Math 2565, Spring 2020
 Functions of several variables (a rather rapid introduction)

Sean Fitzpatrick

Overview

Surfaces

Functions of Several Variables

Partial derivatives

Surfaces -- recap

Two basic representations:

- Graphs: $z=f(x, y)$
- Level sets: $g(x, y, z)=c$
- Plotting utilities recommended. CalcPlot3D is a good online resource for this.

Functions of two variables

A function f of two variables takes a point $(x, y) \in \mathbb{R}^{2}$ as an input, and gives a point $z=f(x, y)$ as an output. If $D \subseteq \mathbb{R}^{2}$ is the domain of f we might write $f: D \rightarrow \mathbb{R}$ to emphasise the types of input and output.
Examples:

Examples

For the following functions, compute the values at $(0,0),(1,2)$, and $(3,-2)$. Determine the domain and range.

1. $f(x, y)=x^{2}-y^{2}$
2. $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$
3. $f(x, y)=\ln (x y)$

Graphing functions of two variables

How do we even begin to visualize a function of two variables? (Or three, or four, or...)
The key is to consider traces of the graph $z=f(x, y)$.
Traces in planes $z=k$ are especially useful.
These are called level curves.
Examples:

$$
z=x-y^{2} \quad z=4 x^{2}+y^{2} \quad z=\sin (x) \cos (y)
$$

Level curves vs. contour plots

You'll see mentions of both level curves and contour plots. These are related, but different.
A level curve lies on the surface, in a plane $z=k$.
A contour curve is the curve we get in the $x y$ plane if we set $z=0$.
A contour plot is a collection of contour curves $f(x, y)=k$ for different values of k.

Limits

Limits in more than one variable are tricky.

- In one variable, we need to ensure left and right hand limits agree.
- In two or more, we need to approach the same value along any possible path.

Example

Show that the following limits don't exist:

1. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x+3 y^{2}}{x+y}$
2. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$

Derivatives

The difficulty with limits makes defining "the" derivative a challenge:
We can't really generalize $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.
The analogous limit as $\left(h_{1}, h_{2}\right) \rightarrow(0,0)$ almost always depends on the direction in which $\left(h_{1}, h_{2}\right)$ approaches $(0,0)$.
(And what do we divide by?)

Aside: there is still a way to define "the" derivative - but you won't see it in most calculus courses!

Partial derivatives

What we can do is choose the direction along which we let $\left(h_{1}, h_{2}\right) \rightarrow(0,0)$.

- Approaching parallel to the x axis: this gives the partial derivative with respect to x. At a point (a, b) we define

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

- Approaching parallel to the x axis: this gives us the partial derivative with respect to y. At a point (a, b) we define

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Example

Let $f(x, y)=x^{2} y+3 x+2$. Compute $f_{x}(1,2)$:

1. Using the limit definition.
2. By realizing $f_{x}(1,2)=g^{\prime}(1)$, where $g(x)=f(x, 2)$.

More examples

Compute f_{x} and f_{y}, where:

1. $f(x, y)=x^{2} y^{3}+e^{2 x+3 y}$
2. $f(x, y)=\frac{x^{2} \sin (y)}{x^{2}+y^{2}}$
3. $f(x, y)=\sqrt{x y^{3}}+\tan \left(x^{2} y\right)$

Second order derivatives

Just like in one variable, we can consider higher-order derivatives. But now, there's variety! Given $f(x, y)$, there are four possible second-order derivatives:

$$
\begin{aligned}
& f_{x x}(x, y)=\frac{\partial}{\partial x} f_{x}(x, y)=\frac{\partial^{2}}{\partial x^{2}} f(x, y) \\
& f_{x y}(x, y)=\frac{\partial}{\partial y} f_{x}(x, y)=\frac{\partial^{2}}{\partial y \partial x} f(x, y) \\
& f_{y x}(x, y)=\frac{\partial}{\partial x} f_{y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} f(x, y) \\
& f_{y y}(x, y)=\frac{\partial}{\partial y} f_{y}(x, y)=\frac{\partial^{2}}{\partial y^{2}} f(x, y)
\end{aligned}
$$

Clairaut's Theorem: if f has continuous second-order partial derivatives, then $f_{x y}=f_{y x}$.

Examples

Compute the second-order partial derivatives for $f(x, y)=x^{4} \cos \left(x^{3} e^{y}\right)$ and $g(x, y)=\ln \left(x^{4} y^{7}\right)$.

Interpretation

What information are we computing when we find a partial derivative?

Tangent planes

We know that the curves $x=s, y=b, z=f(s, b)$ and $x=a, y=t, z=f(a, t)$ both lie on the surface $z=f(a, b)$. We also know that these curves intersect at the point $(a, b, f(a, b))$, and we know the slopes of their tangent lines. Those two lines lie in a common plane, called the tangent plane.

Theorem:

If $f(x, y)$ has continuous first-order partial derivatives at (a, b), then the surface $z=f(x, y)$ has a tangent plane approximation at $(a, b, f(a, b))$ given by

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

Example

Find the equation of the tangent plane to the surface $z=x^{2} y e^{x^{2}-y^{2}}$ at the point $(-1,1,1)$.

