,2,-3)$, what is P ?

Contexts

Vectors appear frequently in Physics:

- Displacement
- Velocity
- Force
- etc.

Can think in terms of simple directions: $\vec{v} = \langle 3, 4 \rangle$ tells us to go 3 units right, 4 units up. Also find vectors as data arrays (but no longer geometric). Meaning of "vector" expands in second linear algebra course.

Adding vectors

To add vectors, we simply add components.

• In \mathbb{R}^2 , with $\vec{v} = \langle v_1, v_2 \rangle$, $\vec{w} = \langle w_1, w_2 \rangle$,

$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$$
.

• In \mathbb{R}^3 , with $\vec{v} = \langle v_1, v_2, v_3 \rangle$, $\vec{w} = \langle w_1, w_2, w_3 \rangle$,

$$\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$$
.

Exercise:

- Ask me for examples.
- 2 Find $\langle 2,4\rangle + \langle -5,1\rangle$.
- Find $\langle 4, -2, 1 \rangle \langle 3, -7, 6 \rangle$. (How do you think we should define subtraction?)

• If
$$\vec{x} + \langle 3, 2 \rangle = \langle 5, 9 \rangle$$
, what is \vec{x} ?

Addition, geometrically

As "arrows", vector addition follows "tip-to-tail rule":

1 Draw \vec{v} .

2 Draw \vec{w} with its tail at the tip of \vec{v} .

• Draw an arrow from the tail of \vec{v} to the tip of \vec{w} . This is $\vec{v} + \vec{w}$. Exercise: try this, for $\vec{v} = \langle 2, 1 \rangle$ and $\vec{w} = \langle 3, 2 \rangle$. Exercise: for $\vec{P} = (1, 0), Q = (2, 2), R = (4, 5)$, compute $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{PR}$, and $\overrightarrow{PQ} + \overrightarrow{QR}$. Challenge: show why this works in general, for $P = (x_1, y_1), Q = (x_2, y_2), R = (x_3, y_3)$.

Scalar multiplication

- Exercise: if $\vec{v} = \langle 3, 2, 4 \rangle$, what is $\vec{v} + \vec{v}$? How are the components related to those of \vec{v} ?
- We don't have a good way to define multiplication of two vectors. But we *can* multiply a vector by a number. This is called **scalar multiplication**. Given a real number *c* and a vector *v* = (*a*, *b*),

$$c\vec{v}=c\langle a,b
angle =\langle ca,cb
angle$$
 .

The story in \mathbb{R}^3 is similar:

$$c\langle x,y,z\rangle = \langle cx,cy,cz\rangle$$
.

Scalar multiplication, geometrically

- $2\vec{v} = \vec{v} + \vec{v}$, so $2\vec{v}$ is in the same direction as \vec{v} , but twice as long.
- What does $-2\vec{v}$ give us?
- In general, we have:

Theorem:

```
For any vector \vec{v} and scalar (number) c,
```

```
\|c\vec{v}\|=|c|\|\vec{v}\|.
```

Parallel vectors, unit vectors

```
Definition: Parallel vectors.
```

```
We say that two vectors \vec{v} and \vec{w} are parallel if \vec{w} = c\vec{v} for some scalar c.
```

```
٠
```

```
Definition: Unit vector.
```

```
A vector \vec{u} is a unit vector if \|\vec{u}\| = 1.
```

- Unit vectors are useful when we care about direction, but not magnitude.
- Given $\vec{v} = \langle 2, 3 \rangle$, what is a unit vector in the direction of \vec{v} ?

Standard unit vectors

In \mathbb{R}^2 :

$$\hat{\imath} = \langle 1, 0 \rangle \,, \quad \hat{\jmath} = \langle 0, 1 \rangle \,.$$

In \mathbb{R}^3 :
 $\hat{\imath} = \langle 1, 0, 0 \rangle \,, \quad \hat{\jmath} = \langle 0, 1, 0 \rangle \,, \quad \hat{k} = \langle 0, 0, 1 \rangle \,.$