Math 2565, Spring 2020
 Polar Coordinates

Sean Fitzpatrick

Overview

Warm-Up

Polar Coordinates

Polar calculus

Warm-Up

Find the area encolosed by the astroid
$x=\cos ^{3}(t), y=\sin ^{3}(t), t \in[0,2 \pi]$. How about its length?

The polar coordinate system

Polar coordinates are defined in terms of the usual Cartesian plane. But instead of using x and y to locate a point, we use r and θ.

- r : distance from the origin to the point. (Defines a circle)
- θ : direction of the point. (Defines a point on the circle)

Converting

Example

Convert the following points from rectangular to polar coordinates:

1. $(-4,0)$
2. $(3,-3)$
3. $(0,0)$

Convert the following points from polar to rectangular coordinates:

1. $(3, \pi / 3)$
2. $(-2, \pi / 4)$
3. $(1,-5 \pi / 6)$

Simple polar curves

Some curves are really simple in polar coordinates. For example:

1. $r=3$
2. $\theta=2 \pi / 3$
3. $r=\theta$

Simple rectangular curves

Some curves are simple in rectangular coordinates but not so great in polar:

1. $y=3 x+2$
2. $y=3$
3. $y=x^{2}$

Polar curves: limaçons

A typical polar curve has the form $r=f(\theta)$. We can generate a lot of interesting curves this way.

Example
Describe (sketch) the polar curve:

1. $r=1+\cos \theta$
2. $r=2+\cos \theta$
3. $r=1+2 \sin \theta$

Polar curves: roses

Describe (sketch) the polar curve:

1. $r=\sin (2 \theta)$
2. $r=\cos (4 \theta)$

Tangent lines

Polar curves are really parametric curves: $x=r \cos \theta$ and $y=r \sin \theta$, so $r=f(\theta)$ defines $x(\theta), y(\theta)$. That gives $\frac{d y}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)}$.

Example

Find the equation of the tangent line to $r=\cos (3 \theta)$ when $\theta=\pi / 4$.

Example

1. Determine the location of the horizontal and vertical tangents of the limaçons $r=1+2 \cos \theta$.
2. Find the equations of the tangent lines to the curve at the origin. (There are two!)

Area

The polar area formula is given by $A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$.

Example

Find the area enclosed by one leaf of the curve $r=\sin (3 \theta)$.

Example

Find the area that lies inside the outer loop of the limaçon $r=1+2 \cos \theta$, but outside the inner loop.

Example

Find the area that lies inside the curve $r=4 \cos \theta$ but outside the curve $r=4 \sin \theta$

Arc length

(If we have time.)

