Math 2565, Spring 2020
 Parametric curves

Sean Fitzpatrick

Overview

Warm-Up

Conic Sections

Parametric Curves

Calculus with parametric curves

Warm-Up

Identify the curve defined by the parametric equations:

$$
\begin{aligned}
& x=2 t-1, y=-t+4, t \in \mathbb{R} \\
& x=\cos (2 t), y=\sin (2 t), t \in[0, \pi]
\end{aligned}
$$

Parabolas

Defined as the locus (set) of points equidistant from a line (the directrix) and a point (the focus). If the vertex is at $(0,0)$, the focus is at $(0, p)$, and the directrix is $y=-p$, then the parabola has equation

$$
y=\frac{1}{4 p} x^{2} .
$$

Ellipses

An ellipse is the set of all points P such that the sum of the distances from P to two points F_{1}, F_{2}, called the foci is constant. If the centre is at $(0,0)$, and the foci are at $(\pm c, 0)$, the ellipse has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

where $c^{2}=a^{2}-b^{2}$. Vertices are at $(\pm a, 0)$ and $(0, \pm b)$.

Example

Sketch the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

Hyperbolas

A hyperbola also has two foci. This time, we look for the set of all points where the difference of the distances between each point and the foci is constant. Result:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Example

Sketch the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$.

Parametric equations

Usually we describe curves "explicitly", as graphs of functions: $y=f(X)$.
This is rather restrictive: lots of intesting curves are not graphs! (Like circles, ellipses, hyperbolas...)
One option is defining curves implicitly using equations of the form $f(x, y)=c$.
Another is to define them parametrically: we define x and y as functions of a third variable t.
An example you've seen: $x=\cos \theta, y=\sin \theta$.
From linear algebra: $\langle x, y\rangle=\langle 2,3\rangle+t\langle 5,1\rangle$

Examples of parametric curves

$$
\begin{aligned}
& x=t^{2}-t, y=1-t^{2}, t \in[-3,3] \\
& x=t^{3}-t+3, y=t^{2}+1, t \in[-2,2] \\
& x=\cos (t), y=\sin (2 t), t \in[0, \pi]
\end{aligned}
$$

Eliminating the parameter

Sometimes we can gain insight on a parametric curve by converting back to an equation relating x and y. Examples:

$$
\begin{aligned}
& x=3 \cos (t)-1, y=2 \sin (t)+3, t \in[0,2 \pi] . \\
& x=\cos (t), y=\cos (2 t), t \in[0, \pi] \\
& x=\frac{1}{2+t}, y=\frac{3 t+9}{3+t}
\end{aligned}
$$

Note: plotting curves on a computer often relies on being able to parametrize them. But (except for graphs) this isn't always easy!

Smooth curves

A curve $x=f(t), y=g(t)$ is considered smooth if f and g are both differentiable, and $f^{\prime}(t)$ and $g^{\prime}(t)$ are never simultaneously zero. Some people will also require that a smooth curve has no self-intersections. Finding points of self-intersection is an algebraic nightmare.

Example

Find the points where $x=t^{2}-4 t, y=t^{3}-2 t^{2}-4 t$ is not smooth.
Find the points where $x=\cos (t), y=2 \cos (t)$ is not smooth.

Tangent lines

Our definition of smooth curve is natural in one sense: it means we can find tangent lines! Slope of the tangent is given by $\frac{d y}{d x}$. Chain rule gives:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

so

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

If either $x^{\prime}(t)$ or $y^{\prime}(t)$ is undefined, we can't compute the slope of the tangent. If both are zero, the slope is indeterminate. (If $x^{\prime}(t)=0$ but $y^{\prime}(t) \neq 0$, we have a vertical tangent!) (Aside:) a vector in the direction of the tangent line at $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ is $\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right\rangle$.

Examples

Find the equations of the tangent lines as indicated:

$$
\begin{aligned}
& x=t^{2}-1, y=t^{3}-t, \text { at } t=0 \text { and } t=1 \\
& x=\tan (t), y=\sec (t), \text { at } t=\pi / 4 .
\end{aligned}
$$

Area

We can compute area as usual. For area under a curve: $A=\int_{a}^{b} f(x) d x$. If $x=g(t), y=f(g(t))$, get $A=\int_{t_{0}}^{t_{1}} f(g(t)) g^{\prime}(t) d t$. This still makes sense for a general parametric curve if we're careful about interpretation. For a closed curve $x=g(t), y=h(t)$ with counterclockwise orientation, the area enclosed is

$$
A=-\int_{t_{0}}^{t_{1}} h(t) g^{\prime}(t) d t
$$

Examples

Find the area encolosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Find the area encolosed by the "teardrop" in the curve $x=t^{3}-t, y=t^{2}-1$.

