Math 2565, Spring 2020

Polar Coordinates

Sean Fitzpatrick

Overview

Warm-Up

Polar Coordinates

Polar calculus

Warm-Up

Find the area encolosed by the astroid

$$x = \cos^3(t), y = \sin^3(t), t \in [0, 2\pi]$$
. How about its length?

The polar coordinate system

Polar coordinates are defined in terms of the usual Cartesian plane. But instead of using x and y to locate a point, we use r and θ .

- ightharpoonup r: distance from the origin to the point. (Defines a circle)
- \triangleright θ : direction of the point. (Defines a point on the circle)

Converting

Example

Convert the following points from rectangular to polar coordinates:

- 1. (-4,0)
- (3,-3)
- 3. (0,0)

Convert the following points from polar to rectangular coordinates:

- 1. $(3, \pi/3)$
- 2. $(-2, \pi/4)$
- 3. $(1, -5\pi/6)$

Simple polar curves

Some curves are really simple in polar coordinates. For example:

- 1. r = 3
- 2. $\theta = 2\pi/3$
- 3. $r = \theta$

Simple rectangular curves

Some curves are simple in rectangular coordinates but not so great in polar:

- 1. y = 3x + 2
- 2. y = 3
- 3. $y = x^2$

Polar curves: limaçons

A typical polar curve has the form $r = f(\theta)$. We can generate a lot of interesting curves this way.

Example

Describe (sketch) the polar curve:

1.
$$r = 1 + \cos \theta$$

2.
$$r = 2 + \cos \theta$$

3.
$$r = 1 + 2\sin\theta$$

Polar curves: roses

Describe (sketch) the polar curve:

1.
$$r = \sin(2\theta)$$

$$2. r = \cos(4\theta)$$

Tangent lines

Polar curves are really parametric curves: $x = r\cos\theta$ and

$$y = r \sin \theta$$
, so $r = f(\theta)$ defines $x(\theta), y(\theta)$. That gives $\frac{dy}{dx} = \frac{y'(\theta)}{x'(\theta)}$.

Example

Find the equation of the tangent line to $r = \cos(3\theta)$ when $\theta = \pi/4$.

- 1. Determine the location of the horizontal and vertical tangents of the limaçons $r=1+2\cos\theta$.
- 2. Find the equations of the tangent lines to the curve at the origin. (There are two!)

Area

The polar area formula is given by
$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$
.

Find the area enclosed by one leaf of the curve $r = \sin(3\theta)$.

Find the area that lies inside the outer loop of the limaçon $r=1+2\cos\theta$, but outside the inner loop.

Find the area that lies inside the curve $r=4\cos\theta$ but outside the curve $r=4\sin\theta$

Arc length

(If we have time.)