Math 2565, Spring 2020

Functions of several variables

Sean Fitzpatrick

Overview

Warm-Up

Surfaces in three dimensions

Functions of Several Variables

Warm-Up

Find the area that lies inside the outer loop of the limaçon $r=1+2 \cos \theta$, but outside the inner loop. Find the length of the inner loop for the above limaçon. Find the area that lies inside the curve $r=4 \cos \theta$ but outside the curve $r=4 \sin \theta$

Cartesian coordinates in 3D

Lines and planes

Lines in \mathbb{R}^{3} are definited using parametric equations:

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t
\end{aligned}
$$

Planes are defined by a single linear relation: $a x+b y+c z=d$. If you've done Math 1410, you've seen how to describe these using vectors.

Cylinders

A cylinder is a surface where the traces (cross-sections) parallel to a given plane are all the same curve. Typically these come from an equation involving only two of three variables. For example:

$$
y=x^{2} \quad z=e^{y} \quad z=\sin (x+y)
$$

Quadric surfaces

These are the 3D analogues of the conic sections. Each one is defined by a quadratic equation in three variables.

Example

Describe the surface

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2} .
$$

Traces

Traces are curves that lie on surfaces. These curves are formed by intersecting a surface with a plane. Usually we consider traces with respect to planes parallel to the coordinate planes. These are the easiest to find, and are key to helping us visualize a surface.

Ellipsoids

Elliptic paraboloids

Hyperbolic paraboloids

Maintaining with tradition, we will now watch Sean try (and fail) to sketch a hyperbolic paraboloid.

Hyperboloids

Cones

Surfaces in general

More general surfaces in \mathbb{R}^{3} can be obtained in several ways. Three common ones:

As a graph $z=f(x, y)$
As a level surface $f(x, y, z)=k$
As a parametric surface $x=f(u, v), y=g(u, v), z=h(u, v)$.
In Math 2565 we look mostly at the first case, and not at all at the third.

Functions of two variables

A function f of two variables takes a point $(x, y) \in \mathbb{R}^{2}$ as an input, and gives a point $z=f(x, y)$ as an output. If $D \subseteq \mathbb{R}^{2}$ is the domain of f we might write $f: D \rightarrow \mathbb{R}$ to emphasise the types of input and output. Examples:

Examples

For the following functions, compute the values at $(0,0),(1,2)$, and $(3,-2)$. Determine the domain and range.

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2} \\
& f(x, y)=e^{-\left(x^{2}+y^{2}\right)} \\
& f(x, y)=\ln (x y)
\end{aligned}
$$

Graphing functions of two variables

How do we even begin to visualize a function of two variables? (Or three, or four, or...) The key is to consider traces of the graph $z=f(x, y)$. Traces in planes $z=k$ are especially useful. These are called level curves. Examples:

$$
z=x-y^{2} \quad z=4 x^{2}+y^{2} \quad z=\sin (x) \cos (y)
$$

Level curves vs. contour plots

You'll see mentions of both level curves and contour plots. These are related, but different. A level curve lies on the surface, in a plane $z=k$. A contour curve is the curve we get in the $x y$ plane if we set $z=0$. A contour plot is a collection of contour curves $f(x, y)=k$ for different values of k.

