Math 2565, Spring 2020
 Polar Coordinates

Sean Fitzpatrick

Overview

Warm-Up

Polar Coordinates

Polar calculus

Warm-Up

Find the area encolosed by the astroid $x=\cos ^{3}(t), y=\sin ^{3}(t), t \in[0,2 \pi]$. How about its length?

$$
\begin{aligned}
A & = \pm \int_{a}^{b} y(t) \underbrace{x^{\prime}(t) d t} \quad y(t)=\sin ^{3}(t) \\
A & =-\int_{0}^{2 \pi}-3 \sin ^{4}(t) \cos ^{2}(t) d t \quad=-3 \cos ^{2}(t) \sin (t) \\
& =+\int_{0}^{2 \pi} 3\left(\frac{1-\cos (2 t)}{2}\right)\left(\frac{1+\cos (2 t)}{2}\right) d t \\
& =+\frac{3}{8} \int_{0}^{2 \pi}\left(\frac{3}{2}-2 \cos (2 t)+\frac{3}{16}(2 \pi)\right. \\
& \left.=+\frac{3}{8} \int_{0}^{2 \pi}\left(\frac{3 \pi}{2}-\frac{1}{2} \cos (4 t)\right)(1+\cos (2 t)) d t\right) \\
& \left.=\frac{2 \cos ^{2}(2 t)}{2}+\frac{\cos (4 t)}{2}+\frac{\cos (4 t) \cos (2 t)}{2}\right) d t
\end{aligned}
$$

The polar coordinate system
Polar coordinates are defined in terms of the usual Cartesian plane.
But instead of using x and y to locate a point, we use r and θ.
r : distance from the origin to the point. (Defines a circle)

- θ : direction of the point. (Defines a point on the circle)

$$
\begin{array}{c|l}
\sigma^{2}=x^{2}+y^{2} & x=r \cos \theta \\
\tan \theta=y / x & y=r \sin \theta
\end{array}
$$

$$
\begin{gathered}
(\sqrt{2},-\pi / 4)=(\sqrt{2}, 7 \pi / 4) \\
=(-\sqrt{2}, 3 \pi / 4)
\end{gathered}
$$

Converting
Example

$$
r=0
$$

Convert the following points from rectangular to polar coordinates:

1. $(-4,0) \Rightarrow(4, \pi) \mid$ or $(-4,0)$
2. $(3,-3)$
3. 0,0)

$$
\begin{aligned}
& r=\sqrt{3^{2}+(-3)^{2}}=3 \sqrt{2} \\
& \theta=-\pi / 4
\end{aligned}
$$

Convert the following points from polar to rectangular coordinates:

1. $(3, \pi / 3)$

$$
\begin{aligned}
x & =3 \cos (\pi / 3), y=3 \sin (\pi / 3) \rightarrow(3 / 2 \\
x & =-2 \cos (\pi / 4), y=-2 \sin (\pi / 4) \rightarrow(-\sqrt{2} \\
x & =1 \cos (-5 \pi / 6) \quad y \\
& =-\frac{\sqrt{3}}{2} \\
& =-\frac{1}{2} .
\end{aligned}
$$

Simple polar curves
Some curves are reply simple in polar coordinates. For example:

1. $r=3$
2. $\theta=2 \pi / 3$
3. $r=\bar{\theta}$

Archimedean Spiral

Simple rectangular curves
Some curves are simple in rectangular coordinates but not so great in polar:

1. $y=3 x+2 \% r \sin \theta=3 r \cos \theta+2$
2. $y=3$
$r(\sin \theta-3 \cos \theta)=2$
3. $y=x^{2}$

$$
\therefore r=\frac{2}{\sin \theta-3 \cos \theta}
$$

2. $r \sin \theta=3 \Rightarrow r=3 \csc \theta$
3. $r \sin \theta=r^{2} \cos ^{2} \theta \Rightarrow r=0$, or
we didn 't lose

$$
\begin{aligned}
& \frac{\sin \theta}{\cos ^{2} \theta}=r=\sec \theta \tan \theta \\
& r(0)=0
\end{aligned}
$$

Polar curves: limaçons
A typical polar curve has the form $r=f(\theta)$. We can generate a lot of interesting curves this way.

Example
2.

Describe (sketch) the polar curve:

1. $r=1+\cos \theta \quad(a=b)$
2. $r=2+\cos \theta \quad(a>b)$
3. $r=1+2 \sin \theta \quad(a<b)$

4.

Polar curves: roses
Describe (sketch) the polar curve:

1. $r=\sin (2 \theta)$
2. $r=\cos (4 \theta)$

$$
\begin{gathered}
r=f(\theta) \\
x=r \cos \theta=f(\theta) \cos \theta \\
y=r \sin \theta=f(\theta) \sin \theta .
\end{gathered}
$$

Tangent lines
Polar curves are really parametric curves: $x=r \cos \theta$ and $y=r \sin \theta$, so $r=f(\theta)$ defines $x(\theta), y(\theta)$. That gives $\frac{d y}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)}$.
Example

$$
y=1 / 2
$$

Find the equation of the tangent line to $r=\cos (3 \theta)$ when

$$
\begin{aligned}
& \theta=\pi / 4 \\
& x=\cos (3 \theta) \cos \theta \quad y(\pi / 4)=\sin \left(\frac{3 \pi}{4}\right) \sin \frac{\pi}{4}=\frac{1}{2} \\
& y=\sin (3 \theta) \sin \theta \\
& \frac{d y}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)}=\frac{3 \cos (3 \theta) \sin \theta+\sin (3 \theta) \cos \theta}{-3 \sin (3 \theta) \cos \theta-\cos (3 \theta) \sin \theta}
\end{aligned}
$$

$$
\text { at } \pi / 4: m=\frac{-3 / \sqrt{2} \cdot 1 / \sqrt{2}+3 / \sqrt{2} \cdot 1 / \sqrt{2}}{\cdots}<0
$$

Example
1.) Determine the location of the horizontal and vertical tangents of the limaçons $r=1+2 \cos \theta$.
2. Find the equations of the tangent lines to the curve at the origin. (There are two!)

$$
\begin{aligned}
& y(\theta)=(112 \cos \theta) \sin \theta \\
&=\sin \theta+2 \sin \theta \cos \theta \\
& y^{\prime}(\theta)=\cos \theta+2 \sin 12 \theta) \\
&=\cos \theta+2\left(2 \cos ^{2} \theta-1\right) \\
&=4 \cos ^{2} \theta+\cos \theta-2
\end{aligned}
$$

\rightarrow use quadratic formula to find $\cos \theta$.

Area

The polar area formula is given by $A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$.

Example
Find the area enclosed by one leaf of the curve $r=\sin (3 \theta)$.

$$
r=0:
$$

$$
\sin (3 \theta)=0
$$

$$
3 \theta=k \pi
$$

$$
\begin{aligned}
0 \leq \theta & \leq \frac{\pi}{3} \\
A & =\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 3}\left(\frac{1-\cos (6 \theta)}{2}\right) d \theta
\end{aligned}
$$

$$
\theta=\frac{k \pi}{3}
$$

Example
Find the area that lies inside the outer loop of the limaçon $r=1+2 \cos \theta$, but outside the inner loop.

Example

Find the area that lies inside the curve $r=4 \cos \theta$ but outside the curve $r=4 \sin \theta$

Arc length

(If we have time.)

