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Surfaces -- recap
Two basic representations:
▶ Graphs: z = f (x, y)
▶ Level sets: g(x, y, z) = c
▶ Plotting utilities recommended. CalcPlot3D is a good online

resource for this.
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Functions of two variables
A function f of two variables takes a point (x, y) ∈ R2 as an input,
and gives a point z = f (x, y) as an output.
If D ⊆ R2 is the domain of f we might write f : D → R to
emphasise the types of input and output.
Examples:
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Examples
For the following functions, compute the values at (0, 0), (1, 2),
and (3,−2). Determine the domain and range.

1. f (x, y) = x2 − y2

2. f (x, y) = e−(x2+y2)

3. f (x, y) = ln(xy)
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Graphing functions of two variables
How do we even begin to visualize a function of two variables?
(Or three, or four, or...)
The key is to consider traces of the graph z = f (x, y).
Traces in planes z = k are especially useful.
These are called level curves.
Examples:

z = x − y2 z = 4x2 + y2 z = sin(x) cos(y)
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Level curves vs. contour plots
You’ll see mentions of both level curves and contour plots. These
are related, but different.
A level curve lies on the surface, in a plane z = k.
A contour curve is the curve we get in the xy plane if we set z = 0.
A contour plot is a collection of contour curves f (x, y) = k for
different values of k.
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Limits
Limits in more than one variable are tricky.
▶ In one variable, we need to ensure left and right hand limits

agree.
▶ In two or more, we need to approach the same value along

any possible path.

Example
Show that the following limits don’t exist:

1. lim
(x,y)→(0,0)

2x + 3y2

x + y

2. lim
(x,y)→(0,0)

xy2

x2 + y4
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Derivatives
The difficulty with limits makes defining “the” derivative a
challenge:
We can’t really generalize f ′(c) = lim

h→0

f (c + h)− f (c)
h

.
The analogous limit as (h1, h2) → (0, 0) almost always depends on
the direction in which (h1, h2) approaches (0, 0).
(And what do we divide by?)

Aside: there is still a way to define “the” derivative — but you
won’t see it in most calculus courses!
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Partial derivatives
What we can do is choose the direction along which we let
(h1, h2) → (0, 0).
▶ Approaching parallel to the x axis: this gives the partial

derivative with respect to x. At a point (a, b) we define

fx(a, b) = lim
h→0

f (a + h, b)− f (a, b)
h

.

▶ Approaching parallel to the x axis: this gives us the partial
derivative with respect to y. At a point (a, b) we define

fy(a, b) = lim
h→0

f (a, b + h)− f (a, b)
h

.
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Example
Let f (x, y) = x2y + 3x + 2. Compute fx(1, 2):

1. Using the limit definition.
2. By realizing fx(1, 2) = g′(1), where g(x) = f (x, 2).
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More examples
Compute fx and fy, where:

1. f (x, y) = x2y3 + e2x+3y

2. f (x, y) = x2 sin(y)
x2 + y2

3. f (x, y) =
√

xy3 + tan(x2y)
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Second order derivatives
Just like in one variable, we can consider higher-order derivatives.
But now, there’s variety! Given f (x, y), there are four possible
second-order derivatives:

fxx(x, y) =
∂

∂x
fx(x, y) =

∂2

∂x2 f (x, y)

fxy(x, y) =
∂

∂y
fx(x, y) =

∂2

∂y∂x
f (x, y)

fyx(x, y) =
∂

∂x
fy(x, y) =

∂2

∂x∂y
f (x, y)

fyy(x, y) =
∂

∂y
fy(x, y) =

∂2

∂y2 f (x, y)

Clairaut’s Theorem: if f has continuous second-order partial
derivatives, then fxy = fyx .

Sean Fitzpatrick Math 2565, Spring 2020



Surfaces
Functions of Several Variables

Partial derivatives

Examples
Compute the second-order partial derivatives for
f (x, y) = x4 cos(x3ey) and g(x, y) = ln(x4y7).
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Interpretation
What information are we computing when we find a partial
derivative?
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Tangent planes
We know that the curves x = s, y = b, z = f (s, b) and
x = a, y = t, z = f (a, t) both lie on the surface z = f (a, b). We
also know that these curves intersect at the point (a, b, f (a, b)),
and we know the slopes of their tangent lines. Those two lines lie
in a common plane, called the tangent plane.

Theorem:

If f (x, y) has continuous first-order partial derivatives at
(a, b), then the surface z = f (x, y) has a tangent plane ap-
proximation at (a, b, f (a, b)) given by

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).
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Example
Find the equation of the tangent plane to the surface
z = x2yex2−y2 at the point (−1, 1, 1).
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