Math 2565, Spring 2020
 Parametric curves

Sean Fitzpatrick

Overview

Warm-Up

Conic Sections

Parametric Curves

Calculus with parametric curves

Warm-Up
Identify the curve defined by the parametric equations:

$$
\begin{aligned}
& x=2 t-1, y=-t+4, t \in \mathbb{R} \longrightarrow t=4-y \Rightarrow X=2(4-y)-1 \\
& x=\underline{\cos (2 t), y=\underline{\sin (2 t})}, t \in[0, \pi] \quad=8-2 y-1 \\
& x=f(t) \\
& y=g(t) \\
& =7-2 y \\
& x=7-2 y \\
& y=-\frac{1}{2} x+\frac{7}{2} \\
& \cos ^{2}(2 t)+\sin ^{2}(2 t)=1 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

Parabolas

Defined as the locus (set) of points equidistant from a line (the directrix) and a point (the focus). If the vertex is at $(0,0)$, the focus is at $(0, p)$, and the directrix is $y=-p$, then the parabola has equation

Ellipses
An ellipse is the set of all points P such that the sum of the distances from P to two points F_{1}, F_{2}, called the foci is constant. If the centre is at $(0,0)$, and the foci are at $(\pm c, 0)$, the ellipse has equation

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad \text { shifted: } \\
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
\end{array}
$$

where $c^{2}=a^{2}-b^{2}$. Vertices are at $(\pm a, 0)$ and $(0, \pm b)$.

$a>b$

Example
Sketch the ellipse $\left(\frac{x^{2}}{9}\right)+\left(\frac{y^{2}}{4}\right)=1$.

$$
\begin{gathered}
x^{2} \leq 9 \quad y^{2} \leq 4 \\
-3 \leq x \leq 3 \quad-2 \leq y \leq 2 \\
c^{2}=9-4=5
\end{gathered}
$$

Hyperbolas

A hyperbola also has two foci. This time, we look for the set of all points where the difference of the distances between each point and the foci is constant. Result:

Example $\quad \frac{y^{2}}{4}=\frac{x^{2}}{9}-1 \quad y^{2}=\frac{4}{9} \sqrt{x^{2}-9} \quad y=\frac{42}{3} \sqrt{x^{2}-9} \approx \frac{12}{3} x$
Sketch the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{(4)}=1 . \quad \begin{aligned} & y=0: \quad x^{2}=9 \quad x= \pm 3 \\ & x \neq 0\end{aligned}$

$$
\begin{aligned}
& \text { Focus : } \\
& c^{2}=a^{2}+b^{2} \\
& c^{2}=13
\end{aligned}
$$

Parametric equations

Usually we describe curves "explicitly", as graphs of functions: $y=f(X)$.
This is rather restrictive: lots of infesting curves are not graphs! (Like circles, ellipses, hyperbolas...)
One option is defining curves implicitly using equations of the form
$f(x, y)=c$.
Eg:

$$
\left(x^{2}+y^{2}\right)^{2}=4 x y
$$

Another is to define them parametrically: we define 0 and y as functions of a third variable t.
An example you've seen: $x=\cos \theta, y=\sin \theta$.
From linear algebra: $\langle\underbrace{\langle x, y\rangle=\langle 2,3\rangle+t\langle 5,1\rangle}$

$$
\begin{aligned}
& x=2+5 t \\
& y=3+t
\end{aligned}
$$

Examples of parametric curves

$$
\begin{aligned}
& \text { 1. } x=t^{2}-t, y=1-t^{2}, t \in[-3,3] \\
& \text { 2. } x=t^{3}-t+3, y=t^{2}+1, t \in[-2,2] \\
& \text { 3. } x=\cos (t), y=\sin (2 t), t \in[0, \pi] \\
& \begin{array}{c|c|c|c}
t & x & y \\
\hline-3 & 12 & -8 \\
-2 & 6 & -3 \\
-1 & 2 & 0 \\
0 & 0 & 1 \\
1 & 2 & 0 \\
2 & 2 & -3 \\
3 & 6 & -8
\end{array}
\end{aligned}
$$

Eliminating the parameter

Sometimes we can gain insight on a parametric curve by converting back to an equation relating x and y. Examples:

$$
\begin{aligned}
& x=3 \cos (t)-1, y=2 \sin (t)+3, t \in[0,2 \pi] . \\
& x=\cos (t), y=\cos (2 t), t \in[0, \pi] \\
& x=\frac{1}{2+t}, y=\frac{3 t+9}{3+t}
\end{aligned}
$$

Note: plotting curves on a computer often relies on being able to parametrize them. But (except for graphs) this isn't always easy!

Smooth curves
 $f^{\prime}(t)$

A curve $x=f(t), y=/(t)$ is considered smooth if f and g are both differentiable, and $f^{\prime}(t)$ and $g^{\prime}(t)$ are never simultaneously zero. Some people will also require that a smooth curve has no self-intersections.
Finding points of self-intersection is an algebraic nightmare.

Example

1. Find the points where $x=t^{2}-4 t, y=t^{3}-2 t^{2}-4 t$ is not smooth.
2. Find the points where $x=\cos (t), y=2 \cos (t)$ is not smooth.

$$
\begin{array}{cc}
x=t^{2}-4 t & y=t^{3}-2 t^{2}-4 t \\
x^{\prime}(t)=2 t-4 & g^{\prime}(t)=3 t^{2}-4 t-4 \\
x^{\prime}(2)=0 & y^{\prime}(2)=3(t)-4(2)- \\
x(2)=-4 & 2 . y=2 x \\
y(2)=-0 & 2 . y
\end{array}
$$

Tangent lines

Our definition of smooth curve is natural in one sense: it means we can find tangent lines! Slope of the tangent is given by $\frac{d y}{d x}$. Chain rule gives:

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

so

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)} \cdot=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

If either $x^{\prime}(t)$ or $y^{\prime}(t)$ is undefined, we can't compute the slope of the tangent. If both are zero, the slope is indeterminate. (If $x^{\prime}(t)=0$ but $y^{\prime}(t) \neq 0$, we have a vertical tangent!) (Aside:) a vector in the direction of the tangent line at $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ is $\left\langle x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right\rangle$.

Examples
Find the equations of the tangent lines as indicated:
/ $x=t^{2}-1, y=t^{3}-t$, at $t=0$ and $t=1$
2 $x=\tan (t), y=\sec (t)$, at $t=\pi / 4$.

$$
\begin{array}{ll}
\text { 1. } \quad \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{3 t^{2}-1}{2 t} \quad t=0: \text { vertical } \\
(x(0), y(0))=(-1,0) & \text { target: }: x=-1 \\
(x(1), y(1))=(0,0) & t=1: \frac{d y}{d x}=\frac{2}{2}=1 \\
\text { 2. } \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\sec (t) \tan (t)}{\sec ^{2}(t)}=\frac{\tan (t)}{\sec (t)}=\sin (t): y=x
\end{array}
$$

$$
\text { at } \frac{\pi}{4}: x=1, y=\sqrt{2}, m=1 / \sqrt{2} \text { target: } y=\sqrt{2}+\frac{1}{\sqrt{2}}(x-1)
$$

Area
We can compute area as usual. For area under a curve: $A=\int_{a}^{b} f(x) d x$. If $x=g(t), y=f(g(t))$, get $A=\int_{t_{0}}^{t_{1}} f(g(t)) g^{\prime}(t) d t$. This still makes sense for a general parametric curve if we' re careful about interpretation. For a closed curve $x=g(t), y=h(t)$ with counterclockwise orientation, the area enclosed is $\quad A=-\int_{t_{0}}^{t_{1}} h(t) g^{\prime}(t) d t$.

Examples

1. Find the area encolosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2. Find the area encolosed by the "teardrop" in the curve

$$
\begin{array}{rl}
x & =t^{3}-t, y=t^{2}-1 . \\
1 & x=a \cos (t) \quad y=5 \sin (t), t \in[0,2 \pi] \\
A & =-\int_{0}^{2 \pi} y(t) x^{\prime}(t) d t=-\int_{0}^{2 \pi} b \sin (t)(-a \sin (t)) d t \\
& =a b \int_{0}^{2 \pi} \sin ^{2}(t) d t=a b \int_{0}^{2 \pi}\left(\frac{1-\cos (2 t)}{2}\right) d t \\
& =\pi a b .
\end{array}
$$

2.

$$
A=\int_{-1}^{1} y(t) x^{\prime}(t) d t
$$

