Math 2565, Spring 2020 Functions of several variables (a rather rapid introduction)

Sean Fitzpatrick

Sean Fitzpatrick Math 2565, Spring 2020

Surfaces Functions of Several Variables Partial derivatives

Overview

Surfaces

Functions of Several Variables

Partial derivatives

Sean Fitzpatrick Math 2565, Spring 2020

Surfaces -- recap

Two basic representations:

- Graphs: z = f(x, y)
- Level sets: g(x, y, z) = c
- Plotting utilities recommended. CalcPlot3D is a good online resource for this.

Functions of two variables

A function f of two variables takes a point $(x, y) \in \mathbb{R}^2$ as an input, and gives a point z = f(x, y) as an output. If $D \subseteq \mathbb{R}^2$ is the domain of f we might write $f : D \to \mathbb{R}$ to emphasise the types of input and output. Examples:

Examples

For the following functions, compute the values at (0,0), (1,2), and (3,-2). Determine the domain and range.

1. $f(x, y) = x^2 - y^2$ 2. $f(x, y) = e^{-(x^2 + y^2)}$ 3. $f(x, y) = \ln(xy)$

Graphing functions of two variables

How do we even begin to visualize a function of two variables? (Or three, or four, or...) The key is to consider traces of the graph z = f(x, y). Traces in planes z = k are especially useful. These are called *level curves*. Examples:

$$z = x - y^2$$
 $z = 4x^2 + y^2$ $z = \sin(x)\cos(y)$

Level curves vs. contour plots

You'll see mentions of both level curves and contour plots. These are related, but different.

A level curve lies on the surface, in a plane z = k.

A contour curve is the curve we get in the xy plane if we set z = 0. A contour plot is a collection of contour curves f(x, y) = k for different values of k.

Limits

Limits in more than one variable are tricky.

- In one variable, we need to ensure left and right hand limits agree.
- In two or more, we need to approach the same value along any possible path.

Example

Show that the following limits don't exist:

1.
$$\lim_{(x,y)\to(0,0)} \frac{2x+3y^2}{x+y}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

Derivatives

The difficulty with limits makes defining "the" derivative a challenge:

We can't really generalize $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$. The analogous limit as $(h_1, h_2) \to (0, 0)$ almost always depends on the direction in which (h_1, h_2) approaches (0, 0). (And what do we divide by?)

Aside: there *is* still a way to define "the" derivative — but you won't see it in most calculus courses!

Partial derivatives

What we *can* do is choose the direction along which we let $(h_1, h_2) \rightarrow (0, 0)$.

Approaching parallel to the x axis: this gives the partial derivative with respect to x. At a point (a, b) we define

$$f_x(a, b) = \lim_{h \to 0} \frac{f(a+h, b) - f(a, b)}{h}$$

Approaching parallel to the x axis: this gives us the partial derivative with respect to y. At a point (a, b) we define

$$f_y(a, b) = \lim_{h \to 0} \frac{f(a, b+h) - f(a, b)}{h}.$$

Example

Let
$$f(x, y) = x^2y + 3x + 2$$
. Compute $f_x(1, 2)$:

- 1. Using the limit definition.
- 2. By realizing $f_x(1,2) = g'(1)$, where g(x) = f(x,2).

More examples

Compute
$$f_x$$
 and f_y , where:
1. $f(x, y) = x^2 y^3 + e^{2x+3y}$
2. $f(x, y) = \frac{x^2 \sin(y)}{x^2 + y^2}$
3. $f(x, y) = \sqrt{xy^3} + \tan(x^2 y)$

Second order derivatives

Just like in one variable, we can consider higher-order derivatives. But now, there's variety! Given f(x, y), there are four possible second-order derivatives:

$$f_{xx}(x,y) = \frac{\partial}{\partial x} f_x(x,y) = \frac{\partial^2}{\partial x^2} f(x,y)$$
$$f_{xy}(x,y) = \frac{\partial}{\partial y} f_x(x,y) = \frac{\partial^2}{\partial y \partial x} f(x,y)$$
$$f_{yx}(x,y) = \frac{\partial}{\partial x} f_y(x,y) = \frac{\partial^2}{\partial x \partial y} f(x,y)$$
$$f_{yy}(x,y) = \frac{\partial}{\partial y} f_y(x,y) = \frac{\partial^2}{\partial y^2} f(x,y)$$

Clairaut's Theorem: if f has continuous second-order partial derivatives, then $f_{xy} = f_{yx}$.

Examples

Compute the second-order partial derivatives for $f(x, y) = x^4 \cos(x^3 e^y)$ and $g(x, y) = \ln(x^4 y^7)$.

Interpretation

What information are we computing when we find a partial derivative?

Tangent planes

We know that the curves x = s, y = b, z = f(s, b) and x = a, y = t, z = f(a, t) both lie on the surface z = f(a, b). We also know that these curves intersect at the point (a, b, f(a, b)), and we know the slopes of their tangent lines. Those two lines lie in a common plane, called the *tangent plane*.

Theorem:

If f(x, y) has continuous first-order partial derivatives at (a, b), then the surface z = f(x, y) has a tangent plane approximation at (a, b, f(a, b)) given by

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b).$$

Example

Find the equation of the tangent plane to the surface $z = x^2 y e^{x^2 - y^2}$ at the point (-1, 1, 1).