Sean Fitzpatrick |
---|
University of Lethbridge |
![]() |
Show that \(y(t)=A\cos(2t)+B\sin(2t)\) is a solution to \(y''+4y=0\text{.}\)
Then find \(A\) and \(B\) such that \(y(0)=6\) and \(y'(0)=-3\text{.}\)
Classify each equation as separable, linear, both, or neither:
\(\frac{dy}{dx}=y-y^2\)
\(\left(\frac{dy}{dx}\right)^2=x^2e^y+2\)
\(\frac{dy}{dx}=\cos(x)+x^2y\)
\(\frac{dy}{dx}=xy-x\)
Examples:
\(\di \frac{dx}{dt}=(t^2-1)x\)
\(\di \frac{dx}{dt}=(x^2-1)t\)
\(\di \frac{dy}{dx} = xy+x+y+1\text{,}\) with \(y(0)=3\)
\(\di y' = \frac{\sin(x)}{\cos(y)}\) (implicit solution)
\(\di e^x yy' = e^{-y}+e^{-2x-y}\)
Examples:
\(y'+xy=x\)
\(y'+3x^2y = \sin(x)e^{-x^3}\text{,}\) with \(y(0)=1\)
\(y'+3x^2y = x^2\)
\(\di \frac{1}{x^2+1}y'+xy=3\text{,}\) with \(y(0)=0\)
\(xy'+4y=x^3-x\)