Math 2565, Spring 2020

Functions of several variables

Sean Fitzpatrick

Overview

Warm-Up

Surfaces in three dimensions

Functions of Several Variables

Warm-Up
Find the area that lies inside the outer loop of the limaçon $r=1+2 \cos \theta$, but outside the inner loop. Find the length of the inner loop for the above limacton. Find the area that lies inside the curve $r=4 \cos \theta$ but outside the curve $r=4 \sin \theta$

$$
\begin{aligned}
A_{1} & =\frac{1}{2} \int_{0}^{2 \pi / 3}(1+2 \cos \theta)^{2} d \theta \\
A_{2} & =\frac{1}{2} \int_{2 \pi / 3}^{\pi}(1+2 \cos \theta)^{2} d \theta \quad A=2 A_{1}-2 \\
(1+2 \cos \theta)^{2} & =1+4 \cos \theta+\frac{4 \cos ^{2} \theta}{2(1+\cos 2 \theta)} \\
& =1+4 \cos \theta+2+4 \cos \theta+2 \cos 2 \theta
\end{aligned}
$$

Arc length

$$
x=-\rho(t) \quad y=g(t)
$$

$d s^{2}=d x^{2}+d y^{2} \quad d x=f^{\prime}(t) d t \quad d y=g^{\prime}(t) d t$
$d s=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t \quad$ (parametric)
Polar: $\quad r=f(\theta) \quad x=f(\theta) \cos \theta \quad y=f(\theta) \sin \theta$

$$
\begin{gathered}
d x=\left(f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta\right) d \theta \\
d y=\left(f^{\prime}(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta\right) d \theta \\
d s=\sqrt{d x^{2}+d y^{2}}=\left(\left(f^{\prime}(\theta)\right)^{2}+f(\theta)^{2}\right) d \theta
\end{gathered}
$$

For $\quad \sigma=1+2 \cos \theta=f^{\prime}(\theta)$

$$
\begin{aligned}
& \frac{d r}{d \theta}=-2 \sin \theta=f^{\prime}(\theta) \\
& f(\theta)^{2}+f^{\prime}(\theta)^{2}=1+4 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta \\
& L=\int_{2 \pi / 3}^{4 \pi / 3} \sqrt{5+4 \cos \theta d \theta}=5+4 \cos \theta .
\end{aligned}
$$

$$
\begin{aligned}
& r=4 \sin \theta \\
& \underbrace{r=4 \cos \theta}_{(x-2)^{2}+y^{2}=4}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& r^{2}=4 r \sin \theta \\
& x^{2}+y^{2}=4 y \\
& x^{2}+(y-2)^{2}=4
\end{aligned}
$$

Region we wart:

$$
\begin{gathered}
0 \leq \theta \leq \pi / t \\
t \sin \theta \leq r \leq t \cos \theta
\end{gathered}
$$

$$
\begin{aligned}
A & =\underbrace{\frac{1}{2} \int_{0}^{\pi / 4}(4 \cos \theta)^{2} \theta}_{\text {inside }}-\frac{1}{2} \int_{0}^{\frac{\pi}{4} \theta}(4 \sin \theta)^{2} d \theta \\
& =\theta \int_{0}^{\pi / 4}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) d \theta \\
& =\left.4 \sin 2 \theta\right|_{0} ^{\pi / 4}=4 \cos ^{2 \theta}
\end{aligned}
$$

Cartesian coordinates in 3D

Coordinate planes

$$
\begin{array}{ll}
x y: z=0 \\
y z: & x=0 \\
x z: & y=0
\end{array}
$$

Distance: between $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Lines and planes
Lines in \mathbb{R}^{3} are definited using parametric equations:

$$
\langle x, y, z\rangle=\underbrace{\left\langle x_{0}, y_{0}, z_{0}\right\rangle^{+}}_{\vec{r}(t)} t\langle a, b, c\rangle
$$

$$
x=x_{0}+a t
$$

$$
y=y_{0}+b t
$$

$$
z=z_{0}+c t
$$

Planes are defined by a single linear relation: $2 x+b y+c z=d$. f you've done Math 1410, you've seen how to describe these using vectors.
$a x+b y+c z=d$ (level surface: $g(x, y, z)=d$)

$$
\vec{n}=\langle a, b, c\rangle
$$

or

$$
z=z_{0}+A x+B y \quad(\text { graph }: z=f(x, y))
$$

Cylinders
plotting resource: CalcPlot 3D
A cylinder is a surface where the traces (cross-sections) parallel to a given plane are all the same curve. Typically these come from an equation involving only two of three variables. For example:

$$
y=x^{2} \quad z=e^{y} \quad z=\sin (x+y)
$$

Quadric surfaces

These are the 3D analogues of the conic sections. Each one is defined by a quadratic equation in three variables.

Example

Describe the surface

Traces

Traces are curves that lie on surfaces. These curves are formed by intersecting a surface with a plane. Usually we consider traces with respect to planes parallel to the coordinate planes. These are the easiest to find, and are key to helping us visualize a surface.

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=4 \\
z=0: x^{2}+y^{2}=4 \\
y=0: x^{2}+z^{2}=4 \\
x=0: y^{2}+z^{2}=4 \\
z= \pm 1 \quad x^{2}+y^{2}+1=4 \\
x^{2}+y^{2}=3
\end{gathered}
$$

Ellipsoids (centre at $(0,0,0)$)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Blah.

Elliptic paraboloids

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

also:

$$
y=\frac{x^{2}}{a^{2}}+\frac{t^{2}}{b^{2}}
$$

Hyperbolic paraboloids

Maintaining with tradition, we will now watch Sean try (and fail) to sketch a hyperbolic paraboloid.

$$
\begin{aligned}
& \frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \\
& (c>0) \\
& (\text { hyperbola) } \\
& z=k
\end{aligned}
$$

Hyperboloids

$$
x^{2}+y^{2}-z^{2}=1
$$

$$
-x^{2}-y^{2}+z^{2}=1
$$

Cones

Surfaces in general

More general surfaces in \mathbb{R}^{3} can be obtained in several ways. Three common ones:

As a graph $z=f(x, y)$
As a level surface $f(x, y, z)=k$
As a parametric surface $x=f(u, v), y=g(u, v), z=h(u, v)$.
In Math 2565 we look mostly at the first case, and not at all at the third.

Functions of two variables

A function f of two variables takes a point $(x, y) \in \mathbb{R}^{2}$ as an input, and gives a point $z=f(x, y)$ as an output. If $D \subseteq \mathbb{R}^{2}$ is the domain of f we might write $f: D \rightarrow \mathbb{R}$ to emphasise the types of input and output. Examples:

Examples

For the following functions, compute the values at $(0,0),(1,2)$, and $(3,-2)$. Determine the domain and range.

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2} \\
& f(x, y)=e^{-\left(x^{2}+y^{2}\right)} \\
& f(x, y)=\ln (x y)
\end{aligned}
$$

Graphing functions of two variables

How do we even begin to visualize a function of two variables? (Or three, or four, or...) The key is to consider traces of the graph $z=f(x, y)$. Traces in planes $z=k$ are especially useful. These are called level curves. Examples:

$$
z=x-y^{2} \quad z=4 x^{2}+y^{2} \quad z=\sin (x) \cos (y)
$$

Level curves vs. contour plots

You'll see mentions of both level curves and contour plots. These are related, but different. A level curve lies on the surface, in a plane $z=k$. A contour curve is the curve we get in the $x y$ plane if we set $z=0$. A contour plot is a collection of contour curves $f(x, y)=k$ for different values of k.

