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PÙ�¥���
One of the challenges with a new course like Math 1010 is finding a suitable

textbook for the course. This is made addiƟonally difficult for a course that cov-
ers two topics – Precalculus and Calculus – that are usually offered as separate
courses, with separate texts. I reviewed a number of commercially available
opƟons, but these all had two things in common: they did not quite meet our
needs, and they were all very expensive (some were as much as $400).

Since wriƟng a new textbook from scratch is a huge undertaking, requiring
resources (like Ɵme) we simply did not have, I chose to explore non-commercial
opƟons. This took a bit of searching, since non-commercial texts, while inexpen-
sive (or free), are of varying quality. Fortunately, there are some decent texts
out there. Unfortunately, I couldn’t find a single text that covered all of the ma-
terial we need for Math 1010.

To get around this problem, I have selected two textbooks as our primary
sources for the course. The first is Precalculus, version 3, by Carl SƟtz and Jeff
Zeager. The second is APEX Calculus I, version 3.0, by Hartman et al. Both
texts have two very useful advantages. First, they’re both free (as in beer): you
can download either text in PDF format from the authors’ web pages. Second,
they’re also open source texts (that is, free, as in speech). Both books arewriƩen
using the LATEXmarkup language, as is typical in mathemaƟcs publishing. What is
not typical is that the authors of both texts make their source code freely avail-
able, allowing others (such as myself) to edit and customize the books as they
see fit.

In the first iteraƟon of this project (Fall 2015), I was only able to edit each
text individually for length and content, resulƟng in two separate textbooks for
Math 1010. This Ɵme around, I’ve had enough Ɵme to take the content of the
Precalculus textbook and adapt its source code to be compaƟble with the for-
maƫng of the Calculus textbook, allowing me to produce a single textbook for
all of Math 1010.

The “Complete (and Current) EdiƟon” represents themost up to date version
of the text, with all possible secƟons included. There is more material here than
an instructor can reasonably expect to cover in one semester. The book can (and
will) be abridged and customized for each parƟcular offering of Math 1010.

The book is very much a work in progress, and I will be ediƟng it regularly.
Feedback is always welcome.
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One thing that student evaluaƟons teach
us is that any given MathemaƟcs instruc-
tor can be simultaneously the best and
worst teacher ever, depending on who is
compleƟng the evaluaƟon.

1: T«� R��½ NçÃ��ÙÝ
1.1 Some Basic Set Theory NoƟons

While the authors would like nothingmore than to delve quickly and deeply into
the sheer excitement that is Precalculus, experience has taught us that a brief
refresher on some basic noƟons is welcome, if not completely necessary, at this
stage. To that end, we present a brief summary of ‘set theory’ and some of
the associated vocabulary and notaƟons we use in the text. Like all good Math
books, we begin with a definiƟon.

DefiniƟon 1 Set

A set is a well-defined collecƟon of objects which are called the ‘ele-
ments’ of the set. Here, ‘well-defined’ means that it is possible to deter-
mine if something belongs to the collecƟon or not, without prejudice.

For example, the collecƟon of leƩers that make up the word “pronghorns”
is well-defined and is a set, but the collecƟon of the worst math teachers in the
world is not well-defined, and so is not a set. In general, there are three ways
to describe sets. They are

Key Idea 1 Ways to Describe Sets

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a leŌ brace ‘{’, list each element
of the set only once and then end with a right brace ‘}’.

3. The Set-Builder Method: A combinaƟon of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of leƩers thatmake
up the word “pronghorns”. A roster descripƟon of Swould be {p, r, o, n, g, h, s}.
Note that we listed ‘r’, ‘o’, and ‘n’ only once, even though they appear twice in
“pronghorns.” Also, theorder of the elements doesn’tmaƩer, so{o, n, p, r, g, s, h}
is also a roster descripƟon of S. A set-builder descripƟon of S is:

{x | x is a leƩer in the word “pronghorns”.}

The way to read this is: ‘The set of elements x such that x is a leƩer in the
word “pronghorns.”’ In each of the above cases, we may use the familiar equals
sign ‘=’ andwrite S = {p, r, o, n, g, h, s}or S = {x | x is a leƩer in the word “pronghorns”.}.
Clearly r is in S and q is not in S. We express these senƟments mathemaƟcally
by wriƟng r ∈ S and q /∈ S.

More precisely, we have the following.
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DefiniƟon 2 NotaƟon for set inclusion

Let A be a set.

• If x is an element of A then we write x ∈ A which is read ‘x is in A’.

• If x is not an element of A then we write x /∈ A which is read ‘x is
not in A’.

Now let’s consider the setC = {x | x is a consonant in the word “pronghorns”}.
A roster descripƟon of C is C = {p, r, n, g, h, s}. Note that by construcƟon, every
element of C is also in S. We express this relaƟonship by staƟng that the set C
is a subset of the set S, which is wriƩen in symbols as C ⊆ S. The more formal
definiƟon is given below.

DefiniƟon 3 Subset

Given sets A and B, we say that the set A is a subset of the set B andwrite
‘A ⊆ B’ if every element in A is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but
o /∈ C. AddiƟonally, the set of vowels V = {a, e, i, o, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V, either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p, r, o, n, g, h, s, a, e, i, u}. Then S ⊆ U and V ⊆ U. The
set U we have built is called the union of the sets S and V and is denoted S ∪ V.
Furthermore, S and V aren’t completely different sets since they both contain
the leƩer ‘o.’ (Since the word ‘different’ could be ambiguous, mathemaƟcians
use the word disjoint to refer to two sets that have no elements in common.)
The intersecƟon of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersecƟon of S and V is {o}, wriƩen S ∩ V = {o}.
We formalize these ideas below.

DefiniƟon 4 IntersecƟon and Union

Suppose A and B are sets.

• The intersecƟon of A and B is A ∩ B = {x | x ∈ A and x ∈ B}

• The union of A and B is A ∪ B = {x | x ∈ A or x ∈ B (or both)}

The key words in DefiniƟon 4 to focus on are the conjuncƟons: ‘intersecƟon’
corresponds to ‘and’ meaning the elements have to be in both sets to be in the
intersecƟon, whereas ‘union’ corresponds to ‘or’ meaning the elements have to
be in one set, or the other set (or both). In other words, to belong to the union
of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {p, r, n, g, h, s, a, e, i, o, u}.
When it comes to their intersecƟon, however, we run into a bit of notaƟonal
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The full extent of the empty set’s role will
not be explored in this text, but it is of fun-
damental importance in Set Theory. In
fact, the empty set can be used to gener-
ate numbers - mathemaƟcians can create
something from nothing! If you’re inter-
ested, read about the von Neumann con-
strucƟon of the natural numbers or con-
sider signing up for Math 2000.

p r n g h s o a e i u

S V

C

U

Figure 1.1: A Venn diagram for C, S, and V

A B

U

Sets A and B.

A ∩ B

A B

U

A ∩ B is shaded.

A ∪ B

A B

U

A ∪ B is shaded.

Figure 1.2: Venndiagrams for intersecƟon
and union
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awkwardness since C and V have no elements in common. While we could write
C ∩ V = {}, this sort of thing happens oŌen enough that we give the set with
no elements a name.

DefiniƟon 5 Empty set

The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x | x ̸= x}.

As promised, the empty set is the set containing no elements since nomaƩer
what ‘x’ is, ‘x = x.’ Like the number ‘0,’ the empty set plays a vital role in math-
emaƟcs. We introduce it here more as a symbol of convenience as opposed to
a contrivance. Using this new bit of notaƟon, we have for the sets C and V
above that C∩V = ∅. A nice way to visualize relaƟonships between sets and set
operaƟons is to draw a Venn Diagram. A Venn Diagram for the sets S, C and V is
drawn in Figure 1.1.

In Figure 1.1 we have three circles - one for each of the sets C, S and V. We
visualize the area enclosed by each of these circles as the elements of each set.
Here, we’ve spelled out the elements for definiƟveness. NoƟce that the circle
represenƟng the set C is completely inside the circle represenƟng S. This is a
geometric way of showing that C ⊆ S. Also, noƟce that the circles represenƟng
S and V overlap on the leƩer ‘o’. This common region is how we visualize S ∩ V.
NoƟce that since C∩V = ∅, the circles which represent C and V have no overlap
whatsoever.

All of these circles lie in a rectangle labelledU (for ‘universal’ set). A universal
set contains all of the elements under discussion, so it could always be taken as
the union of all of the sets in quesƟon, or an even larger set. In this case, we
could take U = S ∪ V or U as the set of leƩers in the enƟre alphabet. The usual
triptych of Venn Diagrams indicaƟng generic sets A and B along with A ∩ B and
A ∪ B is given below.

(The reader may well wonder if there is an ulƟmate universal set which con-
tains everything. The short answer is ‘no’. Our definiƟon of a set turns out to
be overly simplisƟc, but correcƟng this takes us well beyond the confines of
this course. If you want the longer answer, you can begin by reading about
Russell’s Paradox on Wikipedia.)

1.1.1 Sets of Real Numbers
The playground formost of this text is the set of Real Numbers. Many quanƟƟes
in the ‘real world’ can be quanƟfied using real numbers: the temperature at a
given Ɵme, the revenue generated by selling a certain number of products and
the maximum populaƟon of Sasquatch which can inhabit a parƟcular region are
just three basic examples. A succinct, but nonetheless incomplete definiƟon of
a real number is given below.

DefiniƟon 6 The real numbers

A real number is any number which possesses a decimal representaƟon.
The set of real numbers is denoted by the character R.
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An example of a number with a
repeaƟng decimal expansion is
a = 2.13234234234 . . .. This is ra-
Ɵonal since 100a = 213.2342342342...,
and 100000a = 213234.234234... so
99900a = 100000a − 100a = 213021.
This gives us the raƟonal expression
a =

213021
99900

.

The classic example of an irraƟonal
number is the number π (See Sec-
Ɵon 8.1), but numbers like

√
2 and

0.101001000100001 . . . are other fine
representaƟves.

Chapter 1 The Real Numbers

Certain subsets of the real numbers are worthy of note and are listed below.
In more advanced courses like Analysis, you learn that the real numbers can be
constructed from the raƟonal numbers, which in turn can be constructed from
the integers (which themselves come from the natural numbers, which in turn
can be defined as sets...).

DefiniƟon 7 Sets of Numbers

1. The Empty Set: ∅ = {} = {x | x ̸= x}. This is the set with no elements.
Like the number ‘0,’ it plays a vital role in mathemaƟcs.

2. The Natural Numbers: N = {1, 2, 3, . . .} The periods of ellipsis here indi-
cate that the natural numbers contain 1, 2, 3, ‘and so forth’.

3. The Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

4. The RaƟonal Numbers: Q =
{ a

b | a ∈ Z and b ∈ Z
}
. RaƟonal numbers

are the raƟos of integers (provided the denominator is not zero!) It turns
out that another way to describe the raƟonal numbers is:

Q = {x | x possesses a repeaƟng or terminaƟng decimal representaƟon.}

5. The Real Numbers: R = {x | x possesses a decimal representaƟon.}

6. The IrraƟonal Numbers: Real numbers that are not raƟonal are called ir-
raƟonal. As a set, we have {x ∈ R | x /∈ Q}. (There is no standard symbol
for this set.) Every irraƟonal number has a decimal expansion which nei-
ther repeats nor terminates.

7. The Complex Numbers: C = {a+bi | a,b ∈ R and i =
√
−1} (Wewill not

deal with complex numbers in Math 1010, although they usually make an
appearance in Math 1410.)

It is important to note that every natural number is a whole number is an
integer. Each integer is a raƟonal number (take b = 1 in the above definiƟon for
Q) and the raƟonal numbers are all real numbers, since they possess decimal
representaƟons (via long division!). If we take b = 0 in the above definiƟon of
C, we see that every real number is a complex number. In this sense, the sets
N, Z, Q, R, and C are ‘nested’ like Matryoshka dolls. More formally, these sets
form a subset chain: N ⊆ Z ⊆ Q ⊆ R. The reader is encouraged to sketch a
Venn Diagram depicƟngR and all of the subsets menƟoned above. It is Ɵme for
an example.

Example 1 Sets of real numbers

1. Write a roster descripƟon for P = {2n | n ∈ N} and E = {2n | n ∈ Z}.

2. Write a verbal descripƟon for S = {x2 | x ∈ R}.

3. Let A = {−117, 4
5 , 0.202002, 0.202002000200002 . . .}.

Which elements of A are natural numbers? RaƟonal numbers? Real num-
bers?

4
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This isn’t themost preciseway to describe
this set - it’s always dangerous to use
‘. . .’ since we assume that the paƩern is
clearly demonstrated and thus made ev-
ident to the reader. Formulas are more
precise because the paƩern is clear.

It shouldn’t be too surprising that E is the
set of all even integers, since an even in-
teger is defined to be an integer mulƟple
of 2.

The fact that the real numbers cannot be
listed is a nontrivial statement. Interested
readers are directed to a discussion of
Cantor’s Diagonal Argument.

1.1 Some Basic Set Theory NoƟons

SÊ½çã®ÊÄ

1. To find a roster descripƟon for these sets, we need to list their elements.
StarƟng with P = {2n | n ∈ N}, we subsƟtute natural number values n
into the formula 2n. For n = 1 we get 21 = 2, for n = 2 we get 22 = 4, for
n = 3 we get 23 = 8 and for n = 4 we get 24 = 16. Hence P describes the
powers of 2, so a roster descripƟon for P is P = {2, 4, 8, 16, . . .} where
the ‘. . .’ indicates the that paƩern conƟnues.

Proceeding in the same way, we generate elements in E = {2n | n ∈ Z}
by plugging in integer values of n into the formula 2n. StarƟng with n = 0
we obtain 2(0) = 0. For n = 1 we get 2(1) = 2, for n = −1 we get
2(−1) = −2 for n = 2, we get 2(2) = 4 and for n = −2 we get 2(−2) =
−4. As nmoves through the integers, 2n produces all of the even integers.
A roster descripƟon for E is E = {0,±2,±4, . . .}.

2. One way to verbally describe S is to say that S is the ‘set of all squares of
real numbers’. While this isn’t incorrect, we’d like to take this opportunity
to delve a liƩle deeper. What makes the set S = {x2 | x ∈ R} a liƩle
trickier to wrangle than the sets P or E above is that the dummy variable
here, x, runs through all real numbers. Unlike the natural numbers or
the integers, the real numbers cannot be listed in any methodical way.
Nevertheless, we can select some real numbers, square them and get a
sense of what kind of numbers lie in S. For x = −2, x2 = (−2)2 = 4 so 4
is in S, as are

( 3
2
)2

= 9
4 and (

√
117)2 = 117. Even things like (−π)2 and

(0.101001000100001 . . .)2 are in S.

So suppose s ∈ S. What can be said about s? We know there is some real
number x so that s = x2. Since x2 ≥ 0 for any real number x, we know
s ≥ 0. This tells us that everything in S is a non-negaƟve real number. This
begs the quesƟon: are all of the non-negaƟve real numbers in S? Suppose
n is a non-negaƟve real number, that is, n ≥ 0. If nwere in S, there would
be a real number x so that x2 = n. As you may recall, we can solve x2 = n
by ‘extracƟng square roots’: x = ±

√
n. Since n ≥ 0,

√
n is a real number.

Moreover, (
√
n)2 = n so n is the square of a real number which means

n ∈ S. Hence, S is the set of non-negaƟve real numbers.

3. The set A contains no natural numbers. Clearly, 4
5 is a raƟonal number as

is−117 (which can be wriƩen as −117
1 ). It’s the last two numbers listed in

A, 0.202002 and 0.202002000200002 . . ., that warrant some discussion.
First, recall that the ‘line’ over the digits 2002 in 0.202002 (called the vin-
culum) indicates that these digits repeat, so it is a raƟonal number. As
for the number 0.202002000200002 . . ., the ‘. . .’ indicates the paƩern of
adding an extra ‘0’ followed by a ‘2’ is what defines this real number. De-
spite the fact there is a paƩern to this decimal, this decimal is not repeat-
ing, so it is not a raƟonal number - it is, in fact, an irraƟonal number. All
of the elements of A are real numbers, since all of them can be expressed
as decimals (remember that 4

5 = 0.8).

As youmay recall, weoŌen visualize the set of real numbersR as a linewhere
each point on the line corresponds to one and only one real number. Given two
different real numbers a and b, we write a < b if a is located to the leŌ of b on
the number line, as shown in Figure 1.3.

While this noƟon seems innocuous, it is worth poinƟng out that this conven-
Ɵon is rooted in two deep properƟes of real numbers. The first property is that
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a b

Figure 1.3: The real number line with two
numbers a and b, where a < b.

The Law of Trichotomy, strictly speaking,
is an axiom of the real numbers: a basic
requirement that we assume to be true.
However, in any construcƟon of the real,
such as the method of Dedekind cuts, it
is necessary to prove that the Law of Tri-
chotomy is saƟsfied.

Chapter 1 The Real Numbers

R is complete. This means that there are no ‘holes’ or ‘gaps’ in the real number
line. (This intuiƟve feel for what it means to be ‘complete’ is as good as it gets at
this level. Completeness does get a muchmore precise meaning later in courses
like Analysis and Topology.) Another way to think about this is that if you choose
any two disƟnct (different) real numbers, and look between them, you’ll find a
solid line segment (or interval) consisƟng of infinitely many real numbers.

The next result tells us what types of numbers we can expect to find.

Theorem 1 Density Property ofQ in R

Between any two disƟnct real numbers, there is at least one raƟonal
number and irraƟonal number. It then follows that between any two
disƟnct real numbers there will be infinitely many raƟonal and irraƟonal
numbers.

The root word ‘dense’ here communicates the idea that raƟonals and irra-
Ɵonals are ‘thoroughly mixed’ into R. The reader is encouraged to think about
how one would find both a raƟonal and an irraƟonal number between, say,
0.9999 and 1. Once you’ve done that, ask yourself whether there is any dif-
ference between the numbers 0.9 and 1.

The second property R possesses that lets us view it as a line is that the set
is totally ordered. This means that given any two real numbers a and b, either
a < b, a > b or a = b which allows us to arrange the numbers from least
(leŌ) to greatest (right). You may have heard this property given as the ‘Law of
Trichotomy’.

DefiniƟon 8 Law of Trichotomy

If a and b are real numbers then exactly one of the following statements
is true:
a < b a > b a = b

Segments of the real number line are called intervals of numbers. Below
is a summary of the so-called interval notaƟon associated with given sets of
numbers. For intervals with finite endpoints, we list the leŌ endpoint, then the
right endpoint. We use square brackets, ‘[’ or ‘]’, if the endpoint is included in the
interval and use a filled-in or ‘closed’ dot to indicate membership in the interval.
Otherwise, we use parentheses, ‘(’ or ‘)’ and an ‘open’ circle to indicate that the
endpoint is not part of the set. If the interval does not have finite endpoints,
we use the symbols−∞ to indicate that the interval extends indefinitely to the
leŌ and ∞ to indicate that the interval extends indefinitely to the right. Since
infinity is a concept, and not a number, we always use parentheses when using
these symbols in interval notaƟon, and use an appropriate arrow to indicate that
the interval extends indefinitely in one (or both) direcƟons.
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The importance of understanding inter-
val notaƟon in Calculus cannot be over-
stated. If you don’t find yourself geƫng
the hang of it through repeated use, you
may need to take the Ɵme to just memo-
rize this chart.

1.1 Some Basic Set Theory NoƟons

DefiniƟon 9 Interval NotaƟon

Let a and b be real numbers with a < b.
Set of Real Numbers Interval NotaƟon Region on the Real Number Line

{x | a < x < b} (a, b)
a b

{x | a ≤ x < b} [a, b)
a b

{x | a < x ≤ b} (a, b]
a b

{x | a ≤ x ≤ b} [a, b]
a b

{x | x < b} (−∞, b)
b

{x | x ≤ b} (−∞, b]
b

{x | x > a} (a,∞)
a

{x | x ≥ a} [a,∞)
a

R (−∞,∞)

As you can glean from the table, for intervals with finite endpoints we start
by wriƟng ‘leŌ endpoint, right endpoint’. We use square brackets, ‘[’ or ‘]’, if the
endpoint is included in the interval. This corresponds to a ‘filled-in’ or ‘closed’
dot on the number line to indicate that the number is included in the set. Oth-
erwise, we use parentheses, ‘(’ or ‘)’ that correspond to an ‘open’ circle which
indicates that the endpoint is not part of the set. If the interval does not have
finite endpoints, we use the symbol −∞ to indicate that the interval extends
indefinitely to the leŌ and the symbol ∞ to indicate that the interval extends
indefinitely to the right. Since infinity is a concept, and not a number, we al-
ways use parentheses when using these symbols in interval notaƟon, and use
the appropriate arrow to indicate that the interval extends indefinitely in one or
both direcƟons.

Let’s do a few examples to make sure we have the hang of the notaƟon:

Set of Real Numbers Interval NotaƟon Region on the Real Number Line

{x | 1 ≤ x < 3} [1, 3)
1 3

{x | − 1 ≤ x ≤ 4} [−1, 4] −1 4

{x | x ≤ 5} (−∞, 5]
5

{x | x > −2} (−2,∞) −2
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−5 1 3
A = [−5, 3), B = (1,∞)

−5 1 3
A ∩ B = (1, 3)

−5 1 3
A ∪ B = [−5,∞)

Figure 1.4: Union and intersecƟon of in-
tervals

−2 2

Figure 1.5: The set (−∞,−2] ∪ [2,∞)

3

Figure 1.6: The set (−∞, 3) ∪ (3,∞)

−3 3

Figure 1.7: The set (−∞,−3)∪(−3, 3)∪
(3,∞)

−1 3 5

Figure 1.8: The set (−1, 3] ∪ {5}

Chapter 1 The Real Numbers

We defined the intersecƟon and union of arbitrary sets in DefiniƟon 4. Recall
that the union of two sets consists of the totality of the elements in each of the
sets, collected together. For example, if A = {1, 2, 3} and B = {2, 4, 6}, then
A ∩ B = {2} and A ∪ B = {1, 2, 3, 4, 6}. If A = [−5, 3) and B = (1,∞), then
we can find A ∩ B and A ∪ B graphically. To find A ∩ B, we shade the overlap of
the two and obtain A ∩ B = (1, 3). To find A ∪ B, we shade each of A and B and
describe the resulƟng shaded region to find A ∪ B = [−5,∞).

While both intersecƟon and union are important, we have more occasion to
use union in this text than intersecƟon, simply because most of the sets of real
numbers we will be working with are either intervals or are unions of intervals,
as the following example illustrates.

Example 2 Expressing sets as unions of intervals
Express the following sets of numbers using interval notaƟon.

1. {x | x ≤ −2 or x ≥ 2} 2. {x | x ̸= 3}

3. {x | x ̸= ±3} 4. {x | − 1 < x ≤ 3 or x = 5}

SÊ½çã®ÊÄ

1. The best way to proceed here is to graph the set of numbers on the num-
ber line and glean the answer from it. The inequality x ≤ −2 corresponds
to the interval (−∞,−2] and the inequality x ≥ 2 corresponds to the in-
terval [2,∞). Sincewe are looking to describe the real numbers x in one of
these or the other, we have {x | x ≤ −2 or x ≥ 2} = (−∞,−2]∪ [2,∞).

2. For the set {x | x ̸= 3}, we shade the enƟre real number line except x = 3,
where we leave an open circle. This divides the real number line into two
intervals, (−∞, 3) and (3,∞). Since the values of x could be in either
one of these intervals or the other, we have that {x | x ̸= 3} = (−∞, 3)∪
(3,∞)

3. For the set {x | x ̸= ±3}, we proceed as before and exclude both x = 3
and x = −3 from our set. This breaks the number line into three inter-
vals, (−∞,−3), (−3, 3) and (3,∞). Since the set describes real num-
bers which come from the first, second or third interval, we have {x | x ̸=
±3} = (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

4. Graphing the set {x | − 1 < x ≤ 3 or x = 5}, we get one interval, (−1, 3]
along with a single number, or point, {5}. While we could express the
laƩer as [5, 5] (Can you seewhy?), we choose towrite our answer as {x | −
1 < x ≤ 3 or x = 5} = (−1, 3] ∪ {5}.
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Exercises 1.1
Problems
1. Fill in the chart below:

Set of Real Interval Region on the
Numbers NotaƟon Real Number Line

{x | − 1 ≤ x < 5}

[0, 3)

2 7

{x | − 5 < x ≤ 0}

(−3, 3)

5 7

{x | x ≤ 3}

(−∞, 9)

4

{x | x ≥ −3}

In Exercises 2 – 7, find the indicated intersecƟon or union and
simplify if possible. Express your answers in interval nota-
Ɵon.

2. (−1, 5] ∩ [0, 8)

3. (−1, 1) ∪ [0, 6]

4. (−∞, 4] ∩ (0,∞)

5. (−∞, 0) ∩ [1, 5]

6. (−∞, 0) ∪ [1, 5]

7. (−∞, 5] ∩ [5, 8)

In Exercises 8 – 19, write the set using interval notaƟon.

8. {x | x ̸= 5}

9. {x | x ̸= −1}

10. {x | x ̸= −3, 4}

11. {x | x ̸= 0, 2}

12. {x | x ̸= 2, −2}

13. {x | x ̸= 0, ±4}

14. {x | x ≤ −1 or x ≥ 1}

15. {x | x < 3 or x ≥ 2}

16. {x | x ≤ −3 or x > 0}

17. {x | x ≤ 5 or x = 6}

18. {x | x > 2 or x = ±1}

19. {x | − 3 < x < 3 or x = 4}

9



Chapter 1 The Real Numbers

1.2 Real Number ArithmeƟc
In this secƟon we list the properƟes of real number arithmeƟc. This is meant
to be a succinct, targeted review so we’ll resist the temptaƟon to wax poeƟc
about these axioms and their subtleƟes and refer the interested reader to amore
formal course in Abstract Algebra. There are two (primary) operaƟons one can
perform with real numbers: addiƟon and mulƟplicaƟon.

DefiniƟon 10 ProperƟes of Real Number AddiƟon

• Closure: For all real numbers a and b, a+ b is also a real number.

• CommutaƟvity: For all real numbers a and b, a+ b = b+ a.

• AssociaƟvity: For all real numbers a, b and c, a+ (b+ c) = (a+
b) + c.

• IdenƟty: There is a real number ‘0’ so that for all real numbers a,
a+ 0 = a.

• Inverse: For all real numbers a, there is a real number −a such
that a+ (−a) = 0.

• DefiniƟon of SubtracƟon: For all real numbers a and b, a − b =
a+ (−b).

Next, we give real number mulƟplicaƟon a similar treatment. Recall that
we may denote the product of two real numbers a and b a variety of ways: ab,
a · b, a(b), (a)(b) and so on. We’ll refrain from using a × b for real number
mulƟplicaƟon in this text.

DefiniƟon 11 ProperƟes of Real Number MulƟplicaƟon

• Closure: For all real numbers a and b, ab is also a real number.

• CommutaƟvity: For all real numbers a and b, ab = ba.

• AssociaƟvity: For all real numbers a, b and c, a(bc) = (ab)c.

• IdenƟty: There is a real number ‘1’ so that for all real numbers a,
a · 1 = a.

• Inverse: For all real numbers a ̸= 0, there is a real number
1
a
such

that a
(
1
a

)
= 1.

• DefiniƟon of Division: For all real numbers a and b ̸= 0, a ÷ b =
a
b
= a

(
1
b

)
.

While most students (and some faculty) tend to skip over these properƟes
or give them a cursory glance at best, it is important to realize that the prop-
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1.2 Real Number ArithmeƟc

erƟes stated above are what drive the symbolic manipulaƟon for all of Algebra.
When lisƟng a tally of more than two numbers, 1+ 2+ 3 for example, we don’t
need to specify the order in which those numbers are added. NoƟce though,
try as we might, we can add only two numbers at a Ɵme and it is the associa-
Ɵve property of addiƟon which assures us that we could organize this sum as
(1+2)+3 or 1+(2+3). This brings up a note about ‘grouping symbols’. Recall
that parentheses and brackets are used in order to specify which operaƟons are
to be performed first. In the absence of such grouping symbols, mulƟplicaƟon
(and hence division) is given priority over addiƟon (and hence subtracƟon). For
example, 1 + 2 · 3 = 1 + 6 = 7, but (1 + 2) · 3 = 3 · 3 = 9. As you may
recall, we can ‘distribute’ the 3 across the addiƟon if we really wanted to do the
mulƟplicaƟon first: (1+ 2) · 3 = 1 · 3+ 2 · 3 = 3+ 6 = 9. More generally, we
have the following.

DefiniƟon 12 The DistribuƟve Property and Factoring

For all real numbers a, b and c:

• DistribuƟve Property: a(b+ c) = ab+ac and (a+b)c = ac+bc.

• Factoring: ab+ ac = a(b+ c) and ac+ bc = (a+ b)c.

Warning: A common source of errors for beginning students is the misuse (that
is, lack of use) of parentheses. When in doubt, more is beƩer than less: re-
dundant parentheses add cluƩer, but do not change meaning, whereas wriƟng
2x+ 1 when you meant to write 2(x+ 1) is almost guaranteed to cause you to
make a mistake. (Even if you’re able to proceed correctly in spite of your lack of
proper notaƟon, this is the sort of thing that will get you on your grader’s bad
side, so it’s probably best to avoid the problem in the first place.)

It is worth poinƟng out thatwe didn’t really need to list the DistribuƟve Prop-
erty both for a(b+ c) (distribuƟng from the leŌ) and (a+ b)c (distribuƟng from
the right), since the commutaƟve property of mulƟplicaƟon gives us one from
the other. Also, ‘factoring’ really is the same equaƟon as the distribuƟve prop-
erty, just read from right to leŌ. These are the first of many redundancies in
this secƟon, and they exist in this review secƟon for one reason only - in our
experience, many students see these things differently so we will list them as
such.

It is hard to overstate the importance of the DistribuƟve Property. For ex-
ample, in the expression 5(2 + x), without knowing the value of x, we cannot
perform the addiƟon inside the parentheses first; we must rely on the distribu-
Ɵve property here to get 5(2 + x) = 5 · 2 + 5 · x = 10 + 5x. The DistribuƟve
Property is also responsible for combining ‘like terms’. Why is 3x + 2x = 5x?
Because 3x+ 2x = (3+ 2)x = 5x.

We conƟnue our review with summaries of other properƟes of arithmeƟc,
each of which can be derived from the properƟes listed above. First up are prop-
erƟes of the addiƟve idenƟty 0.
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The Zero Product Property drives most of
the equaƟon solving algorithms in Alge-
bra because it allows us to take compli-
cated equaƟons and reduce them to sim-
pler ones. For example, you may recall
that one way to solve x2 + x− 6 = 0 is by
factoring the leŌ hand side of this equa-
Ɵon to get (x−2)(x+3) = 0. From here,
we apply the Zero Product Property and
set each factor equal to zero. This yields
x − 2 = 0 or x + 3 = 0 so x = 2 or
x = −3. This applicaƟon to solving equa-
Ɵons leads, in turn, to some deep and
profound structure theorems in Chapter
4.
The expression 0

0 is technically an ‘in-
determinate form’ as opposed to be-
ing strictly ‘undefined’ meaning that with
Calculus we can make some sense of it in
certain situaƟons. We’ll talk more about
this in Chapter 5.

Note: A common denominator is not re-
quired tomulƟply or divide fracƟons!

It’s always worth remembering that divi-
sion is the same as mulƟplicaƟon by the
reciprocal. You’d be surprised how oŌen
this comes in handy.

Note: A common denominator is re-
quired to add or subtract fracƟons!

Note: The onlyway to change the denom-
inator is to mulƟply both it and the nu-
merator by the same nonzero value be-
cause we are, in essence, mulƟplying the
fracƟon by 1.
We reduce fracƟons by ‘cancelling’ com-
mon factors - this is really just read-
ing the previous property ‘from right to
leŌ’.CauƟon: We may only cancel com-
mon factors from both numerator and
denominator.

Chapter 1 The Real Numbers

Theorem 2 ProperƟes of Zero

Suppose a and b are real numbers.

• Zero Product Property: ab = 0 if and only if a = 0 or b = 0 (or
both)
Note: This not only says that 0 ·a = 0 for any real number a, it also
says that the onlyway to get an answer of ‘0’ whenmulƟplying two
real numbers is to have one (or both) of the numbers be ‘0’ in the
first place.

• Zeros in FracƟons: If a ̸= 0,
0
a
= 0 ·

(
1
a

)
= 0.

Note: The quanƟty
a
0
is undefined.

We now conƟnue with a review of arithmeƟc with fracƟons.

Key Idea 2 ProperƟes of FracƟons

Suppose a, b, c and d are real numbers. Assume them to be nonzero
whenever necessary; for example, when they appear in a denominator.

• IdenƟty ProperƟes: a =
a
1
and

a
a
= 1.

• FracƟon Equality:
a
b
=

c
d
if and only if ad = bc.

• MulƟplicaƟon of FracƟons:
a
b
· c
d

=
ac
bd

. In parƟcular:
a
b
· c =

a
b
· c
1
=

ac
b

• Division of FracƟons:
a
b

/ c
d

=
a
b
· d
c
=

ad
bc

.

In parƟcular: 1
/a
b

=
b
a
and

a
b

/
c =

a
b

/ c
1

=
a
b
· 1
c
=

a
bc

• AddiƟon and SubtracƟon of FracƟons:
a
b
± c

b
=

a± c
b

.

• Equivalent FracƟons:
a
b
=

ad
bd

, since
a
b
=

a
b
· 1 =

a
b
· d
d
=

ad
bd

• ‘Reducing’ FracƟons:
a�d
b�d

=
a
b
, since

ad
bd

=
a
b
· d
d
=

a
b
· 1 =

a
b
.

In parƟcular,
ab
b

= a since
ab
b

=
ab
1 · b

=
a�b
1 · �b

=
a
1

= a and
b− a
a− b

=
(−1)����(a− b)
����(a− b)

= −1.

Next up is a review of the arithmeƟc of ‘negaƟves’. On page 10 we first in-
troduced the dash which we all recognize as the ‘negaƟve’ symbol in terms of
the addiƟve inverse. For example, the number−3 (read ‘negaƟve 3’) is defined
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In this text we do not disƟnguish typo-
graphically between the dashes in the ex-
pressions ‘5 − 3’ and ‘−3’ even though
they are mathemaƟcally quite different.
In the expression ‘5− 3,’ the dash is a bi-
nary operaƟon (that is, an operaƟon re-
quiring two numbers) whereas in ‘−3’,
the dash is a unary operaƟon (that is,
an operaƟon requiring only one number).
You might ask, ‘Who cares?’ Your calcula-
tor does - that’s who! In the text we can
write−3−3 = −6 but that will not work
in your calculator. Instead you’d need to
type−3−3 to get−6where the first dash
comes from the ‘+/−’ key.

It might be junior high (elementary?)
school material, but arithmeƟc with frac-
Ɵons is one of the most common sources
of errors among university students. If
you’re not comfortable workingwith frac-
Ɵons, we strongly recommend seeing
your instructor (or a tutor) to go over
this material unƟl you’re completely con-
fident that you understand it. Experience
(and even formal educaƟonal studies)
suggest that your success handling frac-
Ɵons corresponds preƩy well with your
overall success in passing your Mathe-
maƟcs courses.

1.2 Real Number ArithmeƟc

so that 3 + (−3) = 0. We then defined subtracƟon using the concept of the
addiƟve inverse again so that, for example, 5− 3 = 5+ (−3).

Key Idea 3 ProperƟes of NegaƟves

Given real numbers a and b we have the following.

• AddiƟve Inverse ProperƟes: −a = (−1)a and−(−a) = a

• Products of NegaƟves: (−a)(−b) = ab.

• NegaƟves and Products: −ab = −(ab) = (−a)b = a(−b).

• NegaƟves and FracƟons: If b is nonzero, −a
b

=
−a
b

=
a
−b

and
−a
−b

=
a
b
.

• ‘DistribuƟng’ NegaƟves: −(a + b) = −a − b and −(a − b) =
−a+ b = b− a.

• ‘Factoring’ NegaƟves: −a− b = −(a+ b) and b− a = −(a− b).

An important point here is that when we ‘distribute’ negaƟves, we do so
across addiƟon or subtracƟon only. This is because we are really distribuƟng a
factor of−1 across each of these terms: −(a+ b) = (−1)(a+ b) = (−1)(a)+
(−1)(b) = (−a)+(−b) = −a−b. NegaƟves do not ‘distribute’ acrossmulƟpli-
caƟon: −(2·3) ̸= (−2)·(−3). Instead,−(2·3) = (−2)·(3) = (2)·(−3) = −6.
The same sort of thing goes for fracƟons: − 3

5 can be wriƩen as −3
5 or 3

−5 , but
not −3

−5 . It’s about Ɵmewe did a few examples to see how these properƟes work
in pracƟce.

Example 3 ArithmeƟc with fracƟons
Perform the indicated operaƟons and simplify. By ‘simplify’ here, we mean to
have the final answer wriƩen in the form a

b where a and b are integers which
have no common factors. Said another way, we want a

b in ‘lowest terms’.

1.
1
4
+

6
7

2.
5
12

−
(
47
30

− 7
3

)
3.

12
5

− 7
24

1+
(
12
5

)(
7
24

)

4.
(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
5.
(
3
5

)(
5
13

)
−
(
4
5

)(
−12
13

)

SÊ½çã®ÊÄ

1. It may seem silly to start with an example this basic but experience has
taught us not to take much for granted. We start by finding the lowest
common denominator and then we rewrite the fracƟons using that new
denominator. Since 4 and 7 are relaƟvely prime, meaning they have no
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We could have used 12 · 30 · 3 = 1080 as
our common denominator but then the
numerators would become unnecessarily
large. It’s best to use the lowest common
denominator.

Chapter 1 The Real Numbers

factors in common, the lowest common denominator is 4 · 7 = 28.

1
4
+

6
7
=

1
4
· 7
7
+

6
7
· 4
4

Equivalent FracƟons

=
7
28

+
24
28

MulƟplicaƟon of FracƟons

=
31
28

AddiƟon of FracƟons

The result is in lowest terms because 31 and 28 are relaƟvely prime so
we’re done.

2. We could begin with the subtracƟon in parentheses, namely 47
30 −

7
3 , and

then subtract that result from 5
12 . It’s easier, however, to first distribute

the negaƟve across the quanƟty in parentheses and then use the Associa-
Ɵve Property to perform all of the addiƟon and subtracƟon in one step.
The lowest common denominator for all three fracƟons is 60.

5
12

−
(
47
30

− 7
3

)
=

5
12

− 47
30

+
7
3

Distribute the NegaƟve

=
5
12

· 5
5
− 47

30
· 2
2
+

7
3
· 20
20

Equivalent FracƟons

=
25
60

− 94
60

+
140
60

MulƟplicaƟon of FracƟons

=
71
60

AddiƟon and SubtracƟon of FracƟons

The numerator and denominator are relaƟvely prime so the fracƟon is in
lowest terms and we have our final answer.

3. What we are asked to simplify in this problem is known as a ‘complex’
or ‘compound’ fracƟon. Simply put, we have fracƟons within a fracƟon.
The longest division line (also called a ‘vinculum’) acts as a grouping sym-
bol, quite literally dividing the compound fracƟon into a numerator (con-
taining fracƟons) and a denominator (which in this case does not contain
fracƟons):

12
5

− 7
24

1+
(
12
5

)(
7
24

) =

(
12
5

− 7
24

)
(
1+

(
12
5

)(
7
24

))

The first step to simplifying a compound fracƟon like this one is to see if
you can simplify the liƩle fracƟons inside it. There are two ways to pro-
ceed. One is to simplify the numerator and denominator separately, and
then use the fact that division is the same thing as mulƟplicaƟon by the
reciprocal, as follows:
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1.2 Real Number ArithmeƟc

(
12
5

− 7
24

)
(
1+

(
12
5

)(
7
24

)) =

(
12
5

· 24
24

− 7
24

· 5
5

)
(
1 · 120

120
+

(
12
5

)(
7
24

)) Equivalent FracƟons

=
288/120− 35/120
120/120+ 84/120

MulƟplicaƟon of fracƟons

=
253/120
204/120

AddiƟon and subtracƟon of fracƟons

=
253
��120

·�
�120

204
Division of fracƟons and cancellaƟon

=
253
204

Since 253 = 11 · 23 and 204 = 2 · 2 · 3 · 17 have no common factors our
result is in lowest terms which means we are done.
While there is nothing wrong with the above approach, we can also use
our Equivalent FracƟons property to rid ourselves of the ‘compound’ na-
ture of this fracƟon straight away. The idea is to mulƟply both the numer-
ator and denominator by the lowest common denominator of each of the
‘smaller’ fracƟons - in this case, 24 · 5 = 120.

(
12
5

− 7
24

)
(
1+

(
12
5

)(
7
24

)) =

(
12
5

− 7
24

)
· 120(

1+
(
12
5

)(
7
24

))
· 120

Equivalent FracƟons

=

(
12
5

)
(120)−

(
7
24

)
(120)

(1)(120) +
(
12
5

)(
7
24

)
(120)

DistribuƟve Property

=

12 · 120
5

− 7 · 120
24

120+
12 · 7 · 120

5 · 24

MulƟply fracƟons

=

12 · 24 · �5
�5

− 7 · 5 ·��24
��24

120+
12 · 7 · �5 ·��24

�5 ·��24

Factor and cancel

=
(12 · 24)− (7 · 5)
120+ (12 · 7)

=
288− 35
120+ 84

=
253
204

,

which is the same as we obtained above.

4. This fracƟon may look simpler than the one before it, but the negaƟve
signs and parentheses mean that we shouldn’t get complacent. Again we
note that the division line here acts as a grouping symbol. That is,

15
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(2(2) + 1)(−3− (−3))− 5(4− 7)
4− 2(3)

=
((2(2) + 1)(−3− (−3))− 5(4− 7))

(4− 2(3))

This means that we should simplify the numerator and denominator first,
then perform the division last. We tend to what’s in parentheses first,
giving mulƟplicaƟon priority over addiƟon and subtracƟon.

(2(2) + 1)(−3− (−3))− 5(4− 7)
4− 2(3)

=
(4+ 1)(−3+ 3)− 5(−3)

4− 6

=
(5)(0) + 15

−2

=
15
−2

= −15
2

ProperƟes of NegaƟves

Since 15 = 3 · 5 and 2 have no common factors, we are done.

5. In this problem, we have mulƟplicaƟon and subtracƟon. MulƟplicaƟon
takes precedence so we perform it first. Recall that to mulƟply fracƟons,
we do not need to obtain common denominators; rather, we mulƟply
the corresponding numerators together along with the corresponding de-
nominators. Like the previous example, we have parentheses and nega-
Ɵve signs for added fun!(

3
5

)(
5
13

)
−
(
4
5

)(
−12
13

)
=

3 · 5
5 · 13

− 4 · (−12)
5 · 13

MulƟply fracƟons

=
15
65

− −48
65

=
15
65

+
48
65

ProperƟes of NegaƟves

=
15+ 48

65
Add numerators

=
63
65

Since 64 = 3 · 3 · 7 and 65 = 5 · 13 have no common factors, our answer
63
65

is in lowest terms and we are done.

Of the issues discussed in the previous set of examples none causes students
more trouble than simplifying compound fracƟons. We presented two different
methods for simplifying them: one in which we simplified the overall numerator
anddenominator and then performed the division andone inwhichwe removed
the compound nature of the fracƟon at the very beginning. We encourage the
reader to go back and use both methods on each of the compound fracƟons
presented. Keep in mind that when a compound fracƟon is encountered in the
rest of the text it will usually be simplified using only one method and we may
not choose your favourite method. Feel free to use the other one in your notes.

Next, we review exponents and their properƟes. Recall that 2 · 2 · 2 can be
wriƩen as 23 because exponenƟal notaƟon expresses repeated mulƟplicaƟon.
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Note: The expression 00 is an indetermi-
nate form. See the comment regarding
‘ 00 ’ on page 12.

1.2 Real Number ArithmeƟc

In the expression 23, 2 is called the base and 3 is called the exponent. In order
to generalize exponents from natural numbers to the integers, and eventually
to raƟonal and real numbers, it is helpful to think of the exponent as a count of
the number of factors of the base we are mulƟplying by 1. For instance,

23 = 1 · (three factors of two) = 1 · (2 · 2 · 2) = 8.

From this, it makes sense that

20 = 1 · (zero factors of two) = 1.

What about 2−3? The ‘−’ in the exponent indicates that we are ‘taking away’
three factors of two, essenƟally dividing by three factors of two. So,

2−3 = 1÷ (three factors of two) = 1÷ (2 · 2 · 2) = 1
2 · 2 · 2

=
1
8
.

We summarize the properƟes of integer exponents below.

DefiniƟon 13 ProperƟes of Integer Exponents

Suppose a and b are nonzero real numbers and n andm are integers.

• Product Rules: (ab)n = anbn and anam = an+m.

• QuoƟent Rules:
(a
b

)n
=

an

bn
and

an

am
= an−m.

• Power Rule: (an)m = anm.

• NegaƟves in Exponents: a−n =
1
an

.

In parƟcular,
(a
b

)−n
=

(
b
a

)n

=
bn

an
and

1
a−n = an.

• Zero Powers: a0 = 1.

• Powers of Zero: For any natural number n, 0n = 0.
Note: The expression 0n for integers n ≤ 0 is not defined.

While it is important the state the ProperƟes of Exponents, it is also equally
important to take a moment to discuss one of the most common errors in Alge-
bra. It is true that (ab)2 = a2b2 (which some students refer to as ‘distribuƟng’
the exponent to each factor) but you cannot do this sort of thing with addiƟon.
That is, in general, (a + b)2 ̸= a2 + b2. (For example, take a = 3 and b = 4.)
The same goes for any other powers.

With exponents now in the mix, we can now state the Order of OperaƟons
Agreement.

17



Order of operaƟons follows the “PED-
MAS” rule some of youmay have encoun-
tered.

Chapter 1 The Real Numbers

DefiniƟon 14 Order of OperaƟons Agreement

When evaluaƟng an expression involving real numbers:

1. Evaluate any expressions in parentheses (or other grouping sym-
bols.)

2. Evaluate exponents.

3. Evaluate division andmulƟplicaƟon as you read from leŌ to right.

4. Evaluate addiƟon and subtracƟon as you read from leŌ to right.

For example, 2+3 ·42 = 2+3 ·16 = 2+48 = 50. Where students get into
trouble is with things like −32. If we think of this as 0 − 32, then it is clear that
we evaluate the exponent first: −32 = 0 − 32 = 0 − 9 = −9. In general, we
interpret −an = − (an). If we want the ‘negaƟve’ to also be raised to a power,
we must write (−a)n instead. To summarize,−32 = −9 but (−3)2 = 9.

Of course,many of the ‘properƟes’we’ve stated in this secƟon can be viewed
as ways to circumvent the order of operaƟons. We’ve already seen how the dis-
tribuƟve property allows us to simplify 5(2 + x) by performing the indicated
mulƟplicaƟon before the addiƟon that’s in parentheses. Similarly, consider try-
ing to evaluate 230172 · 2−30169. The Order of OperaƟons Agreement demands
that the exponents be dealt with first, however, trying to compute 230172 is a
challenge, even for a calculator. One of the Product Rules of Exponents, how-
ever, allow us to rewrite this product, essenƟally performing the mulƟplicaƟon
first, to get: 230172−30169 = 23 = 8.

Example 4 OperaƟons with exponents
Perform the indicated operaƟons and simplify.

1.
(4− 2)(2 · 4)− (4)2

(4− 2)2
2. 12(−5)(−5 + 3)−4 +

6(−5)2(−4)(−5+ 3)−5

3.

(
5 · 351

436

)
(
5 · 349

434

) 4.
2
(

5
12

)−1

1−
(

5
12

)−2

SÊ½çã®ÊÄ

1. We begin working inside parentheses then deal with the exponents be-
fore working through the other operaƟons. As we saw in Example 3, the
division here acts as a grouping symbol, sowe save the division to the end.

(4− 2)(2 · 4)− (4)2

(4− 2)2
=

(2)(8)− (4)2

(2)2
=

(2)(8)− 16
4

=
16− 16

4
=

0
4

=0

2. As before, we simplify what’s in the parentheses first, then work our way

18



1.2 Real Number ArithmeƟc

through the exponents, mulƟplicaƟon, and finally, the addiƟon.

12(−5)(−5+ 3)−4 + 6(−5)2(−4)(−5+ 3)−5

= 12(−5)(−2)−4 + 6(−5)2(−4)(−2)−5

= 12(−5)
(

1
(−2)4

)
+ 6(−5)2(−4)

(
1

(−2)5

)

= 12(−5)
(

1
16

)
+ 6(25)(−4)

(
1

−32

)

= (−60)
(

1
16

)
+ (−600)

(
1

−32

)

=
−60
16

+

(
−600
−32

)

=
−15 · �4
4 · �4

+
−75 · �8
−4 · �8

=
−15
4

+
−75
−4

=
−15
4

+
75
4

=
−15+ 75

4

=
60
4

= 15

3. The Order of OperaƟons Agreement mandates that we work within each
set of parentheses first, giving precedence to the exponents, then themul-
ƟplicaƟon, and, finally the division. The trouble with this approach is that
the exponents are so large that computaƟon becomes a trifle unwieldy.
What we observe, however, is that the bases of the exponenƟal expres-
sions, 3 and 4, occur in both the numerator and denominator of the com-
pound fracƟon, giving us hope that we can use some of the ProperƟes of
Exponents (the QuoƟent Rule, in parƟcular) to help us out. Our first step
here is to invert andmulƟply. We see immediately that the 5’s cancel aŌer
which we group the powers of 3 together and the powers of 4 together
and apply the properƟes of exponents.(

5 · 351

436

)
(
5 · 349

434

) =
5 · 351

436
· 434

5 · 349
= �5 · 351 · 434

�5 · 349 · 436
=

351

349
· 4

34

436

= 351−49 · 434−36 = 32 · 4−2 = 32 ·
(

1
42

)
= 9 ·

(
1
16

)
=

9
16

4. We have yet another instance of a compound fracƟon so our first order of
business is to rid ourselves of the compound nature of the fracƟon like we
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It’s important that you understand the
difference between the statements y =√
x and y2 = x. As we’ll discuss in Chap-

ter 2, the equaƟon y =
√
x defines y as a

funcƟon of x, which means that for each
value of x ≥ 0 there is only one value of y
such that y =

√
x. For example, y =

√
4

is equivalent to y = 2. On the other
hand, there are two soluƟons to y2 = x;
namely, y =

√
x and y = −

√
x. For

example, the equaƟon y2 = 4 is equiv-
alent to the two equaƟons y = 2 and
y = −2 (or, more concisely, y = ±2).
Since these two equaƟons are closely re-
lated, it’s easy to mix them up. The main
thing to remember is that

√
x always de-

notes the posiƟve square root of x.

Chapter 1 The Real Numbers

did in Example 3. To do this, however, we need to tend to the exponents
first so that we can determine what common denominator is needed to
simplify the fracƟon.

2
(

5
12

)−1

1−
(

5
12

)−2 =

2
(
12
5

)
1−

(
12
5

)2 =

(
24
5

)
1−

(
122

52

)

=

(
24
5

)
1−

(
144
25

) =

(
24
5

)
· 25(

1− 144
25

)
· 25

=

(
24 · 5 · �5

�5

)
(
1 · 25− 144 ·��25

��25

) =
120

25− 144

=
120
−119

= −120
119

Since 120 and 119 have no common factors, we are done.

We close our review of real number arithmeƟcwith a discussion of roots and
radical notaƟon. Just as subtracƟon and division were defined in terms of the
inverse of addiƟon and mulƟplicaƟon, respecƟvely, we define roots by undoing
natural number exponents.

DefiniƟon 15 The principal nth root

Let a be a real number and let n be a natural number. If n is odd, then the
principal nth root of a (denoted n

√
a) is the unique real number saƟsfying(

n
√
a
)n

= a. If n is even, n
√
a is defined similarly provided a ≥ 0 and

n
√
a ≥ 0. The number n is called the indexof the root and the the number

a is called the radicand. For n = 2, we write
√
a instead of 2

√
a.

The reasons for the added sƟpulaƟons for even-indexed roots in DefiniƟon
15 canbe found in the ProperƟes ofNegaƟves. First, for all real numbers, xeven power ≥
0, which means it is never negaƟve. Thus if a is a negaƟve real number, there
are no real numbers xwith xeven power = a. This is why if n is even, n

√
a only exists

if a ≥ 0. The second restricƟon for even-indexed roots is that n
√
a ≥ 0. This

comes from the fact that xeven power = (−x)even power, and we require n
√
a to have

just one value. So even though 24 = 16 and (−2)4 = 16, we require 4
√
16 = 2

and ignore−2.
Dealing with odd powers is much easier. For example, x3 = −8 has one and

only one real soluƟon, namely x = −2, which means not only does 3
√
−8 exist,

there is only one choice, namely 3
√
−8 = −2. Of course, when it comes to solv-

ing x5213 = −117, it’s not so clear that there is one and only one real soluƟon,
let alone that the soluƟon is 5213

√
−117. Such pills are easier to swallow once
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Things get more complicated once com-
plex numbers are involved. Fortunately
(disappoinƟngly?), that’s not a can of
worms we’ll be opening in this course.

1.2 Real Number ArithmeƟc

we’ve thought a bit about such equaƟons graphically, (see Chapter 4) and ulƟ-
mately, these things come from the completeness property of the real numbers
menƟoned earlier.

We list properƟes of radicals below as a ‘theorem’ since they can be jusƟfied
using the properƟes of exponents.

Theorem 3 ProperƟes of Radicals

Let a and b be real numbers and let m and n be natural numbers. If n
√
a

and n
√
b are real numbers, then

• Product Rule: n
√
ab = n

√
a n
√
b

• QuoƟent Rule: n

√
a
b
=

n
√
a

n
√
b
, provided b ̸= 0.

• Power Rule: n
√
am =

(
n
√
a
)m

The proof of Theorem 3 is based on the definiƟon of the principal nth root
and the ProperƟes of Exponents. To establish the product rule, consider the
following. If n is odd, then by definiƟon n

√
ab is the unique real number such that

( n
√
ab)n = ab. Given that ( n

√
a n
√
b)n = ( n

√
a)n( n

√
b)n = ab as well, it must be

the case that n
√
ab = n

√
a n
√
b. If n is even, then n

√
ab is the unique non-negaƟve

real number such that ( n
√
ab)n = ab. Note that since n is even, n

√
a and n

√
b are

also non-negaƟve thus n
√
a n
√
b ≥ 0 as well. Proceeding as above, we find that

n
√
ab = n

√
a n
√
b. The quoƟent rule is proved similarly and is leŌ as an exercise.

The power rule results from repeated applicaƟon of the product rule, so long as
n
√
a is a real number to start with. We leave that as an exercise as well.
We pause here to point out one of the most common errors students make

when working with radicals. Obviously
√
9 = 3,

√
16 = 4 and

√
9+ 16 =√

25 = 5. Thus we can clearly see that 5 =
√
25 =

√
9+ 16 ̸=

√
9 +

√
16 =

3 + 4 = 7 because we all know that 5 ̸= 7. The authors urge you to never
consider ‘distribuƟng’ roots or exponents. It’s wrong and no good will come of
it because in general n

√
a+ b ̸= n

√
a+ n

√
b.

Since radicals have properƟes inherited from exponents, they are oŌenwrit-
ten as such. We define raƟonal exponents in terms of radicals in the box below.

DefiniƟon 16 RaƟonal exponents

Let a be a real number, letm be an integer and let n be a natural number.

• a 1
n = n

√
a whenever n

√
a is a real number. (If n is even we need

a ≥ 0.)

• a m
n =

(
n
√
a
)m

= n
√
am whenever n

√
a is a real number.

It would make life really nice if the raƟonal exponents defined in DefiniƟon
16 had all of the same properƟes that integer exponents have as listed on page
17 - but they don’t. Why not? Let’s look at an example to see what goes wrong.
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Consider the Product Rule which says that (ab)n = anbn and let a = −16,
b = −81 and n = 1

4 . Plugging the values into the Product Rule yields the
equaƟon ((−16)(−81))1/4 = (−16)1/4(−81)1/4. The leŌ side of this equaƟon
is 12961/4 which equals 6 but the right side is undefined because neither root
is a real number. Would it help if, when it comes to even roots (as signified by
even denominators in the fracƟonal exponents), we ensure that everything they
apply to is non-negaƟve? That works for some of the rules - we leave it as an
exercise to see which ones - but does not work for the Power Rule.

Consider the expression
(
a2/3

)3/2. Applying the usual laws of exponents,
we’d be tempted to simplify this as

(
a2/3

)3/2
= a 2

3 ·
3
2 = a1 = a. However, if

we subsƟtute a = −1 and apply DefiniƟon 16, we find (−1)2/3 =
(

3
√
−1
)2

=

(−1)2 = 1 so that
(
(−1)2/3

)3/2
= 13/2 =

(√
1
)3

= 13 = 1. Thus in this
case we have

(
a2/3

)3/2 ̸= a even though all of the roots were defined. It is
true, however, that

(
a3/2

)2/3
= a and we leave this for the reader to show.

The moral of the story is that when simplifying powers of raƟonal exponents
where the base is negaƟve or worse, unknown, it’s usually best to rewrite them
as radicals.

Example 5 Combining operaƟons
Perform the indicated operaƟons and simplify.

1.
−(−4)−

√
(−4)2 − 4(2)(−3)
2(2)

2.
2
(√

3
3

)
1−

(√
3
3

)2

3. ( 3
√
−2− 3

√
−54)2

4. 2
(
9
4
− 3
)1/3

+ 2
(
9
4

)(
1
3

)(
9
4
− 3
)−2/3

SÊ½çã®ÊÄ

1. We begin in the numerator and note that the radical here acts a grouping
symbol, so our first order of business is to simplify the radicand. (The line
extending horizontally from the square root symbol ‘

√
is, you guessed it,

another vinculum.)
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−(−4)−
√
(−4)2 − 4(2)(−3)
2(2)

=
−(−4)−

√
16− 4(2)(−3)
2(2)

=
−(−4)−

√
16− 4(−6)

2(2)

=
−(−4)−

√
16− (−24)

2(2)

=
−(−4)−

√
16+ 24

2(2)

=
−(−4)−

√
40

2(2)

As you may recall, 40 can be factored using a perfect square as 40 =
4 · 10 so we use the product rule of radicals to write

√
40 =

√
4 · 10 =√

4
√
10 = 2

√
10. This lets us factor a ‘2’ out of both terms in the numer-

ator, eventually allowing us to cancel it with a factor of 2 in the denomi-
nator.

−(−4)−
√
40

2(2)
=

−(−4)− 2
√
10

2(2)
=

4− 2
√
10

2(2)

=
2 · 2− 2

√
10

2(2)
=

2(2−
√
10)

2(2)

= �2(2−
√
10)

�2(2)
=

2−
√
10

2

Since the numerator and denominator have nomore common factors, we
are done. (Do you see why we aren’t ‘cancelling’ the remaining 2’s?)

2. Once again we have a compound fracƟon, so we first simplify the expo-
nent in the denominator to see which factor we’ll need to mulƟply by in
order to clean up the fracƟon.

2
(√

3
3

)
1−

(√
3
3

)2 =

2
(√

3
3

)
1−

(
(
√
3)2

32

) =

2
(√

3
3

)
1−

(
3
9

)

=

2
(√

3
3

)
1−

(
1 · �3
3 · �3

) =

2
(√

3
3

)
1−

(
1
3

)

=

2
(√

3
3

)
· 3(

1−
(
1
3

))
· 3

=

2 ·
√
3 · �3
�3

1 · 3− 1 · �3
�3

=
2
√
3

3− 1
= �2

√
3

�2
=

√
3
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3. Working inside the parentheses, we first encounter 3
√
−2. While the −2

isn’t a perfect cube, (of an integer, that is!) wemay think of−2 = (−1)(2).
Since (−1)3 = −1, −1 is a perfect cube, and we may write 3

√
−2 =

3
√
(−1)(2) = 3

√
−1 3

√
2 = − 3

√
2. When it comes to 3

√
54, we may write

it as 3
√
(−27)(2) = 3

√
−27 3

√
2 = −3 3

√
2. So,

3
√
−2− 3

√
−54 = − 3

√
2− (−3 3

√
2) = − 3

√
2+ 3 3

√
2.

At this stage, we can simplify − 3
√
2 + 3 3

√
2 = 2 3

√
2. You may remember

this as being called ‘combining like radicals,’ but it is in fact just another
applicaƟon of the distribuƟve property:

− 3
√
2+ 3 3

√
2 = (−1) 3

√
2+ 3 3

√
2 = (−1+ 3) 3

√
2 = 2 3

√
2.

Puƫng all this together, we get:

( 3
√
−2− 3

√
−54)2 = (− 3

√
2+ 3 3

√
2)2 = (2 3

√
2)2

= 22( 3
√
2)2 = 4 3

√
22 = 4 3

√
4

Since there are no perfect integer cubes which are factors of 4 (apart from
1, of course), we are done.

4. We start working in parentheses and get a common denominator to sub-
tract the fracƟons:

9
4
− 3 =

9
4
− 3 · 4

1 · 4
=

9
4
− 12

4
=

−3
4

Since the denominators in the fracƟonal exponents are odd, we can pro-
ceed using the properƟes of exponents:

2
(
9
4
− 3
)1/3

+ 2
(
9
4

)(
1
3

)(
9
4
− 3
)−2/3

= 2
(
−3
4

)1/3

+ 2
(
9
4

)(
1
3

)(
−3
4

)−2/3

= 2
(
(−3)1/3

(4)1/3

)
+ 2

(
9
4

)(
1
3

)(
4
−3

)2/3

= 2
(
(−3)1/3

(4)1/3

)
+ 2

(
9
4

)(
1
3

)(
(4)2/3

(−3)2/3

)

=
2 · (−3)1/3

41/3
+

2 · 9 · 1 · 42/3

4 · 3 · (−3)2/3

=
2 · (−3)1/3

41/3
+ �2 · 3 · �3 · 42/3

2 · �2 · �3 · (−3)2/3

=
2 · (−3)1/3

41/3
+

3 · 42/3

2 · (−3)2/3

At this point, we could start looking for commondenominators but it turns
out that these fracƟons reduce even further. Since 4 = 22, 41/3 = (22)1/3 =
22/3. Similarly, 42/3 = (22)2/3 = 24/3. The expressions (−3)1/3 and
(−3)2/3 contain negaƟve bases so we proceed with cauƟon and convert
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them back to radical notaƟon to get: (−3)1/3 = 3
√
−3 = − 3

√
3 = −31/3

and (−3)2/3 = ( 3
√
−3)2 = (− 3

√
3)2 = ( 3

√
3)2 = 32/3. Hence:

2 · (−3)1/3

41/3
+

3 · 42/3

2 · (−3)2/3
=

2 · (−31/3)
22/3

+
3 · 24/3

2 · 32/3

=
21 · (−31/3)

22/3
+

31 · 24/3

21 · 32/3

= 21−2/3 · (−31/3) + 31−2/3 · 24/3−1

= 21/3 · (−31/3) + 31/3 · 21/3

= −21/3 · 31/3 + 31/3 · 21/3

= 0
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Exercises 1.2
Problems
In Exercises 1 – 33, perform the indicated operaƟons and sim-
plify.

1. 5− 2+ 3

2. 5− (2+ 3)

3. 2
3
− 4

7

4. 3
8
+

5
12

5. 5− 3
−2− 4

6. 2(−3)
3− (−3)

7. 2(3)− (4− 1)
22 + 1

8. 4− 5.8
2− 2.1

9. 1− 2(−3)
5(−3) + 7

10. 5(3)− 7
2(3)2 − 3(3)− 9

11. 2((−1)2 − 1)
((−1)2 + 1)2

12. (−2)2 − (−2)− 6
(−2)2 − 4

13.
3− 4

9
−2− (−3)

14.
2
3 −

4
5

4− 7
10

15.
2
( 4
3

)
1−

( 4
3

)2

16.
1−

( 5
3

) ( 3
5

)
1+

( 5
3

) ( 3
5

)
17.

(
2
3

)−5

18. 3−1 − 4−2

19. 1+ 2−3

3− 4−1

20. 3 · 5100

12 · 598

21.
√
32 + 42

22.
√
12−

√
75

23. (−8)2/3 − 9−3/2

24.
(
− 32

9

)−3/5

25.
√

(3− 4)2 + (5− 2)2

26.
√

(2− (−1))2 +
( 1
2 − 3

)2
27.

√
(
√
5− 2

√
5)2 + (

√
18−

√
8)2

28. −12+
√
18

21

29.
−2−

√
(2)2 − 4(3)(−1)
2(3)

30.
−(−4) +

√
(−4)2 − 4(1)(−1)
2(1)

31. 2(−5)(−5+ 1)−1 + (−5)2(−1)(−5+ 1)−2

32. 3
√

2(4) + 1+ 3(4)
( 1
2

)
(2(4) + 1)−1/2(2)

33. 2(−7) 3
√

1− (−7) + (−7)2
( 1
3

)
(1− (−7))−2/3(−1)
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The Cartesian Plane is named in honour
of René Descartes.

Usually extending off towards infinity is
indicated by arrows, but here, the arrows
are used to indicate the direcƟon of in-
creasing values of x and y.

The names of the coordinates can vary
depending on the context of the appli-
caƟon. If, for example, the horizontal
axis represented Ɵme we might choose
to call it the t-axis. The first number in
the ordered pair would then be the t-
coordinate.

1.3 The Cartesian Coordinate Plane

1.3 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite
Algebra and Geometry. Simply put, wemust find a way to draw algebraic things.
Let’s start with possibly the greatest mathemaƟcal achievement of all Ɵme: the
Cartesian Coordinate Plane. Imagine two real number lines crossing at a right
angle at 0 as drawn below.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The horizontal number line is usually called the x-axiswhile the verƟcal num-
ber line is usually called the y-axis. As with the usual number line, we imagine
these axes extending off indefinitely in both direcƟons. Having two number lines
allows us to locate the posiƟons of points offof the number lines aswell as points
on the lines themselves.

For example, consider the point P on the next page. To use the numbers on
the axes to label this point, we imagine dropping a verƟcal line from the x-axis to
P and extending a horizontal line from the y-axis to P. This process is someƟmes
called ‘projecƟng’ the point P to the x- (respecƟvely y-) axis. We then describe
the point P using the ordered pair (2,−4). The first number in the ordered pair
is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate. Taken together, the ordered pair (2,−4) comprise the Cartesian
coordinates of the point P. In pracƟce, the disƟncƟon between a point and its
coordinates is blurred; for example, we oŌen speak of ‘the point (2,−4).’ We
can think of (2,−4) as instrucƟons on how to reach P from the origin (0, 0) by
moving 2 units to the right and 4 units downwards. NoƟce that the order in the
ordered pair is important− if we wish to plot the point (−4, 2), we would move
to the leŌ 4 units from the origin and then move upwards 2 units, as below on
the right.
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Cartesian coordinates are someƟmes re-
ferred to as rectangular coordinates, to
disƟnguish them from other coordinate
systems such as polar coordinates.

The leƩer O is almost always reserved for
the origin.

Chapter 1 The Real Numbers
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When we speak of the Cartesian Coordinate Plane, we mean the set of all
possible ordered pairs (x, y) as x and y take values from the real numbers. Below
is a summary of important facts about Cartesian coordinates.

Key Idea 4 Important Facts about the Cartesian Coordinate Plane

• (a, b) and (c, d) represent the same point in the plane if and only
if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both
axes.

Example 6 Ploƫng points in the Cartesian Plane
Plot the following points: A(5, 8), B

(
− 5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F(0, 5), G(−7, 0), H(0,−9), O(0, 0).

SÊ½çã®ÊÄ To plot these points, we start at the origin and move to the
right if the x-coordinate is posiƟve; to the leŌ if it is negaƟve. Next, we move up
if the y-coordinate is posiƟve or down if it is negaƟve. If the x-coordinate is 0,
we start at the origin and move along the y-axis only. If the y-coordinate is 0 we
move along the x-axis only.

28



x

y

Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0
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Figure 1.9: The four quadrants of the
Cartesian plane

1.3 The Cartesian Coordinate Plane
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y
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The axes divide the plane into four regions called quadrants. They are la-
belled with Roman numerals and proceed counterclockwise around the plane:
see Figure 1.9.

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in
Quadrant III and (1,−2) in Quadrant IV. If a point other than the origin happens
to lie on the axes, we typically refer to that point as lying on the posiƟve or
negaƟve x-axis (if y = 0) or on the posiƟve or negaƟve y-axis (if x = 0). For
example, (0, 4) lies on the posiƟve y-axis whereas (−117, 0) lies on the negaƟve
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of MathemaƟcs is symmetry.
There are many types of symmetry in MathemaƟcs, but three of them can be
discussed easily using Cartesian Coordinates.

DefiniƟon 17 Symmetry in the Cartesian Plane

Two points (a, b) and (c, d) in the plane are said to be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d
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0 x

y

P (x, y)Q(−x, y)

S(x,−y)R(−x,−y)

Figure 1.10: The three types of symmetry
in the plane
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P (−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1
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3

Figure 1.11: The point P(−2, 3) and its
three reflecƟons

Chapter 1 The Real Numbers

In Figure 1.10, P and S are symmetric about the x-axis, as are Q and R; P and
Q are symmetric about the y-axis, as are R and S; and P and R are symmetric
about the origin, as are Q and S.

Example 7 Finding points exhibiƟng symmetry
Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y-axis 3. origin

Check your answer by ploƫng the points.

SÊ½çã®ÊÄ The figure aŌer DefiniƟon 17 gives us a good way to think
about finding symmetric points in terms of taking the opposites of the x- and/or
y-coordinates of P(−2, 3).

1. To find the point symmetric about the x-axis, we replace the y-coordinate
with its opposite to get (−2,−3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate
with its opposite to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-
coordinates with their opposites to get (2,−3).
The points are ploƩed in Figure 1.11.

One way to visualize the processes in the previous example is with the con-
cept of a reflecƟon. If we start with our point (−2, 3) and pretend that the x-axis
is a mirror, then the reflecƟon of (−2, 3) across the x-axis would lie at (−2,−3).
If we pretend that the y-axis is a mirror, the reflecƟon of (−2, 3) across that axis
would be (2, 3). If we reflect across the x-axis and then the y-axis, we would
go from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the
point symmetric to (−2, 3) about the origin. We summarize and generalize this
process below.

Key Idea 5 ReflecƟons in the Cartesian Plane

To reflect a point (x, y) about the:

• x-axis, replace y with−y.

• y-axis, replace x with−x.

• origin, replace x with−x and y with−y.

1.3.1 Distance in the Plane
Another important concept in Geometry is the noƟon of length. If we are go-
ing to unite Algebra and Geometry using the Cartesian Plane, then we need to
develop an algebraic understanding of what distance in the plane means. Sup-
pose we have two points, P (x0, y0) and Q (x1, y1) , in the plane. By the distance
d between P and Q, we mean the length of the line segment joining P with Q.
(Remember, given any two disƟnct points in the plane, there is a unique line
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P (x0, y0)

Q (x1, y1)

d

P (x0, y0)

Q (x1, y1)

d

(x1, y0)

Figure 1.12: Distance between P and Q

1.3 The Cartesian Coordinate Plane

containing both points.) Our goal now is to create an algebraic formula to com-
pute the distance between these two points. Consider the generic situaƟon in
Figure 1.12.

With a liƩle more imaginaƟon, we can envision a right triangle whose hy-
potenuse has length d as drawn above on the right. From the laƩer figure, we
see that the lengths of the legs of the triangle are |x1 − x0| and |y1 − y0| so the
Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2
+ (y1 − y0)

2
= d2

(Do you remember why we can replace the absolute value notaƟon with
parentheses?) By extracƟng the square root of both sides of the second equa-
Ɵon and using the fact that distance is never negaƟve, we get

Key Idea 6 The Distance Formula

The distance d between the points P (x0, y0) and Q (x1, y1) is:

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

It is not always the case that the points P andQ lend themselves to construct-
ing such a triangle. If the points P and Q are arranged verƟcally or horizontally,
or describe the exact same point, we cannot use the above geometric argument
to derive the distance formula. It is leŌ to the reader in Exercise 16 to verify
EquaƟon 6 for these cases.

Example 8 Distance between two points
Find and simplify the distance between P(−2, 3) and Q(1,−3).

SÊ½çã®ÊÄ

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

=
√
(1− (−2))2 + (−3− 3)2

=
√
9+ 36

= 3
√
5

So the distance is 3
√
5.

Example 9 Finding points at a given distance
Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

SÊ½çã®ÊÄ We shall soon see that the points we wish to find are on the
line x = 1, but for now we’ll just view them as points of the form (1, y).

We require that the distance from (3, 2) to (1, y) be 4. TheDistance Formula,
EquaƟon 6, yields
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(1, y)

(3, 2)
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distance is 4 units
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Figure 1.13: Diagram for Example 9

P (x0, y0)

Q (x1, y1)

M

Figure 1.14: The midpoint of a line seg-
ment
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d =

√
(x1 − x0)

2
+ (y1 − y0)

2

4 =
√
(1− 3)2 + (y− 2)2

4 =
√
4+ (y− 2)2

42 =
(√

4+ (y− 2)2
)2

squaring both sides

16 = 4+ (y− 2)2

12 = (y− 2)2

(y− 2)2 = 12

y− 2 = ±
√
12 extracƟng the square root

y− 2 = ±2
√
3

y = 2± 2
√
3

We obtain two answers: (1, 2 + 2
√
3) and (1, 2 − 2

√
3). The reader is en-

couraged to think about why there are two answers.

Related to finding the distance between two points is the problem of find-
ing themidpoint of the line segment connecƟng two points. Given two points,
P (x0, y0) and Q (x1, y1), the midpoint M of P and Q is defined to be the point
on the line segment connecƟng P and Q whose distance from P is equal to its
distance from Q.

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we get
the following formula.

Key Idea 7 The Midpoint Formula

The midpointM of the line segment connecƟng P (x0, y0) and Q (x1, y1)
is:

M =

(
x0 + x1

2
,
y0 + y1

2

)

If we let d denote the distance between P andQ, we leave it as Exercise 17 to
show that the distance between P andM is d/2which is the same as the distance
betweenM and Q. This suffices to show that Key Idea 7 gives the coordinates of
the midpoint.

Example 10 Finding the midpoint of a line segment
Find the midpoint of the line segment connecƟng P(−2, 3) and Q(1,−3).

SÊ½çã®ÊÄ

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3+ (−3)

2

)
=

(
−1
2
,
0
2

)
=

(
−1
2
, 0
)
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1.3 The Cartesian Coordinate Plane

The midpoint is
(
− 1

2 , 0
)
.

We close with a more abstract applicaƟon of the Midpoint Formula. We will
revisit the following example in Exercise 72 in SecƟon 3.1.

Example 11 An abstract midpoint problem
If a ̸= b, prove that the line y = x equally divides the line segment with end-
points (a, b) and (b, a).

SÊ½çã®ÊÄ To prove the claim, we use EquaƟon 7 to find the midpoint

M =

(
a+ b
2

,
b+ a
2

)
=

(
a+ b
2

,
a+ b
2

)
Since the x and y coordinates of this point are the same, we find that the

midpoint lies on the line y = x, as required.

33



Exercises 1.3
Problems
1. Plot and label the points A(−3,−7), B(1.3,−2),

C(π,
√
10), D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8)

and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y
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2. For each point given in Exercise 1 above

• IdenƟfy the quadrant or axis in/on which the point
lies.

• Find the point symmetric to the given point about the
x-axis.

• Find the point symmetric to the given point about the
y-axis.

• Find the point symmetric to the given point about the
origin.

In Exercises 3 – 10, find the distance d between the points and
the midpointM of the line segment which connects them.

3. (1, 2), (−3, 5)

4. (3,−10), (−1, 2)

5.
(
1
2
, 4
)
,
(
3
2
,−1

)

6.
(
−2
3
,
3
2

)
,
(
7
3
, 2
)

7.
(
24
5
,
6
5

)
,
(
−11

5
,−19

5

)
.

8.
(√

2,
√
3
)
,
(
−
√
8,−

√
12
)

9.
(
2
√
45,

√
12
)
,
(√

20,
√
27
)
.

10. (0, 0), (x, y)

11. Find all of the points of the form (x,−1) which are 4 units
from the point (3, 2).

12. Find all of the points on the y-axis which are 5 units from
the point (−5, 3).

13. Find all of the points on the x-axis which are 2 units from
the point (−1, 1).

14. Find all of the points of the form (x,−x) which are 1 unit
from the origin.

15. Let’s assume for a moment that we are standing at the ori-
gin and the posiƟve y-axis points due North while the pos-
iƟve x-axis points due East. Our Sasquatch-o-meter tells us
that Sasquatch is 3milesWest and 4miles South of our cur-
rent posiƟon. What are the coordinates of his posiƟon?
How far away is he from us? If he runs 7 miles due East
what would his new posiƟon be?

16. Verify the Distance Formula 6 for the cases when:

(a) The points are arranged verƟcally. (Hint: Use P(a, y0)
and Q(a, y1).)

(b) The points are arranged horizontally. (Hint: Use
P(x0, b) and Q(x1, b).)

(c) The points are actually the same point. (You
shouldn’t need a hint for this one.)

17. Verify the Midpoint Formula by showing the distance be-
tween P(x1, y1) and M and the distance between M and
Q(x2, y2) are both half of the distance between P and Q.

18. Show that the points A, B and C below are the verƟces of
a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8)

(b) A(−3, 1), B(4, 0) and C(0,−3)

19. Find a point D(x, y) such that the points A(−3, 1), B(4, 0),
C(0,−3) and D are the corners of a square. JusƟfy your
answer.

20. Discuss with your classmates howmany numbers are in the
interval (0, 1).

21. The world is not flat. (There are those who disagree with
this statement. Look them up on the Internet some Ɵme
when you’re bored.) Thus the Cartesian Plane cannot pos-
sibly be the end of the story. Discuss with your classmates
how you would extend Cartesian Coordinates to represent
the three dimensional world. What would the Distance and
Midpoint formulas look like, assuming those conceptsmake
sense at all?
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Historically, the lack of soluƟons to the
equaƟon x2 = −1 had nothing to do with
the development of the complex num-
bers. UnƟl the 19th century, equaƟons
such as x2 = −1 would have been con-
sidered in the context of the analyƟc ge-
ometry of Descartes. The lack of soluƟons
simply indicated that the graph y = x2

did not intersect the line y = −1. The
more remarkable case was that of cubic
equaƟons, of the form x3 = ax + b. In
this case a real soluƟon is guaranteed, but
there are caseswhere one needs complex
numbers to find it! For details, see the ex-
cellent book Visual Complex Analysis, by
Tristan Needham.

Note the use of the indefinite arƟcle ‘a’ in
DefiniƟon 18. Whatever beast is chosen
to be i,−i is the other square root of−1.

Some Technical MathemaƟcs textbooks
label the imaginary unit ‘j’, usually to
avoid confusion with the use of the let-
ter i to denote electric current. While
it carries the adjecƟve ‘imaginary’, these
numbers have essenƟal real-world impli-
caƟons. For example, every electronic de-
vice owes its existence to the study of
‘imaginary’ numbers.

To use the language of SecƟon 1.1.1,R ⊆
C.

1.4 Complex Numbers

1.4 Complex Numbers

Weconclude our first chapterwith a review the set of ComplexNumbers. As you
may recall, the complex numbers fill an algebraic gap leŌ by the real numbers.
There is no real number xwith x2 = −1, since for any real number x2 ≥ 0. How-
ever, we could formally extract square roots and write x = ±

√
−1. We build

the complex numbers by relabelling the quanƟty
√
−1 as i, the unfortunately

misnamed imaginary unit. The number i, while not a real number, is defined so
that it plays along well with real numbers and acts very much like any other rad-
ical expression. For instance, 3(2i) = 6i, 7i−3i = 4i, (2−7i)+(3+4i) = 5−3i,
and so forth. The key properƟes which disƟnguish i from the real numbers are
listed below.

DefiniƟon 18 The imaginary unit

The imaginary unit i saƟsfies the two following properƟes:

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Property 1 in DefiniƟon 18 establishes that i does act as a square root of
−1, and property 2 establishes what wemean by the ‘principal square root’ of a
negaƟve real number. In property 2, it is important to remember the restricƟon
on c. For example, it is perfectly acceptable to say

√
−4 = i

√
4 = i(2) = 2i.

However,
√
−(−4) ̸= i

√
−4, otherwise, we’d get

2 =
√
4 =

√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable. The moral of this story is that the general properƟes of
radicals do not apply for even roots of negaƟve quanƟƟes. With DefiniƟon 18 in
place, we are now in posiƟon to define the complex numbers.

DefiniƟon 19 Complex number

A complex number is a number of the form a + bi, where a and b are
real numbers and i is the imaginary unit. The set of complex numbers is
denoted C.

Complex numbers include things you’d normally expect, like 3+ 2i and 2
5 −

i
√
3. However, don’t forget that a or b could be zero, which means numbers like

3i and 6 are also complex numbers. In other words, don’t forget that the com-
plex numbers include the real numbers, so 0 and π −

√
21 are both considered

complex numbers. The arithmeƟc of complex numbers is as you would expect.
The only things you need to remember are the two properƟes in DefiniƟon 18.
The next example should help recall how these animals behave.
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Chapter 1 The Real Numbers

Example 12 ArithmeƟc with complex numbers
Perform the indicated operaƟons.

1. (1−2i)−(3+4i) 2. (1− 2i)(3+ 4i) 3.
1− 2i
3− 4i

4.
√
−3

√
−12 5.

√
(−3)(−12) 6. (x− [1+2i])(x−

[1− 2i])

SÊ½çã®ÊÄ

1. As menƟoned earlier, we treat expressions involving i as we would any
other radical. We distribute and combine like terms:

(1− 2i)− (3+ 4i) = 1− 2i− 3− 4i Distribute
= −2− 6i Gather like terms

Technically, we’d have to rewrite our answer−2−6i as (−2)+(−6)i to be
(in the strictest sense) ‘in the form a+ bi’. That being said, even pedants
have their limits, and we’ll consider−2− 6i good enough.

2. Using the DistribuƟve Property (a.k.a. F.O.I.L.), we get

(1− 2i)(3+ 4i) = (1)(3) + (1)(4i)− (2i)(3)− (2i)(4i) F.O.I.L.
= 3+ 4i− 6i− 8i2

= 3− 2i− 8(−1) i2 = −1
= 3− 2i+ 8
= 11− 2i

3. How in the world are we supposed to simplify
1− 2i
3− 4i

? Well, we deal with
the denominator 3 − 4i as we would any other denominator containing
two terms, one of which is a square root: we andmulƟply both numerator
and denominator by 3 + 4i, the (complex) conjugate of 3 − 4i. Doing so
produces

1− 2i
3− 4i

=
(1− 2i)(3+ 4i)
(3− 4i)(3+ 4i)

Equivalent FracƟons

=
3+ 4i− 6i− 8i2

9− 16i2
F.O.I.L.

=
3− 2i− 8(−1)
9− 16(−1)

i2 = −1

=
11− 2i
25

=
11
25

− 2
25

i

4. We use property 2 of DefiniƟon 18 first, then apply the rules of radicals ap-
plicable to real numbers to get

√
−3

√
−12 =

(
i
√
3
) (

i
√
12
)
= i2

√
3 · 12 =

−
√
36 = −6.
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1.4 Complex Numbers

5. We adhere to the order of operaƟons here and perform themulƟplicaƟon
before the radical to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force mulƟply using the distribuƟve property and see that

(x− [1+ 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1+ 2i] + [1− 2i][1+ 2i]
= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 1− 4(−1)
= x2 − 2x+ 5

This type of factoring will be revisited in SecƟon 4.4.

In the previous example, we used the idea of a ‘conjugate’ to divide two
complex numbers. (You may recall using conjugates to raƟonalize expressions
involving square roots.) More generally, the complex conjugate of a complex
number a+ bi is the number a− bi. The notaƟon commonly used for complex
conjugaƟon is a ‘bar’: a+ bi = a−bi. For example, 3+ 2i = 3−2i and 3− 2i =
3 + 2i. To find 6, we note that 6 = 6+ 0i = 6 − 0i = 6, so 6 = 6. Similarly,
4i = −4i, since 4i = 0+ 4i = 0 − 4i = −4i. Note that 3+

√
5 = 3 +

√
5,

not 3 −
√
5, since 3+

√
5 = 3+

√
5+ 0i = 3 +

√
5 − 0i = 3 +

√
5. Here,

the conjugaƟon specified by the ‘bar’ notaƟon involves reversing the sign before
i =

√
−1, not before

√
5. The properƟes of the conjugate are summarized in

the following theorem.

Theorem 4 ProperƟes of the Complex Conjugate

Let z and w be complex numbers.

• z = z

• z+ w = z+ w

• zw = zw

• zn = (z)n, for any natural number n

• z is a real number if and only if z = z.

EssenƟally, Theorem 4 says that complex conjugaƟon works well with ad-
diƟon, mulƟplicaƟon and powers. The proofs of these properƟes can best be
achieved by wriƟng out z = a+bi andw = c+di for real numbers a, b, c and d.
Next, we compute the leŌ and right sides of each equaƟon and verify that they
are the same.

The proof of the first property is a very quick exercise. To prove the second
property, we compare z+ w with z + w. We have z + w = a+ bi + c+ di =
a− bi+ c− di. To find z+ w, we first compute

z+ w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

so

z+ w = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = a− bi+ c− di = z+ w
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Proof by MathemaƟcal InducƟon is usu-
ally taught in Math 2000.

We’re assuming some prior familiarity on
the part of the reader where quadraƟc
equaƟons are concerned. If you feel that
it would be unfair to tackle quadraƟc
equaƟons with complex soluƟons before
the case of real soluƟons has been prop-
erly addressed, you may want to briefly
skip ahead to SecƟon 3.3.

Remember, all real numbers are complex
numbers, so ‘complex soluƟons’ means
both real and non-real answers.

Chapter 1 The Real Numbers

As such, we have established z+ w = z+w. The proof for mulƟplicaƟon works
similarly. The proof that the conjugate works well with powers can be viewed as
a repeated applicaƟon of the product rule, and is best proved using a technique
called MathemaƟcal InducƟon. The last property is a characterizaƟon of real
numbers. If z is real, then z = a + 0i, so z = a − 0i = a = z. On the other
hand, if z = z, then a + bi = a − bi which means b = −b so b = 0. Hence,
z = a+ 0i = a and is real.

We now consider the problem of solving quadraƟc equaƟons. Consider x2−
2x+ 5 = 0. The discriminant b2 − 4ac = −16 is negaƟve, so we know by The-
orem 17 there are no real soluƟons, since the QuadraƟc Formula would involve
the term

√
−16. Complex numbers, however, are built just for such situaƟons,

so we can go ahead and apply the QuadraƟc Formula to get:

x =
−(−2)±

√
(−2)2 − 4(1)(5)
2(1)

=
2±

√
−16

2
=

2± 4i
2

= 1± 2i.

Example 13 Finding complex soluƟons
Find the complex soluƟons to the following equaƟons.

1.
2x

x+ 1
= x+ 3 2. 2t4 = 9t2 + 5 3. z3 + 1 = 0

SÊ½çã®ÊÄ

1. Clearing fracƟons yields a quadraƟc equaƟon so we collect all terms on
one side and apply the QuadraƟc Formula.

2x
x+ 1

= x+ 3

2x = (x+ 3)(x+ 1) Clear denominators
2x = x2 + x+ 3x+ 3 F.O.I.L.
2x = x2 + 4x+ 3 Gather like terms
0 = x2 + 2x+ 3 Subtract 2x

From here, we apply the QuadraƟc Formula

x =
−2±

√
22 − 4(1)(3)
2(1)

QuadraƟc Formula

=
−2±

√
−8

2
Simplify

=
−2± i

√
8

2
DefiniƟon of i

=
−2± i2

√
2

2
Product Rule for Radicals

= �2(−1± i
√
2)

�2
Factor and reduce

= −1± i
√
2

We get two answers: x = −1 + i
√
2 and its conjugate x = −1 − i

√
2.

Checking both of these answers reviews all of the salient points about
complex number arithmeƟc and is therefore strongly encouraged.
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1.4 Complex Numbers

2. Since we have three terms, and the exponent on one term (‘4’ on t4) is
exactly twice the exponent on the other (‘2’ on t2), we have a QuadraƟc
in Disguise. We proceed accordingly.

2t4 = 9t2 + 5
2t4 − 9t2 − 5 = 0 Subtract 9t2 and 5

(2t2 + 1)(t2 − 5) = 0 Factor
2t2 + 1 = 0 or t2 = 5 Zero Product Property

From 2t2 + 1 = 0 we get 2t2 = −1, or t2 = − 1
2 . We extract square roots

as follows:

t = ±
√
−1
2
= ±i

√
1
2
= ±i

√
1√
2
= ±i

1√
2
= ± i

√
2

2
,

where we have raƟonalized the denominator per convenƟon. From t2 =
5, we get t = ±

√
5. In total, we have four complex soluƟons - two real:

t = ±
√
5 and two non-real: t = ± i

√
2

2 .

3. To find the real soluƟons to z3 + 1 = 0, we can subtract the 1 from both
sides and extract cube roots: z3 = −1, so z = 3

√
−1 = −1. It turns out

there are two more non-real complex number soluƟons to this equaƟon.
To get at these, we factor:

z3 + 1 = 0
(z+ 1)(z2 − z+ 1) = 0 Factor (Sum of Two Cubes)

z+ 1 = 0 or z2 − z+ 1 = 0

From z + 1 = 0, we get our real soluƟon z = −1. From z2 − z + 1 = 0,
we apply the QuadraƟc Formula to get:

z =
−(−1)±

√
(−1)2 − 4(1)(1)
2(1)

=
1±

√
−3

2
=

1± i
√
3

2

Thus we get three soluƟons to z3 + 1 = 0 - one real: z = −1 and two
non-real: z = 1±i

√
3

2 . As always, the reader is encouraged to test their
algebraic meƩle and check these soluƟons.

It is no coincidence that the non-real soluƟons to the equaƟons in Example
13 appear in complex conjugate pairs. Any Ɵme we use the QuadraƟc Formula
to solve an equaƟon with real coefficients, the answers will form a complex con-
jugate pair owing to the± in the QuadraƟc Formula. This leads us to a general-
izaƟon of Theorem 17 which we state on the next page.
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Chapter 1 The Real Numbers

Theorem 5 Discriminant Theorem

Given a QuadraƟc EquaƟon AX2 + BX+ C = 0, where A, B and C are real
numbers, let D = B2 − 4AC be the discriminant.

• If D > 0, there are two disƟnct real number soluƟons to the equa-
Ɵon.

• If D = 0, there is one (repeated) real number soluƟon.
Note: ‘Repeated’ here comes from the fact that ‘both’ soluƟons
−B±0
2A reduce to− B

2A .

• If D < 0, there are two non-real soluƟons which form a complex
conjugate pair.

Wewill havemuchmore to say about complex soluƟons to equaƟons in Sec-
Ɵon 4.4 and we will revisit Theorem 5 then.
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Exercises 1.4
Problems
In Exercises 1 – 10, use the given complex numbers z and w
to find and simplify the following:

• z+ w
• zw
• z2

• 1
z

• z
w

• w
z

• z

• zz

• (z)2

1. z = 2+ 3i, w = 4i

2. z = 1+ i, w = −i

3. z = i, w = −1+ 2i

4. z = 4i, w = 2− 2i

5. z = 3− 5i, w = 2+ 7i

6. z = −5+ i, w = 4+ 2i

7. z =
√
2− i

√
2, w =

√
2+ i

√
2

8. z = 1− i
√
3, w = −1− i

√
3

9. z = 1
2
+

√
3
2

i, w = −1
2
+

√
3
2

i

10. z = −
√
2
2

+

√
2
2

i, w = −
√
2
2

−
√
2
2

i

In Exercises 11 – 18, simplify the quanƟty.

11.
√
−49

12.
√
−9

13.
√
−25

√
−4

14.
√

(−25)(−4)

15.
√
−9

√
−16

16.
√

(−9)(−16)

17.
√

−(−9)

18. −
√

(−9)

We know that i2 = −1whichmeans i3 = i2 · i = (−1) · i = −i
and i4 = i2 · i2 = (−1)(−1) = 1. In Exercises 19 – 26, use
this informaƟon to simplify the given power of i.

19. i5

20. i6

21. i7

22. i8

23. i15

24. i26

25. i117

26. i304

In Exercises 27 – 35, find all complex soluƟons.

27. 3x2 + 6 = 4x

28. 15t2 + 2t+ 5 = 3t(t2 + 1)

29. 3y2 + 4 = y4

30. 2
1− w

= w

31. y
3
− 3

y
= y

32. x3

2x− 1
=

x
3

33. x = 2√
5− x

34. 5y4 + 1
y2 − 1

= 3y2

35. z4 = 16

36. MulƟply and simplify:
(
x− [3− i

√
23]
) (

x− [3+ i
√
23]
)
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(−2, 1)

(4, 3)

(0,−3)
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Figure 2.1: The graph of the relaƟon R =
{(−2, 1), (4, 3), (0,−3)}
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Figure 2.2: The graph of A

LisƟng the points in a line segment is re-
ally impossible. The interested reader is
encouraged to research countable versus
uncountable sets.
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Figure 2.3: The graph of HLS1

2: R�½�ã®ÊÄÝ �Ä� FçÄ�ã®ÊÄÝ
2.1 RelaƟons
From one point of view, all of Precalculus can be thought of as studying sets of
points in the plane. With the Cartesian Plane now fresh in our memory we can
discuss those sets in more detail and as usual, we begin with a definiƟon.

DefiniƟon 20 RelaƟons in the Cartesian Plane

A relaƟon is a set of points in the plane.

Since relaƟons are sets, we can describe them using the techniques pre-
sented in SecƟon 1.1. That is, we can describe a relaƟon verbally, using the
roster method, or using set-builder notaƟon. Since the elements in a relaƟon
are points in the plane, we oŌen try to describe the relaƟon graphically or al-
gebraically as well. Depending on the situaƟon, one method may be easier
or more convenient to use than another. As an example, consider the rela-
Ɵon R = {(−2, 1), (4, 3), (0,−3)}. As wriƩen, R is described using the roster
method. Since R consists of points in the plane, we follow our insƟnct and plot
the points. Doing so produces the graph of R: see Figure 2.1.

In the following example, we graph a variety of relaƟons.

Example 14 Graphing relaƟons
Graph the following relaƟons.

1. A = {(0, 0), (−3, 1), (4, 2), (−3, 2)}

2. HLS1 = {(x, 3) | − 2 ≤ x ≤ 4}

3. HLS2 = {(x, 3) | − 2 ≤ x < 4}

4. V = {(3, y) | y is a real number}

5. H = {(x, y) | y = −2}

6. R = {(x, y) | 1 < y ≤ 3}

SÊ½çã®ÊÄ

1. To graph A, we simply plot all of the points which belong to A, as shown
below on the leŌ.

2. Don’t let the notaƟon in this part fool you. The name of this relaƟon is
HLS1, just like the name of the relaƟon in number 1 was A. The leƩers
and numbers are just part of its name, just like the numbers and leƩers
of the phrase ‘King George III’ were part of George’s name. In words,
{(x, 3) | −2 ≤ x ≤ 4} reads ‘the set of points (x, 3) such that−2 ≤ x ≤ 4.’
All of these points have the same y-coordinate, 3, but the x-coordinate is
allowed to vary between −2 and 4, inclusive. Some of the points which
belong to HLS1 include some friendly points like: (−2, 3), (−1, 3), (0, 3),
(1, 3), (2, 3), (3, 3), and (4, 3). However, HLS1 also contains the points
(0.829, 3),

(
− 5

6 , 3
)
, (
√
π, 3), and so on. It is impossible to list all of these

points, which is why the variable x is used. Ploƫng several friendly rep-
resentaƟve points should convince you that HLS1 describes the horizontal
line segment from the point (−2, 3) up to and including the point (4, 3).

3. HLS2 is haunƟngly similar to HLS1. In fact, the only difference between
the two is that instead of ‘−2 ≤ x ≤ 4’ we have ‘−2 ≤ x < 4’. This

http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Uncountable_set
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This is NOT the correct graph of HLS2
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The graph of HLS2

Figure 2.5: Geƫng the right graph for
HLS2
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Figure 2.6: The graph of V
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Figure 2.7: The graph of H

Whenwe say you should plot some points
in the relaƟon H, the word ‘some’ is a rel-
aƟve term. It may take 5, 10, or 50 points
unƟl you see the paƩern, depending on
the relaƟon.

Chapter 2 RelaƟons and FuncƟons

means that we sƟll get a horizontal line segment which includes (−2, 3)
and extends to (4, 3), but we do not include (4, 3) because of the strict
inequality x < 4. How do we denote this on our graph? It is a common
mistake to make the graph start at (−2, 3) end at (3, 3) as pictured below
on the leŌ. The problem with this graph is that we are forgeƫng about
the points like (3.1, 3), (3.5, 3), (3.9, 3), (3.99, 3), and so forth. There is
no real number that comes ‘immediately before’ 4, so to describe the set
of points wewant, we draw the horizontal line segment starƟng at (−2, 3)
and draw an open circle at (4, 3) as depicted below on the right.

4. Next, we come to the relaƟon V, described as the set of points (3, y) such
that y is a real number. All of these points have an x-coordinate of 3, but
the y-coordinate is free to be whatever it wants to be, without restricƟon.
Ploƫng a few ‘friendly’ points of V should convince you that all the points
of V lie on the verƟcal line x = 3. Since there is no restricƟon on the y-
coordinate, we put arrows on the end of the porƟon of the linewe draw to
indicate it extends indefinitely in both direcƟons. The graph of V is below
on the leŌ.

5. Though wriƩen slightly differently, the relaƟon H = {(x, y) | y = −2} is
similar to the relaƟon V above in that only one of the coordinates, in this
case the y-coordinate, is specified, leaving x to be ‘free’. Ploƫng some
representaƟve points gives us the horizontal line y = −2.

6. For our last example, we turn to R = {(x, y) | 1 < y ≤ 3}. As in the
previous example, x is free to be whatever it likes. The value of y, on the
other hand, while not completely free, is permiƩed to roam between 1
and 3 excluding 1, but including 3. AŌer ploƫng some friendly elements
of R, it should become clear that R consists of the region between the
horizontal lines y = 1 and y = 3. Since R requires that the y-coordinates
be greater than 1, but not equal to 1, we dash the line y = 1 to indicate
that those points do not belong to R.
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Figure 2.4: The graph of R

The relaƟons V and H in the previous example lead us to our final way to
describe relaƟons: algebraically. We can more succinctly describe the points in
V as those points which saƟsfy the equaƟon ‘x = 3’. Most likely, you have seen
equaƟons like this before. Depending on the context, ‘x = 3’ could mean we
have solved an equaƟon for x and arrived at the soluƟon x = 3. In this case,
however, ‘x = 3’ describes a set of points in the plane whose x-coordinate is 3.
Similarly, the relaƟon H above can be described by the equaƟon ‘y = −2’. At
some point in your mathemaƟcal upbringing, you probably learned the follow-
ing.
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2.1 RelaƟons

Key Idea 8 EquaƟons of VerƟcal and Horizontal Lines

• The graph of the equaƟon x = a is a verƟcal line through (a, 0).

• The graph of the equaƟon y = b is a horizontal line through (0, b).

Given that the very simple equaƟons x = a and y = b produced lines, it’s
natural to wonder what shapes other equaƟons might yield. Thus our next ob-
jecƟve is to study the graphs of equaƟons in a more general seƫng as we con-
Ɵnue to unite Algebra and Geometry.

2.1.1 Graphs of EquaƟons

In this secƟon, we delve more deeply into the connecƟon between Algebra and
Geometry by focusing on graphing relaƟons described by equaƟons. The main
idea of this secƟon is the following.

Key Idea 9 The Fundamental Graphing Principle

The graph of an equaƟon is the set of points which saƟsfy the equaƟon.
That is, a point (x, y) is on the graph of an equaƟon if and only if x and y
saƟsfy the equaƟon.

Here, ‘x and y saƟsfy the equaƟon’means ‘x and ymake the equaƟon true’. It
is at this point that we gain some insight into the word ‘relaƟon’. If the equaƟon
to be graphed contains both x and y, then the equaƟon itself is what is relaƟng
the two variables. More specifically, in the next two examples, we consider the
graph of the equaƟon x2 + y3 = 1. Even though it is not specifically spelled
out, what we are doing is graphing the relaƟon R = {(x, y) | x2 + y3 = 1}. The
points (x, y)we graph belong to the relaƟon R and are necessarily related by the
equaƟon x2 + y3 = 1, since it is those pairs of x and y which make the equaƟon
true.

Example 15 Checking to see if a point lies on a graph
Determine whether or not (2,−1) is on the graph of x2 + y3 = 1.

SÊ½çã®ÊÄ We subsƟtute x = 2 and y = −1 into the equaƟon to see if
the equaƟon is saƟsfied.

(2)2 + (−1)3 ?
= 1

3 ̸= 1

Hence, (2,−1) is not on the graph of x2 + y3 = 1.

We could spend hours randomly guessing and checking to see if points are
on the graph of the equaƟon. A more systemaƟc approach is outlined in the
following example.
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x y (x, y)
-3 -2 (−3,−2)
-2 − 3√3 (−2,− 3√3)
-1 0 (−1, 0)
0 1 (0, 1)
1 0 (1, 0)
2 − 3√3 (2,− 3√3)
3 -2 (3,−2)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Figure 2.8: Points on the curve x2+y3 = 1

x

y

−4−3−2−1 1 2 3 4

−3

−2

−1

1

2

3

Figure 2.9: The completed graph of x2 +
y3 = 1

Chapter 2 RelaƟons and FuncƟons

Example 16 Determining points on a graph systemaƟcally
Graph x2 + y3 = 1.

SÊ½çã®ÊÄ To efficiently generate points on the graph of this equaƟon,
we first solve for y

x2 + y3 = 1
y3 = 1− x2

3
√

y3 = 3
√
1− x2

y = 3
√
1− x2

We now subsƟtute a value in for x, determine the corresponding value y,
and plot the resulƟng point (x, y). For example, subsƟtuƟng x = −3 into the
equaƟon yields

y = 3
√
1− x2 = 3

√
1− (−3)2 = 3

√
−8 = −2,

so the point (−3,−2) is on the graph. ConƟnuing in this manner, we gener-
ate a table of points which are on the graph of the equaƟon. These points are
then ploƩed in the plane as shown in Figure 2.8.

Remember, these points consƟtute only a small sampling of the points on
the graph of this equaƟon. To get a beƩer idea of the shape of the graph, we
could plot more points unƟl we feel comfortable ‘connecƟng the dots’. Doing so
would result in a curve similar to the one pictured in Figure 2.9.

Don’t worry if you don’t get all of the liƩle bends and curves just right −
Calculus is where the art of precise graphing takes center stage. For now, wewill
seƩle with our naive ‘plug and plot’ approach to graphing. If you feel like all of
this tedious computaƟon and ploƫng is beneath you, then you can try inpuƫng
the equaƟon into a graphing calculator or an online tool such as Wolfram Alpha.

Of all of the points on the graph of an equaƟon, the places where the graph
crosses or touches the axes hold special significance. These are called the inter-
cepts of the graph. Intercepts come in two disƟnct varieƟes: x-intercepts and
y-intercepts. They are defined below.

DefiniƟon 21 x- and y-intercepts

Suppose the graph of an equaƟon is given.

• A point on a graph which is also on the x-axis is called an x-
intercept of the graph.

• A point on a graph which is also on the y-axis is called an y-
intercept of the graph.

In our previous example the graph had two x-intercepts, (−1, 0) and (1, 0),
and one y-intercept, (0, 1). The graph of an equaƟon can have any number of
intercepts, including none at all! Since x-intercepts lie on the x-axis, we can find
them by seƫng y = 0 in the equaƟon. Similarly, since y-intercepts lie on the y-
axis, we can find them by seƫng x = 0 in the equaƟon. Keep inmind, intercepts
are points and therefore must be wriƩen as ordered pairs. To summarize,
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2.1 RelaƟons

Key Idea 10 Finding the Intercepts of the Graph of an EquaƟon

Given an equaƟon involving x and y, we find the intercepts of the graph
as follows:

• x-intercepts have the form (x, 0); set y = 0 in the equaƟon and
solve for x.

• y-intercepts have the form (0, y); set x = 0 in the equaƟon and
solve for y.

Another fact which you may have noƟced about the graph in the previous
example is that it seems to be symmetric about the y-axis. To actually prove
this analyƟcally, we assume (x, y) is a generic point on the graph of the equa-
Ɵon. That is, we assume x2 + y3 = 1 is true. As we learned in SecƟon 1.3, the
point symmetric to (x, y) about the y-axis is (−x, y). To show that the graph is
symmetric about the y-axis, we need to show that (−x, y) saƟsfies the equaƟon
x2 + y3 = 1, too. SubsƟtuƟng (−x, y) into the equaƟon gives

(−x)2 + (y)3 ?
= 1

x2 + y3 X
= 1

Since we are assuming the original equaƟon x2 + y3 = 1 is true, we have
shown that (−x, y) saƟsfies the equaƟon (since it leads to a true result) and
hence is on the graph. In this way, we can check whether the graph of a given
equaƟon possesses any of the symmetries discussed in SecƟon 1.3. We summa-
rize the procedure in the following result.

Key Idea 11 TesƟng the Graph of an EquaƟon for Symmetry

To test the graph of an equaƟon for symmetry

• about the y-axis − subsƟtute (−x, y) into the equaƟon and sim-
plify. If the result is equivalent to the original equaƟon, the graph
is symmetric about the y-axis.

• about the x-axis – subsƟtute (x,−y) into the equaƟon and sim-
plify. If the result is equivalent to the original equaƟon, the graph
is symmetric about the x-axis.

• about the origin - subsƟtute (−x,−y) into the equaƟon and sim-
plify. If the result is equivalent to the original equaƟon, the graph
is symmetric about the origin.

Intercepts and symmetry are two tools which can help us sketch the graph
of an equaƟon analyƟcally, as demonstrated in the next example.

Example 17 Finding intercepts and tesƟng for symmetry
Find the x- and y-intercepts (if any) of the graph of (x − 2)2 + y2 = 1. Test for
symmetry. Plot addiƟonal points as needed to complete the graph.

SÊ½çã®ÊÄ To look for x-intercepts, we set y = 0 and solve
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(1, 0) (3, 0)

x

y

1 2 3 4
−1

1

Figure 2.10: Ploƫng the data so far

x

y

1 2 3 4
−1

1

Figure 2.11: The final result

Chapter 2 RelaƟons and FuncƟons

(x− 2)2 + y2 = 1
(x− 2)2 + 02 = 1

(x− 2)2 = 1√
(x− 2)2 =

√
1 extract square roots

x− 2 = ±1
x = 2± 1
x = 3, 1

We get two answers for x which correspond to two x-intercepts: (1, 0) and
(3, 0). Turning our aƩenƟon to y-intercepts, we set x = 0 and solve

(x− 2)2 + y2 = 1
(0− 2)2 + y2 = 1

4+ y2 = 1
y2 = −3

Since there is no real number which squares to a negaƟve number (Do you
remember why?), we are forced to conclude that the graph has no y-intercepts.
We plot our results so far in Figure 2.10.

Moving along to symmetry, we can immediately dismiss the possibility that
the graph is symmetric about the y-axis or the origin. If the graph possessed
either of these symmetries, then the fact that (1, 0) is on the graph would mean
(−1, 0)would have to be on the graph. (Why?) Since (−1, 0)would be another
x-intercept (and we’ve found all of these), the graph can’t have y-axis or origin
symmetry. The only symmetry leŌ to test is symmetry about the x-axis. To that
end, we subsƟtute (x,−y) into the equaƟon and simplify

(x− 2)2 + y2 = 1

(x− 2)2 + (−y)2 ?
= 1

(x− 2)2 + y2 X
= 1

Since we have obtained our original equaƟon, we know the graph is sym-
metric about the x-axis. This means we can cut our ‘plug and plot’ Ɵme in half:
whatever happens below the x-axis is reflected above the x-axis, and vice-versa.
Proceeding as we did in the previous example, we obtain the plot shown in Fig-
ure 2.11.

A couple of remarks are in order. First, it is enƟrely possible to choose a
value for x which does not correspond to a point on the graph. For example, in
the previous example, if we solve for y as is our custom, we get

y = ±
√
1− (x− 2)2.

Upon subsƟtuƟng x = 0 into the equaƟon, we would obtain

y = ±
√
1− (0− 2)2 = ±

√
1− 4 = ±

√
−3,
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By the end of this course, you’ll be able to
accurately graph a wide variety of equa-
Ɵons, without the use of a calculator, if
you can believe it!

2.1 RelaƟons

which is not a real number. This means there are no points on the graph with
an x-coordinate of 0. When this happens, we move on and try another point.
This is another drawback of the ‘plug-and-plot’ approach to graphing equaƟons.
Luckily, we will devote much of the remainder of this book to developing tech-
niques which allow us to graph enƟre families of equaƟons quickly. Second, it
is instrucƟve to show what would have happened had we tested the equaƟon
in the last example for symmetry about the y-axis. SubsƟtuƟng (−x, y) into the
equaƟon yields

(x− 2)2 + y2 = 1

(−x− 2)2 + y2 ?
= 1

((−1)(x+ 2))2 + y2 ?
= 1

(x+ 2)2 + y2 ?
= 1.

This last equaƟon does not appear to be equivalent to our original equaƟon.
However, to actually prove that the graph is not symmetric about the y-axis, we
need to find a point (x, y) on the graph whose reflecƟon (−x, y) is not. Our x-
intercept (1, 0) fits this bill nicely, since if we subsƟtute (−1, 0) into the equaƟon
we get

(x− 2)2 + y2 ?
= 1

(−1− 2)2 + 02 ̸= 1
9 ̸= 1.

This proves that (−1, 0) is not on the graph.
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Exercises 2.1
Problems
In Exercises 1 – 20, graph the given relaƟon.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−2, 0), (−1, 1), (−1,−1), (0, 2), (0,−2), (1, 3),
(1,−3)}

3. {(m, 2m) |m = 0,±1,±2}

4.
{( 6

k , k
)
| k = ±1,±2,±3,±4,±5,±6

}
5.
{(

n, 4− n2
)
| n = 0,±1,±2

}
6.
{(√

j, j
)
| j = 0, 1, 4, 9

}
7. {(x,−2) | x > −4}

8. {(x, 3) | x ≤ 4}

9. {(−1, y) | y > 1}

10. {(2, y) | y ≤ 5}

11. {(−2, y) | − 3 < y ≤ 4}

12. {(3, y) | − 4 ≤ y < 3}

13. {(x, 2) | − 2 ≤ x < 3}

14. {(x,−3) | − 4 < x ≤ 4}

15. {(x, y) | x > −2}

16. {(x, y) | x ≤ 3}

17. {(x, y) | y < 4}

18. {(x, y) | x ≤ 3, y < 2}

19. {(x, y) | x > 0, y < 4}

20. {(x, y) | −
√
2 ≤ x ≤ 2

3 , π < y ≤ 9
2}

In Exercises 21 – 30, describe the given relaƟon using either
the roster or set-builder method.

21.
x

y

−1−2−3−4 1 2 3 4

1

2

3

RelaƟon A

22.

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

RelaƟon B

23.

x

y

−3−2−1

−4

−3

−2

−1

1

2

3

RelaƟon C

24.
x

y

−4−3−2−1 1 2 3 4

1

2

3

RelaƟon D

25.
x

y

−3−2−1 1 2 3

1

2

3

4

RelaƟon E
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26.

x

y

−3−2−1 1 2 3

−3

−2

−1

1

2

3

RelaƟon F

27.

x

y

−4−3−2−1 1 2 3

−3

−2

−1

1

2

3

RelaƟon G

28.
x

y

−1 1 2 3 4 5−1

1

2

3

4

5

RelaƟon H

29.

x

y

−4−3−2−1 1 2 3 4 5

−3

−2

−1

1

2

RelaƟon I

30.

x

y

−4−3−2−1 1 2 3 4 5

−3

−2

−1

1

2

RelaƟon J

In Exercises 31 – 36, graph the given line.

31. x = −2

32. x = 3

33. y = 3

34. y = −2

35. x = 0

36. y = 0

Some relaƟons are fairly easy to describe in words or with
the roster method but are rather difficult, if not impossible,
to graph. For Exercises 37 – 40, discuss with your classmates
how you might graph the given relaƟon.

37. {(x, y) | x is an odd integer, and y is an even integer.}

38. {(x, 1) | x is an irraƟonal number }

39. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . .}

40. {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}

For each equaƟon given in Exercises 41 – 52, (a) Find the x
and y intercepts of the graph, if any exist; (b) Follow the pro-
cedure in Example 16 to create a table of sample points on the
graph of the equaƟon; (c) Plot the sample points and create a
rough sketch of the graph of the equaƟon; Test for symmetry.
If the equaƟon appears to fail any of the symmetry tests, find
a point on the graph of the equaƟon whose reflecƟon fails to
be on the graph as was done at the end of Example 17.

41. y = x2 + 1

42. y = x2 − 2x− 8

43. y = x3 − x

44. y = x3
4 − 3x

45. y =
√
x− 2

46. y = 2
√
x+ 4− 2

47. 3x− y = 7

48. 3x− 2y = 10

49. (x+ 2)2 + y2 = 16

50. x2 − y2 = 1

51. 4y2 − 9x2 = 36
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52. x3y = −4

53. With the help of your classmates, find examples of equa-
Ɵons whose graphs possess

• symmetry about the x-axis only
• symmetry about the y-axis only

• symmetry about the origin only

• symmetry about the x-axis, y-axis, and origin

Can you find an example of an equaƟon whose graph pos-
sesses exactly two of the symmetries listed above? Why or
why not?
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We will have occasion later in the text to
concern ourselves with the concept of x
being a funcƟon of y. In this case, R1 rep-
resents x as a funcƟon of y; R2 does not.

x

y

−2−1 1 2 3−1

1

2

3

4

Figure 2.12: The graph of R1

x

y

−2−1 1 2 3−1

1

2

3

4

Figure 2.13: The graph of R2

2.2 IntroducƟon to FuncƟons

2.2 IntroducƟon to FuncƟons

One of the core concepts in College Algebra is the funcƟon. There are many
ways to describe a funcƟon and we begin by defining a funcƟon as a special kind
of relaƟon.

DefiniƟon 22 FuncƟon

A relaƟon in which each x-coordinate is matched with only one y-
coordinate is said to describe y as a funcƟon of x.

Example 18 Determining if a relaƟon is a funcƟon
Which of the following relaƟons describe y as a funcƟon of x?

1. R1 = {(−2, 1), (1, 3), (1, 4), (3,−1)}

2. R2 = {(−2, 1), (1, 3), (2, 3), (3,−1)}

SÊ½çã®ÊÄ A quick scan of the points in R1 reveals that the x-coordinate
1 is matched with two different y-coordinates: namely 3 and 4. Hence in R1, y
is not a funcƟon of x. On the other hand, every x-coordinate in R2 occurs only
once which means each x-coordinate has only one corresponding y-coordinate.
So, R2 does represent y as a funcƟon of x.

Note that in the previous example, the relaƟon R2 contained two different
points with the same y-coordinates, namely (1, 3) and (2, 3). Remember, in
order to say y is a funcƟon of x, we just need to ensure the same x-coordinate
isn’t used in more than one point.

To see what the funcƟon concept means geometrically, we graph R1 and R2
in the plane. The fact that the x-coordinate 1 is matched with two different y-
coordinates in R1 presents itself graphically as the points (1, 3) and (1, 4) lying
on the same verƟcal line, x = 1. If we turn our aƩenƟon to the graph of R2,
we see that no two points of the relaƟon lie on the same verƟcal line. We can
generalize this idea as follows

Theorem 6 The VerƟcal Line Test

A set of points in the plane represents y as a funcƟon of x if and only if
no two points lie on the same verƟcal line.

It is worth taking someƟme tomeditate on the VerƟcal Line Test; it will check
to see how well you understand the concept of ‘funcƟon’ as well as the concept
of ‘graph’.
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x

y

−1
−1

1

2

3

4

Figure 2.14: S1 and the line x = 1
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Example 19 Using the VerƟcal Line Test
Use the VerƟcal Line Test to determinewhich of the following relaƟons describes
y as a funcƟon of x.

x

y

1 2 3
−1

1

2

3

4

x

y

−1 1
−1

1

2

3

4

The graph of R The graph of S

SÊ½çã®ÊÄ Looking at the graph of R, we can easily imagine a verƟcal line
crossing the graph more than once. Hence, R does not represent y as a funcƟon
of x. However, in the graph of S, every verƟcal line crosses the graph at most
once, so S does represent y as a funcƟon of x.

In the previous test, we say that the graph of the relaƟon R fails the VerƟcal
Line Test, whereas the graph of S passes the VerƟcal Line Test. Note that in the
graph of R there are infinitely many verƟcal lines which cross the graph more
than once. However, to fail the VerƟcal Line Test, all you need is one verƟcal line
that fits the bill, as the next example illustrates.

Example 20 Using the VerƟcal Line Test
Use the VerƟcal Line Test to determinewhich of the following relaƟons describes
y as a funcƟon of x.

x

y

−1 1
−1

1

2

3

4

x

y

−1 1
−1

1

2

3

4

The graph of S1 The graph of S2

SÊ½çã®ÊÄ Both S1 and S2 are slight modificaƟons to the relaƟon S in the
previous example whose graph we determined passed the VerƟcal Line Test. In
both S1 and S2, it is the addiƟon of the point (1, 2) which threatens to cause
trouble. In S1, there is a point on the curve with x-coordinate 1 just below (1, 2),
which means that both (1, 2) and this point on the curve lie on the verƟcal line
x = 1. (See the picture below and the leŌ.) Hence, the graph of S1 fails the
VerƟcal Line Test, so y is not a funcƟon of x here. However, in S2 noƟce that
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Figure 2.15: The graph of G for Example
21

project down

project up

x

y

−1 1
−1

1
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3

4

Figure 2.16: ProjecƟng the graph onto the
x-axis in Example 21

x

y

−1 1
−1

1

2

3

4

Figure 2.17: The domain of G in Example
21
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the point with x-coordinate 1 on the curve has been omiƩed, leaving an ‘open
circle’ there. Hence, the verƟcal line x = 1 crosses the graph of S2 only at the
point (1, 2). Indeed, any verƟcal line will cross the graph at most once, so we
have that the graph of S2 passes the VerƟcal Line Test. Thus it describes y as a
funcƟon of x.

Suppose a relaƟon F describes y as a funcƟon of x. The sets of x- and y-
coordinates are given special names which we define below.

DefiniƟon 23 Domain and range

Suppose F is a relaƟon which describes y as a funcƟon of x.

• The set of the x-coordinates of the points in F is called the domain
of F.

• The set of the y-coordinates of the points in F is called the range
of F.

Wedemonstrate finding the domain and range of funcƟons given to us either
graphically or via the roster method in the following example.

Example 21 Finding domain and range
Find the domain and range of the funcƟon F = {(−3, 2), (0, 1), (4, 2), (5, 2)}
and of the funcƟon G whose graph is given in Figure 2.15.

SÊ½çã®ÊÄ The domain of F is the set of the x-coordinates of the points
in F, namely {−3, 0, 4, 5} and the range of F is the set of the y-coordinates,
namely {1, 2}.
To determine the domain and range of G, we need to determine which x and y
values occur as coordinates of points on the given graph. To find the domain,
it may be helpful to imagine collapsing the curve to the x-axis and determining
the porƟon of the x-axis that gets covered. This is called projecƟng the curve to
the x-axis. Before we start projecƟng, we need to pay aƩenƟon to two subtle
notaƟons on the graph: the arrowhead on the lower leŌ corner of the graph
indicates that the graph conƟnues to curve downwards to the leŌ forever more;
and the open circle at (1, 3) indicates that the point (1, 3) isn’t on the graph, but
all points on the curve leading up to that point are.

We see from Figures 2.16 and 2.17 that if we project the graph of G to the
x-axis, we get all real numbers less than 1. Using interval notaƟon, we write the
domain of G as (−∞, 1). To determine the range of G, we project the curve to
the y-axis as follows:

Note that even though there is an open circle at (1, 3), we sƟll include the y
value of 3 in our range, since the point (−1, 3) is on the graph of G. Referring to
Figures 2.18 and 2.19, we see that the range of G is all real numbers less than or
equal to 4, or, in interval notaƟon, (−∞, 4].

All funcƟons are relaƟons, but not all relaƟons are funcƟons. Thus the equa-
Ɵons which described the relaƟons in SecƟon 2.1 may or may not describe y as
a funcƟon of x. The algebraic representaƟon of funcƟons is possibly the most
important way to view them so we need a process for determining whether or
not an equaƟon of a relaƟon represents a funcƟon. (We delay the discussion of
finding the domain of a funcƟon given algebraically unƟl SecƟon 2.3.)
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Figure 2.18: ProjecƟng the graph onto the
y-axis in Example 21
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y
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−1

1
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Figure 2.19: The range of G in Example 21

Chapter 2 RelaƟons and FuncƟons

Example 22 FuncƟons defined by equaƟons
Determine which equaƟons represent y as a funcƟon of x.

1. x3 + y2 = 1 2. x2 + y3 = 1 3. x2y = 1− 3y

SÊ½çã®ÊÄ For each of these equaƟons, we solve for y and determine
whether each choice of x will determine only one corresponding value of y.

1.

x3 + y2 = 1
y2 = 1− x3√
y2 =

√
1− x3 extract square roots

y = ±
√
1− x3

If we subsƟtute x = 0 into our equaƟon for y, we get y = ±
√
1− 03 =

±1, so that (0, 1) and (0,−1) are on the graph of this equaƟon. Hence,
this equaƟon does not represent y as a funcƟon of x.

2.

x2 + y3 = 1
y3 = 1− x2

3
√

y3 = 3
√
1− x2

y = 3
√
1− x2

For every choice of x, the equaƟon y = 3
√
1− x2 returns only one value of

y. Hence, this equaƟon describes y as a funcƟon of x.

3.

x2y = 1− 3y
x2y+ 3y = 1

y
(
x2 + 3

)
= 1 factor

y =
1

x2 + 3

For each choice of x, there is only one value for y, so this equaƟon describes
y as a funcƟon of x.
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Exercises 2.2
Problems

In Exercises 1 – 12, determine whether or not the relaƟon
represents y as a funcƟon of x. Find the domain and range of
those relaƟons which are funcƟons.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−3, 0), (1, 6), (2,−3), (4, 2), (−5, 6), (4,−9), (6, 2)}

3. {(−3, 0), (−7, 6), (5, 5), (6, 4), (4, 9), (3, 0)}

4. {(1, 2), (4, 4), (9, 6), (16, 8), (25, 10), (36, 12), . . .}

5. {(x, y) | x is an odd integer, and y is an even integer}

6. {(x, 1) | x is an irraƟonal number}

7. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . .}

8. {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}

9. {(−2, y) | − 3 < y < 4}

10. {(x, 3) | − 2 ≤ x < 4}

11. {
(
x, x2

)
| x is a real number}

12. {
(
x2, x

)
| x is a real number}

In Exercises 13 – 32, determine whether or not the relaƟon
represents y as a funcƟon of x. Find the domain and range of
those relaƟons which are funcƟons.

13.

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

14.

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

15.

x

y

−2 −1 1 2

1

2

3

4

5

16.
x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

17.

x

y

1 2 3 4 5 6 7 8 9

1

2

3

18.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

19. x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

20.

x

y

−5 −4 −3 −2 −1 1 2 3

−2

−1

1

2

3

4
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21.

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

22.
x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

23.
x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

24.
x

y

−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

25.

x

y

−2 −1 1 2

1

2

3

4

26.

x

y

−2 −1 1 2

1

2

3

4

27.

x

y

−2 −1 1 2

1

2

3

4

28.

x

y

−2 −1 1 2

1

2

3

4

29.
x

y

−2 −1 1 2

1

2

−2

−1

30.
x

y

−3 −2 −1 1 2 3

1

2

−2

−1

31.
x

y

−2 −1 1 2

1

2

−2

−1

32.
x

y

−2 −1 1 2

1

2

−2

−1

In Exercises 33 – 47, determine whether or not the equaƟon
represents y as a funcƟon of x.

33. y = x3 − x

34. y =
√
x− 2

35. x3y = −4

36. x2 − y2 = 1

37. y = x
x2 − 9
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38. x = −6

39. x = y2 + 4

40. y = x2 + 4

41. x2 + y2 = 4

42. y =
√
4− x2

43. x2 − y2 = 4

44. x3 + y3 = 4

45. 2x+ 3y = 4

46. 2xy = 4

47. x2 = y2

48. Explain why the populaƟon P of Sasquatch in a given area
is a funcƟon of Ɵme t. What would be the range of this
funcƟon?

49. Explainwhy the relaƟon between your classmates and their
email addresses may not be a funcƟon. What about phone
numbers and Social Security Numbers?

Some relaƟons are fairly easy to describe in words or with
the roster method but are rather difficult, if not impossible,
to graph. For Exercises 50 – 53, discuss with your classmates
how you might graph the given relaƟon.

50. {(x, y) | x is an odd integer, and y is an even integer.}

51. {(x, 1) | x is an irraƟonal number }

52. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . .}

53. {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}
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f

x
Domain
(Inputs)

y = f(x)
Range

(Outputs)

Figure 2.20: Graphical depicƟon of a func-
Ɵon

Chapter 2 RelaƟons and FuncƟons

2.3 FuncƟon NotaƟon

In DefiniƟon 22, we described a funcƟon as a special kind of relaƟon − one in
which each x-coordinate is matched with only one y-coordinate. In this secƟon,
we focus more on the process by which the x is matched with the y. If we think
of the domain of a funcƟon as a set of inputs and the range as a set of outputs,
we can think of a funcƟon f as a process by which each input x is matched with
only one output y. Since the output is completely determined by the input x
and the process f, we symbolize the output with funcƟon notaƟon: ‘f(x)’, read
‘f of x.’ In other words, f(x) is the output which results by applying the process f
to the input x. In this case, the parentheses here do not indicate mulƟplicaƟon,
as they do elsewhere in Algebra. This can cause confusion if the context is not
clear, so you must read carefully. This relaƟonship is typically visualized using a
diagram similar to the one in Figure 2.20.

The value of y is completely dependent on the choice of x. For this reason,
x is oŌen called the independent variable, or argument of f, whereas y is oŌen
called the dependent variable.

As we shall see, the process of a funcƟon f is usually described using an al-
gebraic formula. For example, suppose a funcƟon f takes a real number and
performs the following two steps, in sequence

1. MulƟply by 3

2. Add 4

If we choose 5 as our input, in Step 1 wemulƟply by 3 to get (5)(3) = 15. In
Step 2, we add 4 to our result from Step 1 which yields 15+4 = 19. Using func-
Ɵon notaƟon, we would write f(5) = 19 to indicate that the result of applying
the process f to the input 5 gives the output 19. In general, if we use x for the
input, applying Step 1 produces 3x. Following with Step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x+ 4. NoƟce
that to check our formula for the case x = 5, we replace the occurrence of x in
the formula for f(x) with 5 to get f(5) = 3(5) + 4 = 15+ 4 = 19, as required.

Example 23 Finding a forumula for a funcƟon
Suppose a funcƟon g is described by applying the following steps, in sequence

1. add 4

2. mulƟply by 3

Determine g(5) and find an expression for g(x).

SÊ½çã®ÊÄ StarƟng with 5, Step 1 gives 5 + 4 = 9. ConƟnuing with
Step 2, we get (3)(9) = 27. To find a formula for g(x), we start with our input x.
Step 1 produces x+ 4. We now wish to mulƟply this enƟre quanƟty by 3, so we
use a parentheses: 3(x+ 4) = 3x+ 12. Hence, g(x) = 3x+ 12. We can check
our formula by replacing x with 5 to get g(5) = 3(5) + 12 = 15+ 12 = 27X.

Most of the funcƟonswewill encounter inMath 1010will be described using
formulas like the ones we developed for f(x) and g(x) above. EvaluaƟng formu-
las using this funcƟon notaƟon is a key skill for success in this and many other
Math courses.
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2.3 FuncƟon NotaƟon

Example 24 Using funcƟon notaƟon
Let f(x) = −x2 + 3x+ 4

1. Find and simplify the following.

(a) f(−1), f(0), f(2)
(b) f(2x), 2f(x)
(c) f(x+ 2), f(x) + 2, f(x) + f(2)

2. Solve f(x) = 4.

SÊ½çã®ÊÄ

1. (a) To find f(−1), we replace every occurrence of x in the expression
f(x) with−1

f(−1) = −(−1)2 + 3(−1) + 4
= −(1) + (−3) + 4
= 0

Similarly, f(0) = −(0)2+3(0)+4 = 4, and f(2) = −(2)2+3(2)+4 =
−4+ 6+ 4 = 6.

(b) To find f(2x), we replace every occurrence of x with the quanƟty 2x

f(2x) = −(2x)2 + 3(2x) + 4
= −(4x2) + (6x) + 4
= −4x2 + 6x+ 4

The expression 2f(x)means we mulƟply the expression f(x) by 2

2f(x) = 2
(
−x2 + 3x+ 4

)
= −2x2 + 6x+ 8

(c) To find f(x+ 2), we replace every occurrence of x with the quanƟty
x+ 2

f(x+ 2) = −(x+ 2)2 + 3(x+ 2) + 4
= −

(
x2 + 4x+ 4

)
+ (3x+ 6) + 4

= −x2 − 4x− 4+ 3x+ 6+ 4
= −x2 − x+ 6

To find f(x) + 2, we add 2 to the expression for f(x)

f(x) + 2 =
(
−x2 + 3x+ 4

)
+ 2

= −x2 + 3x+ 6

From our work above, we see f(2) = 6 so that

f(x) + f(2) =
(
−x2 + 3x+ 4

)
+ 6

= −x2 + 3x+ 10

2. Since f(x) = −x2 + 3x + 4, the equaƟon f(x) = 4 is equivalent to −x2 +
3x+4 = 4. Solving we get−x2+3x = 0, or x(−x+3) = 0. We get x = 0
or x = 3, and we can verify these answers by checking that f(0) = 4 and
f(3) = 4.
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The ‘radicand’ is the expression ‘inside’
the radical.

Chapter 2 RelaƟons and FuncƟons

A few notes about Example 24 are in order. First note the difference be-
tween the answers for f(2x) and 2f(x). For f(2x), we are mulƟplying the input
by 2; for 2f(x), we are mulƟplying the output by 2. As we see, we get enƟrely
different results. Along these lines, note that f(x+2), f(x)+2 and f(x)+ f(2) are
three different expressions as well. Even though funcƟon notaƟon uses paren-
theses, as doesmulƟplicaƟon, there is no general ‘distribuƟve property’ of func-
Ɵon notaƟon. Finally, note the pracƟce of using parentheses when subsƟtuƟng
one algebraic expression into another; we highly recommend this pracƟce as it
will reduce careless errors.

Suppose now we wish to find r(3) for r(x) =
2x

x2 − 9
. SubsƟtuƟon gives

r(3) =
2(3)

(3)2 − 9
=

6
0
,

which is undefined. (Why is this, again?) The number 3 is not an allowable
input to the funcƟon r; in other words, 3 is not in the domain of r. Which other
real numbers are forbidden in this formula? We think back to arithmeƟc. The
reason r(3) is undefined is because subsƟtuƟon results in a division by 0. To
determine which other numbers result in such a transgression, we set the de-
nominator equal to 0 and solve

x2 − 9 = 0
x2 = 9

√
x2 =

√
9 extract square roots

x = ±3

As long as we subsƟtute numbers other than 3 and −3, the expression r(x)
is a real number. Hence, we write our domain in interval notaƟon (see the Ex-
ercises for SecƟon 1.3) as (−∞,−3) ∪ (−3, 3) ∪ (3,∞). When a formula for a
funcƟon is given, we assume that the funcƟon is valid for all real numbers which
make arithmeƟc sense when subsƟtuted into the formula. This set of numbers
is oŌen called the implied domain (or ‘implicit domain’) of the funcƟon. At this
stage, there are only two mathemaƟcal sins we need to avoid: division by 0 and
extracƟng even roots of negaƟve numbers. The following example illustrates
these concepts.

Example 25 Determining an implied domain
Find the domain of the following funcƟons.

1. g(x) =
√
4− 3x

2. h(x) = 5
√
4− 3x

3. f(x) =
2

1− 4x
x− 3

4. F(x) =
4
√
2x+ 1
x2 − 1

5. r(t) =
4

6−
√
t+ 3

6. I(x) =
3x2

x

SÊ½çã®ÊÄ

1. The potenƟal disaster for g is if the radicand is negaƟve. To avoid this, we
set 4 − 3x ≥ 0. From this, we get 3x ≤ 4 or x ≤ 4

3 . What this shows is
that as long as x ≤ 4

3 , the expression 4 − 3x ≥ 0, and the formula g(x)
returns a real number. Our domain is

(
−∞, 4

3
]
.
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Squaring both sides of an equaƟon can
introduce extraneous soluƟons. Do you
remember why? Consider squaring both
sides to ‘solve’

√
t+ 1 = −2.

2.3 FuncƟon NotaƟon

2. The formula for h(x) is haunƟngly close to that of g(x) with one key dif-
ference− whereas the expression for g(x) includes an even indexed root
(namely a square root), the formula for h(x) involves an odd indexed root
(the fiŌh root). Since odd roots of real numbers (even negaƟve real num-
bers) are real numbers, there is no restricƟon on the inputs to h. Hence,
the domain is (−∞,∞).

3. In the expression for f, there are two denominators. We need to make
sure neither of them is 0. To that end, we set each denominator equal to
0 and solve. For the ‘small’ denominator, we get x − 3 = 0 or x = 3. For
the ‘large’ denominator

1− 4x
x− 3

= 0

1 =
4x

x− 3

(1)(x− 3) =
(

4x
���x− 3

)
����(x− 3) clear denominators

x− 3 = 4x
−3 = 3x
−1 = x

So we get two real numbers which make denominators 0, namely x = −1
and x = 3. Our domain is all real numbers except−1 and 3:

(−∞,−1) ∪ (−1, 3) ∪ (3,∞).

4. In finding the domain of F, we noƟce that we have two potenƟally haz-
ardous issues: not only do we have a denominator, we have a fourth
(even-indexed) root. Our strategy is to determine the restricƟons imposed
by each part and select the real numbers which saƟsfy both condiƟons. To
saƟsfy the fourth root, we require 2x+ 1 ≥ 0. From this we get 2x ≥ −1
or x ≥ − 1

2 . Next, we round up the values of x which could cause trou-
ble in the denominator by seƫng the denominator equal to 0. We get
x2 − 1 = 0, or x = ±1. Hence, in order for a real number x to be in
the domain of F, x ≥ − 1

2 but x ̸= ±1. In interval notaƟon, this set is[
− 1

2 , 1
)
∪ (1,∞).

5. Don’t be put off by the ‘t’ here. It is an independent variable represenƟng
a real number, just like x does, and is subject to the same restricƟons. As in
the previous problem,wehave double danger here: wehave a square root
and a denominator. To saƟsfy the square root, we need a non-negaƟve
radicand so we set t + 3 ≥ 0 to get t ≥ −3. Seƫng the denominator
equal to zero gives 6 −

√
t+ 3 = 0, or

√
t+ 3 = 6. Squaring both sides

gives t+ 3 = 36, or t = 33. Since we squared both sides in the course of
solving this equaƟon, we need to check our answer. Sure enough, when
t = 33, 6−

√
t+ 3 = 6−

√
36 = 0, so t = 33 will cause problems in the

denominator. At last we can find the domain of r: we need t ≥ −3, but
t ̸= 33. Our final answer is [−3, 33) ∪ (33,∞).
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6. It’s tempƟng to simplify I(x) =
3x2

x
= 3x, and, since there are no longer

any denominators, claim that there are no longer any restricƟons. How-
ever, in simplifying I(x), we are assuming x ̸= 0, since 0

0 is undefined.
Proceeding as before, we find the domain of I to be all real numbers ex-
cept 0: (−∞, 0) ∪ (0,∞).

It is worth reiteraƟng the importance of finding the domain of a funcƟon
before simplifying, as evidenced by the funcƟon I in the previous example. Even
though the formula I(x) simplifies to 3x, it would be inaccurate to write I(x) =
3x without adding the sƟpulaƟon that x ̸= 0. It would be analogous to not
reporƟng taxable income or some other sin of omission.

2.3.1 Modelling with FuncƟons
The importance ofMathemaƟcs to our society lies in its value to approximate, or
model real-world phenomenon. Whether it be used to predict the high temper-
ature on a given day, determine the hours of daylight on a given day, or predict
populaƟon trends of various and sundry real and mythical beasts, MathemaƟcs
is second only to literacy in the importance humanity’s development.

It is important to keep in mind that any ƟmeMathemaƟcs is used to approx-
imate reality, there are always limitaƟons to the model. For example, suppose
grapes are on sale at the local market for $1.50 per pound. Then one pound of
grapes costs $1.50, two pounds of grapes cost $3.00, and so forth. Suppose we
want to develop a formulawhich relates the cost of buying grapes to the amount
of grapes being purchased. Since these two quanƟƟes vary from situaƟon to sit-
uaƟon, we assign them variables. Let c denote the cost of the grapes and let g
denote the amount of grapes purchased. To find the cost c of the grapes, we
mulƟply the amount of grapes g by the price $1.50 dollars per pound to get

c = 1.5g

In order for the units to be correct in the formula, gmust bemeasured in pounds
of grapes in which case the computed value of c is measured in dollars. Since
we’re interested in finding the cost c given an amount g, we think of g as the
independent variable and c as the dependent variable. Using the language of
funcƟon notaƟon, we write

c(g) = 1.5g

where g is the amount of grapes purchased (in pounds) and c(g) is the cost (in
dollars). For example, c(5) represents the cost, in dollars, to purchase 5 pounds
of grapes. In this case, c(5) = 1.5(5) = 7.5, so it would cost $7.50. If, on the
other hand, we wanted to find the amount of grapes we can purchase for $5,
we would need to set c(g) = 5 and solve for g. In this case, c(g) = 1.5g, so
solving c(g) = 5 is equivalent to solving 1.5g = 5 Doing so gives g = 5

1.5 = 3.3.
This means we can purchase exactly 3.3 pounds of grapes for $5. Of course,
you would be hard-pressed to buy exactly 3.3 pounds of grapes, (you could get
close... within a certain specified margin of error, perhaps) and this leads us
to our next topic of discussion, the applied domain, or ‘explicit domain’ of a
funcƟon.

Even though, mathemaƟcally, c(g) = 1.5g has no domain restricƟons (there
are no denominators and no even-indexed radicals), there are certain values of
g that don’t make any physical sense. For example, g = −1 corresponds to ‘pur-
chasing’−1 pounds of grapes. (Maybe thismeans returning a pound of grapes?)
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2.3 FuncƟon NotaƟon

Also, unless the ‘localmarket’menƟoned is the State of California (or someother
exporter of grapes), it also doesn’t make much sense for g = 500,000,000, ei-
ther. So the reality of the situaƟon limits what g can be, and these limits deter-
mine the applied domain of g. Typically, an applied domain is stated explicitly. In
this case, it would be common to see something like c(g) = 1.5g, 0 ≤ g ≤ 100,
meaning the number of pounds of grapes purchased is limited from 0 up to 100.
The upper bound here, 100 may represent the inventory of the market, or some
other limit as set by local policy or law. Even with this restricƟon, our model
has its limitaƟons. As we saw above, it is virtually impossible to buy exactly 3.3
pounds of grapes so that our cost is exactly $5. In this case, being sensible shop-
pers, we would most likely ‘round down’ and purchase 3 pounds of grapes or
however close the market scale can read to 3.3 without being over. It is Ɵme for
a more sophisƟcated example.

Example 26 Height of a model rocket
The height h in feet of a model rocket above the ground t seconds aŌer liŌ-off is
given by

h(t) =

{
−5t2 + 100t, if 0 ≤ t ≤ 20
0, if t > 20

1. Find and interpret h(10) and h(60).

2. Solve h(t) = 375 and interpret your answers.

SÊ½çã®ÊÄ

1. We first note that the independent variable here is t, chosen because it
represents Ɵme. Secondly, the funcƟon is broken up into two rules: one
formula for values of t between 0 and 20 inclusive, and another for values
of t greater than 20. Since t = 10 saƟsfies the inequality 0 ≤ t ≤ 20,
we use the first formula listed, h(t) = −5t2 + 100t, to find h(10). We
get h(10) = −5(10)2 + 100(10) = 500. Since t represents the number
of seconds since liŌ-off and h(t) is the height above the ground in feet,
the equaƟon h(10) = 500 means that 10 seconds aŌer liŌ-off, the model
rocket is 500 feet above the ground. To find h(60), we note that t = 60
saƟsfies t > 20, so we use the rule h(t) = 0. This funcƟon returns a value
of 0 regardless of what value is subsƟtuted in for t, so h(60) = 0. This
means that 60 seconds aŌer liŌ-off, the rocket is 0 feet above the ground;
in other words, a minute aŌer liŌ-off, the rocket has already returned to
Earth.

2. Since the funcƟon h is defined in pieces, we need to solve h(t) = 375 in
pieces. For 0 ≤ t ≤ 20, h(t) = −5t2 + 100t, so for these values of t, we
solve−5t2+100t = 375. Rearranging terms, we get 5t2−100t+375 = 0,
and factoring gives 5(t−5)(t−15) = 0. Our answers are t = 5 and t = 15,
and since both of these values of t lie between 0 and 20, we keep both
soluƟons. For t > 20, h(t) = 0, and in this case, there are no soluƟons to
0 = 375. In terms of the model rocket, solving h(t) = 375 corresponds to
finding when, if ever, the rocket reaches 375 feet above the ground. Our
two answers, t = 5 and t = 15 correspond to the rocket reaching this
alƟtude twice – once 5 seconds aŌer launch, and again 15 seconds aŌer
launch.
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The type of funcƟon in the previous example is called a piecewise-defined
funcƟon, or ‘piecewise’ funcƟon for short. Many real-world phenomena, in-
come tax formulas for example, are modelled by such funcƟons.

By the way, if we wanted to avoid using a piecewise funcƟon in Example 26,
we could have used h(t) = −5t2 + 100t on the explicit domain 0 ≤ t ≤ 20
because aŌer 20 seconds, the rocket is on the ground and stops moving. In
many cases, though, piecewise funcƟons are your only choice, so it’s best to
understand them well.

MathemaƟcalmodelling is not a one-secƟon topic. It’s not even aone-course
topic as is evidenced by undergraduate and graduate courses in mathemaƟcal
modelling being offered at many universiƟes. Thus our goal in this secƟon can-
not possibly be to tell you the whole story. What we can do is get you started.
As we study new classes of funcƟons, we will see what phenomena they can be
used to model. In that respect, mathemaƟcal modelling cannot be a topic in a
book, but rather, must be a theme of the book. For now, we have you explore
some very basic models in the Exercises because you need to crawl to walk to
run. As we learn more about funcƟons, we’ll help you build your own models
and get you on your way to applying MathemaƟcs to your world.
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Exercises 2.3
Problems
In Exercises 1 – 10, find an expression for f(x) and state its
domain.

1. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) mulƟply by 2;
(2) add 3; (3) divide by 4.

2. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) add 3; (2) mul-
Ɵply by 2; (3) divide by 4.

3. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) divide by 4; (2)
add 3; (3) mulƟply by 2.

4. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) mulƟply by 2;
(2) add 3; (3) take the square root.

5. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) add 3; (2) mul-
Ɵply by 2; (3) take the square root.

6. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) add 3; (2) take
the square root; (3) mulƟply by 2.

7. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) take the square
root; (2) subtract 13; (3) make the quanƟty the denomina-
tor of a fracƟon with numerator 4.

8. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) subtract 13; (2)
take the square root; (3) make the quanƟty the denomina-
tor of a fracƟon with numerator 4.

9. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) take the square
root; (2) make the quanƟty the denominator of a fracƟon
with numerator 4; (3) subtract 13.

10. f is a funcƟon that takes a real number x and performs the
following three steps in the order given: (1) make the quan-
Ɵty the denominator of a fracƟon with numerator 4; (2)
take the square root; (3) subtract 13.

In Exercises 11 – 18, use the given funcƟon f to find and sim-
plify the following:

• f(3)
• f(−1)
• f
( 3
2

)
• f(4x)
• 4f(x)

• f(−x)

• f(x− 4)

• f(x)− 4

• f
(
x2
)

11. f(x) = 2x+ 1

12. f(x) = 3− 4x

13. f(x) = 2− x2

14. f(x) = x2 − 3x+ 2

15. f(x) = x
x− 1

16. f(x) = 2
x3

17. f(x) = 6

18. f(x) = 0

In Exercises 19 – 26, use the given funcƟon f to find and sim-
plify the following:

• f(2)
• f(−2)
• f(2a)
• 2f(a)
• f(a+ 2)

• f(a) + f(2)

• f
( 2
a

)
• f(a)

2

• f(a+ h)

19. f(x) = 2x− 5

20. f(x) = 5− 2x

21. f(x) = 2x2 − 1

22. f(x) = 3x2 + 3x− 2

23. f(x) =
√
2x+ 1

24. f(x) = 117

25. f(x) = x
2

26. f(x) = 2
x

In Exercises 27 – 34, use the given funcƟon f to find f(0) and
solve f(x) = 0.

27. f(x) = 2x− 1

28. f(x) = 3− 2
5 x

29. f(x) = 2x2 − 6

30. f(x) = x2 − x− 12

31. f(x) =
√
x+ 4
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32. f(x) =
√
1− 2x

33. f(x) = 3
4− x

34. f(x) = 3x2 − 12x
4− x2

35. Let f(x) =


x+ 5 if x ≤ −3√
9− x2 if −3 < x ≤ 3
−x+ 5 if x > 3

Compute the

following funcƟon values.

(a) f(−4)

(b) f(−3)

(c) f(3)

(d) f(3.001)

(e) f(−3.001)

(f) f(2)

36. Let f(x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1
x if x > 1

Compute the

following funcƟon values.

(a) f(4)

(b) f(−3)

(c) f(1)

(d) f(0)

(e) f(−1)

(f) f(−0.999)

In Exercises 37 – 62, find the (implied) domain of the funcƟon.

37. f(x) = x4 − 13x3 + 56x2 − 19

38. f(x) = x2 + 4

39. f(x) = x− 2
x+ 1

40. f(x) = 3x
x2 + x− 2

41. f(x) = 2x
x2 + 3

42. f(x) = 2x
x2 − 3

43. f(x) = x+ 4
x2 − 36

44. f(x) = x− 2
x− 2

45. f(x) =
√
3− x

46. f(x) =
√
2x+ 5

47. f(x) = 9x
√
x+ 3

48. f(x) =
√
7− x

x2 + 1

49. f(x) =
√
6x− 2

50. f(x) = 6√
6x− 2

51. f(x) = 3√6x− 2

52. f(x) = 6
4−

√
6x− 2

53. f(x) =
√
6x− 2

x2 − 36

54. f(x) =
3√6x− 2
x2 + 36

55. s(t) = t
t− 8

56. Q(r) =
√
r

r− 8

57. b(θ) = θ√
θ − 8

58. A(x) =
√
x− 7+

√
9− x

59. α(y) = 3

√
y

y− 8

60. g(v) = 1

4− 1
v2

61. T(t) =
√
t− 8
5− t

62. u(w) = w− 8
5−

√
w

63. The area A enclosed by a square, in square inches, is a func-
Ɵon of the length of one of its sides x, when measured in
inches. This relaƟon is expressed by the formula A(x) = x2

for x > 0. Find A(3) and solve A(x) = 36. Interpret your
answers to each. Why is x restricted to x > 0?

64. The area A enclosed by a circle, in square meters, is a func-
Ɵon of its radius r, when measured in meters. This relaƟon
is expressed by the formula A(r) = πr2 for r > 0. Find
A(2) and solveA(r) = 16π. Interpret your answers to each.
Why is r restricted to r > 0?

65. The volume V enclosed by a cube, in cubic cenƟmeters, is a
funcƟon of the length of one of its sides x, when measured
in cenƟmeters. This relaƟon is expressed by the formula
V(x) = x3 for x > 0. Find V(5) and solve V(x) = 27. Inter-
pret your answers to each. Why is x restricted to x > 0?

66. The volume V enclosed by a sphere, in cubic feet, is a func-
Ɵon of the radius of the sphere r, when measured in feet.
This relaƟon is expressed by the formula V(r) = 4π

3 r
3 for

r > 0. Find V(3) and solve V(r) = 32π
3 . Interpret your

answers to each. Why is r restricted to r > 0?
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67. The volume V enclosed by a sphere, in cubic feet, is a func-
Ɵon of the radius of the sphere r, when measured in feet.
This relaƟon is expressed by the formula V(r) = 4π

3 r
3 for

r > 0. Find V(3) and solve V(r) = 32π
3 . Interpret your

answers to each. Why is r restricted to r > 0?

68. The height of an object dropped from the roof of an eight
story building is modeled by: h(t) = −16t2 + 64, 0 ≤
t ≤ 2. Here, h is the height of the object off the ground, in
feet, t seconds aŌer the object is dropped. Find h(0) and
solve h(t) = 0. Interpret your answers to each. Why is t
restricted to 0 ≤ t ≤ 2?

69. The temperature T in degrees Fahrenheit t hours aŌer 6 AM
is given by T(t) = − 1

2 t
2 + 8t+ 3 for 0 ≤ t ≤ 12. Find and

interpret T(0), T(6) and T(12).

70. The funcƟon C(x) = x2 − 10x + 27 models the cost, in
hundreds of dollars, to produce x thousand pens. Find and
interpret C(0), C(2) and C(5).
(The value C(0) is called the ‘fixed’ or ‘start-up’ cost. We’ll
revisit this concept on page 75.)

71. Using data from theBureau of TransportaƟon StaƟsƟcs, the
average fuel economy F in miles per gallon for passenger
cars in the US can be modelled by F(t) = −0.0076t2 +
0.45t+16, 0 ≤ t ≤ 28, where t is the number of years since
1980. Use your calculator to find F(0), F(14) and F(28).
Round your answers to two decimal places and interpret
your answers to each.

72. The populaƟon of Sasquatch in Portage County can bemod-
eled by the funcƟon P(t) = 150t

t+15 , where t represents the
number of years since 1803. Find and interpret P(0) and
P(205). Discuss with your classmates what the applied do-
main and range of P should be.

73. For n copies of the bookMe and my Sasquatch, a print on-
demand company charges C(n) dollars, where C(n) is de-
termined by the formula

C(n) =


15n if 1 ≤ n ≤ 25

13.50n if 25 < n ≤ 50
12n if n > 50

(a) Find and interpret C(20).
(b) How much does it cost to order 50 copies of the

book? What about 51 copies?
(c) Your answer to 73b should get you thinking. Sup-

pose a bookstore esƟmates it will sell 50 copies of
the book. How many books can, in fact, be ordered
for the same price as those 50 copies? (Round your
answer to a whole number of books.)

74. An on-line comic book retailer charges shipping costs ac-
cording to the following formula

S(n) =
{

1.5n+ 2.5 if 1 ≤ n ≤ 14
0 if n ≥ 15

where n is the number of comic books purchased and S(n)
is the shipping cost in dollars.

(a) What is the cost to ship 10 comic books?

(b) What is the significance of the formula S(n) = 0 for
n ≥ 15?

75. The cost C (in dollars) to talk m minutes a month on a mo-
bile phone plan is modeled by

C(m) =

{
25 if 0 ≤ m ≤ 1000

25+ 0.1(m− 1000) if m > 1000

(a) Howmuch does it cost to talk 750minutes permonth
with this plan?

(b) Howmuch does it cost to talk 20 hours a month with
this plan?

(c) Explain the terms of the plan verbally.

76. In SecƟon 1.1.1 we defined the set of integers as Z =
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The greatest integer of
x, denoted by ⌊x⌋, is defined to be the largest integer kwith
k ≤ x.
Note: The use of the leƩer Z for the integers is ostensibly
because the German word zahlenmeans ‘to count.’

(a) Find ⌊0.785⌋, ⌊117⌋, ⌊−2.001⌋, and ⌊π + 6⌋

(b) Discuss with your classmates how ⌊x⌋ may be de-
scribed as a piecewise defined funcƟon.

HINT: There are infinitely many pieces!

(c) Is ⌊a + b⌋ = ⌊a⌋ + ⌊b⌋ always true? What if a or b
is an integer? Test some values, make a conjecture,
and explain your result.

77.

78. We have through our examples tried to convince you that,
in general, f(a+b) ̸= f(a)+f(b). It has beenour experience
that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find
a funcƟon f for which the following properƟes are always
true.

(a) f(0) = f(−1+ 1) = f(−1) + f(1)

(b) f(5) = f(2+ 3) = f(2) + f(3)

(c) f(−6) = f(0− 6) = f(0)− f(6)

(d) f(a+ b) = f(a) + f(b) regardless of what two num-
bers we give you for a and b.

How many funcƟons did you find that failed to saƟsfy the
condiƟons above? Did f(x) = x2 work? What about f(x) =
√
x or f(x) = 3x+ 7 or f(x) = 1

x
? Did you find an aƩribute

common to those funcƟons that did succeed? You should
have, because there is only one extremely special family of
funcƟons that actually works here. Thus we return to our
previous statement, in general, f(a+ b) ̸= f(a) + f(b).
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Recall that if x is in the domains of both
f and g, then we can say that x is an el-
ement of the intersecƟon of the two do-
mains.

Chapter 2 RelaƟons and FuncƟons

2.4 FuncƟon ArithmeƟc
In the previous secƟon we used the newly defined funcƟon notaƟon to make
sense of expressions such as ‘f(x)+2’ and ‘2f(x)’ for a given funcƟon f. It would
seem natural, then, that funcƟons should have their own arithmeƟc which is
consistent with the arithmeƟc of real numbers. The following definiƟons allow
us to add, subtract, mulƟply and divide funcƟons using the arithmeƟcwealready
know for real numbers.

DefiniƟon 24 FuncƟon ArithmeƟc

Suppose f and g are funcƟons and x is in both the domain of f and the
domain of g.

• The sum of f and g, denoted f + g, is the funcƟon defined by the
formula

(f+ g)(x) = f(x) + g(x)

• The difference of f and g, denoted f−g, is the funcƟon defined by
the formula

(f− g)(x) = f(x)− g(x)

• The product of f and g, denoted fg, is the funcƟon defined by the
formula

(fg)(x) = f(x)g(x)

• The quoƟent of f and g, denoted
f
g
, is the funcƟon defined by the

formula (
f
g

)
(x) =

f(x)
g(x)

,

provided g(x) ̸= 0.

In other words, to add two funcƟons, we add their outputs; to subtract two
funcƟons, we subtract their outputs, and so on. Note that while the formula
(f+g)(x) = f(x)+g(x) looks suspiciously like some kind of distribuƟve property,
it is nothing of the sort; the addiƟon on the leŌ hand side of the equaƟon is
funcƟon addiƟon, and we are using this equaƟon to define the output of the
new funcƟon f+ g as the sum of the real number outputs from f and g.

Example 27 ArithmeƟc with funcƟons
Let f(x) = 6x2 − 2x and g(x) = 3− 1

x
.

1. Find (f+ g)(−1) 2. Find (fg)(2)

3. Find the domain of g− f then find and simplify a formula for (g− f)(x).

4. Find the domain of
(
g
f

)
then find and simplify a formula for

(
g
f

)
(x).

SÊ½çã®ÊÄ

1. To find (f+ g)(−1) we first find f(−1) = 8 and g(−1) = 4. By definiƟon,
we have that (f+ g)(−1) = f(−1) + g(−1) = 8+ 4 = 12.
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2. To find (fg)(2), we first need f(2) and g(2). Since f(2) = 20 and g(2) = 5
2 ,

our formula yields (fg)(2) = f(2)g(2) = (20)
( 5
2
)
= 50.

3. One method to find the domain of g − f is to find the domain of g and
of f separately, then find the intersecƟon of these two sets. Owing to the
denominator in the expression g(x) = 3 − 1

x , we get that the domain of
g is (−∞, 0) ∪ (0,∞). Since f(x) = 6x2 − 2x is valid for all real numbers,
we have no further restricƟons. Thus the domain of g − f matches the
domain of g, namely, (−∞, 0) ∪ (0,∞).
A secondmethod is to analyze the formula for (g−f)(x) before simplifying
and look for the usual domain issues. In this case,

(g− f)(x) = g(x)− f(x) =
(
3− 1

x

)
−
(
6x2 − 2x

)
,

so we find, as before, the domain is (−∞, 0) ∪ (0,∞).
Moving along, we need to simplify a formula for (g−f)(x). In this case, we
get common denominators and aƩempt to reduce the resulƟng fracƟon.
Doing so, we get

(g− f)(x) = g(x)− f(x)

=

(
3− 1

x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x

=
3x
x

− 1
x
− 6x3

x
+

2x2

x
get common denominators

=
3x− 1− 6x3 − 2x2

x

=
−6x3 − 2x2 + 3x− 1

x

4. As in the previous example, we have two ways to approach finding the
domain of g

f . First, we can find the domain of g and f separately, and

find the intersecƟon of these two sets. In addiƟon, since
(

g
f

)
(x) = g(x)

f(x) ,
we are introducing a new denominator, namely f(x), so we need to guard
against this being 0 as well. Our previous work tells us that the domain of
g is (−∞, 0) ∪ (0,∞) and the domain of f is (−∞,∞). Seƫng f(x) = 0
gives 6x2 − 2x = 0 or x = 0, 1

3 . As a result, the domain of g
f is all real

numbers except x = 0 and x = 1
3 , or (−∞, 0) ∪

(
0, 1

3
)
∪
( 1
3 ,∞

)
.

AlternaƟvely, wemayproceed as above and analyze the expression
(

g
f

)
(x) =

g(x)
f(x) before simplifying. In this case,

(
g
f

)
(x) =

g(x)
f(x)

=

3− 1
x

6x2 − 2x
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We’ll see what cancelling factors means
geometrically in Chapter 5.

Chapter 2 RelaƟons and FuncƟons

We see immediately from the ‘liƩle’ denominator that x ̸= 0. To keep the
‘big’ denominator away from 0, we solve 6x2 − 2x = 0 and get x = 0 or
x = 1

3 . Hence, as before, we find the domain of
g
f
to be

(−∞, 0) ∪
(
0,

1
3

)
∪
(
1
3
,∞
)
.

Next, we find and simplify a formula for
(
g
f

)
(x).

(
g
f

)
(x) =

g(x)
f(x)

=
3− 1

x
6x2 − 2x

=
3− 1

x
6x2 − 2x

· x
x

simplify compound fracƟons

=

(
3− 1

x

)
x

(6x2 − 2x) x
=

3x− 1
(6x2 − 2x) x

=
3x− 1

2x2(3x− 1)
factor

= �����: 1
(3x− 1)

2x2����(3x− 1)
cancel

=
1
2x2

Please note the importance of finding the domain of a funcƟon before sim-
plifying its expression. In number 4 in Example 27 above, had we waited to find
the domain of

g
f
unƟl aŌer simplifying, we’d just have the formula

1
2x2

to go by,

and we would (incorrectly!) state the domain as (−∞, 0) ∪ (0,∞), since the
other troublesome number, x = 1

3 , was cancelled away.
Next, we turn our aƩenƟon to the difference quoƟent of a funcƟon.

DefiniƟon 25 Difference quoƟent of a funcƟon

Given a funcƟon f, the difference quoƟent of f is the expression

f(x+ h)− f(x)
h

.

We will revisit this concept in SecƟon 3.1, but for now, we use it as a way
to pracƟce funcƟon notaƟon and funcƟon arithmeƟc. For reasons which will
become clear in Calculus, ‘simplifying’ a difference quoƟent means rewriƟng it
in a form where the ‘h’ in the definiƟon of the difference quoƟent cancels from
the denominator. Once that happens, we consider our work to be done.
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Example 28 CompuƟng difference quoƟents
Find and simplify the difference quoƟents for the following funcƟons

1. f(x) = x2− x− 2 2. g(x) =
3

2x+ 1
3. r(x) =

√
x

SÊ½çã®ÊÄ

1. To find f(x+ h), we replace every occurrence of x in the formula
f(x) = x2 − x− 2 with the quanƟty (x+ h) to get

f(x+ h) = (x+ h)2 − (x+ h)− 2
= x2 + 2xh+ h2 − x− h− 2.

So the difference quoƟent is

f(x+ h)− f(x)
h

=

(
x2 + 2xh+ h2 − x− h− 2

)
−
(
x2 − x− 2

)
h

=
x2 + 2xh+ h2 − x− h− 2− x2 + x+ 2

h

=
2xh+ h2 − h

h

=
h (2x+ h− 1)

h
factor

=
�h (2x+ h− 1)

�h
cancel

= 2x+ h− 1.

2. To find g(x+ h), we replace every occurrence of x in the formula

g(x) =
3

2x+ 1
with the quanƟty (x+ h) to get

g(x+ h) =
3

2(x+ h) + 1

=
3

2x+ 2h+ 1
,

which yields
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g(x+ h)− g(x)
h

=

3
2x+ 2h+ 1

− 3
2x+ 1

h

=

3
2x+ 2h+ 1

− 3
2x+ 1

h
· (2x+ 2h+ 1)(2x+ 1)
(2x+ 2h+ 1)(2x+ 1)

=
3(2x+ 1)− 3(2x+ 2h+ 1)
h(2x+ 2h+ 1)(2x+ 1)

=
6x+ 3− 6x− 6h− 3
h(2x+ 2h+ 1)(2x+ 1)

=
−6h

h(2x+ 2h+ 1)(2x+ 1)

=
−6�h

�h(2x+ 2h+ 1)(2x+ 1)

=
−6

(2x+ 2h+ 1)(2x+ 1)
.

Since we have managed to cancel the original ‘h’ from the denominator,
we are done.

3. For r(x) =
√
x, we get r(x+ h) =

√
x+ h so the difference quoƟent is

r(x+ h)− r(x)
h

=

√
x+ h−

√
x

h

In order to cancel the ‘h’ from the denominator, we raƟonalize the nu-
merator by mulƟplying by its conjugate.

r(x+ h)− r(x)
h

=

√
x+ h−

√
x

h

=

(√
x+ h−

√
x
)

h
·
(√

x+ h+
√
x
)(√

x+ h+
√
x
) MulƟply by the conjugate.

=

(√
x+ h

)2 − (√x
)2

h
(√

x+ h+
√
x
) Difference of Squares.

=
(x+ h)− x

h
(√

x+ h+
√
x
)

=
h

h
(√

x+ h+
√
x
)

= ���
1

h
�h
(√

x+ h+
√
x
)

=
1√

x+ h+
√
x

Since we have removed the original ‘h’ from the denominator, we are
done.
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2.4 FuncƟon ArithmeƟc

AsmenƟonedbefore, wewill revisit differencequoƟents in SecƟon3.1where
we will explain them geometrically. For now, we want to move on to some clas-
sic applicaƟons of funcƟon arithmeƟc from Economics and for that, we need to
think like an entrepreneur.

Suppose you are a manufacturer making a certain product. Let x be the pro-
ducƟon level, that is, the number of items produced in a given Ɵme period. It is
customary to let C(x) denote the funcƟon which calculates the total cost of pro-
ducing the x items. The quanƟty C(0), which represents the cost of producing
no items, is called the fixed cost, and represents the amount of money required
to begin producƟon. Associated with the total cost C(x) is cost per item, or av-
erage cost, denoted C(x) and read ‘C-bar’ of x. To compute C(x), we take the
total cost C(x) and divide by the number of items produced x to get

C(x) =
C(x)
x

On the retail end, we have the price p charged per item. To simplify the dialogue
and computaƟons in this text, we assume that the number of items sold equals
the number of items produced. From a retail perspecƟve, it seems natural to
think of the number of items sold, x, as a funcƟon of the price charged, p. AŌer
all, the retailer can easily adjust the price to sell more product. In the language
of funcƟons, xwould be the dependent variable and pwould be the independent
variable or, using funcƟonnotaƟon, wehave a funcƟon x(p). Whilewewill adopt
this convenƟon later in the text, (see Example 107 in SecƟon 6.2) we will hold
with tradiƟon at this point and consider the price p as a funcƟon of the number
of items sold, x. That is, we regard x as the independent variable and p as the
dependent variable and speak of the price-demand funcƟon, p(x). Hence, p(x)
returns the price charged per itemwhen x items are produced and sold. Our next
funcƟon to consider is the revenue funcƟon, R(x). The funcƟon R(x) computes
the amount of money collected as a result of selling x items. Since p(x) is the
price charged per item, we have R(x) = xp(x). Finally, the profit funcƟon, P(x)
calculates how much money is earned aŌer the costs are paid. That is, P(x) =
(R− C)(x) = R(x)− C(x). We summarize all of these funcƟons below.

Key Idea 12 Summary of Common Economic FuncƟons

Suppose x represents the quanƟty of items produced and sold.

• The price-demand funcƟon p(x) calculates the price per item.

• The revenue funcƟon R(x) calculates the total money collected by
selling x items at a price p(x), R(x) = x p(x).

• The cost funcƟon C(x) calculates the cost to produce x items. The
value C(0) is called the fixed cost or start-up cost.

• The average cost funcƟon C(x) = C(x)
x calculates the cost per item

when making x items. Here, we necessarily assume x > 0.

• The profit funcƟon P(x) calculates the money earned aŌer costs
are paid when x items are produced and sold, P(x) = (R−C)(x) =
R(x)− C(x).

75



‘dOpis’ – pronounced ‘dopeys’ …

Chapter 2 RelaƟons and FuncƟons

Example 29 CompuƟng (and interpreƟng) cost and profit funcƟons
Let x represent the number of dOpi media players produced and sold in a typical
week. Suppose the cost, in dollars, to produce x dOpis is given by C(x) = 100x+
2000, for x ≥ 0, and the price, in dollars per dOpi, is given by p(x) = 450− 15x
for 0 ≤ x ≤ 30.

1. Find and interpret C(0).

2. Find and interpret C(10).

3. Find and interpret p(0) and p(20).

4. Solve p(x) = 0 and interpret the result.

5. Find and simplify expressions for the revenue funcƟon R(x) and the profit
funcƟon P(x).

6. Find and interpret R(0) and P(0).

7. Solve P(x) = 0 and interpret the result.

SÊ½çã®ÊÄ

1. We subsƟtute x = 0 into the formula for C(x) and get C(0) = 100(0) +
2000 = 2000. This means to produce 0 dOpis, it costs $2000. In other
words, the fixed (or start-up) costs are $2000. The reader is encouraged
to contemplate what sorts of expenses these might be.

2. Since C(x) = C(x)
x , C(10) = C(10)

10 = 3000
10 = 300. This means when 10

dOpis are produced, the cost to manufacture them amounts to $300 per
dOpi.

3. Plugging x = 0 into the expression for p(x) gives p(0) = 450 − 15(0) =
450. This means no dOpis are sold if the price is $450 per dOpi. On the
other hand, p(20) = 450 − 15(20) = 150 which means to sell 20 dOpis
in a typical week, the price should be set at $150 per dOpi.

4. Seƫng p(x) = 0 gives 450 − 15x = 0. Solving gives x = 30. This means
in order to sell 30 dOpis in a typical week, the price needs to be set to $0.
What’s more, this means that even if dOpis were given away for free, the
retailer would only be able to move 30 of them.

5. To find the revenue, we compute R(x) = xp(x) = x(450−15x) = 450x−
15x2. Since the formula for p(x) is valid only for 0 ≤ x ≤ 30, our formula
R(x) is also restricted to 0 ≤ x ≤ 30. For the profit, P(x) = (R− C)(x) =
R(x)− C(x). Using the given formula for C(x) and the derived formula for
R(x), we get P(x) =

(
450x− 15x2

)
− (100x+ 2000) = −15x2 + 350x−

2000. As before, the validity of this formula is for 0 ≤ x ≤ 30 only.

6. We find R(0) = 0 which means if no dOpis are sold, we have no revenue,
which makes sense. Turning to profit, P(0) = −2000 since P(x) = R(x)−
C(x) and P(0) = R(0) − C(0) = −2000. This means that if no dOpis are
sold, more money ($2000 to be exact!) was put into producing the dOpis
than was recouped in sales. In number 1, we found the fixed costs to be
$2000, so it makes sense that if we sell no dOpis, we are out those start-up
costs.
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Recall from SecƟon 2.3.1 that in problems
such as this, it is necessary to take the
applied domain of the funcƟon into ac-
count.

2.4 FuncƟon ArithmeƟc

7. Seƫng P(x) = 0 gives−15x2 + 350x− 2000 = 0. Factoring gives−5(x−
10)(3x− 40) = 0 so x = 10 or x = 40

3 . What do these values mean in the
context of the problem? Since P(x) = R(x)− C(x), solving P(x) = 0 is the
same as solving R(x) = C(x). This means that the soluƟons to P(x) = 0
are the producƟon (and sales) figures for which the sales revenue exactly
balances the total producƟon costs. These are the so-called ‘break even’
points. The soluƟon x = 10 means 10 dOpis should be produced (and
sold) during the week to recoup the cost of producƟon. For x = 40

3 =
13.3, things are a bit more complicated. Even though x = 13.3 saƟsfies
0 ≤ x ≤ 30, and hence is in the domain of P, it doesn’t make sense in the
context of this problem to produce a fracƟonal part of a dOpi. EvaluaƟng
P(13) = 15 and P(14) = −40, we see that producing and selling 13 dOpis
per weekmakes a (slight) profit, whereas producing just onemore puts us
back into the red. While breaking even is nice, we ulƟmately would like to
find what producƟon level (and price) will result in the largest profit, and
we’ll do just that …in SecƟon 3.3.
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Exercises 2.4
Problems
In Exercises 1 – 10, use the pair of funcƟons f and g to find
the following values if they exist:

• (f+ g)(2)
• (f− g)(−1)
• (g− f)(1)
• (fg)

( 1
2

)
•
(

f
g

)
(0)

•
(
g
f

)
(−2)

1. f(x) = 3x+ 1 and g(x) = 4− x

2. f(x) = x2 and g(x) = −2x+ 1

3. f(x) = x2 − x and g(x) = 12− x2

4. f(x) = 2x3 and g(x) = −x2 − 2x− 3

5. f(x) =
√
x+ 3 and g(x) = 2x− 1

6. f(x) =
√
4− x and g(x) =

√
x+ 2

7. f(x) = 2x and g(x) = 1
2x+ 1

8. f(x) = x2 and g(x) = 3
2x− 3

9. f(x) = x2 and g(x) = 1
x2

10. f(x) = x2 + 1 and g(x) = 1
x2 + 1

In Exercises 11 – 20, use the pair of funcƟons f and g to find
the domain of the indicated funcƟon then find and simplify
an expression for it.

• (f+ g)(x)

• (f− g)(x)

• (fg)(x)

•
(

f
g

)
(x)

11. f(x) = 2x+ 1 and g(x) = x− 2

12. f(x) = 1− 4x and g(x) = 2x− 1

13. f(x) = x2 and g(x) = 3x− 1

14. f(x) = x2 − x and g(x) = 7x

15. f(x) = x2 − 4 and g(x) = 3x+ 6

16. f(x) = −x2 + x+ 6 and g(x) = x2 − 9

17. f(x) = x
2
and g(x) = 2

x

18. f(x) = x− 1 and g(x) = 1
x− 1

19. f(x) = x and g(x) =
√
x+ 1

20. f(x) =
√
x− 5 and g(x) = f(x) =

√
x− 5

In Exercises 21 – 45, find and simplify the difference quoƟent
f(x+ h)− f(x)

h
for the given funcƟon.

21. f(x) = 2x− 5

22. f(x) = −3x+ 5

23. f(x) = 6

24. f(x) = 3x2 − x

25. f(x) = −x2 + 2x− 1

26. f(x) = 4x2

27. f(x) = x− x2

28. f(x) = x3 + 1

29. f(x) = mx+ b wherem ̸= 0

30. f(x) = ax2 + bx+ c where a ̸= 0

31. f(x) = 2
x

32. f(x) = 3
1− x

33. f(x) = 1
x2

34. f(x) = 2
x+ 5

35. f(x) = 1
4x− 3

36. f(x) = 3x
x+ 1

37. f(x) = x
x− 9

38. f(x) = x2

2x+ 1

39. f(x) =
√
x− 9

40. f(x) =
√
2x+ 1

41. f(x) =
√
−4x+ 5

42. f(x) =
√
4− x
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43. f(x) =
√
ax+ b, where a ̸= 0.

44. f(x) = x
√
x

45. f(x) = 3
√
x. HINT: (a− b)

(
a2 + ab+ b2

)
= a3 − b3

In Exercises 46 – 50, C(x) denotes the cost to produce x items
and p(x) denotes the price-demand funcƟon in the given eco-
nomic scenario. In each Exercise, do the following:

• Find and interpret C(0).
• Find and interpret C(10).
• Find and interpret p(5)
• Find and simplify R(x).
• Find and simplify P(x).
• Solve P(x) = 0 and interpret.

46. The cost, in dollars, to produce x “I’d rather be a Sasquatch”
T-Shirts is C(x) = 2x + 26, x ≥ 0 and the price-demand
funcƟon, in dollars per shirt, is p(x) = 30−2x, 0 ≤ x ≤ 15.

47. The cost, in dollars, to produce x boƩles of 100% All-
Natural CerƟfied Free-Trade Organic Sasquatch Tonic is
C(x) = 10x + 100, x ≥ 0 and the price-demand funcƟon,
in dollars per boƩle, is p(x) = 35− x, 0 ≤ x ≤ 35.

48. The cost, in cents, to produce x cups of Mountain Thunder
Lemonade at Junior’s Lemonade Stand is C(x) = 18x+240,
x ≥ 0 and the price-demand funcƟon, in cents per cup, is
p(x) = 90− 3x, 0 ≤ x ≤ 30.

49. The daily cost, in dollars, to produce x Sasquatch Berry Pies
C(x) = 3x + 36, x ≥ 0 and the price-demand funcƟon, in
dollars per pie, is p(x) = 12− 0.5x, 0 ≤ x ≤ 24.

50. The monthly cost, in hundreds of dollars, to produce x cus-
tom built electric scooters is C(x) = 20x + 1000, x ≥ 0
and the price-demand funcƟon, in hundreds of dollars per
scooter, is p(x) = 140− 2x, 0 ≤ x ≤ 70.

In Exercises 51 – 62, let f be the funcƟon defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the funcƟon defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.

Compute the indicated value if it exists.

51. (f+ g)(−3)

52. (f− g)(2)

53. (fg)(−1)

54. (g+ f)(1)

55. (g− f)(3)

56. (gf)(−3)

57.
(

f
g

)
(−2)

58.
(

f
g

)
(−1)

59.
(

f
g

)
(2)

60.
(
g
f

)
(−1)

61.
(
g
f

)
(3)

62.
(
g
f

)
(−3)
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x f(x) (x, f(x))
-3 6 (−3, 6)
-2 0 (−2, 0)
-1 -4 (−1,−4)
0 -6 (0,−6)
1 -6 (1,−6)
2 -4 (2,−4)
3 0 (3, 0)
4 6 (4, 6)

x

y

−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Figure 2.21: Graphing the funcƟon f(x) =
x2 − x− 6

Chapter 2 RelaƟons and FuncƟons

2.5 Graphs of FuncƟons
In SecƟon 2.2 we defined a funcƟon as a special type of relaƟon; one in which
each x-coordinate was matched with only one y-coordinate. We spent most
of our Ɵme in that secƟon looking at funcƟons graphically because they were,
aŌer all, just sets of points in the plane. Then in SecƟon 2.3 we described a
funcƟon as a process and defined the notaƟon necessary to work with funcƟons
algebraically. So now it’s Ɵme to look at funcƟons graphically again, only this
Ɵme we’ll do so with the notaƟon defined in SecƟon 2.3. We start with what
should not be a surprising connecƟon.

Key Idea 13 The Fundamental Graphing Principle for FuncƟons

The graph of a funcƟon f is the set of points which saƟsfy the equaƟon
y = f(x). That is, the point (x, y) is on the graph of f if and only if y = f(x).

Example 30 Graphing a funcƟon
Graph f(x) = x2 − x− 6.

SÊ½çã®ÊÄ To graph f, we graph the equaƟon y = f(x). To this end,
we use the techniques outlined in SecƟon 2.1.1. Specifically, we check for in-
tercepts, test for symmetry, and plot addiƟonal points as needed. To find the
x-intercepts, we set y = 0. Since y = f(x), this means f(x) = 0.

f(x) = x2 − x− 6
0 = x2 − x− 6
0 = (x− 3)(x+ 2) factor

x− 3 = 0 or x+ 2 = 0
x = −2, 3

So we get (−2, 0) and (3, 0) as x-intercepts. To find the y-intercept, we set
x = 0. Using funcƟon notaƟon, this is the same as finding f(0) and f(0) =
02 − 0 − 6 = −6. Thus the y-intercept is (0,−6). As far as symmetry is con-
cerned, we can tell from the intercepts that the graph possesses none of the
three symmetries discussed thus far. (You should verify this.) We can make a
table analogous to the ones we made in SecƟon 2.1.1, plot the points and con-
nect the dots in a somewhat pleasing fashion to get the graph shown in Figure
2.21.

Graphing piecewise-defined funcƟons is a bit more of a challenge.

Example 31 Graphing a piecewise-defined funcƟon

Graph: f(x) =

{
4− x2 if x < 1
x− 3, if x ≥ 1

SÊ½çã®ÊÄ We proceed as before – finding intercepts, tesƟng for sym-
metry and then ploƫng addiƟonal points as needed. To find the x-intercepts,
as before, we set f(x) = 0. The twist is that we have two formulas for f(x). For
x < 1, we use the formula f(x) = 4 − x2. Seƫng f(x) = 0 gives 0 = 4 − x2, so
that x = ±2. However, of these two answers, only x = −2 fits in the domain
x < 1 for this piece. This means the only x-intercept for the x < 1 region of the
x-axis is (−2, 0). For x ≥ 1, f(x) = x − 3. Seƫng f(x) = 0 gives 0 = x − 3,
or x = 3. Since x = 3 saƟsfies the inequality x ≥ 1, we get (3, 0) as another
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x f(x) (x, f(x))
0.9 3.19 (0.9, 3.19)

0.99 ≈ 3.02 (0.99, 3.02)
0.999 ≈ 3.002 (0.999, 3.002)

x

y

−3−2−1 1 2 3

−4

−3

−2

−1

1

2

3

4

Figure 2.22: The graph of f(x) from Exam-
ple 31

Note that for graphs of funcƟons, we
don’t bother to discuss symmetry about
the x-axis. Why do you suppose this is?

2.5 Graphs of FuncƟons

x-intercept. Next, we seek the y-intercept. NoƟce that x = 0 falls in the domain
x < 1. Thus f(0) = 4− 02 = 4 yields the y-intercept (0, 4). As far as symmetry
is concerned, you can check that the equaƟon y = 4−x2 is symmetric about the
y-axis; unfortunately, this equaƟon (and its symmetry) is valid only for x < 1.
You can also verify y = x−3 possesses none of the symmetries discussed in the
SecƟon 2.1.1. When ploƫng addiƟonal points, it is important to keep in mind
the restricƟons on x for each piece of the funcƟon. The sƟcking point for this
funcƟon is x = 1, since this is where the equaƟons change. When x = 1, we use
the formula f(x) = x−3, so the point on the graph (1, f(1)) is (1,−2). However,
for all values less than 1, we use the formula f(x) = 4−x2. As we have discussed
earlier in SecƟon 2.1, there is no real numberwhich immediately precedes x = 1
on the number line. Thus for the values x = 0.9, x = 0.99, x = 0.999, and so
on, we find the corresponding y values using the formula f(x) = 4− x2. Making
a table as before, we see that as the x values sneak up to x = 1 in this fashion,
the f(x) values inch closer and closer to 4− 12 = 3. To indicate this graphically,
we use an open circle at the point (1, 3). Puƫng all of this informaƟon together
and ploƫng addiƟonal points, we get the result in Figure 2.22.

In the previous two examples, the x-coordinates of the x-intercepts of the
graph of y = f(x) were found by solving f(x) = 0. For this reason, they are
called the zeros of f.

DefiniƟon 26 Zeros of a funcƟon

The zeros of a funcƟon f are the soluƟons to the equaƟon f(x) = 0. In
other words, x is a zero of f if and only if (x, 0) is an x-intercept of the
graph of y = f(x).

Of the three symmetries discussed in SecƟon 2.1.1, only two are of signifi-
cance to funcƟons: symmetry about the y-axis and symmetry about the origin.
Recall that we can test whether the graph of an equaƟon is symmetric about
the y-axis by replacing x with −x and checking to see if an equivalent equaƟon
results. If we are graphing the equaƟon y = f(x), subsƟtuƟng −x for x results
in the equaƟon y = f(−x). In order for this equaƟon to be equivalent to the
original equaƟon y = f(x) we need f(−x) = f(x). In a similar fashion, we recall
that to test an equaƟon’s graph for symmetry about the origin, we replace x and
y with−x and−y, respecƟvely. Doing this subsƟtuƟon in the equaƟon y = f(x)
results in−y = f(−x). Solving the laƩer equaƟon for y gives y = −f(−x). In or-
der for this equaƟon to be equivalent to the original equaƟon y = f(x)we need
−f(−x) = f(x), or, equivalently, f(−x) = −f(x). These results are summarized
below.

Key Idea 14 TesƟng the Graph of a FuncƟon for Symmetry

The graph of a funcƟon f is symmetric

• about the y-axis if and only if f(−x) = f(x) for all x in the domain
of f.

• about the origin if and only if f(−x) = −f(x) for all x in the domain
of f.

81



A good resource when you need to
quickly check something like the graph of
a funcƟon is Wolfram Alpha.
If you want a good (and free!) program
you can run locally on a computer or
tablet, we recommend trying Geogebra.
It’s free to download, works on all major
operaƟng systems, and it’s preƩy easy to
figure out the basics.

Figure 2.23: The graph of f(x) in Example
32

While the plot provided by the soŌware
can provide us with visual evidence that
a funcƟon is even or odd, this evidence is
never conclusive. The only way to know
for sure is to check analyƟcally using the
definiƟons of even and odd funcƟons.

Chapter 2 RelaƟons and FuncƟons

For reasons which won’t become clear unƟl we study polynomials, we call
a funcƟon even if its graph is symmetric about the y-axis or odd if its graph is
symmetric about the origin. Apart from a very specialized family of funcƟons
which are both even andodd, (any ideas?) funcƟons fall into oneof three disƟnct
categories: even, odd, or neither even nor odd.

Example 32 Even and odd funcƟons
Determine analyƟcally if the following funcƟons are even, odd, or neither even
nor odd. Verify your result with a graphing calculator or computer soŌware.

1. f(x) =
5

2− x2

2. g(x) =
5x

2− x2

3. h(x) =
5x

2− x3

4. i(x) =
5x

2x− x3

5. j(x) = x2 − x
100

− 1

6. p(x) =

{
x+ 3 if x < 0
−x+ 3, if x ≥ 0

.

SÊ½çã®ÊÄ The first step in all of these problems is to replace xwith−x
and simplify.

1.

f(x) =
5

2− x2

f(−x) =
5

2− (−x)2

f(−x) =
5

2− x2

f(−x) = f(x)

Hence, f is even. A plot of f(x) using GeoGebra is given in Figure 2.23.

This suggests that the graph of f is symmetric about the y-axis, as ex-
pected.

2.

g(x) =
5x

2− x2

g(−x) =
5(−x)

2− (−x)2

g(−x) =
−5x
2− x2

It doesn’t appear that g(−x) is equivalent to g(x). To prove this, we check
with an x value. AŌer some trial and error, we see that g(1) = 5 whereas
g(−1) = −5. This proves that g is not even, but it doesn’t rule out the
possibility that g is odd. (Why not?) To check if g is odd, we compare
g(−x) with−g(x)
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Figure 2.24: The graph of g(x) in Example
32

Figure 2.25: The graph of h(x) in Example
32

Figure 2.26: The graph of i(x) in Example
32

2.5 Graphs of FuncƟons

−g(x) = − 5x
2− x2

=
−5x
2− x2

−g(x) = g(−x)

Hence, g is odd: see Figure 2.24.

3.

h(x) =
5x

2− x3

h(−x) =
5(−x)

2− (−x)3

h(−x) =
−5x
2+ x3

Once again, h(−x) doesn’t appear to be equivalent to h(x). We checkwith
an x value, for example, h(1) = 5 but h(−1) = − 5

3 . This proves that h is
not even and it also shows h is not odd. (Why?)
In Figure 2.25, the graph of h appears to be neither symmetric about the
y-axis nor the origin.

4.

i(x) =
5x

2x− x3

i(−x) =
5(−x)

2(−x)− (−x)3

i(−x) =
−5x

−2x+ x3

The expression i(−x) doesn’t appear to be equivalent to i(x). However,
aŌer checking some x values, for example x = 1 yields i(1) = 5 and
i(−1) = 5, it appears that i(−x) does, in fact, equal i(x). However, while
this suggests i is even, it doesn’t prove it. (It does, however, prove i is
not odd.) To prove i(−x) = i(x), we need to manipulate our expressions
for i(x) and i(−x) and show that they are equivalent. A clue as to how to
proceed is in the numerators: in the formula for i(x), the numerator is 5x
and in i(−x) the numerator is −5x. To re-write i(x) with a numerator of
−5x, we need to mulƟply its numerator by −1. To keep the value of the
fracƟon the same, we need to mulƟply the denominator by −1 as well.
Thus

i(x) =
5x

2x− x3

=
(−1)5x

(−1) (2x− x3)

=
−5x

−2x+ x3

Hence, i(x) = i(−x), so i is even. See Figure 2.26 for the graph.
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Figure 2.27: The graph of j(x) in Example
32

Figure 2.28: The graph of p(x) in Example
32

Chapter 2 RelaƟons and FuncƟons

5.

j(x) = x2 − x
100

− 1

j(−x) = (−x)2 − −x
100

− 1

j(−x) = x2 +
x

100
− 1

The expression for j(−x) doesn’t seem to be equivalent to j(x), so we
check using x = 1 to get j(1) = − 1

100 and j(−1) = 1
100 . This rules out

j being even. However, it doesn’t rule out j being odd. Examining −j(x)
gives

j(x) = x2 − x
100

− 1

−j(x) = −
(
x2 − x

100
− 1
)

−j(x) = −x2 +
x

100
+ 1

The expression −j(x) doesn’t seem to match j(−x) either. TesƟng x = 2
gives j(2) = 149

50 and j(−2) = 151
50 , so j is not odd, either.

NoƟce in Figure 2.27 that the computer plot seems to suggests that the
graph of j is symmetric about the y-axis which would imply that j is even.
However, we have proven that is not the case. The problem is that the
effect of the x/100 term is so small, our eyes don’t detect it in the graph.

6. TesƟng the graph of y = p(x) for symmetry is complicated by the fact p(x)
is a piecewise-defined funcƟon. As always, we handle this by checking
the condiƟon for symmetry by checking it on each piece of the domain.
We first consider the case when x < 0 and set about finding the correct
expression for p(−x). Even though p(x) = x+3 for x < 0, p(−x) ̸= −x+3
here. The reason for this is that since x < 0,−x > 0 which means to find
p(−x), we need to use the other formula for p(x), namely p(x) = −x+ 3.
Hence, for x < 0, p(−x) = −(−x) + 3 = x + 3 = p(x). For x ≥ 0,
p(x) = −x+ 3 and we have two cases. If x > 0, then−x < 0 so p(−x) =
(−x) + 3 = −x+ 3 = p(x). If x = 0, then p(0) = 3 = p(−0). Hence, in
all cases, p(−x) = p(x), so p is even. Since p(0) = 3 but p(−0) = p(0) =
3 ̸= −3, we also have p is not odd.

In Figure 2.28, we see that the graph appears to be symmetric about the
y-axis.

There are two lessons to be learned from the last example. The first is that
sampling funcƟon values at parƟcular x values is not enough to prove that a
funcƟon is even or odd − despite the fact that j(−1) = −j(1), j turned out not
to be odd. Secondly, while the calculator may suggest mathemaƟcal truths, it
is the Algebra which provesmathemaƟcal truths. (Or, in other words, don’t rely
too heavily on the machine!)
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The noƟons of how quickly or how slowly
a funcƟon increases or decreases are ex-
plored in Calculus.
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Figure 2.29: The graph y = f(x)

Typically, in (pre)calculus, whenever
you’re told that something occurs ‘near’
a given point, you should read this as
‘on some open interval I containing that
point’.

2.5 Graphs of FuncƟons

2.5.1 General FuncƟon Behaviour
The last topic we wish to address in this secƟon is general funcƟon behaviour.
As you shall see in the next several chapters, each family of funcƟons has its own
unique aƩributes and we will study them all in great detail. The purpose of this
secƟon’s discussion, then, is to lay the foundaƟon for that further study by inves-
ƟgaƟng aspects of funcƟon behaviour which apply to all funcƟons. To start, we
will examine the concepts of increasing, decreasing and constant. Before defin-
ing the concepts algebraically, it is instrucƟve to first look at them graphically.
Consider the graph of the funcƟon f in Figure 2.29.

Reading from leŌ to right, the graph ‘starts’ at the point (−4,−3) and ‘ends’
at the point (6, 5.5). If we imagine walking from leŌ to right on the graph, be-
tween (−4,−3) and (−2, 4.5), we are walking ‘uphill’; then between (−2, 4.5)
and (3,−8), we are walking ‘downhill’; and between (3,−8) and (4,−6), we
are walking ‘uphill’ once more. From (4,−6) to (5,−6), we ‘level off’, and then
resume walking ‘uphill’ from (5,−6) to (6, 5.5). In other words, for the x val-
ues between −4 and −2 (inclusive), the y-coordinates on the graph are geƫng
larger, or increasing, as we move from leŌ to right. Since y = f(x), the y values
on the graph are the funcƟon values, and we say that the funcƟon f is increasing
on the interval [−4,−2]. Analogously, we say that f is decreasing on the interval
[−2, 3] increasing once more on the interval [3, 4], constant on [4, 5], and finally
increasing once again on [5, 6]. It is extremely important to noƟce that the be-
haviour (increasing, decreasing or constant) occurs on an interval on the x-axis.
When we say that the funcƟon f is increasing on [−4,−2] we do not menƟon
the actual y values that f aƩains along the way. Thus, we report where the be-
haviour occurs, not to what extent the behaviour occurs. Also noƟce that we do
not say that a funcƟon is increasing, decreasing or constant at a single x value.
In fact, we would run into serious trouble in our previous example if we tried to
do so because x = −2 is contained in an interval on which f was increasing and
one on which it is decreasing. (There’s more on this issue – and many others –
in the Exercises.)

We’re now ready for the more formal algebraic definiƟons of what it means
for a funcƟon to be increasing, decreasing or constant.

DefiniƟon 27 Increasing, decreasing, and constant funcƟons

Suppose f is a funcƟon defined on an interval I. We say f is:

• increasing on I if and only if f(a) < f(b) for all real numbers a, b in
I with a < b.

• decreasing on I if and only if f(a) > f(b) for all real numbers a, b
in I with a < b.

• constant on I if and only if f(a) = f(b) for all real numbers a, b in
I.

It is worth taking some Ɵme to see that the algebraic descripƟons of increas-
ing, decreasing and constant as stated in DefiniƟon 27 agree with our graphical
descripƟons given earlier. You should look back through the examples and ex-
ercise sets in previous secƟons where graphs were given to see if you can deter-
mine the intervals onwhich the funcƟons are increasing, decreasing or constant.
Can you find an example of a funcƟon for which none of the concepts in Defini-
Ɵon 27 apply?
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‘Maxima’ is the plural of ‘maximum’ and
‘mimima’ is the plural of ‘minimum’. ‘Ex-
trema’ is the plural of ‘extremum’ which
combines maximum and minimum.

Chapter 2 RelaƟons and FuncƟons

Now let’s turn our aƩenƟon to a few of the points on the graph. Clearly the
point (−2, 4.5) does not have the largest y value of all of the points on the graph
of f − indeed that honour goes to (6, 5.5) − but (−2, 4.5) should get some sort
of consolaƟon prize for being ‘the top of the hill’ between x = −4 and x = 3. We
say that the funcƟon f has a local maximum (or relaƟve maximum) at the point
(−2, 4.5), because the y-coordinate 4.5 is the largest y-value (hence, funcƟon
value) on the curve ‘near’ x = −2. Similarly, we say that the funcƟon f has a local
minimum (or relaƟve minimum) at the point (3,−8), since the y-coordinate
−8 is the smallest funcƟon value near x = 3. Although it is tempƟng to say that
local extrema occur when the funcƟon changes from increasing to decreasing or
vice versa, it is not a precise enough way to define the concepts for the needs of
Calculus. At the risk of being pedanƟc, wewill present the tradiƟonal definiƟons
and thoroughly vet the pathologies they induce in the Exercises. We have one
last observaƟon tomake beforewe proceed to the algebraic definiƟons and look
at a fairly tame, yet helpful, example.

If we look at the enƟre graph, we see that the largest y value (the largest
funcƟon value) is 5.5 at x = 6. In this case, we say the maximum (oŌen called
the ‘absolute’ or ‘global’ maximum) of f is 5.5; similarly, the minimum (again,
‘absolute’ or ‘global’ minimum can be used.) of f is−8.

We formalize these concepts in the following definiƟons.

DefiniƟon 28 Local maximum and minimum

Suppose f is a funcƟon with f(a) = b.

• We say f has a localmaximum at the point (a, b) if and only if there
is an open interval I containing a for which f(a) ≥ f(x) for all x in
I. The value f(a) = b is called ‘a local maximum value of f’ in this
case.

• We say f has a local minimum at the point (a, b) if and only if there
is an open interval I containing a for which f(a) ≤ f(x) for all x in
I. The value f(a) = b is called ‘a local minimum value of f’ in this
case.

• The value b is called the maximum of f if b ≥ f(x) for all x in the
domain of f.

• The value b is called the minimum of f if b ≤ f(x) for all x in the
domain of f.

It’s important to note that not every funcƟon will have all of these features.
Indeed, it is possible to have a funcƟon with no local or absolute extrema at
all! (Any ideas of what such a funcƟon’s graph would have to look like?) We
shall see examples of funcƟons in the Exercises which have one or two, but not
all, of these features, some that have instances of each type of extremum and
some funcƟons that seem to defy common sense. In all cases, though, we shall
adhere to the algebraic definiƟons above as we explore the wonderful diversity
of graphs that funcƟons provide us.

Here is the ‘tame’ example which was promised earlier. It summarizes all of
the concepts presented in this secƟon as well as some from previous secƟons so
you should spend some Ɵme thinking deeply about it before proceeding to the
Exercises.
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Figure 2.30: The graph for Example 33
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Figure 2.31: Solving f(x) = 1 in Example
33.9

2.5 Graphs of FuncƟons

Example 33 A ‘tame’ example
Given the graph of y = f(x) in Figure 2.30, answer all of the following quesƟons.

1. Find the domain of f.

2. Find the range of f.

3. List the x-intercepts, if any ex-
ist.

4. List the y-intercepts, if any ex-
ist.

5. Find the zeros of f.

6. Solve f(x) < 0.

7. Determine f(2).

8. Solve f(x) = −3.

9. Find the number of soluƟons to
f(x) = 1.

10. Does f appear to be even, odd,
or neither?

11. List the intervals on which f is
increasing.

12. List the intervals on which f is
decreasing.

13. List the local maximums, if any
exist.

14. List the local minimums, if any
exist.

15. Find the maximum, if it exists.

16. Find the minimum, if it exists.

SÊ½çã®ÊÄ

1. To find the domain of f, we proceed as in SecƟon 2.2. By projecƟng the
graph to the x-axis, we see that the porƟon of the x-axis which corre-
sponds to a point on the graph is everything from−4 to 4, inclusive. Hence,
the domain is [−4, 4].

2. To find the range, we project the graph to the y-axis. We see that the
y values from −3 to 3, inclusive, consƟtute the range of f. Hence, our
answer is [−3, 3].

3. The x-intercepts are the points on the graph with y-coordinate 0, namely
(−2, 0) and (2, 0).

4. The y-intercept is the point on the graph with x-coordinate 0, namely
(0, 3).

5. The zeros of f are the x-coordinates of the x-intercepts of the graph of
y = f(x) which are x = −2, 2.

6. To solve f(x) < 0, we look for the x values of the points on the graphwhere
the y-coordinate is less than 0. Graphically, we are looking for where the
graph is below the x-axis. This happens for the x values from −4 to −2
and again from 2 to 4. So our answer is [−4,−2) ∪ (2, 4].

7. Since the graph of f is the graph of the equaƟon y = f(x), f(2) is the
y-coordinate of the point which corresponds to x = 2. Since the point
(2, 0) is on the graph, we have f(2) = 0.

8. To solve f(x) = −3, we look where y = f(x) = −3. We find two points
with a y-coordinate of −3, namely (−4,−3) and (4,−3). Hence, the so-
luƟons to f(x) = −3 are x = ±4.

9. As in the previous problem, to solve f(x) = 1, we look for points on the
graph where the y-coordinate is 1. Even though these points aren’t spec-
ified, we see that the curve has two points with a y value of 1, as seen in
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Figure 2.32: The local maximum andmin-
imum of f(x) = 15x

x2 + 3
in Example 34

Chapter 2 RelaƟons and FuncƟons

the graph below. That means there are two soluƟons to f(x) = 1: see
Figure 2.31.

10. The graph appears to be symmetric about the y-axis. This suggests (but
does not prove) that f is even.

11. Aswemove from leŌ to right, the graph rises from (−4,−3) to (0, 3). This
means f is increasing on the interval [−4, 0]. (Remember, the answer here
is an interval on the x-axis.)

12. As we move from leŌ to right, the graph falls from (0, 3) to (4,−3). This
means f is decreasing on the interval [0, 4]. (Remember, the answer here
is an interval on the x-axis.)

13. The funcƟon has its only local maximum at (0, 3) so f(0) = 3 is the local
minimum value.

14. There are no local minima. Why don’t (−4,−3) and (4,−3) count? Let’s
consider the point (−4,−3) for a moment. Recall that, in the definiƟon
of local minimum, there needs to be an open interval I which contains
x = −4 such that f(−4) < f(x) for all x in I different from−4. But if we put
an open interval around x = −4 a porƟon of that interval will lie outside
of the domain of f. Because we are unable to saƟsfy the requirements
of the definiƟon for a local minimum, we cannot claim that f has one at
(−4,−3). The point (4,−3) fails for the same reason− no open interval
around x = 4 stays within the domain of f.

15. The maximum value of f is the largest y-coordinate which is 3.

16. The minimum value of f is the smallest y-coordinate which is−3.

In general, the problem of finding maximum and minimum values, requires
the techniques of Calculus. We will explore this in Chapter 12. In the mean-
Ɵme, we’ll have to rely on technology to assist us. Most graphing calculators and
manymathemaƟcs soŌware programshave ‘Minimum’ and ‘Maximum’ features
which can be used to approximate these values, as we now demonstrate.

Example 34 Using the computer to find maxima and minima
Let f(x) =

15x
x2 + 3

. Use the computer or a graphing calculator to approximate
the intervals on which f is increasing and those on which it is decreasing. Ap-
proximate all extrema.

SÊ½çã®ÊÄ Using GeoGebra, we enter f(x) = 15x/(x^2+3) to plot
the graph of f. The command Max[f,-3,3] then calculates themaximum value
of f on the interval [−3, 3]. Similarly, Min[f,-3,3] gives the minimum value of
f on the interval [−3, 3]. The graph of f, together with the local maximum and
local minimum, are ploƩed in Figure 2.32.

To two decimal places, f appears to have its only local minimum at the point
(−1.73,−4.33) and its only local maximum at (1.73, 4.33). Given the symme-
try about the origin suggested by the graph, the relaƟon between these points
shouldn’t be too surprising. The funcƟon appears to be increasing on the in-
terval [−1.73, 1.73] and decreasing on (−∞,−1.73] ∪ [1.73,∞). This makes
−4.33 the (absolute) minimum and 4.33 the (absolute) maximum.
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Figure 2.33: Minimizing d(x) in Example
35

It seems silly to list a final answer as
(2.00, 1.00). Indeed, Calculus confirms
that the exact answer to this problem is,
in fact, (2, 1). As you are well aware by
now, the authors are overly pedanƟc, and
as such, use the decimal places to remind
the reader that any result garnered from
a calculator in this fashion is an approx-
imaƟon, and should be treated as such.
(What does the y value calculated by Ge-
oGebra in Figure 2.33 mean in this prob-
lem?)

2.5 Graphs of FuncƟons

Example 35 Minimizing distance from a graph to the origin
Find the points on the graph of y = (x − 3)2 which are closest to the origin.
Round your answers to two decimal places.

SÊ½çã®ÊÄ Suppose a point (x, y) is on the graph of y = (x − 3)2. Its
distance to the origin (0, 0) is given by

d =
√
(x− 0)2 + (y− 0)2

=
√

x2 + y2

=

√
x2 + [(x− 3)2]2 Since y = (x− 3)2

=
√

x2 + (x− 3)4

Given a value for x, the formula d =
√

x2 + (x− 3)4 is the distance from
(0, 0) to the point (x, y) on the curve y = (x−3)2. What we have defined, then,
is a funcƟon d(x) which we wish to minimize over all values of x. To accomplish
this task analyƟcally would require Calculus so as we’ve menƟoned before, we
can use a graphing calculator to find an approximate soluƟon. Using Geogebra,
we enter the funcƟon d(x) as shown below and graph.

Using the Minimum feature, we see above on the right that the (absolute)
minimum occurs near x = 2. Rounding to two decimal places, we get that the
minimum distance occurs when x = 2.00. To find the y value on the parabola
associated with x = 2.00, we subsƟtute 2.00 into the equaƟon to get y = (x −
3)2 = (2.00− 3)2 = 1.00. So, our final answer is (2.00, 1.00).
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Exercises 2.5
Problems
In Exercises 1 – 12, sketch the graph of the given funcƟon.
State the domain of the funcƟon, idenƟfy any intercepts and
test for symmetry.

1. f(x) = 2− x

2. f(x) = x− 2
3

3. f(x) = x2 + 1

4. f(x) = 4− x2

5. f(x) = 2

6. f(x) = x3

7. f(x) = x(x− 1)(x+ 2)

8. f(x) =
√
x− 2

9. f(x) =
√
5− x

10. f(x) = 3− 2
√
x+ 2

11. f(x) = 3
√
x

12. f(x) = 1
x2 + 1

In Exercises 13 – 20, sketch the graph of the given piecewise-
defined funcƟon.

13. f(x) =

{
4− x if x ≤ 3

2 if x > 3

14. f(x) =

{
x2 if x ≤ 0
2x if x > 0

15. f(x) =


−3 if x < 0

2x− 3 if 0 ≤ x ≤ 3
3 if x > 3

16. f(x) =


x2 − 4 if x ≤ −2
4− x2 if −2 < x < 2
x2 − 4 if x ≥ 2

17. f(x) =

{
−2x− 4 if x < 0

3x if x ≥ 0

18. f(x) =

{ √
x+ 4 if −4 ≤ x < 5√
x− 1 if x ≥ 5

19. f(x) =


x2 if x ≤ −2

3− x if −2 < x < 2
4 if x ≥ 2

20. f(x) =


1
x

if −6 < x < −1

x if −1 < x < 1
√
x if 1 < x < 9

In Exercises 21 – 41, determine analyƟcally if the following
funcƟons are even, odd or neither.

21. f(x) = 7x

22. f(x) = 7x+ 2

23. f(x) = 7

24. f(x) = 3x2 − 4

25. f(x) = 4− x2

26. f(x) = x2 − x− 6

27. f(x) = 2x3 − x

28. f(x) = −x5 + 2x3 − x

29. f(x) = x6 − x4 + x2 + 9

30. f(x) = x3 + x2 + x+ 1

31. f(x) =
√
1− x

32. f(x) =
√
1− x2

33. f(x) = 0

34. f(x) = 3√x2

35. f(x) = 3√x2

36. f(x) = 3
x2

37. f(x) = 2x− 1
x+ 1

38. f(x) = 3x
x2 + 1

39. f(x) = x2 − 3
x− 4x3

40. f(x) = 9√
4− x2

41. f(x) =
3√x3 + x
5x
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In Exercises 42 – 57, use the graph of y = f(x) given below to
answer the quesƟon.
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42. Find the domain of f.

43. Find the range of f.

44. Determine f(−2).

45. Solve f(x) = 4.

46. List the x-intercepts, if any exist.

47. List the y-intercepts, if any exist.

48. Find the zeros of f.

49. Solve f(x) ≥ 0.

50. Find the number of soluƟons to f(x) = 1.

51. Does f appear to be even, odd, or neither?

52. List the intervals where f is increasing.

53. List the intervals where f is decreasing.

54. List the local maximums, if any exist.

55. List the local minimums, if any exist.

56. Find the maximum, if it exists.

57. Find the minimum, if it exists.

In Exercises 58 – 73, use the graph of y = f(x) given below to
answer the quesƟon.
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58. Find the domain of f.

59. Find the range of f.

60. Determine f(2).

61. Solve f(x) = −5.

62. List the x-intercepts, if any exist.

63. List the y-intercepts, if any exist.

64. Find the zeros of f.

65. Solve f(x) ≤ 0.

66. Find the number of soluƟons to f(x) = 3.

67. Does f appear to be even, odd, or neither?

68. List the intervals where f is increasing.

69. List the intervals where f is decreasing.

70. List the local maximums, if any exist.

71. List the local minimums, if any exist.

72. Find the maximum, if it exists.

73. Find the minimum, if it exists.
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In Exercises 74 – 77, use a graphing calculator or soŌware
(such as GeoGebra) to approximate the local and absolute
extrema of the given funcƟon. Approximate the intervals on
which the funcƟon is increasing and those on which it is de-
creasing. Round your answers to two decimal places.

74. f(x) = x4 − 3x3 − 24x2 + 28x+ 48

75. f(x) = x2/3(x− 4)

76. f(x) =
√
9− x2

77. f(x) = x
√
9− x2

In Exercises 78 – 85, use the graphs of y = f(x) and y = g(x)
below to find the funcƟon value.
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y = f(x) y = g(x)

78. (f+ g)(0)

79. (f+ g)(1)

80. (f− g)(1)

81. (g− f)(2)

82. (fg)(2)

83. (fg)(1)

84.
(

f
g

)
(4)

85.
(
g
f

)
(2)

The graph below represents the height h of a Sasquatch (in
feet) as a funcƟon of its age N in years. Use it to answer the
quesƟons in Exercises 86 – 90.

N

y

15 30 45 60

2
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6

8

86. Find and interpret h(0).

87. How tall is the Sasquatch when she is 15 years old?

88. Solve h(N) = 6 and interpret.

89. List the interval over which h is constant and interpret your
answer.

90. List the interval over which h is decreasing and interpret
your answer.

For Exercises 91 – 93, let f(x) = ⌊x⌋ be the greatest integer
funcƟon as defined in Exercise 76 in SecƟon 2.3.

91. Graph y = f(x). Be careful to correctly describe the be-
haviour of the graph near the integers.

92. Is f even, odd, or neither? Explain.

93. Discuss with your classmates which points on the graph are
local minimums, local maximums or both. Is f ever increas-
ing? Decreasing? Constant?

94. In Exercise 72 in SecƟon 2.3, we saw that the populaƟon
of Sasquatch in Portage County could be modeled by the
funcƟon P(t) =

150t
t+ 15

, where t = 0 represents the year
1803. Use your graphing calculator to analyze the general
funcƟon behaviour of P. Will there ever be a Ɵmewhen 200
Sasquatch roam Portage County?

95. Suppose f and g are both even funcƟons. What can be said
about the funcƟons f + g, f − g, fg and f

g? What if f and g
are both odd? What if f is even but g is odd?

96. One of themost important aspects of the Cartesian Coordi-
nate Plane is its ability to put Algebra into geometric terms
and Geometry into algebraic terms. We’ve spent most of
this chapter looking at this very phenomenon and now you
should spend some Ɵme with your classmates reviewing
what we’ve done. What major results do we have that Ɵe
Algebra and Geometry together? What concepts from Ge-
ometry have we not yet described algebraically? What top-
ics from Intermediate Algebra have we not yet discussed
geometrically?
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It’s now Ɵme to “thoroughly vet the pathologies induced” by
the precise definiƟons of local maximum and local minimum.
You and your classmates should carefully discuss Exercises 97
– 99. You will need to refer back to DefiniƟon 27 (Increasing,
Decreasing and Constant) and DefiniƟon 28 (Maximum and
Minimum) during the discussion.

97. Consider the graph of the funcƟon f given below.

x

y

−2−1 1 2

−3

−2

−1

1

2

3

(a) Show that f has a local maximum but not a local min-
imum at the point (−1, 1).

(b) Show that f has a local minimum but not a local max-
imum at the point (1, 1).

(c) Show that f has a local maximum AND a local mini-
mum at the point (0, 1).

(d) Show that f is constant on the interval [−1, 1] and
thus has both a local maximumAND a local minimum
at every point (x, f(x)) where−1 < x < 1.

98. Using Example 33 as a guide, show that the funcƟon g
whose graph is given below does not have a local maximum
at (−3, 5) nor does it have a localminimumat (3,−3). Find
its extrema, both local and absolute. What’s unique about
the point (0,−4) on this graph? Also find the intervals on
which g is increasing and those on which g is decreasing.

x

y

−3−2−1 1 2 3

−4

−3

−2

−1
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99. We said earlier in the secƟon that it is not good enough
to say local extrema exist where a funcƟon changes from
increasing to decreasing or vice versa. As a previous ex-
ercise showed, we could have local extrema when a func-
Ɵon is constant so now we need to examine some func-
Ɵons whose graphs do indeed change direcƟon. Consider
the funcƟons graphed below. NoƟce that all four of them
change direcƟon at an open circle on the graph. Examine
each for local extrema. What is the effect of placing the
“dot” on the y-axis above or below the open circle? What
could you say if no funcƟon value were assigned to x = 0?

(a)

x

y

−2−1 1 2−1

1

2

3
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(b)
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(c)
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(d)
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4

5
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Figure 2.35: The graph of a funcƟon f

Chapter 2 RelaƟons and FuncƟons

2.6 TransformaƟons
In this secƟon, we study how the graphs of funcƟons change, or transform, when
certain specialized modificaƟons are made to their formulas. The transforma-
Ɵons we will study fall into three broad categories: shiŌs, reflecƟons and scal-
ings, and we will present them in that order. Suppose that Figure 2.35 the com-
plete graph of a funcƟon f.

The Fundamental Graphing Principle for FuncƟons says that for a point (a, b)
to be on the graph, f(a) = b. In parƟcular, we know f(0) = 1, f(2) = 3, f(4) = 3
and f(5) = 5. Suppose we wanted to graph the funcƟon defined by the formula
g(x) = f(x) + 2. Let’s take a minute to remind ourselves of what g is doing. We
startwith an input x to the funcƟon f andweobtain the output f(x). The funcƟon
g takes the output f(x) and adds 2 to it. In order to graph g, we need to graph
the points (x, g(x)). How are we to find the values for g(x) without a formula
for f(x)? The answer is that we don’t need a formula for f(x), we just need the
values of f(x). The values of f(x) are the y values on the graph of y = f(x). For
example, using the points indicated on the graph of f, we canmake the following
table.

x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x))
0 (0, 1) 1 3 (0, 3)
2 (2, 3) 3 5 (2, 5)
4 (4, 3) 3 5 (4, 5)
5 (5, 5) 5 7 (5, 7)

In general, if (a, b) is on the graph of y = f(x), then f(a) = b, so g(a) =
f(a) + 2 = b + 2. Hence, (a, b + 2) is on the graph of g. In other words, to
obtain the graph of g, we add 2 to the y-coordinate of each point on the graph
of f. Geometrically, adding 2 to the y-coordinate of a point moves the point 2
units above its previous locaƟon. Adding 2 to every y-coordinate on a graph
en masse is usually described as ‘shiŌing the graph up 2 units’. NoƟce that the
graph retains the same basic shape as before, it is just 2 units above its original
locaƟon. In other words, we connect the four points we moved in the same
manner in which they were connected before: see Figure 2.34.
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shiŌ up 2 units
−−−−−−−−−−−−−→
add 2 to each y-coordinate

(0, 3)

(2, 5)

(4, 5)

(5, 7)

x

y

1 2 3 4 5

1
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4

5
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7

y = f(x) y = g(x) = f(x) + 2

Figure 2.34: ShiŌing the graph of f up by 2 units

You’ll note that the domain of f and the domain of g are the same, namely
[0, 5], but that the range of f is [1, 5] while the range of g is [3, 7]. In general,
shiŌing a funcƟon verƟcally like this will leave the domain unchanged, but could
very well affect the range. You can easily imagine what would happen if we
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We have spent a lot of Ɵme in this text
showing you that f(x+2) and f(x)+2 are,
in general, wildly different algebraic ani-
mals. We will see momentarily that their
geometry is also dramaƟcally different.

2.6 TransformaƟons

wanted to graph the funcƟon j(x) = f(x)− 2. Instead of adding 2 to each of the
y-coordinates on the graph of f, we’d be subtracƟng 2. Geometrically, we would
be moving the graph down 2 units. We leave it to the reader to verify that the
domain of j is the same as f, but the range of j is [−1, 3]. What we have discussed
is generalized in the following theorem.

Theorem 7 VerƟcal ShiŌs

Suppose f is a funcƟon and k is a posiƟve number.

• To graph y = f(x) + k, shiŌ the graph of y = f(x) up k units by
adding k to the y-coordinates of the points on the graph of f.

• To graph y = f(x)− k, shiŌ the graph of y = f(x) down k units by
subtracƟng k from the y-coordinates of the points on the graph of
f.

The key to understanding Theorem 7 and, indeed, all of the theorems in this
secƟon comes from an understanding of the Fundamental Graphing Principle for
FuncƟons. If (a, b) is on the graph of f, then f(a) = b. SubsƟtuƟng x = a into
the equaƟon y = f(x)+ k gives y = f(a)+ k = b+ k. Hence, (a, b+ k) is on the
graph of y = f(x) + k, and we have the result. In the language of ‘inputs’ and
‘outputs’, Theorem 7 can be paraphrased as “Adding to, or subtracƟng from, the
output of a funcƟon causes the graph to shiŌ up or down, respecƟvely.” So what
happens if we add to or subtract from the input of the funcƟon?

Keeping with the graph of y = f(x) above, suppose we wanted to graph
g(x) = f(x + 2). In other words, we are looking to see what happens when
we add 2 to the input of the funcƟon Let’s try to generate a table of values of g
based on those we know for f. We quickly find that we run into some difficulƟes.

x (x, f(x)) f(x) g(x) = f(x+ 2) (x, g(x))
0 (0, 1) 1 f(0+ 2) = f(2) = 3 (0, 3)
2 (2, 3) 3 f(2+ 2) = f(4) = 3 (2, 3)
4 (4, 3) 3 f(4+ 2) = f(6) =?

5 (5, 5) 5 f(5+ 2) = f(7) =?

When we subsƟtute x = 4 into the formula g(x) = f(x+ 2), we are asked to
find f(4 + 2) = f(6) which doesn’t exist because the domain of f is only [0, 5].
The same thing happens when we aƩempt to find g(5). What we need here is a
new strategy. We know, for instance, f(0) = 1. To determine the corresponding
point on the graph of g, we need to figure outwhat value of xwemust subsƟtute
into g(x) = f(x+2) so that the quanƟty x+2, works out to be 0. Solving x+2 = 0
gives x = −2, and g(−2) = f((−2) + 2) = f(0) = 1 so (−2, 1) is on the graph
of g. To use the fact f(2) = 3, we set x+ 2 = 2 to get x = 0. SubsƟtuƟng gives
g(0) = f(0+ 2) = f(2) = 3. ConƟnuing in this fashion, we get

x x+ 2 g(x) = f(x+ 2) (x, g(x))
−2 0 g(−2) = f(0) = 1 (−2, 1)
0 2 g(0) = f(2) = 3 (0, 3)
2 4 g(2) = f(4) = 3 (2, 3)
3 5 g(3) = f(5) = 5 (3, 5)
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Chapter 2 RelaƟons and FuncƟons

In summary, the points (0, 1), (2, 3), (4, 3) and (5, 5)on the graphof y = f(x)
give rise to the points (−2, 1), (0, 3), (2, 3) and (3, 5) on the graph of y = g(x),
respecƟvely. In general, if (a, b) is on the graph of y = f(x), then f(a) = b.
Solving x+ 2 = a gives x = a− 2 so that g(a− 2) = f((a− 2)+ 2) = f(a) = b.
As such, (a − 2, b) is on the graph of y = g(x). The point (a − 2, b) is exactly
2 units to the leŌ of the point (a, b) so the graph of y = g(x) is obtained by
shiŌing the graph y = f(x) to the leŌ 2 units, as pictured below.
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y = f(x) y = g(x) = f(x+ 2)

Figure 2.36: ShiŌing the graph of f leŌ by 2 units

Note that while the ranges of f and g are the same, the domain of g is [−2, 3]
whereas the domain of f is [0, 5]. In general, when we shiŌ the graph horizon-
tally, the range will remain the same, but the domain could change. If we set
out to graph j(x) = f(x − 2), we would find ourselves adding 2 to all of the x
values of the points on the graph of y = f(x) to effect a shiŌ to the right 2 units.
Generalizing these noƟons produces the following result.

Theorem 8 Horizontal ShiŌs

Suppose f is a funcƟon and h is a posiƟve number.

• To graph y = f(x + h), shiŌ the graph of y = f(x) leŌ h units by
subtracƟng h from the x-coordinates of the points on the graph of
f.

• To graph y = f(x − h), shiŌ the graph of y = f(x) right h units by
adding h to the x-coordinates of the points on the graph of f.

In other words, Theorem 8 says that adding to or subtracƟng from the input
to a funcƟon amounts to shiŌing the graph leŌ or right, respecƟvely. Theorems 7
and 8 present a theme which will run common throughout the secƟon: changes
to the outputs from a funcƟon affect the y-coordinates of the graph, resulƟng
in some kind of verƟcal change; changes to the inputs to a funcƟon affect the
x-coordinates of the graph, resulƟng in some kind of horizontal change.

Example 36 Transforming with verƟcal and horizontal shiŌs

1. Graph f(x) =
√
x. Plot at least three points.

2. Use your graph in 1 to graph g(x) =
√
x− 1.

3. Use your graph in 1 to graph j(x) =
√
x− 1.
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x f(x) (x, f(x))
0 0 (0, 0)
1 1 (1, 1)
4 2 (4, 2)
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Figure 2.37: The graph y = f(x) =
√
x
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Figure 2.38: Graphing g(x) =
√
x− 1
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Figure 2.39: Graphing j(x) =
√
x− 1
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Figure 2.40: Graphingm1(x) =
√
x+ 3
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Figure 2.41: Graphingm(x) =
√
x+ 3−2

2.6 TransformaƟons

4. Use your graph in 1 to graphm(x) =
√
x+ 3− 2.

SÊ½çã®ÊÄ

1. Owing to the square root, the domain of f is x ≥ 0, or [0,∞). We choose
perfect squares to build our table and graph below. From the graph we
verify the domain of f is [0,∞) and the range of f is also [0,∞). The orig-
inal funcƟon is ploƩed in Figure 2.37

2. The domain of g is the same as the domain of f, since the only condiƟon
on both funcƟons is that x ≥ 0. If we compare the formula for g(x) with
f(x), we see that g(x) = f(x) − 1. In other words, we have subtracted 1
from the output of the funcƟon f. By Theorem 7, we know that in order to
graph g, we shiŌ the graph of f down one unit by subtracƟng 1 from each
of the y-coordinates of the points on the graph of f. Applying this to the
three points we have specified on the graph, we move (0, 0) to (0,−1),
(1, 1) to (1, 0), and (4, 2) to (4, 1). The rest of the points follow suit, and
we connect them with the same basic shape as before. We confirm the
domain of g is [0,∞) and find the range of g to be [−1,∞). The graph of
g is given in Figure 2.38.

3. Solving x − 1 ≥ 0 gives x ≥ 1, so the domain of j is [1,∞). To graph j,
we note that j(x) = f(x − 1). In other words, we are subtracƟng 1 from
the input of f. According to Theorem 8, this induces a shiŌ to the right of
the graph of f. We add 1 to the x-coordinates of the points on the graph
of f and get the result below. The graph reaffirms that the domain of j is
[1,∞) and tells us that the range of j is [0,∞).

4. To find the domain ofm, we solve x+ 3 ≥ 0 and get [−3,∞). Comparing
the formulas of f(x) and m(x), we have m(x) = f(x + 3) − 2. We have
3 being added to an input, indicaƟng a horizontal shiŌ, and 2 being sub-
tracted froman output, indicaƟng a verƟcal shiŌ. We leave it to the reader
to verify that, in this parƟcular case, the order in which we perform these
transformaƟons is immaterial; we will arrive at the same graph regardless
as to which transformaƟon we apply first. (We shall see in the next exam-
ple that order is generally important when applying more than one trans-
formaƟon to a graph.) We follow the convenƟon ‘inputs first’, and to that
end we first tackle the horizontal shiŌ. Leƫng m1(x) = f(x + 3) denote
this intermediate step, Theorem 8 tells us that the graph of y = m1(x) is
the graph of f shiŌed to the leŌ 3 units. Hence, we subtract 3 from each
of the x-coordinates of the points on the graph of f.

Sincem(x) = f(x+3)−2 and f(x+3) = m1(x), we havem(x) = m1(x)−2.
We can apply Theorem 7 and obtain the graph ofm by subtracƟng 2 from
the y-coordinates of each of the points on the graph ofm1(x). The graph
verifies that the domain ofm is [−3,∞) and we find the range ofm to be
[−2,∞).

Keep in mind that we can check our answer to any of these kinds of prob-
lems by showing that any of the points we’ve moved lie on the graph of our
final answer. For example, we can check that (−3,−2) is on the graph of m by
compuƟngm(−3) =

√
(−3) + 3− 2 =

√
0− 2 = −2X
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The expressions −f(x) and f(−x) should
look familiar - they are the quanƟƟes we
used in SecƟon 2.5 to test if a funcƟon
was even, odd or neither. The inter-
ested reader is invited to explore the role
of reflecƟons and symmetry of funcƟons.
What happens if you reflect an even func-
Ɵon across the y-axis? What happens if
you reflect an odd funcƟon across the y-
axis? What about the x-axis?

Chapter 2 RelaƟons and FuncƟons

We now turn our aƩenƟon to reflecƟons. We know from SecƟon 1.3 that to
reflect a point (x, y) across the x-axis, we replace y with −y. If (x, y) is on the
graph of f, then y = f(x), so replacing y with −y is the same as replacing f(x)
with−f(x). Hence, the graph of y = −f(x) is the graph of f reflected across the
x-axis. Similarly, the graph of y = f(−x) is the graph of f reflected across the
y-axis. Returning to the language of inputs and outputs, mulƟplying the output
from a funcƟon by −1 reflects its graph across the x-axis, while mulƟplying the
input to a funcƟon by−1 reflects the graph across the y-axis.

Theorem 9 ReflecƟons

Suppose f is a funcƟon.

• To graph y = −f(x), reflect the graph of y = f(x) across the x-axis
by mulƟplying the y-coordinates of the points on the graph of f by
−1.

• To graph y = f(−x), reflect the graph of y = f(x) across the y-axis
by mulƟplying the x-coordinates of the points on the graph of f by
−1.

Applying Theorem 9 to the graph of y = f(x) given at the beginning of the
secƟon, we can graph y = −f(x) by reflecƟng the graph of f about the x-axis:
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y = f(x) y = −f(x)

Figure 2.42: ReflecƟng the graph of f across the x-axis

By reflecƟng the graph of f across the y-axis, we obtain the graph of y =
f(−x):
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Figure 2.44: The graph y = f(x) from Ex-
ample 36

(0, 0)(−1, 1)

(−4, 2)

x

y

−1−2−3−4 1 2 3 4

1

2

Figure 2.45: ReflecƟng y = f(x) across
the y-axis to obtain the graph of g(x) =√
−x
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Figure 2.46: The intermediate funcƟon
j1(x) = f(x+ 3)
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Figure 2.47: ReflecƟng y = j1(x) across
the y-axis to obtain the graph of j(x) =√
3− x
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Figure 2.43: ReflecƟng the graph of f across the y-axis

With the addiƟon of reflecƟons, it is now more important than ever to con-
sider the order of transformaƟons, as the next example illustrates.

Example 37 Graphing reflecƟons
Let f(x) =

√
x. Use the graph of f from Example 36 to graph the following func-

Ɵons. Also, state their domains and ranges.

1. g(x) =
√
−x 2. j(x) =

√
3− x 3. m(x) = 3−

√
x

SÊ½çã®ÊÄ

1. The mere sight of
√
−x usually causes alarm, if not panic. When we dis-

cussed domains in SecƟon 2.3, we clearly banished negaƟves from the
radicands of even roots. However, we must remember that x is a vari-
able, and as such, the quanƟty −x isn’t always negaƟve. For example, if
x = −4, −x = 4, thus

√
−x =

√
−(−4) = 2 is perfectly well-defined.

To find the domain analyƟcally, we set−x ≥ 0 which gives x ≤ 0, so that
the domain of g is (−∞, 0]. Since g(x) = f(−x), Theorem 9 tells us that
the graph of g is the reflecƟon of the graph of f across the y-axis. We ac-
complish this by mulƟplying each x-coordinate on the graph of f by −1,
so that the points (0, 0), (1, 1), and (4, 2) move to (0, 0), (−1, 1), and
(−4, 2), respecƟvely. Graphically, we see that the domain of g is (−∞, 0]
and the range of g is the same as the range of f, namely [0,∞).

If we had done the reflecƟon first, then j1(x) = f(−x). Following this by
a shiŌ leŌ would give us j(x) = j1(x + 3) = f(−(x + 3)) = f(−x − 3) =√
−x− 3 which isn’t what we want. However, if we did the reflecƟon first

and followed it by a shiŌ to the right 3 units, we would have arrived at the
funcƟon j(x). We leave it to the reader to verify the details.

2. To determine the domain of j(x) =
√
3− x, we solve 3 − x ≥ 0 and get

x ≤ 3, or (−∞, 3]. To determine which transformaƟons we need to apply
to the graph of f to obtain the graph of j, we rewrite j(x) =

√
−x+ 3 =

f(−x + 3). Comparing this formula with f(x) =
√
x, we see that not only

are we mulƟplying the input x by −1, which results in a reflecƟon across
the y-axis, but also we are adding 3, which indicates a horizontal shiŌ to
the leŌ. Does it maƩer in which order we do the transformaƟons? If so,
which order is the correct order? Let’s consider the point (4, 2) on the
graph of f. We refer to the discussion leading up to Theorem 8. We know
f(4) = 2 and wish to find the point on y = j(x) = f(−x+ 3) which corre-
sponds to (4, 2). We set−x+3 = 4 and solve. Our first step is to subtract
3 from both sides to get−x = 1. SubtracƟng 3 from the x-coordinate 4 is
shiŌing the point (4, 2) to the leŌ. From −x = 1, we then mulƟply both
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sides by −1 to get x = −1. MulƟplying the x-coordinate by −1 corre-
sponds to reflecƟng the point about the y-axis. Hence, we perform the
horizontal shiŌ first, then follow it with the reflecƟon about the y-axis.
StarƟng with f(x) =

√
x, we let j1(x) be the intermediate funcƟon which

shiŌs the graph of f 3 units to the leŌ, j1(x) = f(x+ 3).

To obtain the funcƟon j, we reflect the graph of j1 about y-axis. Theorem
9 tells us we have j(x) = j1(−x). Puƫng it all together, we have j(x) =
j1(−x) = f(−x+3) =

√
−x+ 3, which is what we want. From the graph,

we confirm the domain of j is (−∞, 3] and we get that the range is [0,∞).

3. The domain of m works out to be the domain of f, [0,∞). RewriƟng
m(x) = −

√
x + 3, we see m(x) = −f(x) + 3. Since we are mulƟply-

ing the output of f by −1 and then adding 3, we once again have two
transformaƟons to deal with: a reflecƟon across the x-axis and a verƟcal
shiŌ. To determine the correct order in which to apply the transforma-
Ɵons, we imagine trying to determine the point on the graph of m which
corresponds to (4, 2) on the graph of f. Since in the formula form(x), the
input to f is just x, we subsƟtute to findm(4) = −f(4)+ 3 = −2+ 3 = 1.
Hence, (4, 1) is the corresponding point on the graph of m. If we closely
examine the arithmeƟc, we see that we first mulƟply f(4) by −1, which
corresponds to the reflecƟon across the x-axis, and then we add 3, which
corresponds to the verƟcal shiŌ. If we define an intermediate funcƟon
m1(x) = −f(x) to take care of the reflecƟon, we get the graph in Figure
2.48.

To shiŌ the graph of m1 up 3 units, we set m(x) = m1(x) + 3. Since
m1(x) = −f(x), when we put it all together, we getm(x) = m1(x) + 3 =
−f(x) + 3 = −

√
x + 3. We see from the graph that the range of m is

(−∞, 3].

We now turn our aƩenƟon to our last class of transformaƟons known as scal-
ings. A thorough discussion of scalings can get complicated because they are
not as straight-forward as the previous transformaƟons. A quick review of what
we’ve covered so far, namely verƟcal shiŌs, horizontal shiŌs and reflecƟons,
will show you why those transformaƟons are known as rigid transformaƟons.
Simply put, they do not change the shape of the graph, only its posiƟon and ori-
entaƟon in the plane. If, however, we wanted to make a new graph twice as tall
as a given graph, or one-third as wide, we would be changing the shape of the
graph. This type of transformaƟon is called non-rigid for obvious reasons. Not
only will it be important for us to differenƟate between modifying inputs versus
outputs, we must also pay close aƩenƟon to the magnitude of the changes we
make. As you will see shortly, the MathemaƟcs turns out to be easier than the
associated grammar.

Suppose we wish to graph the funcƟon g(x) = 2f(x) where f(x) is the func-
Ɵon whose graph is given in Figure 2.35 the beginning of the secƟon. From its
graph, we can build a table of values for g as before:

x (x, f(x)) f(x) g(x) = 2f(x) (x, g(x))
0 (0, 1) 1 2 (0, 2)
2 (2, 3) 3 6 (2, 6)
4 (4, 3) 3 6 (4, 6)
5 (5, 5) 5 10 (5, 10)
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Figure 2.52: The effect of horizontal scal-
ing on a graph

2.6 TransformaƟons

In general, if (a, b) is on the graph of f, then f(a) = b so that g(a) = 2f(a) =
2b puts (a, 2b) on the graph of g. In other words, to obtain the graph of g, we
mulƟply all of the y-coordinates of the points on the graph of f by 2. MulƟplying
all of the y-coordinates of all of the points on the graph of f by 2 causes what
is known as a ‘verƟcal scaling (or ‘verƟcal stretching’, or ‘verƟcal expansion’ or
‘verƟcal dilaƟon’) by a factor of 2’, and the results are given in Figure 2.50

If we wish to graph y = 1
2 f(x), we mulƟply the all of the y-coordinates of

the points on the graph of f by 1
2 . This creates a ‘verƟcal scaling by a factor of1

2 ’ (also called ‘verƟcal shrinking’, ‘verƟcal compression’ or ‘verƟcal contracƟon’
by a factor of 2) as seen in Figure 2.51

These results are generalized in the following theorem.

Theorem 10 VerƟcal Scalings

Suppose f is a funcƟon and a > 0. To graph y = af(x), mulƟply all of the
y-coordinates of the points on the graph of f by a. We say the graph of f
has been verƟcally scaled by a factor of a.

• If a > 1, we say the graph of f has undergone a verƟcal stretching
(expansion, dilaƟon) by a factor of a.

• If 0 < a < 1, we say the graph of f has undergone a verƟcal shrink-
ing (compression, contracƟon) by a factor of 1

a .

A few remarks about Theorem 10 are in order. First, a note about the ver-
biage. To the authors, the words ‘stretching’, ‘expansion’, and ‘dilaƟon’ all indi-
cate something geƫng bigger. Hence, ‘stretched by a factor of 2’ makes sense
if we are scaling something by mulƟplying it by 2. Similarly, we believe words
like ‘shrinking’, ‘compression’ and ‘contracƟon’ all indicate something geƫng
smaller, so if we scale something by a factor of 1

2 , we would say it ‘shrinks by
a factor of 2’ - not ‘shrinks by a factor of 1

2 ’. This is why we have wriƩen the
descripƟons ‘stretching by a factor of a’ and ‘shrinking by a factor of 1

a ’ in the
statement of the theorem. Second, in terms of inputs and outputs, Theorem 10
says mulƟplying the outputs from a funcƟon by posiƟve number a causes the
graph to be verƟcally scaled by a factor of a. It is natural to ask what would hap-
pen if we mulƟply the inputs of a funcƟon by a posiƟve number. This leads us
to our last transformaƟon of the secƟon.

Referring to the graph of f given at the beginning of this secƟon, suppose we
want to graph g(x) = f(2x). In other words, we are looking to see what effect
mulƟplying the inputs to f by 2 has on its graph. If we aƩempt to build a table
directly, we quickly run into the same problem we had in our discussion leading
up to Theorem 8, as seen in the table below.

x (x, f(x)) f(x) g(x) = f(2x) (x, g(x))
0 (0, 1) 1 f(2 · 0) = f(0) = 1 (0, 1)
2 (2, 3) 3 f(2 · 2) = f(4) = 3 (2, 3)
4 (4, 3) 3 f(2 · 4) = f(8) =?

5 (5, 5) 5 f(2 · 5) = f(10) =?

We solve this problem in the same way we solved this problem before. For
example, if we want to determine the point on gwhich corresponds to the point
(2, 3) on the graph of f, we set 2x = 2 so that x = 1. SubsƟtuƟng x = 1 into
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Chapter 2 RelaƟons and FuncƟons

g(x), we obtain g(1) = f(2 · 1) = f(2) = 3, so that (1, 3) is on the graph of g.
ConƟnuing in this fashion, we can complete our table as follows:

x 2x g(x) = f(2x) (x, g(x))
0 0 g(0) = f(0) = 1 (0, 0)
1 2 g(1) = f(2) = 3 (1, 3)
2 4 g(2) = f(4) = 3 (2, 3)
5
2 5 g

( 5
2
)
= f(5) = 5

( 5
2 , 5
)

In general, if (a, b) is on the graph of f, then f(a) = b. Hence g
( a
2
)

=

f
(
2 · a

2
)
= f(a) = b so that

( a
2 , b
)
is on the graph of g. In other words, to graph

gwe divide the x-coordinates of the points on the graph of f by 2. This results in
a horizontal scaling by a factor of 1

2 (also called ‘horizontal shrinking’, ‘horizontal
compression’ or ‘horizontal contracƟon’ by a factor of 2).

If, on the other hand, wewish to graph y = f
( 1
2x
)
, we end upmulƟplying the

x-coordinates of the points on the graph of f by 2 which results in a horizontal
scaling by a factor of 2. (Also called ‘horizontal stretching’, ‘horizontal expansion’
or ‘horizontal dilaƟon’ by a factor of 2.) The effect of both horizontal scalings is
shown in Figure 2.52.

We have the following theorem.

Theorem 11 Horizontal Scalings.

Suppose f is a funcƟon and b > 0. To graph y = f(bx), divide all of the
x-coordinates of the points on the graph of f by b. We say the graph of f
has been horizontally scaled by a factor of 1

b .

• If 0 < b < 1, we say the graph of f has undergone a horizontal
stretching (expansion, dilaƟon) by a factor of 1

b .

• If b > 1, we say the graph of f has undergone a horizontal shrinking
(compression, contracƟon) by a factor of b.

Theorem 11 tells us that if we mulƟply the input to a funcƟon by b, the re-
sulƟng graph is scaled horizontally by a factor of 1

b since the x-values are divided
by b to produce corresponding points on the graph of y = f(bx). The next exam-
ple explores how verƟcal and horizontal scalings someƟmes interact with each
other and with the other transformaƟons introduced in this secƟon.

Example 38 Applying verƟcal and horizontal scalings
Let f(x) =

√
x. Use the graph of f from Example 36 (see Figure 2.53) to graph

the following funcƟons. Also, state their domains and ranges.

1. g(x) = 3
√
x

2. j(x) =
√
9x

3. m(x) = 1−
√

x+ 3
2
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2.6 TransformaƟons

SÊ½çã®ÊÄ

1. First we note that the domain of g is [0,∞) for the usual reason. Next,
we have g(x) = 3f(x) so by Theorem 10, we obtain the graph of g by
mulƟplying all of the y-coordinates of the points on the graph of f by 3.
The result is a verƟcal scaling of the graph of f by a factor of 3. We find
the range of g is also [0,∞). The graph of g is given in Figure 2.54.

2. To determine the domain of j, we solve 9x ≥ 0 to find x ≥ 0. Our domain
is once again [0,∞). We recognize j(x) = f(9x) and by Theorem 11, we
obtain the graph of j by dividing the x-coordinates of the points on the
graph of f by 9. From the graph in Figure 2.55, we see the range of j is also
[0,∞).

3. Solving x+3
2 ≥ 0 gives x ≥ −3, so the domain of m is [−3,∞). To

take advantage of what we know of transformaƟons, we rewrite m(x) =
−
√

1
2x+

3
2 + 1, or m(x) = −f

( 1
2x+

3
2
)
+ 1. Focusing on the inputs

first, we note that the input to f in the formula for m(x) is 1
2x +

3
2 . Mul-

Ɵplying the x by 1
2 corresponds to a horizontal stretching by a factor of

2, and adding the 3
2 corresponds to a shiŌ to the leŌ by 3

2 . As before,
we resolve which to perform first by thinking about how we would find
the point on m corresponding to a point on f, in this case, (4, 2). To use
f(4) = 2, we solve 1

2x +
3
2 = 4. Our first step is to subtract the 3

2 (the
horizontal shiŌ) to obtain 1

2x =
5
2 . Next, we mulƟply by 2 (the horizontal

stretching) and obtain x = 5. We define two intermediate funcƟons to
handle first the shiŌ, then the stretching. In accordance with Theorem 8,
m1(x) = f

(
x+ 3

2
)
=
√

x+ 3
2 will shiŌ the graph of f to the leŌ 3

2 units:
see Figure 2.56

Next, m2(x) = m1
( 1
2x
)
=
√

1
2x+

3
2 will, according to Theorem 11, hori-

zontally stretch the graph ofm1 by a factor of 2: see Figure 2.57
Wenowexaminewhat’s happening to theoutputs. Fromm(x) = −f

( 1
2x+

3
2
)
+

1, we see that the output from f is being mulƟplied by −1 (a reflecƟon
about the x-axis) and then a 1 is added (a verƟcal shiŌ up 1). As before,
we can determine the correct order by looking at how the point (4, 2) is
moved. We already know that to make use of the equaƟon f(4) = 2,
we need to subsƟtute x = 5. We get m(5) = −f

( 1
2 (5) +

3
2
)
+ 1 =

−f(4) + 1 = −2 + 1 = −1. We see that f(4) (the output from f) is first
mulƟplied by −1 then the 1 is added meaning we first reflect the graph
about the x-axis then shiŌ up 1. Theorem 9 tells usm3(x) = −m2(x) will
handle the reflecƟon.
Finally, to handle the verƟcal shiŌ, Theorem 7 gives m(x) = m3(x) + 1,
and we see that the range of m is (−∞, 1]. The graph of m is given in
Figure 2.59.

Some comments about Example 38 are in order. First, recalling the proper-
Ɵes of radicals from Intermediate Algebra, we know that the funcƟons g and j
are the same, since j and g have the same domains and j(x) =

√
9x =

√
9
√
x =

3
√
x = g(x). (We invite the reader to verify that all of the points we ploƩed

on the graph of g lie on the graph of j and vice-versa.) Hence, for f(x) =
√
x, a

verƟcal stretch by a factor of 3 and a horizontal shrinking by a factor of 9 result
in the same transformaƟon. While this kind of phenomenon is not universal,
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it happens commonly enough with some of the families of funcƟons studied in
College Algebra that it is worthy of note. Secondly, to graph the funcƟonm, we
applied a series of four transformaƟons. While it would have been easier on the
authors to simply inform the reader of which steps to take, we have strived to
explain why the order in which the transformaƟons were applied made sense.
We generalize the procedure in the theorem below.

Theorem 12 TransformaƟons

Suppose f is a funcƟon. If A ̸= 0 and B ̸= 0, then to graph

g(x) = Af(Bx+ H) + K

1. Subtract H from each of the x-coordinates of the points on the
graph of f. This results in a horizontal shiŌ to the leŌ if H > 0
or right if H < 0.

2. Divide the x-coordinates of the points on the graph obtained in
Step 1 by B. This results in a horizontal scaling, but may also in-
clude a reflecƟon about the y-axis if B < 0.

3. MulƟply the y-coordinates of the points on the graph obtained in
Step 2 by A. This results in a verƟcal scaling, but may also include
a reflecƟon about the x-axis if A < 0.

4. Add K to each of the y-coordinates of the points on the graph ob-
tained in Step 3. This results in a verƟcal shiŌ up if K > 0 or down
if K < 0.

Theorem 12 can be established by generalizing the techniques developed in
this secƟon. Suppose (a, b) is on the graph of f. Then f(a) = b, and to make
good use of this fact, we set Bx + H = a and solve. We first subtract the H
(causing the horizontal shiŌ) and then divide by B. If B is a posiƟve number,
this induces only a horizontal scaling by a factor of 1

B . If B < 0, then we have a
factor of −1 in play, and dividing by it induces a reflecƟon about the y-axis. So
we have x = a−H

B as the input to g which corresponds to the input x = a to
f. We now evaluate g

( a−H
B

)
= Af

(
B · a−H

B + H
)
+ K = Af(a) + K = Ab + K.

We noƟce that the output from f is first mulƟplied by A. As with the constant
B, if A > 0, this induces only a verƟcal scaling. If A < 0, then the −1 induces a
reflecƟon across the x-axis. Finally, we add K to the result, which is our verƟcal
shiŌ. A less precise, butmore intuiƟveway to paraphrase Theorem 12 is to think
of the quanƟty Bx+ H is the ‘inside’ of the funcƟon f. What’s happening inside
f affects the inputs or x-coordinates of the points on the graph of f. To find the
x-coordinates of the corresponding points on g, we undo what has been done
to x in the same way we would solve an equaƟon. What’s happening to the
output can be thought of as things happening ‘outside’ the funcƟon, f. Things
happening outside affect the outputs or y-coordinates of the points on the graph
of f. Here, we follow the usual order of operaƟons agreement: we first mulƟply
by A then add K to find the corresponding y-coordinates on the graph of g.
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Figure 2.61: The graph y = f(x) for Exam-
ple 39
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Figure 2.62: Tracking the x coordinates of
transformed points
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Figure 2.63: Geƫng the corresponding y
coordinates

2.6 TransformaƟons

Example 39 Graphing a general transformaƟon
The complete graph of y = f(x) is shown in Figure 2.61. Use it to graph

g(x) =
4− 3f(1− 2x)

2
.

SÊ½çã®ÊÄ We use Theorem 12 to track the five ‘key points’ (−4,−3),
(−2, 0), (0, 3), (2, 0) and (4,−3) indicated on the graph of f to their new lo-
caƟons. We first rewrite g(x) in the form presented in Theorem 12, g(x) =
− 3

2 f(−2x + 1) + 2. We set −2x + 1 equal to the x-coordinates of the key
points and solve. For example, solving −2x + 1 = −4, we first subtract 1 to
get−2x = −5 then divide by−2 to get x = 5

2 . SubtracƟng the 1 is a horizontal
shiŌ to the leŌ 1 unit. Dividing by −2 can be thought of as a two step process:
dividing by 2 which compresses the graph horizontally by a factor of 2 followed
by dividing (mulƟplying) by −1 which causes a reflecƟon across the y-axis. We
summarize the results in the table in Figure 2.62

Next, we take eachof the x values and subsƟtute them intog(x) = − 3
2 f(−2x+

1) + 2 to get the corresponding y-values. SubsƟtuƟng x = 5
2 , and using the fact

that f(−4) = −3, we get

g
(
5
2

)
= −3

2
f
(
−2
(
5
2

)
+ 1
)
+2 = −3

2
f(−4)+2 = −3

2
(−3)+2 =

9
2
+2 =

13
2

We see that the output from f is first mulƟplied by − 3
2 . Thinking of this as a

two step process, mulƟplying by 3
2 then by −1, we have a verƟcal stretching

by a factor of 3
2 followed by a reflecƟon across the x-axis. Adding 2 results in a

verƟcal shiŌ up 2 units. ConƟnuing in this manner, we get the table in Figure
2.63.

To graph g, we plot each of the points in the table above and connect them
in the same order and fashion as the points to which they correspond. Ploƫng
f and g side-by-side gives
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y = f(x) y = g(x) = − 3
2 f(−2x+ 1) + 2

Figure 2.60: Determining the graph of g(x) = − 3
2 f(−2x+ 1) + 2

The reader is strongly encouraged to graph the series of funcƟons which
shows the gradual transformaƟon of the graph of f into the graph of g. (You re-
ally should do this once in your life.) We have outlined the sequence of transfor-
maƟons in the above exposiƟon; all that remains is to plot the five intermediate
stages.
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y = f(x) = x2

y = g1(x) = f(x) + 2 = x2 + 2
(ShiŌ up by 2)

y = g2(x) = −g1(x) = −x2 − 2
(Reflect across x-axis)

y = g3(x) = g2(x− 1) = −x2 + 2x− 3
(ShiŌ right one unit)

y = g(x) = g3(
( 1
2 x
)
= − 1

4 x
2 + x− 3

(Horizontal stretch by a factor of 2)

Figure 2.64: The sequence of transforma-
Ɵons in Example 40

Chapter 2 RelaƟons and FuncƟons

Our last example turns the tables and asks for the formula of a funcƟon given
a desired sequence of transformaƟons. If nothing else, it is a good review of
funcƟon notaƟon.

Example 40 Determining the formula for a transformed funcƟon
Let f(x) = x2. Find and simplify the formula of the funcƟon g(x) whose graph
is the result of f undergoing the following sequence of transformaƟons. Check
your answer using a graphing uƟlity.

1. VerƟcal shiŌ up 2 units

2. ReflecƟon across the x-axis

3. Horizontal shiŌ right 1 unit

4. Horizontal stretching by a factor of 2

SÊ½çã®ÊÄ We build up to a formula for g(x) using intermediate funcƟons
as we’ve seen in previous examples. We let g1 take care of our first step. Theo-
rem 7 tells us g1(x) = f(x) + 2 = x2 + 2. Next, we reflect the graph of g1 about
the x-axis using Theorem 9: g2(x) = −g1(x) = −

(
x2 + 2

)
= −x2 − 2. We

shiŌ the graph to the right 1 unit, according to Theorem 8, by seƫng g3(x) =
g2(x−1) = −(x−1)2−2 = −x2+2x−3. Finally, we induce a horizontal stretch
by a factor of 2 using Theorem 11 to get g(x) = g3

( 1
2x
)
= −

( 1
2x
)2
+2
( 1
2x
)
−3

which yields g(x) = − 1
4x

2 + x − 3. We use GeoGebra to graph the stages in
Figure 2.64 to confirm our result.

This example brings our first chapter to a close. In the chapters which lie
ahead, be on the lookout for the concepts developed here to resurface as we
study different families of funcƟons.
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Exercises 2.6
Problems
Suppose (2,−3) is on the graph of y = f(x). In Exercises 1 –
18, use Theorem 12 to find a point on the graph of the given
transformed funcƟon.

1. y = f(x) + 3

2. y = f(x+ 3)

3. y = f(x)− 1

4. y = f(x− 1)

5. y = 3f(x)

6. y = f(3x)

7. y = −f(x)

8. y = f(−x)

9. y = f(x− 3) + 1

10. y = 2f(x+ 1)

11. y = 10− f(x)

12. y = 3f(2x)− 1

13. y = 1
2 f(4− x)

14. y = 5f(2x+ 1) + 3

15. y = 2f(1− x)− 1

16. y = f
(
7− 2x

4

)

17. y = f(3x)− 1
2

18. y = 4− f(3x− 1)
7

The complete graph of y = f(x) is given below. In Exercises 19
– 27, use it and Theorem 12 to graph the given transformed
funcƟon.

x

y

(−2, 2)

(0, 0)

(2, 2)

−4−3−2−1 2 3 4

1

2

3

4

19. y = f(x) + 1

20. y = f(x)− 2

21. y = f(x+ 1)

22. y = f(x− 2)

23. y = 2f(x)

24. y = f(2x)

25. y = 2− f(x)

26. y = f(2− x)

27. y = 2− f(2− x)

The complete graph of y = f(x) is given below. In Exercises 28
– 36, use it and Theorem 12 to graph the given transformed
funcƟon.

x

y

(−2, 0)

(0, 4)

(2, 0)

(4,−2)

−4−3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

28. y = f(x)− 1

29. y = f(x+ 1)

30. y = 1
2 f(x)

31. y = f(2x)

32. y = −f(x)

33. y = f(−x)

34. y = f(x+ 1)− 1

35. y = 1− f(x)

36. y = 1
2 f(x+ 1)− 1

The complete graph of y = f(x) is given below. In Exercises 37
– 48, use it and Theorem 12 to graph the given transformed
funcƟon.
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(−3, 0)

(0, 3)

(3, 0)
x

y

−3 −2 −1 1 2 3
−1

1

2

3

37. g(x) = f(x) + 3

38. h(x) = f(x)− 1
2

39. j(x) = f
(
x− 2

3

)
40. a(x) = f(x+ 4)

41. b(x) = f(x+ 1)− 1

42. c(x) = 3
5 f(x)

43. d(x) = −2f(x)

44. k(x) = f
( 2
3 x
)

45. m(x) = − 1
4 f(3x)

46. n(x) = 4f(x− 3)− 6

47. p(x) = 4+ f(1− 2x)

48. q(x) = − 1
2 f
( x+4

2

)
− 3

The complete graph of y = S(x) is given below. The purpose
of Exercises 49 – 52 is to graph y = 1

2S(−x+1)+1 by graphing
each transformaƟon, one step at a Ɵme.

x

y

(−2, 0)

(−1,−3)

(0, 0)

(1, 3)

(2, 0)−2 −1 1

−3

−2

−1

1

2

3

49. y = S1(x) = S(x+ 1)

50. y = S2(x) = S1(−x) = S(−x+ 1)

51. y = S3(x) = 1
2S2(x) =

1
2S(−x+ 1)

52. y = S4(x) = S3(x) + 1 = 1
2S(−x+ 1) + 1

Let f(x) =
√
x. In Exercises 53 – 62, find a formula for a

funcƟon gwhose graph is obtained from f from the given se-
quence of transformaƟons.

53. (1) shiŌ right 2 units; (2) shiŌ down 3 units

54. (1) shiŌ down 3 units; (2) shiŌ right 2 units

55. (1) reflect across the x-axis; (2) shiŌ up 1 unit

56. (1) shiŌ up 1 unit; (2) reflect across the x-axis

57. (1) shiŌ leŌ 1 unit; (2) reflect across the y-axis; (3) shiŌ up
2 units

58. (1) reflect across the y-axis; (2) shiŌ leŌ 1 unit; (3) shiŌ up
2 units

59. (1) shiŌ leŌ 3 units; (2) verƟcal stretch by a factor of 2; (3)
shiŌ down 4 units

60. (1) shiŌ leŌ3units; (2) shiŌ down4units; (3) verƟcal stretch
by a factor of 2

61. (1) shiŌ right 3 units; (2) horizontal shrink by a factor of 2;
(3) shiŌ up 1 unit

62. (1) horizontal shrink by a factor of 2; (2) shiŌ right 3 units;
(3) shiŌ up 1 unit

63. The graph of y = f(x) = 3
√
x is given immediately be-

low, and the graph of y = g(x) is given below that of
y = f(x). Find a formula for g based on transformaƟons
of the graph of f. Check your answer by confirming that
the points shown on the graph of g saƟsfy the equaƟon
y = g(x).

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5
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64. For many common funcƟons, the properƟes of Algebra
make a horizontal scaling the same as a verƟcal scaling by
(possibly) a different factor. For example, we stated earlier
that

√
9x = 3

√
x. With the help of your classmates, find

the equivalent verƟcal scaling produced by the horizontal
scalings y = (2x)3, y = |5x|, y = 3√27x and y =

( 1
2 x
)2.

What about y = (−2x)3, y = | − 5x|, y = 3√−27x and
y =

(
− 1

2 x
)2?

65. We menƟoned earlier in the secƟon that, in general, the
order in which transformaƟons are applied maƩers, yet in
our first example with two transformaƟons the order did
notmaƩer. (You could perform the shiŌ to the leŌ followed
by the shiŌ down or you could shiŌ down and then leŌ to
achieve the same result.) With the help of your classmates,
determine the situaƟons in which order does maƩer and
those in which it does not.

66. What happens if you reflect an even funcƟon across the y-

axis?

67. What happens if you reflect an odd funcƟon across the y-
axis?

68. What happens if you reflect an even funcƟon across the x-
axis?

69. What happens if you reflect an odd funcƟon across the x-
axis?

70. How would you describe symmetry about the origin in
terms of reflecƟons?

71. Aswe saw in Example 40, the viewingwindowon the graph-
ing calculator affects howwe see the transformaƟons done
to a graph. Using two different calculators, find viewing
windows so that f(x) = x2 on the one calculator looks like
g(x) = 3x2 on the other.
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P (x0, y0)

Q (x1, y1)

Figure 3.1: The line between two points P
and Q

See www.mathforum.org or
www.mathworld.wolfram.com for
discussions on the use of the leƩer m to
indicate slope.

3: L®Ä��Ù �Ä� Qç��Ù�ã®�
FçÄ�ã®ÊÄÝ
3.1 Linear FuncƟons

Wenowbegin the study of families of funcƟons. Our first family, linear funcƟons,
are old friends as we shall soon see. Recall from Geometry that two disƟnct
points in the plane determine a unique line containing those points, as indicated
in Figure 3.1.

To give a sense of the ‘steepness’ of the line, we recall that we can compute
the slope of the line using the formula below.

DefiniƟon 29 Slope

The slopem of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0
x1 − x0

,

provided x1 ̸= x0.

A couple of notes about DefiniƟon 29 are in order. First, don’t ask why we
use the leƩer ‘m’ to represent slope. There are many explanaƟons out there,
but apparently no one really knows for sure. Secondly, the sƟpulaƟon x1 ̸= x0
ensures that we aren’t trying to divide by zero. The reader is invited to pause to
think about what is happening geometrically; the anxious reader can skip along
to the next example.

Example 41 Finding the slope of a line
Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1. P(0, 0), Q(2, 4) 2. P(−1, 2), Q(3, 4)

3. P(−2, 3), Q(2,−3) 4. P(−3, 2), Q(4, 2)

5. P(2, 3), Q(2,−1) 6. P(2, 3), Q(2.1,−1)

SÊ½çã®ÊÄ In each of these examples, we apply the slope formula, from
DefiniƟon 29.

1. m =
4− 0
2− 0

=
4
2
= 2

P

Q

x

y

1 2 3 4

1

2

3

4

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html


Chapter 3 Linear and QuadraƟc FuncƟons

2. m =
4− 2

3− (−1)
=

2
4
=

1
2 P

Q

x

y

−1 1 2 3

1

2

3

4

3. m =
−3− 3
2− (−2)

=
−6
4

= −3
2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

4. m =
2− 2

4− (−3)
=

0
7
= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

5. m =
−1− 3
2− 2

=
−4
0

, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

6. m =
−1− 3
2.1− 2

=
−4
0.1

= −40

P

Q

x

y

1 2

−3

−2

−1

1

2

3

A few comments about Example 41 are in order. First, for reasons which will
be made clear soon, if the slope is posiƟve then the resulƟng line is said to be
increasing. If it is negaƟve, we say the line is decreasing. A slope of 0 results in
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‘over 2’

‘up 1’

x

y

−1 1 2 3

1

2

3

4

Figure 3.2: Slope as “rise over run”

3.1 Linear FuncƟons

a horizontal line which we say is constant, and an undefined slope results in a
verƟcal line. Second, the larger the slope is in absolute value, the steeper the
line. You may recall from high school that slope can be described as the raƟo
‘ riserun ’. For example, in the second part of Example 41, we found the slope to be
1
2 . We can interpret this as a rise of 1 unit upward for every 2 units to the right
we travel along the line, as shown in Figure 3.2.

Using more formal notaƟon, given points (x0, y0) and (x1, y1), we use the
Greek leƩer delta ‘∆’ to write∆y = y1−y0 and∆x = x1−x0. In most scienƟfic
circles, the symbol∆means ‘change in’.

Hence, we may write

m =
∆y
∆x

,

which describes the slope as the rate of change of y with respect to x. Rates of
change abound in the ‘real world’, as the next example illustrates.

Example 42 Temperature rate of change
Suppose that two separate temperature readings were taken at the ranger sta-
Ɵon on the top of Mt. Sasquatch: at 6 AM the temperature was 2◦C and at 10
AM it was 8◦C.

1. Find the slope of the line containing the points (6, 2) and (10, 8).

2. Interpret your answer to the first part in terms of temperature and Ɵme.

3. Predict the temperature at noon.

SÊ½çã®ÊÄ

1. For the slope, we havem = 8−2
10−6 = 6

4 = 3
2 .

2. Since the values in the numerator correspond to the temperatures in ◦C,
and the values in the denominator correspond to Ɵme in hours, we can
interpret the slope as

3
2

=
3◦ C
2 hour

, or 1.5◦C per hour. Since the slope
is posiƟve, we know this corresponds to an increasing line. Hence, the
temperature is increasing at a rate of 1.5◦C per hour.

3. Noon is two hours aŌer 10 AM. Assuming a temperature increase of 1.5◦C
per hour, in two hours the temperature should rise 3◦C. Since the temper-
ature at 10 AM is 82◦C, we would expect the temperature at noon to be
8+ 3 = 11◦C.

Now it may well happen that in the previous scenario, at noon the temper-
ature is only 10◦C. This doesn’t mean our calculaƟons are incorrect, rather, it
means that the temperature change throughout the day isn’t a constant 1.5◦C
per hour. As discussed in SecƟon 2.3.1, mathemaƟcalmodels are just that: mod-
els. The predicƟons we get out of the models may be mathemaƟcally accurate,
but may not resemble what happens in the real world.

In SecƟon 2.1, we discussed the equaƟons of verƟcal and horizontal lines.
Using the concept of slope, we can develop equaƟons for the other varieƟes of
lines. Suppose a line has a slope of m and contains the point (x0, y0). Suppose
(x, y) is another point on the line, as indicated in Figure 3.3.
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(x0, y0)

(x, y)

Figure 3.3: Deriving the point-slope for-
mula

Chapter 3 Linear and QuadraƟc FuncƟons

DefiniƟon 29 yields

m =
y− y0
x− x0

m (x− x0) = y− y0
y− y0 = m (x− x0)

We have just derived the point-slope form of a line.

Key Idea 15 The point-slope form of a line

The point-slope form of the equaƟon of a line with slope m containing
the point (x0, y0) is the equaƟon y− y0 = m (x− x0).

Example 43 Using the point-slope form
Write the equaƟon of the line containing the points (−1, 3) and (2, 1).

SÊ½çã®ÊÄ In order to use Key Idea 15 we need to find the slope of the
line in quesƟon so we use DefiniƟon 29 to get m = ∆y

∆x = 1−3
2−(−1) = − 2

3 . We
are spoiled for choice for a point (x0, y0). We’ll use (−1, 3) and leave it to the
reader to check that using (2, 1) results in the same equaƟon. SubsƟtuƟng into
the point-slope form of the line, we get

y− y0 = m (x− x0)

y− 3 = −2
3
(x− (−1))

y− 3 = −2
3
(x+ 1)

y− 3 = −2
3
x− 2

3

y = −2
3
x+

7
3
.

We can check our answer by showing that both (−1, 3) and (2, 1) are on the
graph of y = − 2

3x+
7
3 algebraically, as we did in SecƟon 2.1.1.

In simplifying the equaƟon of the line in the previous example, we produced
another form of a line, the slope-intercept form. This is the familiar y = mx+ b
form you have probably seen in high school. The ‘intercept’ in ‘slope-intercept’
comes from the fact that if we set x = 0, we get y = b. In other words, the
y-intercept of the line y = mx+ b is (0, b).

Key Idea 16 Slope intercept form of a line

The slope-intercept form of the line with slopem and y-intercept (0, b)
is the equaƟon y = mx+ b.

Note that if we have slopem = 0, we get the equaƟon y = bwhich matches
our formula for a horizontal line given in SecƟon 2.1. The formula given in Key
Idea 16 can be used to describe all lines except verƟcal lines. All lines except
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Figure 3.4: The graph of f(x) = 3

x

y

−2−1 1 2
−1

1
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3

4

Figure 3.5: The graph of f(x) = 3x− 1

3.1 Linear FuncƟons

verƟcal lines are funcƟons (Why is this?) so we have finally reached a good point
to introduce linear funcƟons.

DefiniƟon 30 Linear funcƟon

A linear funcƟon is a funcƟon of the form

f(x) = mx+ b,

where m and b are real numbers with m ̸= 0. The domain of a linear
funcƟon is (−∞,∞).

For the casem = 0, we get f(x) = b. These are given their own classificaƟon.

DefiniƟon 31 Constant funcƟon

A constant funcƟon is a funcƟon of the form

f(x) = b,

where b is real number. The domain of a constant funcƟon is (−∞,∞).

Recall that to graph a funcƟon, f, we graph the equaƟon y = f(x). Hence,
the graph of a linear funcƟon is a line with slope m and y-intercept (0, b); the
graph of a constant funcƟon is a horizontal line (a line with slope m = 0) and a
y-intercept of (0, b). Now think back to SecƟon 2.5.1, specifically DefiniƟon 27
concerning increasing, decreasing and constant funcƟons. A line with posiƟve
slope was called an increasing line because a linear funcƟon withm > 0 is an in-
creasing funcƟon. Similarly, a line with a negaƟve slope was called a decreasing
line because a linear funcƟon withm < 0 is a decreasing funcƟon. And horizon-
tal lines were called constant because, well, we hope you’ve already made the
connecƟon.

Example 44 Graphing linear funcƟons
Graph the following funcƟons. IdenƟfy the slope and y-intercept.

1. f(x) = 3

2. f(x) = 3x− 1

3. f(x) =
3− 2x

4

4. f(x) =
x2 − 4
x− 2

SÊ½çã®ÊÄ

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0)
through (0, 3): see Figure 3.4.

2. The graph of f(x) = 3x−1 is the graph of the line y = 3x−1. Comparison
of this equaƟon with EquaƟon 16 yields m = 3 and b = −1. Hence, our
slope is 3 and our y-intercept is (0,−1). To get another point on the line,
we can plot (1, f(1)) = (1, 2). ConstrucƟng the line through these points
gives us Figure 3.5.
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Figure 3.6: The graph of f(x) = 3− 2x
4
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Figure 3.7: The graph of f(x) = x2 − 4
x− 2

The similarity of this name to PortaJohn is
deliberate.

Chapter 3 Linear and QuadraƟc FuncƟons

3. At first glance, the funcƟon f(x) =
3− 2x

4
does not fit the form in Def-

iniƟon 30 but aŌer some rearranging we get f(x) = 3−2x
4 = 3

4 − 2x
4 =

− 1
2x+

3
4 . We idenƟfym = − 1

2 and b = 3
4 . Hence, our graph is a line with

a slope of− 1
2 and a y-intercept of

(
0, 3

4
)
. Ploƫng an addiƟonal point, we

can choose (1, f(1)) to get
(
1, 1

4
)
: see Figure 3.6.

4. If we simplify the expression for f, we get

f(x) =
x2 − 4
x− 2

=
����(x− 2)(x+ 2)

����(x− 2)
= x+ 2.

If wewere to state f(x) = x+2, wewould be commiƫng a sin of omission.
Remember, to find the domain of a funcƟon, we do so beforewe simplify!
In this case, f has big problems when x = 2, and as such, the domain of
f is (−∞, 2) ∪ (2,∞). To indicate this, we write f(x) = x + 2, x ̸= 2.
So, except at x = 2, we graph the line y = x + 2. The slope m = 1 and
the y-intercept is (0, 2). A second point on the graph is (1, f(1)) = (1, 3).
Since our funcƟon f is not defined at x = 2, we put an open circle at the
point that would be on the line y = x + 2 when x = 2, namely (2, 4), as
shown in Figure 3.7.

The last two funcƟons in the previous example showcase some of the diffi-
culty in defining a linear funcƟon using the phrase ‘of the form’ as in DefiniƟon
30, since some algebraic manipulaƟons may be needed to rewrite a given func-
Ɵon to match ‘the form’. Keep in mind that the domains of linear and constant
funcƟons are all real numbers (−∞,∞), so while f(x) = x2−4

x−2 simplified to a for-
mula f(x) = x+2, f is not considered a linear funcƟon since its domain excludes
x = 2. However, we would consider

f(x) =
2x2 + 2
x2 + 1

to be a constant funcƟon since its domain is all real numbers (Can you tell us
why?) and

f(x) =
2x2 + 2
x2 + 1

=
2����(
x2 + 1

)
����(
x2 + 1

) = 2

The following example uses linear funcƟons to model some basic economic
relaƟonships.

Example 45 Pricing for a game system
The cost C, in dollars, to produce x PortaBoy game systems for a local retailer is
given by C(x) = 80x+ 150 for x ≥ 0.

1. Find and interpret C(10).

2. How many PortaBoys can be produced for $15,000?

3. Explain the significance of the restricƟon on the domain, x ≥ 0.

4. Find and interpret C(0).

5. Find and interpret the slope of the graph of y = C(x).
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It makes no sense to produce either a
fracƟonal part of a game system, or a neg-
aƟve number of game systems, which is
why it’s always a good idea to pay aƩen-
Ɵon to the applied domain. Such absurdi-
Ɵes seems quite forgiveable in some text-
books but not to us.

3.1 Linear FuncƟons

SÊ½çã®ÊÄ

1. To find C(10), we replace every occurrence of x with 10 in the formula
for C(x) to get C(10) = 80(10) + 150 = 950. Since x represents the
number of PortaBoys produced, and C(x) represents the cost, in dollars,
C(10) = 950 means it costs $950 to produce 10 PortaBoys for the local
retailer.

2. To findhowmanyPortaBoys canbeproduced for $15,000, we solveC(x) =
15000, or 80x+150 = 15000. Solving, we get x = 14850

80 = 185.625. Since
we can only produce a whole number amount of PortaBoys, we can pro-
duce 185 PortaBoys for $15,000.

3. The restricƟon x ≥ 0 is the applied domain, as discussed in SecƟon 2.3.1.
In this context, x represents the number of PortaBoys produced. It makes
no sense to produce a negaƟve quanƟty of game systems.

4. We find C(0) = 80(0) + 150 = 150. This means it costs $150 to produce
0 PortaBoys. As menƟoned on page 75, this is the fixed, or start-up cost
of this venture.

5. If we were to graph y = C(x), we would be graphing the porƟon of the
line y = 80x + 150 for x ≥ 0. We recognize the slope, m = 80. Like any
slope, we can interpret this as a rate of change. Here, C(x) is the cost in
dollars, while xmeasures the number of PortaBoys so

m =
∆y
∆x

=
∆C
∆x

= 80 =
80
1

=
$80

1 PortaBoy
.

In other words, the cost is increasing at a rate of $80 per PortaBoy pro-
duced. This is oŌen called the variable cost for this venture.

The next example asks us to find a linear funcƟon to model a related eco-
nomic problem.

Example 46 Modelling demand
The local retailer in Example 45 has determined that the number x of PortaBoy
game systems sold in a week is related to the price p in dollars of each system.
When the price was $220, 20 game systems were sold in a week. When the
systems went on sale the following week, 40 systems were sold at $190 a piece.

1. Find a linear funcƟon which fits this data. Use the weekly sales x as the
independent variable and the price p as the dependent variable.

2. Find a suitable applied domain.

3. Interpret the slope.

4. If the retailerwants to sell 150 PortaBoys nextweek, what should the price
be?

5. What would the weekly sales be if the price were set at $150 per system?
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1. We recall from SecƟon 2.3 themeaning of ‘independent’ and ‘dependent’
variable. Since x is to be the independent variable, and p the dependent
variable, we treat x as the input variable and p as the output variable.
Hence, we are looking for a funcƟon of the form p(x) = mx + b. To
determine m and b, we use the fact that 20 PortaBoys were sold during
the week when the price was 220 dollars and 40 units were sold when
the price was 190 dollars. Using funcƟon notaƟon, these two facts can be
translated as p(20) = 220 and p(40) = 190. Sincem represents the rate
of change of p with respect to x, we have

m =
∆p
∆x

=
190− 220
40− 20

=
−30
20

= −1.5.

We now have determined p(x) = −1.5x + b. To determine b, we can
use our given data again. Using p(20) = 220, we subsƟtute x = 20 into
p(x) = 1.5x + b and set the result equal to 220: −1.5(20) + b = 220.
Solving, we get b = 250. Hence, we get p(x) = −1.5x + 250. We can
check our formula by compuƟng p(20) and p(40) to see if we get 220 and
190, respecƟvely. You may recall from page 75 that the funcƟon p(x) is
called the price-demand (or simply demand) funcƟon for this venture.

2. To determine the applied domain, we look at the physical constraints of
the problem. Certainly, we can’t sell a negaƟve number of PortaBoys, so
x ≥ 0. However, we also note that the slope of this linear funcƟon is
negaƟve, and as such, the price is decreasing as more units are sold. Thus
another constraint on the price is p(x) ≥ 0. Solving −1.5x + 250 ≥ 0

results in −1.5x ≥ −250 or x ≤ 500
3

= 166.6. Since x represents the
number of PortaBoys sold in a week, we round down to 166. As a result,
a reasonable applied domain for p is [0, 166].

3. The slope m = −1.5, once again, represents the rate of change of the
price of a system with respect to weekly sales of PortaBoys. Since the
slope is negaƟve, we have that the price is decreasing at a rate of $1.50
per PortaBoy sold. (Said differently, you can sell one more PortaBoy for
every $1.50 drop in price.)

4. To determine the price which will move 150 PortaBoys, we find p(150) =
−1.5(150) + 250 = 25. That is, the price would have to be $25.

5. If the price of a PortaBoy were set at $150, we have p(x) = 150, or,
−1.5x + 250 = 150. Solving, we get −1.5x = −100 or x = 66.6. This
means you would be able to sell 66 PortaBoys a week if the price were
$150 per system.

Not all real-world phenomena can be modelled using linear funcƟons. Nev-
ertheless, it is possible to use the concept of slope to help analyze non-linear
funcƟons using the following.
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(a, f(a))

(b, f(b))

y = f(x)

Figure 3.8: The graph of y = f(x) and its
secant line through (a, f(a)) and (b, f(b))

3.1 Linear FuncƟons

DefiniƟon 32 Average rate of change

Let f be a funcƟon defined on the interval [a, b]. The average rate of
change of f over [a, b] is defined as:

∆f
∆x

=
f(b)− f(a)

b− a

Geometrically, if we have the graph of y = f(x), the average rate of change
over [a, b] is the slope of the line which connects (a, f(a)) and (b, f(b)). This is
called the secant line through these points. For that reason, some textbooks
use the notaƟonmsec for the average rate of change of a funcƟon. Note that for
a linear funcƟonm = msec, or in other words, its rate of change over an interval
is the same as its average rate of change.

The interested readermay quesƟon the adjecƟve ‘average’ in the phrase ‘av-
erage rate of change’. In the figure above, we can see that the funcƟon changes
wildly on [a, b], yet the slope of the secant line only captures a snapshot of the
acƟon at a and b. This situaƟon is enƟrely analogous to the average speed on a
trip. Suppose it takes you 2 hours to travel 100 kilometres. Your average speed
is 100 km

2h = 50 km/h. However, it is enƟrely possible that at the start of your
journey, you travelled 25 kilometres per hour, then sped up to 65 kilometres
per hour, and so forth. The average rate of change is akin to your average speed
on the trip. Your speedometermeasures your speed at any one instant along the
trip, your instantaneous rate of change, and this is one of the central themes of
Calculus.

When interpreƟng rates of change, we interpret them the same way we did
slopes. In the context of funcƟons, it may be helpful to think of the average rate
of change as:

change in outputs
change in inputs

Example 47 A non-linear revenue model
Recall from page 75, the revenue from selling x units at a price p per unit is given
by the formula R = xp. Suppose we are in the scenario of Examples 45 and 46.

1. Find and simplify an expression for the weekly revenue R(x) as a funcƟon
of weekly sales x.

2. Find and interpret the average rate of change of R(x) over the interval
[0, 50].

3. Find and interpret the average rate of change of R(x) as x changes from
50 to 100 and compare that to your result in part 2.

4. Find and interpret the average rate of change of weekly revenue asweekly
sales increase from 100 PortaBoys to 150 PortaBoys.

SÊ½çã®ÊÄ

1. Since R = xp, we subsƟtute p(x) = −1.5x + 250 from Example 46 to
get R(x) = x(−1.5x + 250) = −1.5x2 + 250x. Since we determined the
price-demand funcƟon p(x) is restricted to 0 ≤ x ≤ 166, R(x) is restricted
to these values of x as well.
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2. Using DefiniƟon 32, we get that the average rate of change is

∆R
∆x

=
R(50)− R(0)

50− 0
=

8750− 0
50− 0

= 175.

InterpreƟng this slope as we have in similar situaƟons, we conclude that
for every addiƟonal PortaBoy sold during a given week, the weekly rev-
enue increases $175.

3. The wording of this part is slightly different than that in DefiniƟon 32, but
its meaning is to find the average rate of change of R over the interval
[50, 100]. To find this rate of change, we compute

∆R
∆x

=
R(100)− R(50)

100− 50
=

10000− 8750
50

= 25.

In other words, for each addiƟonal PortaBoy sold, the revenue increases
by $25. Note thatwhile the revenue is sƟll increasing by sellingmore game
systems, we aren’t geƫng as much of an increase as we did in part 2 of
this example. (Can you think of why this would happen?)

4. TranslaƟng the English to themathemaƟcs, we are being asked to find the
average rate of change of R over the interval [100, 150]. We find

∆R
∆x

=
R(150)− R(100)

150− 100
=

3750− 10000
50

= −125.

This means that we are losing $125 dollars of weekly revenue for each
addiƟonal PortaBoy sold. (Can you think why this is possible?)

We close this secƟon with a new look at difference quoƟents which were
first introduced in SecƟon 2.3. If we wish to compute the average rate of change
of a funcƟon f over the interval [x, x+ h], then we would have

∆f
∆x

=
f(x+ h)− f(x)
(x+ h)− x

=
f(x+ h)− f(x)

h

Aswe have indicated, the rate of change of a funcƟon (average or otherwise)
is of great importance in Calculus. (So we are not torturing you with these for
nothing.) Also, we have the geometric interpretaƟon of difference quoƟents
which was promised to you back on page 75 – a difference quoƟent yields the
slope of a secant line.
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Exercises 3.1
Problems
In Exercises 1 – 10, find both the point-slope form and the
slope-intercept form of the line with the given slope which
passes through the given point.

1. m = 3, P(3,−1)

2. m = −2, P(−5, 8)

3. m = −1, P(−7,−1)

4. m = 2
3 , P(−2, 1)

5. m = 2
3 , P(−2, 1)

6. m = 1
7 , P(−1, 4)

7. m = 0, P(3, 117)

8. m = −
√
2, P(0,−3)

9. m = −5, P(
√
3, 2

√
3)

10. m = 678, P(−1,−12)

In Exercises 11 – 20, find the slope-intercept form of the line
which passes through the given points.

11. P(0, 0), Q(−3, 5)

12. P(−1,−2), Q(3,−2)

13. P(5, 0), Q(0,−8)

14. P(3,−5), Q(7, 4)

15. P(−1, 5), Q(7, 5)

16. P(4,−8), Q(5,−8)

17. P
( 1
2 ,

3
4

)
, Q
( 5
2 ,−

7
4

)
18. P

( 2
3 ,

7
2

)
, Q
(
− 1

3 ,
3
2

)
19. P

(√
2,−

√
2
)
, Q
(
−
√
2,
√
2
)

20. P
(
−
√
3,−1

)
, Q
(√

3, 1
)

In Exercises 21 – 26, graph the funcƟon. Find the slope, y-
intercept and x-intercept, if any exist.

21. f(x) = 2x− 1

22. f(x) = 3− x

23. f(x) = 3

24. f(x) = 0

25. f(x) = 2
3 x+

1
3

26. f(x) = 1− x
2

27. Find all of the points on the line y = 2x + 1 which are 4
units from the point (−1, 3).

28. Jeff can walk comfortably at 3 miles per hour. Find a linear
funcƟon d that represents the total distance Jeff can walk
in t hours, assuming he doesn’t take any breaks.

29. Carl can stuff 6 envelopes perminute. Find a linear funcƟon
E that represents the total number of envelopes Carl can
stuff aŌer t hours, assuming he doesn’t take any breaks.

30. A landscaping company charges $45per cubic yard ofmulch
plus a delivery charge of $20. Find a linear funcƟon which
computes the total cost C (in dollars) to deliver x cubic yards
of mulch.

31. A plumber charges $50 for a service call plus $80 per hour.
If she spends no longer than 8 hours a day at any one site,
find a linear funcƟon that represents her total daily charges
C (in dollars) as a funcƟon of Ɵme t (in hours) spent at any
one given locaƟon.

32. A salesperson is paid $200 per week plus 5% commission
on her weekly sales of x dollars. Find a linear funcƟon that
represents her total weekly pay, W (in dollars) in terms of
x. What must her weekly sales be in order for her to earn
$475.00 for the week?

33. Anon-demandpublisher charges $22.50 to print a 600 page
book and $15.50 to print a 400 page book. Find a linear
funcƟon which models the cost of a book C as a funcƟon
of the number of pages p. Interpret the slope of the linear
funcƟon and find and interpret C(0).

34. The Topology Taxi Company charges $2.50 for the first fiŌh
of a mile and $0.45 for each addiƟonal fiŌh of a mile. Find
a linear funcƟon which models the taxi fare F as a funcƟon
of the number of miles driven,m. Interpret the slope of the
linear funcƟon and find and interpret F(0).

35. Water freezes at 0◦ Celsius and 32◦ Fahrenheit and it boils
at 100◦C and 212◦F.

(a) Find a linear funcƟon F that expresses temperature in
the Fahrenheit scale in terms of degrees Celsius. Use
this funcƟon to convert 20◦C into Fahrenheit.

(b) Find a linear funcƟon C that expresses temperature
in the Celsius scale in terms of degrees Fahrenheit.
Use this funcƟon to convert 110◦F into Celsius.

(c) Is there a temperature n such that F(n) = C(n)?
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36. Legend has it that a bull Sasquatch in rut will howl approx-
imately 9 Ɵmes per hour when it is 40◦F outside and only
5 Ɵmes per hour if it’s 70◦F. Assuming that the number of
howls per hour, N, can be represented by a linear funcƟon
of temperature Fahrenheit, find the number of howls per
hour he’ll make when it’s only 20◦F outside. What is the
applied domain of this funcƟon? Why?

37. Economic forces beyond anyone’s control have changed the
cost funcƟon for PortaBoys to C(x) = 105x+ 175. Rework
Example 45 with this new cost funcƟon.

38. In response to the economic forces in Exercise 37 above,
the local retailer sets the selling price of a PortaBoy at $250.
Remarkably, 30 units were sold each week. When the sys-
tems went on sale for $220, 40 units per week were sold.
Rework Examples 46 and 47 with this new data. What dif-
ficulƟes do you encounter?

39. A local pizza store offers medium two-topping pizzas deliv-
ered for $6.00 per pizza plus a $1.50 delivery charge per
order. On weekends, the store runs a ‘game day’ special: if
six or more medium two-topping pizzas are ordered, they
are $5.50 each with no delivery charge. Write a piecewise-
defined linear funcƟon which calculates the cost C (in dol-
lars) of p medium two-topping pizzas delivered during a
weekend.

40. A restaurant offers a buffet which costs $15 per person. For
parƟes of 10 or more people, a group discount applies, and
the cost is $12.50 per person. Write a piecewise-defined
linear funcƟon which calculates the total bill T of a party of
n people who all choose the buffet.

41. A mobile plan charges a base monthly rate of $10 for the
first 500 minutes of air Ɵme plus a charge of 15¢ for each
addiƟonal minute. Write a piecewise-defined linear func-
Ɵon which calculates the monthly cost C (in dollars) for us-
ingmminutes of air Ɵme.
HINT: You may want to revisit Exercise 75 in SecƟon 2.3

42. The local pet shop charges 12¢ per cricket up to 100 crick-
ets, and 10¢ per cricket thereaŌer. Write a piecewise-
defined linear funcƟon which calculates the price P, in dol-
lars, of purchasing c crickets.

43. The cross-secƟon of a swimming pool is below. Write
a piecewise-defined linear funcƟon which describes the
depth of the pool, D (in feet) as a funcƟon of:

(a) the distance (in feet) from the edge of the shallow
end of the pool, d.

(b) the distance (in feet) from the edge of the deep end
of the pool, s.

(c) Graph each of the funcƟons in (a) and (b). Discuss
with your classmates how to transform one into the
other and how they relate to the diagram of the pool.

d ft. s ft.

37 ft.

15 ft.

10 ft.8 ft.

2 ft.

In Exercises 44 – 49, compute the average rate of change of
the funcƟon over the specified interval.

44. f(x) = x3, [−1, 2]

45. f(x) = 1
x
, [1, 5]

46. f(x) =
√
x, [0, 16]

47. f(x) = x2, [−3, 3]

48. f(x) = x+ 4
x− 3

, [5, 7]

49. f(x) = 3x2 + 2x− 7, [−4, 2]

In Exercises 50 – 53, compute the average rate of change of
the given funcƟon over the interval [x, x+h]. Herewe assume
[x, x+ h] is in the domain of the funcƟon.

50. f(x) = x3

51. f(x) = 1
x

52. f(x) = x+ 4
x− 3

53. f(x) = 3x2 + 2x− 7

54. Using data from Bureau of TransportaƟon StaƟsƟcs, the av-
erage fuel economy F in miles per gallon for passenger cars
in theUS can bemodeled by F(t) = −0.0076t2+0.45t+16,
0 ≤ t ≤ 28, where t is the number of years since 1980.
Find and interpret the average rate of change of F over the
interval [0, 28].

55. The temperature T in degrees Fahrenheit t hours aŌer 6 AM
is given by:

T(t) = −1
2
t2 + 8t+ 32, 0 ≤ t ≤ 12

(a) Find and interpret T(4), T(8) and T(12).

(b) Find and interpret the average rate of change of T
over the interval [4, 8].

(c) Find and interpret the average rate of change of T
from t = 8 to t = 12.

(d) Find and interpret the average rate of temperature
change between 10 AM and 6 PM.
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56. Suppose C(x) = x2 − 10x + 27 represents the costs, in
hundreds, to produce x thousand pens. Find and interpret
the average rate of change as producƟon is increased from
making 3000 to 5000 pens.

57. With the help of your classmates find several other “real-
world” examples of rates of change that are used to de-
scribe non-linear phenomena.

58. With the help of your classmates find several other “real-
world” examples of rates of change that are used to de-
scribe non-linear phenomena.

(Parallel Lines) Recall fromhigh school that parallel lines have
the same slope. (Please note that two verƟcal lines are also
parallel to one another even though they have an undefined
slope.) In Exercises 59 – 64, you are given a line and a point
which is not on that line. Find the line parallel to the given
line which passes through the given point.

59. y = 3x+ 2, P(0, 0)

60. y = −6x+ 5, P(3, 2)

61. y = 2
3 x− 7, P(6, 0)

62. y = 4− x
3

, P(1,−1)

63. y = 6, P(3,−2)

64. x = 1, P(−5, 0)

(Perpendicular Lines) Recall from high school that two non-
verƟcal lines are perpendicular if and only if they have nega-
Ɵve reciprocal slopes. That is to say, if one line has slope m1

and the other has slope m2 then m1 · m2 = −1. (You will be
guided through a proof of this result in Exercise 71.) Please
note that a horizontal line is perpendicular to a verƟcal line
and vice versa, so we assume m1 ̸= 0 and m2 ̸= 0. In Exer-
cises 65 – 70, you are given a line and a point which is not on
that line. Find the line perpendicular to the given line which
passes through the given point.

65. y = 1
3 x+ 2, P(0, 0)

66. y = −6x+ 5, P(3, 2)

67. y = 2
3 x− 7, P(6, 0)

68. y = 4− x
3

, P(1,−1)

69. y = 6, P(3,−2)

70. x = 1, P(−5, 0)

71. We shall now prove that y = m1x + b1 is perpendicular
to y = m2x + b2 if and only if m1 · m2 = −1. To make
our lives easier we shall assume that m1 > 0 and m2 < 0.
We can also “move” the lines so that their point of intersec-
Ɵon is the originwithoutmessing things up, sowe’ll assume
b1 = b2 = 0. (Take a moment with your classmates to dis-
cuss why this is okay.) Graphing the lines and ploƫng the
points O(0, 0) , P(1,m1) and Q(1,m2) gives us the follow-
ing set up.

P

O

Q

x

y

The line y = m1x will be perpendicular to the line y = m2x
if and only if △OPQ is a right triangle. Let d1 be the dis-
tance from O to P, let d2 be the distance from O to Q and
let d3 be the distance from P to Q. Use the Pythagorean
Theorem to show that△OPQ is a right triangle if and only
if m1 · m2 = −1 by showing d21 + d22 = d23 if and only if
m1 ·m2 = −1.

72. Show that if a ̸= b, the line containing the points (a, b)
and (b, a) is perpendicular to the line y = x. (Coupled
with the result from Example 11 on page 33, we have now
shown that the line y = x is a perpendicular bisector of the
line segment connecƟng (a, b) and (b, a). This means the
points (a, b) and (b, a) are symmetric about the line y = x.
We will revisit this symmetry in secƟon 6.2.)

73. The funcƟon defined by I(x) = x is called the IdenƟty Func-
Ɵon.

(a) Discuss with your classmates why this name makes
sense.

(b) Show that the point-slope formof a line (EquaƟon 15)
can be obtained from I using a sequence of the trans-
formaƟons defined in SecƟon 2.6.
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3.2 Absolute Value FuncƟons
There are a few ways to describe what is meant by the absolute value |x| of a
real number x. You may have been taught that |x| is the distance from the real
number x to 0 on the number line. So, for example, |5| = 5 and |−5| = 5, since
each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5

Another way to define absolute value is by the equaƟon |x| =
√
x2. Using

this definiƟon, we have |5| =
√
(5)2 =

√
25 = 5 and | − 5| =

√
(−5)2 =√

25 = 5. The long and short of both of these procedures is that |x| takes nega-
Ɵve real numbers and assigns them to their posiƟve counterparts while it leaves
posiƟve numbers alone. This last descripƟon is the one we shall adopt, and is
summarized in the following definiƟon.

DefiniƟon 33 Absolute value funcƟon

The absolute value of a real number x, denoted |x|, is given by

|x| =

−x, if x < 0

x, if x ≥ 0

In DefiniƟon 33, we define |x| using a piecewise-defined funcƟon. (See page
66 in SecƟon 2.3.) To check that this definiƟon agrees with what we previously
understood as absolute value, note that since 5 ≥ 0, to find |5| we use the rule
|x| = x, so |5| = 5. Similarly, since −5 < 0, we use the rule |x| = −x, so
that | − 5| = −(−5) = 5. This is one of the Ɵmes when it’s best to interpret
the expression ‘−x’ as ‘the opposite of x’ as opposed to ‘negaƟve x’. Before we
begin studying absolute value funcƟons, we remind ourselves of the properƟes
of absolute value.

Theorem 13 ProperƟes of Absolute Value

Let a, b and x be real numbers and let n be an integer. Then

• Product Rule: |ab| = |a||b|

• Power Rule: |an| = |a|n whenever an is defined

• QuoƟent Rule:
∣∣∣ab ∣∣∣ = |a|

|b|
, provided b ̸= 0

Equality ProperƟes:

• |x| = 0 if and only if x = 0.

• For c > 0, |x| = c if and only if x = c or−x = c.

• For c < 0, |x| = c has no soluƟon.
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The proofs of the Product and QuoƟent Rules in Theorem 13 boil down to
checking four cases: when both a and b are posiƟve; when they are both nega-
Ɵve; when one is posiƟve and the other is negaƟve; and when one or both are
zero.

For example, suppose we wish to show that |ab| = |a||b|. We need to show
that this equaƟon is true for all real numbers a and b. If a and b are both posiƟve,
then so is ab. Hence, |a| = a, |b| = b and |ab| = ab. Hence, the equaƟon
|ab| = |a||b| is the same as ab = ab which is true. If both a and b are negaƟve,
then ab is posiƟve. Hence, |a| = −a, |b| = −b and |ab| = ab. The equaƟon
|ab| = |a||b| becomes ab = (−a)(−b), which is true. Suppose a is posiƟve
and b is negaƟve. Then ab is negaƟve, and we have |ab| = −ab, |a| = a and
|b| = −b. The equaƟon |ab| = |a||b| reduces to−ab = a(−b) which is true. A
symmetric argument shows the equaƟon |ab| = |a||b| holds when a is negaƟve
and b is posiƟve. Finally, if either a or b (or both) are zero, then both sides of
|ab| = |a||b| are zero, so the equaƟon holds in this case, too. All of this rhetoric
has shown that the equaƟon |ab| = |a||b| holds true in all cases.

The proof of the QuoƟent Rule is very similar, with the excepƟon that b ̸= 0.
The Power Rule can be shown by repeated applicaƟon of the Product Rule. The
‘Equality ProperƟes’ can be proved using DefiniƟon 33 and by looking at the
cases when x ≥ 0, in which case |x| = x, or when x < 0, in which case |x| = −x.
For example, if c > 0, and |x| = c, then if x ≥ 0, we have x = |x| = c. If, on the
other hand, x < 0, then−x = |x| = c, so x = −c. The remaining properƟes are
proved similarly and are leŌ for the Exercises. Our first example reviews how
to solve basic equaƟons involving absolute value using the properƟes listed in
Theorem 13.

Example 48 Solving equaƟons with absolute values
Solve each of the following equaƟons.

1. |3x− 1| = 6 2. 3− |x+ 5| = 1 3. 3|2x+1|−5 = 0

4. 4− |5x+ 3| = 5 5. |x| = x2 − 6 6. |x− 2|+ 1 = x

SÊ½çã®ÊÄ

1. The equaƟon |3x−1| = 6 is of the form |x| = c for c > 0, so by the Equality
ProperƟes, |3x−1| = 6 is equivalent to 3x−1 = 6 or 3x−1 = −6. Solving
the former, we arrive at x = 7

3 , and solving the laƩer, we get x = − 5
3 . We

may check both of these soluƟons by subsƟtuƟng them into the original
equaƟon and showing that the arithmeƟc works out.

2. To use the Equality ProperƟes to solve 3− |x+ 5| = 1, we first isolate the
absolute value.

3− |x+ 5| = 1
−|x+ 5| = −2 subtract 3
|x+ 5| = 2 divide by−1

From the Equality ProperƟes, we have x+ 5 = 2 or x+ 5 = −2, and get
our soluƟons to be x = −3 or x = −7. We leave it to the reader to check
both answers in the original equaƟon.

3. As in the previous example, we first isolate the absolute value in the equa-
Ɵon 3|2x+1|−5 = 0 and get |2x+1| = 5

3 . Using the Equality ProperƟes,
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we have 2x+ 1 = 5
3 or 2x+ 1 = − 5

3 . Solving the former gives x = 1
3 and

solving the laƩer gives x = − 4
3 . As usual, wemay subsƟtute both answers

in the original equaƟon to check.

4. Upon isolaƟng the absolute value in the equaƟon 4−|5x+3| = 5, we get
|5x+ 3| = −1. At this point, we know there cannot be any real soluƟon,
since, by definiƟon, the absolute value of anything is never negaƟve. We
are done.

5. The equaƟon |x| = x2−6 presents us with some difficulty, since x appears
both inside and outside of the absolute value. Moreover, there are values
of x for which x2 − 6 is posiƟve, negaƟve and zero, so we cannot use the
Equality ProperƟes without the risk of introducing extraneous soluƟons,
or worse, losing soluƟons. For this reason, we break equaƟons like this
into cases by rewriƟng the term in absolute values, |x|, using DefiniƟon
33. For x < 0, |x| = −x, so for x < 0, the equaƟon |x| = x2 − 6 is
equivalent to −x = x2 − 6. Rearranging this gives us x2 + x − 6 = 0, or
(x+ 3)(x− 2) = 0. We get x = −3 or x = 2. Since only x = −3 saƟsfies
x < 0, this is the answer we keep. For x ≥ 0, |x| = x, so the equaƟon
|x| = x2 − 6 becomes x = x2 − 6. From this, we get x2 − x − 6 = 0 or
(x − 3)(x + 2) = 0. Our soluƟons are x = 3 or x = −2, and since only
x = 3 saƟsfies x ≥ 0, this is the one we keep. Hence, our two soluƟons to
|x| = x2 − 6 are x = −3 and x = 3.

6. To solve |x − 2| + 1 = x, we first isolate the absolute value and get |x −
2| = x− 1. Since we see x both inside and outside of the absolute value,
we break the equaƟon into cases. The term with absolute values here is
|x− 2|, so we replace ‘x’ with the quanƟty ‘(x− 2)’ in DefiniƟon 33 to get

|x− 2| =

−(x− 2), if (x− 2) < 0

(x− 2), if (x− 2) ≥ 0
.

Simplifying yields

|x− 2| =

−x+ 2, if x < 2

x− 2, if x ≥ 2
.

So, for x < 2, |x− 2| = −x+ 2 and our equaƟon |x− 2| = x− 1 becomes
−x+ 2 = x− 1, which gives x = 3

2 . Since this soluƟon saƟsfies x < 2, we
keep it. Next, for x ≥ 2, |x− 2| = x− 2, so the equaƟon |x− 2| = x− 1
becomes x− 2 = x− 1. Here, the equaƟon reduces to −2 = −1, which
signifies we have no soluƟons here. Hence, our only soluƟon is x = 3

2 .

Next, we turn our aƩenƟon to graphing absolute value funcƟons. Our strat-
egy in the next example is tomake liberal use of DefiniƟon 33 alongwithwhatwe
know about graphing linear funcƟons (from SecƟon 3.1) and piecewise-defined
funcƟons (from SecƟon 2.3).
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Since funcƟons can have at most one y-
intercept (Do you know why?), as soon as
we found (0, 0) as the x-intercept for f(x)
in Example 49, we knew this was also the
y-intercept.
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f(x) = |x|, x < 0
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f(x) = |x|, x ≥ 0
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f(x) = |x|

Figure 3.9: ConstrucƟng the graph of
f(x) = |x|

3.2 Absolute Value FuncƟons

Example 49 Graphing absolute value funcƟons
Graph each of the following funcƟons.

1. f(x) = |x|

2. g(x) = |x− 3|

3. h(x) = |x| − 3

4. i(x) = 4− 2|3x+ 1|

Find the zeros of each funcƟon and the x- and y-intercepts of each graph, if
any exist. From the graph, determine the domain and range of each funcƟon,
list the intervals on which the funcƟon is increasing, decreasing or constant, and
find the relaƟve and absolute extrema, if they exist.

SÊ½çã®ÊÄ

1. To find the zeros of f, we set f(x) = 0. We get |x| = 0, which, by Theorem
13 gives us x = 0. Since the zeros of f are the x-coordinates of the x-
intercepts of the graph of y = f(x), we get (0, 0) as our only x-intercept.
To find the y-intercept, we set x = 0, and find y = f(0) = 0, so that (0, 0)
is our y-intercept as well. Using DefiniƟon 33, we get

f(x) = |x| =

−x, if x < 0

x, if x ≥ 0
.

Hence, for x < 0, we are graphing the line y = −x; for x ≥ 0, we have
the line y = x. Proceeding as we did in SecƟon 2.5, we get the first two
graphs in Figure 3.9.

NoƟce that we have an ‘open circle’ at (0, 0) in the graph when x < 0.
As we have seen before, this is due to the fact that the points on y =
−x approach (0, 0) as the x-values approach 0. Since x is required to be
strictly less than zero on this stretch, the open circle is drawn at the origin.
However, noƟce that when x ≥ 0, we get to fill in the point at (0, 0),
which effecƟvely ‘plugs’ the hole indicated by the open circle. Thus our
final result is the graph at the boƩom of Figure 3.9.
By projecƟng the graph to the x-axis, we see that the domain is (−∞,∞).
ProjecƟng to the y-axis gives us the range [0,∞). The funcƟon is increas-
ing on [0,∞) and decreasing on (−∞, 0]. The relaƟve minimum value of
f is the same as the absolute minimum, namely 0 which occurs at (0, 0).
There is no relaƟve maximum value of f. There is also no absolute maxi-
mum value of f, since the y values on the graph extend infinitely upwards.

2. To find the zeros of g, we set g(x) = |x − 3| = 0. By Theorem 13, we
get x − 3 = 0 so that x = 3. Hence, the x-intercept is (3, 0). To find our
y-intercept, we set x = 0 so that y = g(0) = |0 − 3| = 3, which yields
(0, 3) as our y-intercept. To graph g(x) = |x− 3|, we use DefiniƟon 33 to
rewrite g as

g(x) = |x− 3| =

−(x− 3), if (x− 3) < 0

(x− 3), if (x− 3) ≥ 0
.

Simplifying, we get

g(x) =

−x+ 3, if x < 3

x− 3, if x ≥ 3
.
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Figure 3.10: g(x) = |x− 3|
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Figure 3.11: h(x) = |x| − 3
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Figure 3.12: i(x) = 4− 2|3x+ 1|

Chapter 3 Linear and QuadraƟc FuncƟons

As before, the open circle we introduce at (3, 0) from the graph of y =
−x+3 is filled by the point (3, 0) from the line y = x−3. Wedetermine the
domain as (−∞,∞) and the range as [0,∞). The funcƟon g is increasing
on [3,∞) and decreasing on (−∞, 3]. The relaƟve and absoluteminimum
value of g is 0 which occurs at (3, 0). As before, there is no relaƟve or
absolute maximum value of g.

3. Seƫng h(x) = 0 to look for zeros gives |x| − 3 = 0. As in Example 48,
we isolate the absolute value to get |x| = 3 so that x = 3 or x = −3. As
a result, we have a pair of x-intercepts: (−3, 0) and (3, 0). Seƫng x = 0
gives y = h(0) = |0| − 3 = −3, so our y-intercept is (0,−3). As before,
we rewrite the absolute value in h to get

h(x) =

−x− 3, if x < 0

x− 3, if x ≥ 0
.

Once again, the open circle at (0,−3) from one piece of the graph of h
is filled by the point (0,−3) from the other piece of h. From the graph,
we determine the domain of h is (−∞,∞) and the range is [−3,∞). On
[0,∞), h is increasing; on (−∞, 0] it is decreasing. The relaƟve minimum
occurs at the point (0,−3) on the graph, and we see−3 is both the rela-
Ɵve and absolute minimum value of h. Also, h has no relaƟve or absolute
maximum value.

4. As before, we set i(x) = 0 to find the zeros of i and get 4− 2|3x+ 1| = 0.
IsolaƟng the absolute value term gives |3x+ 1| = 2, so either 3x+ 1 = 2
or 3x + 1 = −2. We get x = 1

3 or x = −1, so our x-intercepts are
( 1
3 , 0
)

and (−1, 0). SubsƟtuƟng x = 0 gives y = i(0) = 4 − 2|3(0) + 1| = 2,
for a y-intercept of (0, 2). RewriƟng the formula for i(x)without absolute
values gives

i(x) =

4− 2(−(3x+ 1)), if (3x+ 1) < 0

4− 2(3x+ 1), if (3x+ 1) ≥ 0

=

6x+ 6, if x < − 1
3

−6x+ 2, if x ≥ − 1
3

.

The usual analysis near the trouble spot x = − 1
3 gives that the ‘corner’

of this graph is
(
− 1

3 , 4
)
, and we get the disƟncƟve ‘∨’ shape: see Figure

3.12.

The domain of i is (−∞,∞) while the range is (−∞, 4]. The funcƟon i is
increasing on

(
−∞,− 1

3
]
and decreasing on

[
− 1

3 ,∞
)
. The relaƟve maxi-

mum occurs at the point
(
− 1

3 , 4
)
and the relaƟve and absolute maximum

value of i is 4. Since the graph of i extends downwards forevermore, there
is no absolute minimum value. As we can see from the graph, there is no
relaƟve minimum, either.

Note that all of the funcƟons in the previous example bear the characterisƟc
‘∨’ shape of the graph of y = |x|. We could have graphed the funcƟons g, h and i
in Example 49 starƟng with the graph of f(x) = |x| and applying transformaƟons
as in SecƟon 2.6 as our next example illustrates.
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Figure 3.13: f(x) = |x|with three labelled
points
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Figure 3.14: g(x) = |x− 3| = f(x− 3)
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Figure 3.15: h(x) = |x| − 3 = f(x)− 3
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Figure 3.16: i(x) = 4 − 2|3x + 1| =
−2f(3x+ 1) + 4

3.2 Absolute Value FuncƟons

Example 50 Graphing using transformaƟons
Graph the following funcƟons starƟng with the graph of f(x) = |x| and using
transformaƟons.

1. g(x) = |x− 3|

2. h(x) = |x| − 3

3. i(x) = 4− 2|3x+ 1|

SÊ½çã®ÊÄ We begin by graphing f(x) = |x| and labelling three points,
(−1, 1), (0, 0) and (1, 1), as in Figure 3.13

1. Since g(x) = |x − 3| = f(x − 3), Theorem 12 tells us to add 3 to each of
the x-values of the points on the graph of y = f(x) to obtain the graph of
y = g(x). This shiŌs the graph of y = f(x) to the right 3 units and moves
the point (−1, 1) to (2, 1), (0, 0) to (3, 0) and (1, 1) to (4, 1). ConnecƟng
these points in the classic ‘∨’ fashion produces the graph of y = g(x) in
Figure 3.14.

2. For h(x) = |x|−3 = f(x)−3, Theorem 12 tells us to subtract 3 from each
of the y-values of the points on the graph of y = f(x) to obtain the graph
of y = h(x). This shiŌs the graph of y = f(x) down 3 units and moves
(−1, 1) to (−1,−2), (0, 0) to (0,−3) and (1, 1) to (1,−2). ConnecƟng
these pointswith the ‘∨’ shape produces our graph of y = h(x): see Figure
3.15.

3. We re-write i(x) = 4−2|3x+1| = 4−2f(3x+1) = −2f(3x+1)+4 and
apply Theorem 12. First, we take care of the changes on the ‘inside’ of
the absolute value. Instead of |x|, we have |3x+1|, so, in accordance with
Theorem 12, we first subtract 1 from each of the x-values of points on the
graph of y = f(x), then divide each of those new values by 3. This effects
a horizontal shiŌ leŌ 1 unit followed by a horizontal shrink by a factor of
3. These transformaƟons move (−1, 1) to

(
− 2

3 , 1
)
, (0, 0) to

(
− 1

3 , 0
)
and

(1, 1) to (0, 1). Next, we take care of what’s happening ‘outside of’ the
absolute value. Theorem 12 instructs us to first mulƟply each y-value of
these new points by−2 then add 4. Geometrically, this corresponds to a
verƟcal stretch by a factor of 2, a reflecƟon across the x-axis and finally, a
verƟcal shiŌ up 4 units. These transformaƟons move

(
− 2

3 , 1
)
to
(
− 2

3 , 2
)
,(

− 1
3 , 0
)
to
(
− 1

3 , 4
)
, and (0, 1) to (0, 2). ConnecƟng these points with the

usual ‘∨’ shape produces our graph of y = i(x).

While the methods in SecƟon 2.6 can be used to graph an enƟre family of
absolute value funcƟons, not all funcƟons involving absolute values posses the
characterisƟc ‘∨’ shape. As the next example illustrates, oŌen there is no sub-
sƟtute for appealing directly to the definiƟon.
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Example 51 A more complicated example
Graph each of the following funcƟons. Find the zeros of each funcƟon and the
x- and y-intercepts of each graph, if any exist. From the graph, determine the
domain and range of each funcƟon, list the intervals on which the funcƟon is
increasing, decreasing or constant, and find the relaƟve and absolute extrema,
if they exist.

1. f(x) =
|x|
x

2. g(x) = |x+ 2| − |x− 3|+ 1

SÊ½çã®ÊÄ

1. We first note that, due to the fracƟon in the formula of f(x), x ̸= 0. Thus
the domain is (−∞, 0) ∪ (0,∞). To find the zeros of f, we set f(x) =
|x|
x = 0. This last equaƟon implies |x| = 0, which, from Theorem 13,
implies x = 0. However, x = 0 is not in the domain of f, which means we
have, in fact, no x-intercepts. We have no y-intercepts either, since f(0) is
undefined. Re-wriƟng the absolute value in the funcƟon gives

f(x) =


−x
x
, if x < 0

x
x
, if x > 0

=

−1, if x < 0

1, if x > 0
.

To graph this funcƟon, we graph two horizontal lines: y = −1 for x < 0
and y = 1 for x > 0. We have open circles at (0,−1) and (0, 1) (Can you
explain why?) so we get the graph in figure 3.17.

As we found earlier, the domain is (−∞, 0) ∪ (0,∞). The range consists
of just two y-values: {−1, 1}. The funcƟon f is constant on (−∞, 0) and
(0,∞). The local minimum value of f is the absolute minimum value of f,
namely −1; the local maximum and absolute maximum values for f also
coincide− they both are 1. Every point on the graph of f is simultaneously
a relaƟve maximum and a relaƟve minimum. (Can you remember why in
light of DefiniƟon 28? This was explored in the Exercises in SecƟon 2.5.)

2. To find the zeros of g, we set g(x) = 0. The result is |x+2|−|x−3|+1 = 0.
AƩempƟng to isolate the absolute value term is complicated by the fact
that there are two terms with absolute values. In this case, it easier to
proceed using cases by re-wriƟng the funcƟon g with two separate appli-
caƟons of DefiniƟon 33 to remove each instance of the absolute values,
one at a Ɵme. In the first round we get

g(x) =

−(x+ 2)− |x− 3|+ 1, if (x+ 2) < 0

(x+ 2)− |x− 3|+ 1, if (x+ 2) ≥ 0

=

−x− 1− |x− 3|, if x < −2

x+ 3− |x− 3|, if x ≥ −2
.

Given that

|x− 3| =

−(x− 3), if (x− 3) < 0

x− 3, if (x− 3) ≥ 0
=

−x+ 3, if x < 3

x− 3, if x ≥ 3
,
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Figure 3.18: g(x) = |x+ 2| − |x− 3|+ 1

3.2 Absolute Value FuncƟons

we need to break up the domain again at x = 3. Note that if x < −2, then
x < 3, so we replace |x− 3| with−x+ 3 for that part of the domain, too.
Our completed revision of the form of g yields

g(x) =


−x− 1− (−x+ 3), if x < −2

x+ 3− (−x+ 3), if x ≥ −2 and x < 3

x+ 3− (x− 3), if x ≥ 3

=


−4, if x < −2

2x, if − 2 ≤ x < 3

6, if x ≥ 3

.

To solve g(x) = 0, we see that the only piece which contains a variable
is g(x) = 2x for −2 ≤ x < 3. Solving 2x = 0 gives x = 0. Since x = 0
is in the interval [−2, 3), we keep this soluƟon and have (0, 0) as our only x-
intercept. Accordingly, the y-intercept is also (0, 0). To graph g, we start with
x < −2 and graph the horizontal line y = −4 with an open circle at (−2,−4).
For −2 ≤ x < 3, we graph the line y = 2x and the point (−2,−4) patches the
hole leŌ by the previous piece. An open circle at (3, 6) completes the graph of
this part. Finally, we graph the horizontal line y = 6 for x ≥ 3, and the point
(3, 6) fills in the open circle leŌ by the previous part of the graph. The finished
graph is given in Figure 3.18

The domain of g is all real numbers, (−∞,∞), and the range of g is all real
numbers between −4 and 6 inclusive, [−4, 6]. The funcƟon is increasing on
[−2, 3] and constant on (−∞,−2] and [3,∞). The relaƟveminimumvalue of f is
−4 which matches the absolute minimum. The relaƟve and absolute maximum
values also coincide at 6. Every point on the graph of y = g(x) for x < −2
and x > 3 yields both a relaƟve minimum and relaƟve maximum. The point
(−2,−4), however, gives only a relaƟve minimum and the point (3, 6) yields
only a relaƟve maximum. (Recall the Exercises in SecƟon 2.5 which dealt with
constant funcƟons.)

Many of the applicaƟons that the authors are aware of involving absolute
values also involve absolute value inequaliƟes. For that reason, we save our
discussion of applicaƟons for SecƟon 3.4.
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Exercises 3.2
Problems
In Exercises 1 – 15, solve the equaƟon.

1. |x| = 6

2. |3x− 1| = 10

3. |4− x| = 7

4. 4− |x| = 3

5. 2|5x+ 1| − 3 = 0

6. |7x− 1|+ 2 = 0

7. 5− |x|
2

= 1

8. 2
3 |5− 2x| − 1

2 = 5

9. |x| = x+ 3

10. |2x− 1| = x+ 1

11. 4− |x| = 2x+ 1

12. |x− 4| = x− 5

13. |x| = x2

14. |x| = 12− x2

15. |x2 − 1| = 3

Prove that if |f(x)| = |g(x)| then either f(x) = g(x) or
f(x) = −g(x). Use that result to solve the equaƟons in Ex-
ercises 16 – 21.

16. |3x− 2| = |2x+ 7|

17. |3x+ 1| = |4x|

18. |1− 2x| = |x+ 1|

19. |4− x| − |x+ 2| = 0

20. |2− 5x| = 5|x+ 1|

21. 3|x− 1| = 2|x+ 1|

In Exercises 22 – 33, graph the funcƟon. Find the zeros of each
funcƟon and the x- and y-intercepts of each graph, if any ex-
ist. From the graph, determine the domain and range of each
funcƟon, list the intervals onwhich the funcƟon is increasing,
decreasing or constant, and find the relaƟve and absolute ex-
trema, if they exist.

22. f(x) = |x+ 4|

23. f(x) = |x|+ 4

24. f(x) = |4x|

25. f(x) = −3|x|

26. f(x) = 3|x+ 4| − 4

27. f(x) = 1
3 |2x− 1|

28. f(x) = |x+ 4|
x+ 4

29. f(x) = |2− x|
2− x

30. f(x) = x+ |x| − 3

31. f(x) = |x+ 2| − x

32. f(x) = |x+ 2| − |x|

33. f(x) = |x+ 4|+ |x− 2|

34. With the help of your classmates, find an absolute value
funcƟon whose graph is given below.

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

1
2
3
4

35. With help from your classmates, prove the second, third
and fiŌh parts of Theorem 13.

36. Prove The Triangle Inequality: For all real numbers a and
b, |a+ b| ≤ |a|+ |b|.
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Figure 3.19: The graph of the basic
quadraƟc funcƟon f(x) = x2
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Figure 3.21: g(x) = f(x+ 2)− 3 = (x+
2)2 − 3

3.3 QuadraƟc FuncƟons

3.3 QuadraƟc FuncƟons
Youmay recall studying quadraƟc equaƟons in high school. In this secƟon, we re-
view those equaƟons in the context of our next family of funcƟons: the quadraƟc
funcƟons.

DefiniƟon 34 QuadraƟc funcƟon

A quadraƟc funcƟon is a funcƟon of the form

f(x) = ax2 + bx+ c,

where a, b and c are real numbers with a ̸= 0. The domain of a quadraƟc
funcƟon is (−∞,∞).

The most basic quadraƟc funcƟon is f(x) = x2, whose graph appears below.
Its shape should look familiar fromhigh school – it is called a parabola. The point
(0, 0) is called the vertex of the parabola. In this case, the vertex is a relaƟve
minimum and is also the where the absolute minimum value of f can be found.

Much like many of the absolute value funcƟons in SecƟon 3.2, knowing the
graph of f(x) = x2 enables us to graph an enƟre family of quadraƟc funcƟons
using transformaƟons.

Example 52 Graphics quadraƟc funcƟons
Graph the following funcƟons starƟng with the graph of f(x) = x2 and using
transformaƟons. Find the vertex, state the range andfind the x- and y-intercepts,
if any exist.

1. g(x) = (x+ 2)2 − 3

2. h(x) = −2(x− 3)2 + 1

SÊ½çã®ÊÄ

1. Since g(x) = (x+ 2)2 − 3 = f(x+ 2)− 3, Theorem 12 instructs us to first
subtract 2 from each of the x-values of the points on y = f(x). This shiŌs
the graph of y = f(x) to the leŌ 2 units and moves (−2, 4) to (−4, 4),
(−1, 1) to (−3, 1), (0, 0) to (−2, 0), (1, 1) to (−1, 1) and (2, 4) to (0, 4).
Next, we subtract 3 from each of the y-values of these new points. This
moves the graph down 3 units and moves (−4, 4) to (−4, 1), (−3, 1) to
(−3,−2), (−2, 0) to (−2, 3), (−1, 1) to (−1,−2) and (0, 4) to (0, 1). We
connect the dots in parabolic fashion to get the graph in Figure 3.21.
From the graph, we see that the vertex hasmoved from (0, 0)on the graph
of y = f(x) to (−2,−3) on the graph of y = g(x). This sets [−3,∞) as the
range of g. We see that the graph of y = g(x) crosses the x-axis twice, so
we expect two x-intercepts. To find these, we set y = g(x) = 0 and solve.
Doing so yields the equaƟon (x+ 2)2− 3 = 0, or (x+ 2)2 = 3. ExtracƟng
square roots gives x + 2 = ±

√
3, or x = −2 ±

√
3. Our x-intercepts

are (−2 −
√
3, 0) ≈ (−3.73, 0) and (−2 +

√
3, 0) ≈ (−0.27, 0). The y-

intercept of the graph, (0, 1) was one of the points we originally ploƩed,
so we are done.

2. Following Theorem 12 once more, to graph h(x) = −2(x − 3)2 + 1 =
−2f(x − 3) + 1, we first start by adding 3 to each of the x-values of the
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Figure 3.22: h(x) = −2f(x − 3) + 1 =
−2(x− 3)2 + 1
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points on the graph of y = f(x). This effects a horizontal shiŌ right 3 units
and moves (−2, 4) to (1, 4), (−1, 1) to (2, 1), (0, 0) to (3, 0), (1, 1) to
(4, 1) and (2, 4) to (5, 4). Next, we mulƟply each of our y-values first by
−2 and then add 1 to that result. Geometrically, this is a verƟcal stretch
by a factor of 2, followed by a reflecƟon about the x-axis, followed by a
verƟcal shiŌ up 1 unit. This moves (1, 4) to (1,−7), (2, 1) to (2,−1),
(3, 0) to (3, 1), (4, 1) to (4,−1) and (5, 4) to (5,−7), giving us the graph
in Figure 3.22.

The vertex is (3, 1)which makes the range of h (−∞, 1]. From our graph,
we know that there are two x-intercepts, so we set y = h(x) = 0 and
solve. We get −2(x − 3)2 + 1 = 0 which gives (x − 3)2 = 1

2 . ExtracƟng
square roots (and raƟonalizing denominators!) gives x − 3 = ±

√
2
2 , so

that when we add 3 to each side, (and get common denominators!) we
get x = 6±

√
2

2 . Hence, our x-intercepts are
(

6−
√
2

2 , 0
)

≈ (2.29, 0) and(
6+

√
2

2 , 0
)

≈ (3.71, 0). Although our graph doesn’t show it, there is a
y-intercept which can be found by seƫng x = 0. With h(0) = −2(0 −
3)2 + 1 = −17, we have that our y-intercept is (0,−17).

A few remarks about Example 52 are in order. First note that neither the for-
mula given for g(x) nor the one given for h(x)match the form given in DefiniƟon
34. We could, of course, convert both g(x) and h(x) into that form by expanding
and collecƟng like terms. Doing so, we find g(x) = (x+2)2−3 = x2+4x+1 and
h(x) = −2(x − 3)2 + 1 = −2x2 + 12x − 17. While these ‘simplified’ formulas
for g(x) and h(x) saƟsfy DefiniƟon 34, they do not lend themselves to graphing
easily. For that reason, the form of g and h presented in Example 53 is given a
special name, which we list below, along with the form presented in DefiniƟon
34.

DefiniƟon 35 Standard and General Form of QuadraƟc FuncƟons

Suppose f is a quadraƟc funcƟon.

• The general form of the quadraƟc funcƟon f is f(x) = ax2+bx+c,
where a, b and c are real numbers with a ̸= 0.

• The standard form of the quadraƟc funcƟon f is f(x) = a(x−h)2+
k, where a, h and k are real numbers with a ̸= 0.

It is important to note at this stage that we have no guarantees that every
quadraƟc funcƟon can be wriƩen in standard form. This is actually true, and we
prove this later in the exposiƟon, but for now we celebrate the advantages of
the standard form, starƟng with the following theorem.

Theorem 14 Vertex Formula for QuadraƟcs in Standard Form

For the quadraƟc funcƟon f(x) = a(x−h)2+k, where a, h and k are real
numbers with a ̸= 0, the vertex of the graph of y = f(x) is (h, k).
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a > 0

vertex

a < 0

Figure 3.23: The axis of symmetry of a
parabola

3.3 QuadraƟc FuncƟons

We can readily verify the formula given Theorem 14 with the two funcƟons
given in Example 52. AŌer a (slight) rewrite, g(x) = (x+2)2−3 = (x−(−2))2+
(−3), and we idenƟfy h = −2 and k = −3. Sure enough, we found the vertex
of the graph of y = g(x) to be (−2,−3). For h(x) = −2(x− 3)2 + 1, no rewrite
is needed. We can directly idenƟfy h = 3 and k = 1 and, sure enough, we found
the vertex of the graph of y = h(x) to be (3, 1).

To see why the formula in Theorem 14 produces the vertex, consider the
graph of the equaƟon y = a(x − h)2 + k. When we subsƟtute x = h, we get
y = k, so (h, k) is on the graph. If x ̸= h, then x− h ̸= 0 so (x− h)2 is a posiƟve
number. If a > 0, then a(x− h)2 is posiƟve, thus y = a(x− h)2 + k is always a
number larger than k. This means that when a > 0, (h, k) is the lowest point on
the graph and thus the parabola must open upwards, making (h, k) the vertex.
A similar argument shows that if a < 0, (h, k) is the highest point on the graph,
so the parabola opens downwards, and (h, k) is also the vertex in this case.

AlternaƟvely, we can apply the machinery in SecƟon 2.6. Since the vertex of
y = x2 is (0, 0), we can determine the vertex of y = a(x−h)2+k by determining
the final desƟnaƟon of (0, 0) as it is moved through each transformaƟon. To
obtain the formula f(x) = a(x − h)2 + k, we start with g(x) = x2 and first
define g1(x) = ag(x) = ax2. This is results in a verƟcal scaling and/or reflecƟon.
(Just a scaling if a > 0. If a < 0, there is a reflecƟon involved.) Since we
mulƟply the output by a, we mulƟply the y-coordinates on the graph of g by
a, so the point (0, 0) remains (0, 0) and remains the vertex. Next, we define
g2(x) = g1(x − h) = a(x − h)2. This induces a horizontal shiŌ right or leŌ h
units (right if h > 0, leŌ if h < 0.) moves the vertex, in either case, to (h, 0).
Finally, f(x) = g2(x)+k = a(x−h)2+kwhich effects a verƟcal shiŌ up or down
k units (up if k > 0, down if k < 0) resulƟng in the vertex moving from (h, 0) to
(h, k).

In addiƟon to verifying Theorem 14, the arguments in the two preceding
paragraphs have also shownus the role of the numbera in the graphs of quadraƟc
funcƟons. The graph of y = a(x − h)2 + k is a parabola ‘opening upwards’ if
a > 0, and ‘opening downwards’ if a < 0. Moreover, the symmetry enjoyed
by the graph of y = x2 about the y-axis is translated to a symmetry about the
verƟcal line x = h which is the verƟcal line through the vertex. (You should use
transformaƟons to verify this!) This line is called the axis of symmetry of the
parabola and is shown as the dashed line in Figure 3.23

Without a doubt, the standard form of a quadraƟc funcƟon, coupled with
the machinery in SecƟon 2.6, allows us to list the aƩributes of the graphs of
such funcƟons quickly and elegantly. What remains to be shown, however, is the
fact that every quadraƟc funcƟon can be wriƩen in standard form. To convert
a quadraƟc funcƟon given in general form into standard form, we employ the
ancient rite of ‘CompleƟng the Square’. We remind the reader how this is done
in our next example.

Example 53 ConverƟng from general to standard form
Convert the funcƟons below from general form to standard form. Find the ver-
tex, axis of symmetry and any x- or y-intercepts. Graph each funcƟon and de-
termine its range.

1. f(x) = x2 − 4x+ 3.

2. g(x) = 6− x− x2
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If you forget why we do what we do to
complete the square, start with a(x −
h)2 + k, mulƟply it out, step by step, and
then reverse the process.
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Figure 3.24: f(x) = x2 − 4x+ 3
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Figure 3.25: g(x) = 6− x− x2

Chapter 3 Linear and QuadraƟc FuncƟons

SÊ½çã®ÊÄ

1. To convert from general form to standard form, we complete the square.
First, we verify that the coefficient of x2 is 1. Next, we find the coefficient
of x, in this case −4, and take half of it to get 1

2 (−4) = −2. This tells us
that our target perfect square quanƟty is (x − 2)2. To get an expression
equivalent to (x− 2)2, we need to add (−2)2 = 4 to the x2− 4x to create
a perfect square trinomial, but to keep the balance, wemust also subtract
it. We collect the terms which create the perfect square and gather the
remaining constant terms. Puƫng it all together, we get

f(x) = x2 − 4x+ 3 (Compute 1
2 (−4) = −2.)

=
(
x2 − 4x+ 4− 4

)
+ 3 (Add and subtract (−2)2 = 4.)

=
(
x2 − 4x+ 4

)
− 4+ 3 (Group the perfect square trinomial.)

= (x− 2)2 − 1 (Factor the perfect square trinomial.)

Of course, we can always check our answer by mulƟplying out f(x) = (x−
2)2 − 1 to see that it simplifies to f(x) = x2 − 4x− 1. In the form f(x) =
(x−2)2−1, we readily find the vertex to be (2,−1)which makes the axis
of symmetry x = 2. To find the x-intercepts, we set y = f(x) = 0. We are
spoiled for choice, sincewehave two formulas for f(x). Sincewe recognize
f(x) = x2 − 4x+ 3 to be easily factorable, (experience pays off, here!) we
proceed to solve x2 − 4x + 3 = 0. Factoring gives (x − 3)(x − 1) = 0 so
that x = 3 or x = 1. The x-intercepts are then (1, 0) and (3, 0). To find the
y-intercept, we set x = 0. Once again, the general form f(x) = x2−4x+3
is easiest to work with here, and we find y = f(0) = 3. Hence, the y-
intercept is (0, 3). With the vertex, axis of symmetry and the intercepts,
we get a preƩy good graphwithout the need to plot addiƟonal points. We
see that the range of f is [−1,∞) and we are done. The graph of f is given
in Figure 3.24.

2. To get started, we rewrite g(x) = 6− x− x2 = −x2 − x+ 6 and note that
the coefficient of x2 is−1, not 1. This means our first step is to factor out
the (−1) from both the x2 and x terms. We then follow the compleƟng
the square recipe as above.

g(x) = −x2 − x+ 6
= (−1)

(
x2 + x

)
+ 6 (Factor the coefficient of x2 from x2 and x.)

= (−1)
(
x2 + x+

1
4
− 1

4

)
+ 6

= (−1)
(
x2 + x+

1
4

)
+ (−1)

(
−1
4

)
+ 6

(Group the perfect square trinomial.)

= −
(
x+

1
2

)2

+
25
4

From g(x) = −
(
x+ 1

2
)2

+ 25
4 , we get the vertex to be

(
− 1

2 ,
25
4
)
and the

axis of symmetry to be x = − 1
2 . To get the x-intercepts, we opt to set
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the given formula g(x) = 6 − x − x2 = 0. Solving, we get x = −3 and
x = 2 , so the x-intercepts are (−3, 0) and (2, 0). Seƫng x = 0, we find
g(0) = 6, so the y-intercept is (0, 6). Ploƫng these points gives us the
graph in Figure 3.25. We see that the range of g is

(
−∞, 25

4
]
.

With Example 53 fresh in our minds, we are now in a posiƟon to show that
every quadraƟc funcƟon can be wriƩen in standard form. We begin with f(x) =
ax2 + bx+ c, assume a ̸= 0, and complete the square in complete generality.

f(x) = ax2 + bx+ c

= a
(
x2 +

b
a
x
)
+ c (Factor out coefficient of x2 from x2 and x.)

= a
(
x2 +

b
a
x+

b2

4a2
− b2

4a2

)
+ c

= a
(
x2 +

b
a
x+

b2

4a2

)
− a

(
b2

4a2

)
+ c

(Group the perfect square trinomial.)

= a
(
x+

b
2a

)2

+
4ac− b2

4a
(Factor and get a common denominator.)

Comparing this last expression with the standard form, we idenƟfy (x − h)
with

(
x+ b

2a
)
so that h = − b

2a . Instead of memorizing the value k = 4ac−b2
4a , we

see that f
(
− b

2a
)
= 4ac−b2

4a . As such, we have derived a vertex formula for the
general form. We summarize both vertex formulas in the box at the top of the
next page.

Theorem 15 Vertex Formulas for QuadraƟc FuncƟons

Suppose a, b, c, h and k are real numbers with a ̸= 0.

• If f(x) = a(x − h)2 + k, the vertex of the graph of y = f(x) is the
point (h, k).

• If f(x) = ax2 + bx + c, the vertex of the graph of y = f(x) is the

point
(
− b
2a

, f
(
− b
2a

))
.

There are twomore resultswhich canbe gleaned from the completed-square
form of the general form of a quadraƟc funcƟon,

f(x) = ax2 + bx+ c = a
(
x+

b
2a

)2

+
4ac− b2

4a

Wehave seen that the number a in the standard formof a quadraƟc funcƟon
determines whether the parabola opens upwards (if a > 0) or downwards (if
a < 0). We see here that this number a is none other than the coefficient of x2 in
the general form of the quadraƟc funcƟon. In other words, it is the coefficient of
x2 alone which determines this behavior – a result that is generalized in SecƟon
4.1. The second treasure is a re-discovery of the quadraƟc formula.
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Theorem 16 The QuadraƟc Formula

If a, b and c are real numbers with a ̸= 0, then the soluƟons to ax2 +
bx+ c = 0 are

x =
−b±

√
b2 − 4ac
2a

.

Assuming the condiƟons of EquaƟon 16, the soluƟons to ax2 + bx + c = 0
are precisely the zeros of f(x) = ax2 + bx+ c. Since

f(x) = ax2 + bx+ c = a
(
x+

b
2a

)2

+
4ac− b2

4a

the equaƟon ax2 + bx+ c = 0 is equivalent to

a
(
x+

b
2a

)2

+
4ac− b2

4a
= 0.

Solving gives

a
(
x+

b
2a

)2

+
4ac− b2

4a
= 0

a
(
x+

b
2a

)2

= −4ac− b2

4a

1
a

[
a
(
x+

b
2a

)2
]
=

1
a

(
b2 − 4ac

4a

)
(
x+

b
2a

)2

=
b2 − 4ac

4a2

x+
b
2a

= ±
√

b2 − 4ac
4a2

extract square roots

x+
b
2a

= ±
√
b2 − 4ac
2a

x = − b
2a

±
√
b2 − 4ac
2a

=
−b±

√
b2 − 4ac
2a

In our discussions of domain, we were warned against having negaƟve num-
bers underneath the square root. Given that

√
b2 − 4ac is part of the QuadraƟc

Formula, we will need to pay special aƩenƟon to the radicand b2 − 4ac. It turns
out that the quanƟty b2 − 4ac plays a criƟcal role in determining the nature of
the soluƟons to a quadraƟc equaƟon. It is given a special name.

DefiniƟon 36 Discriminant

If a, b and c are real numbers with a ̸= 0, then the discriminant of the
quadraƟc equaƟon ax2 + bx+ c = 0 is the quanƟty b2 − 4ac.
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The discriminant ‘discriminates’ between the kinds of soluƟons we get from
a quadraƟc equaƟon. These cases, and their relaƟon to the discriminant, are
summarized below.

Theorem 17 Discriminant Trichotomy

Let a, b and c be real numbers with a ̸= 0.

• If b2−4ac < 0, the equaƟon ax2+bx+c = 0 has no real soluƟons.

• If b2 − 4ac = 0, the equaƟon ax2 + bx + c = 0 has exactly one
real soluƟon.

• If b2 − 4ac > 0, the equaƟon ax2 + bx + c = 0 has exactly two
real soluƟons.

The proof of Theorem 17 stems from the posiƟon of the discriminant in the
quadraƟc equaƟon, and is leŌ as a goodmental exercise for the reader. The next
example exploits the fruits of all of our labor in this secƟon thus far.

Example 54 CompuƟng and maximizing profit
Recall that the profit (defined on page 75) for a product is defined by the equa-
Ɵon Profit = Revenue− Cost, or P(x) = R(x)− C(x). In Example 47 the weekly
revenue, in dollars, made by selling x PortaBoy Game Systems was found to be
R(x) = −1.5x2 + 250xwith the restricƟon (carried over from the price-demand
funcƟon) that 0 ≤ x ≤ 166. The cost, in dollars, to produce x PortaBoy Game
Systems is given in Example 45 as C(x) = 80x+ 150 for x ≥ 0.

1. Determine the weekly profit funcƟon P(x).

2. Graph y = P(x). Include the x- and y-intercepts as well as the vertex and
axis of symmetry.

3. Interpret the zeros of P.

4. Interpret the vertex of the graph of y = P(x).

5. Recall that the weekly price-demand equaƟon for PortaBoys is p(x) =
−1.5x+ 250, where p(x) is the price per PortaBoy, in dollars, and x is the
weekly sales. What should the price per system be in order to maximize
profit?

SÊ½çã®ÊÄ

1. To find the profit funcƟon P(x), we subtract

P(x) = R(x)−C(x) =
(
−1.5x2 + 250x

)
−(80x+ 150) = −1.5x2+170x−150.

Since the revenue funcƟon is valid when 0 ≤ x ≤ 166, P is also restricted
to these values.

2. To find the x-intercepts, we set P(x) = 0 and solve−1.5x2+170x−150 =
0. The mere thought of trying to factor the leŌ hand side of this equaƟon
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Figure 3.26: The graph of the profit func-
Ɵon P(x)
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could do serious psychological damage, so we resort to the quadraƟc for-
mula, EquaƟon 16. IdenƟfying a = −1.5, b = 170, and c = −150, we
obtain

x =
−b±

√
b2 − 4ac
2a

=
−170±

√
1702 − 4(−1.5)(−150)
2(−1.5)

=
−170±

√
28000

−3

=
170± 20

√
70

3
.

We get two x-intercepts:
(

170−20
√
70

3 , 0
)
and

(
170+20

√
70

3 , 0
)
. To find the

y-intercept, we set x = 0 and find y = P(0) = −150 for a y-intercept of
(0,−150). To find the vertex, we use the fact that P(x) = −1.5x2+170x−
150 is in the general form of a quadraƟc funcƟon and appeal to EquaƟon
15. SubsƟtuƟng a = −1.5 and b = 170, we get x = − 170

2(−1.5) = 170
3 .

To find the y-coordinate of the vertex, we compute P
( 170

3
)
= 14000

3 and
find that our vertex is

( 170
3 , 14000

3
)
. The axis of symmetry is the verƟcal line

passing through the vertex so it is the line x = 170
3 . To sketch a reasonable

graph, we approximate the x-intercepts, (0.89, 0) and (112.44, 0), and the
vertex, (56.67, 4666.67). (Note that in order to get the x-intercepts and
the vertex to showup in the same picture, we had to scale the x-axis differ-
ently than the y-axis in Figure 3.26. This results in the leŌ-hand x-intercept
and the y-intercept being uncomfortably close to each other and to the
origin in the picture.)

3. The zeros of P are the soluƟons to P(x) = 0, which we have found to be
approximately 0.89 and 112.44. As we saw in Example 29, these are the
‘break-even’ points of the profit funcƟon, where enough product is sold
to recover the cost spent to make the product. More importantly, we see
from the graph that as long as x is between 0.89 and 112.44, the graph
y = P(x) is above the x-axis, meaning y = P(x) > 0 there. This means
that for these values of x, a profit is being made. Since x represents the
weekly sales of PortaBoy Game Systems, we round the zeros to posiƟve
integers and have that as long as 1, but no more than 112 game systems
are sold weekly, the retailer will make a profit.

4. From the graph, we see that the maximum value of P occurs at the ver-
tex, which is approximately (56.67, 4666.67). As above, x represents the
weekly sales of PortaBoy systems, so we can’t sell 56.67 game systems.
Comparing P(56) = 4666 and P(57) = 4666.5, we conclude that we will
make a maximum profit of $4666.50 if we sell 57 game systems.

5. In the previous part, we found that we need to sell 57 PortaBoys per week
to maximize profit. To find the price per PortaBoy, we subsƟtute x = 57
into the price-demand funcƟon to get p(57) = −1.5(57) + 250 = 164.5.
The price should be set at $164.50.

Our next example is another classic applicaƟon of quadraƟc funcƟons.
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Figure 3.27: A diagram of pasture dimen-
sions

3.3 QuadraƟc FuncƟons

Example 55 OpƟmizing pasture dimensions
Much toDonnie’s surprise anddelight, he inherits a large parcel of land inAshtab-
ula County fromone of his (e)strange(d) relaƟves. The Ɵme is finally right for him
to pursue his dream of farming alpaca. He wishes to build a rectangular pasture,
and esƟmates that he has enough money for 200 linear feet of fencing material.
If he makes the pasture adjacent to a stream (so no fencing is required on that
side), what are the dimensions of the pasture which maximize the area? What
is the maximum area? If an average alpaca needs 25 square feet of grazing area,
how many alpaca can Donnie keep in his pasture?

SÊ½çã®ÊÄ It is always helpful to sketch the problem situaƟon, so we
do so in Figure 3.27.

We are tasked to find the dimensions of the pasture whichwould give amax-
imum area. We let w denote the width of the pasture and we let l denote the
length of the pasture. Since the units given to us in the statement of the prob-
lem are feet, we assume w and l are measured in feet. The area of the pasture,
which we’ll call A, is related to w and l by the equaƟon A = wl. Since w and l
are both measured in feet, A has units of feet2, or square feet. We are given the
total amount of fencing available is 200 feet, which means w + l + w = 200,
or, l + 2w = 200. We now have two equaƟons, A = wl and l + 2w = 200.
In order to use the tools given to us in this secƟon to maximize A, we need to
use the informaƟon given to write A as a funcƟon of just one variable, either
w or l. This is where we use the equaƟon l + 2w = 200. Solving for l, we
find l = 200 − 2w, and we subsƟtute this into our equaƟon for A. We get
A = wl = w(200 − 2w) = 200w − 2w2. We now have A as a funcƟon of w,
A(w) = 200w− 2w2 = −2w2 + 200w.

Beforewe go any further, we need to find the applied domain of A so that we
know what values of wmake sense in this problem situaƟon. (Donnie would be
very upset if, for example, we told him the width of the pasture needs to be−50
feet.) Sincew represents the width of the pasture,w > 0. Likewise, l represents
the length of the pasture, so l = 200−2w > 0. Solving this laƩer inequality, we
findw < 100. Hence, the funcƟonwewish tomaximize isA(w) = −2w2+200w
for 0 < w < 100. Since A is a quadraƟc funcƟon (ofw), we know that the graph
of y = A(w) is a parabola. Since the coefficient of w2 is −2, we know that this
parabola opens downwards. This means that there is a maximum value to be
found, and we know it occurs at the vertex. Using the vertex formula, we find
w = − 200

2(−2) = 50, and A(50) = −2(50)2 + 200(50) = 5000. Since w = 50
lies in the applied domain, 0 < w < 100, we have that the area of the pasture
is maximized when the width is 50 feet. To find the length, we use l = 200−2w
and find l = 200 − 2(50) = 100, so the length of the pasture is 100 feet.
The maximum area is A(50) = 5000, or 5000 square feet. If an average alpaca
requires 25 square feet of pasture, Donnie can raise 5000

25 = 200 average alpaca.

We conclude this secƟon with the graph of a more complicated absolute
value funcƟon.

Example 56 Graphing the absolute value of a quadraƟc funcƟon
Graph f(x) = |x2 − x− 6|.

SÊ½çã®ÊÄ Using the definiƟon of absolute value, DefiniƟon 33, we
have

f(x) =

−
(
x2 − x− 6

)
, if x2 − x− 6 < 0

x2 − x− 6, if x2 − x− 6 ≥ 0
.
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y = |x2 − x− 6

Figure 3.28: Obtaining the graph of
f(x) = |x2 − x− 6|

Chapter 3 Linear and QuadraƟc FuncƟons

The trouble is that we have yet to develop any analyƟc techniques to solve non-
linear inequaliƟes such as x2 − x − 6 < 0. You won’t have to wait long; this is
one of the main topics of SecƟon 3.4. Nevertheless, we can aƩack this problem
graphically. To that end, we graph y = g(x) = x2 − x − 6 using the intercepts
and the vertex. To find the x-intercepts, we solve x2 − x − 6 = 0. Factoring
gives (x − 3)(x + 2) = 0 so x = −2 or x = 3. Hence, (−2, 0) and (3, 0) are x-
intercepts. The y-intercept (0,−6) is found by seƫng x = 0. To plot the vertex,
we find x = − b

2a = − −1
2(1) =

1
2 , and y =

( 1
2
)2 − ( 12)− 6 = − 25

4 = −6.25. Plot-
Ɵng, we get the parabola seen belowon the leŌ. To obtain points on the graph of
y = f(x) = |x2−x−6|, we can take points on the graph of g(x) = x2−x−6 and
apply the absolute value to each of the y values on the parabola. We see from
the graph of g that for x ≤ −2 or x ≥ 3, the y values on the parabola are greater
than or equal to zero (since the graph is on or above the x-axis), so the absolute
value leaves these porƟons of the graph alone. For x between −2 and 3, how-
ever, the y values on the parabola are negaƟve. For example, the point (0,−6)
on y = x2 − x − 6 would result in the point (0, | − 6|) = (0,−(−6)) = (0, 6)
on the graph of f(x) = |x2 − x − 6|. Proceeding in this manner for all points
with x-coordinates between −2 and 3 results in the graph seen at the boƩom
of Figure 3.28.

If we take a step back and look at the graphs of g and f in the last example,
we noƟce that to obtain the graph of f from the graph of g, we reflect a porƟon
of the graph of g about the x-axis. We can see this analyƟcally by subsƟtuƟng
g(x) = x2 − x− 6 into the formula for f(x) and calling to mind Theorem 9 from
SecƟon 2.6.

f(x) =

−g(x), if g(x) < 0

g(x), if g(x) ≥ 0
.

The funcƟon f is defined so that when g(x) is negaƟve (i.e., when its graph is
below the x-axis), the graph of f is its refecƟon across the x-axis. This is a general
template to graph funcƟons of the form f(x) = |g(x)|. From this perspecƟve, the
graph of f(x) = |x| can be obtained by reflecƟng the porƟon of the line g(x) = x
which is below the x-axis back above the x-axis creaƟng the characterisƟc ‘∨’
shape.
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Exercises 3.3
Problems
In Exercises 1 – 9, graph the quadraƟc funcƟon. Find the x-
and y-intercepts of each graph, if any exist. If it is given in gen-
eral form, convert it into standard form; if it is given in stan-
dard form, convert it into general form. Find the domain and
range of the funcƟon and list the intervals on which the func-
Ɵon is increasing or decreasing. IdenƟfy the vertex and the
axis of symmetry and determine whether the vertex yields a
relaƟve and absolute maximum or minimum.

1. f(x) = x2 + 2

2. f(x) = −(x+ 2)2

3. f(x) = x2 − 2x− 8

4. f(x) = −2(x+ 1)2 + 4

5. f(x) = 2x2 − 4x− 1

6. f(x) = −3x2 + 4x− 7

7. f(x) = x2 + x+ 1

8. f(x) = −3x2 + 5x+ 4

9. f(x) = x2 − 1
100

x− 11

In Exercises 10 – 14, the cost and price-demand funcƟons are
given for different scenarios. For each scenario,

• Find the profit funcƟon P(x).

• Find the number of items which need to be sold in or-
der to maximize profit.

• Find the maximum profit.

• Find the price to charge per item in order to maximize
profit.

• Find and interpret break-even points.

10. The cost, in dollars, to produce x “I’d rather be a Sasquatch”
T-Shirts is C(x) = 2x + 26, x ≥ 0 and the price-demand
funcƟon, in dollars per shirt, is p(x) = 30−2x, 0 ≤ x ≤ 15.

11. The cost, in dollars, to produce x boƩles of 100% All-
Natural CerƟfied Free-Trade Organic Sasquatch Tonic is
C(x) = 10x + 100, x ≥ 0 and the price-demand funcƟon,
in dollars per boƩle, is p(x) = 35− x, 0 ≤ x ≤ 35.

12. The cost, in cents, to produce x cups of Mountain Thunder
Lemonade at Junior’s Lemonade Stand is C(x) = 18x+240,
x ≥ 0 and the price-demand funcƟon, in cents per cup, is
p(x) = 90− 3x, 0 ≤ x ≤ 30.

13. The daily cost, in dollars, to produce x Sasquatch Berry Pies
is C(x) = 3x + 36, x ≥ 0 and the price-demand funcƟon,
in dollars per pie, is p(x) = 12− 0.5x, 0 ≤ x ≤ 24.

14. The monthly cost, in hundreds of dollars, to produce x cus-
tom built electric scooters is C(x) = 20x + 1000, x ≥ 0
and the price-demand funcƟon, in hundreds of dollars per
scooter, is p(x) = 140− 2x, 0 ≤ x ≤ 70.

15. The InternaƟonal Silver Strings Submarine Band holds a
bake sale each year to fund their trip to the NaƟonal
Sasquatch ConvenƟon. It has been determined that the
cost in dollars of baking x cookies is C(x) = 0.1x + 25 and
that the demand funcƟon for their cookies is p = 10−.01x.
How many cookies should they bake in order to maximize
their profit?

16. Using data from Bureau of TransportaƟon StaƟsƟcs, the av-
erage fuel economy F in miles per gallon for passenger cars
in the US can be modelled by F(t) = −0.0076t2 + 0.45t+
16, 0 ≤ t ≤ 28, where t is the number of years since
1980. Find and interpret the coordinates of the vertex of
the graph of y = F(t).

17. The temperature T, in degrees Fahrenheit, t hours aŌer 6
AM is given by:

T(t) = −1
2
t2 + 8t+ 32, 0 ≤ t ≤ 12

What is the warmest temperature of the day? When does
this happen?

18. Suppose C(x) = x2−10x+27 represents the costs, in hun-
dreds, to produce x thousand pens. Howmany pens should
be produced to minimize the cost? What is this minimum
cost?

19. Skippy wishes to plant a vegetable garden along one side
of his house. In his garage, he found 32 linear feet of fenc-
ing. Since one side of the garden will border the house,
Skippy doesn’t need fencing along that side. What are the
dimensions of the garden which will maximize the area of
the garden? What is the maximum area of the garden?

20. In the situaƟon of Example 55, Donnie has a nightmare that
one of his alpaca herd fell into the river and drowned. To
avoid this, he wants to move his rectangular pasture away
from the river. This means that all four sides of the pasture
require fencing. If the total amount of fencing available is
sƟll 200 linear feet, what dimensions maximize the area of
the pasture now? What is the maximum area? Assuming
an average alpaca requires 25 square feet of pasture, how
many alpaca can he raise now?

21. What is the largest rectangular area one can enclose with
14 inches of string?

1We have already seen the graph of this funcƟon. It was used as an example in SecƟon 2.5 to show how the graphing calculator can be mis-
leading.
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22. The height of an object dropped from the roof of an eight
story building ismodelled by h(t) = −16t2+64, 0 ≤ t ≤ 2.
Here, h is the height of the object off the ground, in feet, t
seconds aŌer the object is dropped. How long before the
object hits the ground?

23. The height h in feet of a model rocket above the ground t
seconds aŌer liŌ-off is given by h(t) = −5t2 + 100t, for
0 ≤ t ≤ 20. When does the rocket reach its maximum
height above the ground? What is its maximum height?

24. Carl’s friend Jason parƟcipates in the Highland Games. In
one event, the hammer throw, the height h in feet of the
hammer above the ground t seconds aŌer Jason lets it go is
modeled by h(t) = −16t2 + 22.08t+ 6. What is the ham-
mer’s maximum height? What is the hammer’s total Ɵme
in the air? Round your answers to two decimal places.

25. Assuming no air resistance or forces other than the Earth’s
gravity, the height above the ground at Ɵme t of a falling
object is given by s(t) = −4.9t2 + v0t + s0 where s is in
meters, t is in seconds, v0 is the object’s iniƟal velocity in
meters per second and s0 is its iniƟal posiƟon in meters.

(a) What is the applied domain of this funcƟon?
(b) Discuss with your classmates what each of v0 >

0, v0 = 0 and v0 < 0 would mean.
(c) Come up with a scenario in which s0 < 0.
(d) Let’s say a slingshot is used to shoot amarble straight

up from the ground (s0 = 0) with an iniƟal velocity
of 15 meters per second. What is the marble’s max-
imum height above the ground? At what Ɵme will it
hit the ground?

(e) Now shoot the marble from the top of a tower which
is 25 meters tall. When does it hit the ground?

(f) What would the height funcƟon be if instead of
shooƟng the marble up off of the tower, you were
to shoot it straight DOWN from the top of the tower?

26. The two towers of a suspension bridge are 400 feet apart.
The parabolic cable2 aƩached to the tops of the towers is
10 feet above the point on the bridge deck that is midway
between the towers. If the towers are 100 feet tall, find the
height of the cable directly above a point of the bridge deck
that is 50 feet to the right of the leŌ-hand tower.

27. Graph f(x) = |1− x2|

28. Find all of the points on the line y = 1− xwhich are 2 units
from (1,−1).

29. Let L be the line y = 2x + 1. Find a funcƟon D(x) which
measures the distance squared from a point on L to (0, 0).
Use this to find the point on L closest to (0, 0).

30. With the help of your classmates, show that if a quadraƟc
funcƟon f(x) = ax2 + bx + c has two real zeros then the
x-coordinate of the vertex is the midpoint of the zeros.

In Exercises 31 – 36, solve the quadraƟc equaƟon for the in-
dicated variable.

31. x2 − 10y2 = 0 for x

32. y2 − 4y = x2 − 4 for x

33. x2 −mx = 1 for x

34. y2 − 3y = 4x for y

35. y2 − 4y = x2 − 4 for y

36. −gt2 + v0t+ s0 = 0 for t (Assume g ̸= 0.)

2The weight of the bridge deck forces the bridge cable into a parabola and a free hanging cable such as a power line forms not a parabola, but
a catenary, a curve that is defined using exponenƟal funcƟons.
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Figure 3.29: Graphical interpretaƟon of
Example 57

3.4 InequaliƟes with Absolute Value and QuadraƟc FuncƟons

3.4 InequaliƟes with Absolute Value and QuadraƟc
FuncƟons

In this secƟon, not only do we develop techniques for solving various classes
of inequaliƟes analyƟcally, we also look at them graphically. The first example
moƟvates the core ideas.

Example 57 InequaliƟes with linear funcƟons
Let f(x) = 2x− 1 and g(x) = 5.

1. Solve f(x) = g(x).

2. Solve f(x) < g(x).

3. Solve f(x) > g(x).

4. Graph y = f(x) and y = g(x) on the same set of axes and interpret your
soluƟons to parts 1 through 3 above.

SÊ½çã®ÊÄ

1. To solve f(x) = g(x), we replace f(x) with 2x − 1 and g(x) with 5 to get
2x− 1 = 5. Solving for x, we get x = 3.

2. The inequality f(x) < g(x) is equivalent to 2x−1 < 5. Solving gives x < 3
or (−∞, 3).

3. To find where f(x) > g(x), we solve 2x− 1 > 5. We get x > 3, or (3,∞).

4. To graph y = f(x), we graph y = 2x− 1, which is a line with a y-intercept
of (0,−1) and a slope of 2. The graph of y = g(x) is y = 5 which is a
horizontal line through (0, 5).

To see the connecƟon between the graph and the Algebra, we recall the
Fundamental Graphing Principle for FuncƟons in SecƟon 2.5: the point
(a, b) is on the graph of f if and only if f(a) = b. In other words, a generic
point on the graph of y = f(x) is (x, f(x)), and a generic point on the graph
of y = g(x) is (x, g(x)). When we seek soluƟons to f(x) = g(x), we are
looking for x values whose y values on the graphs of f and g are the same.
In part 1, we found x = 3 is the soluƟon to f(x) = g(x). Sure enough,
f(3) = 5 and g(3) = 5 so that the point (3, 5) is on both graphs. In other
words, the graphs of f and g intersect at (3, 5). In part 2, we set f(x) < g(x)
and solved to find x < 3. For x < 3, the point (x, f(x)) is below (x, g(x))
since the y values on the graph of f are less than the y values on the graph
of g there. Analogously, in part 3, we solved f(x) > g(x) and found x > 3.
For x > 3, note that the graph of f is above the graph of g, since the y
values on the graph of f are greater than the y values on the graph of g for
those values of x: see Figure 3.29.

The preceding example demonstrates the following, which is a consequence
of the Fundamental Graphing Principle for FuncƟons.
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g(x) for Example 58
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Figure 3.32: The soluƟon to f(x) ≥ g(x)

Chapter 3 Linear and QuadraƟc FuncƟons

Key Idea 17 Graphical InterpretaƟon of EquaƟons and InequaliƟes

Suppose f and g are funcƟons.

• The soluƟons to f(x) = g(x) are the x values where the graphs of
y = f(x) and y = g(x) intersect.

• The soluƟon to f(x) < g(x) is the set of x values where the graph
of y = f(x) is below the graph of y = g(x).

• The soluƟon to f(x) > g(x) is the set of x values where the graph
of y = f(x) above the graph of y = g(x).

The next example turns the tables and furnishes the graphs of two funcƟons
and asks for soluƟons to equaƟons and inequaliƟes.

Example 58 Using graphs to solve equaƟons and inequaliƟes
The graphs of f and g are shown in Figure 3.30. (The graph of y = g(x) is in bold.)
Use these graphs to answer the following quesƟons.

1. Solve f(x) = g(x).

2. Solve f(x) < g(x).

3. Solve f(x) ≥ g(x).

SÊ½çã®ÊÄ

1. To solve f(x) = g(x), we look for where the graphs of f and g intersect.
These appear to be at the points (−1, 2) and (1, 2), so our soluƟons to
f(x) = g(x) are x = −1 and x = 1.

2. To solve f(x) < g(x), we look for where the graph of f is below the graph
of g. This appears to happen for the x values less than −1 and greater
than 1. Our soluƟon is (−∞,−1) ∪ (1,∞).

3. To solve f(x) ≥ g(x), we look for soluƟons to f(x) = g(x) as well as f(x) >
g(x). We solved the former equaƟon and found x = ±1. To solve f(x) >
g(x), we look forwhere the graph of f is above the graph of g. This appears
to happen between x = −1 and x = 1, on the interval (−1, 1). Hence,
our soluƟon to f(x) ≥ g(x) is [−1, 1].

We now turn our aƩenƟon to solving inequaliƟes involving the absolute
value. We have the following theorem to help us.
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Figure 3.35: Solving 4 − 3|2x + 1| > −2
in Example 59

3.4 InequaliƟes with Absolute Value and QuadraƟc FuncƟons

Theorem 18 InequaliƟes Involving the Absolute Value

Let c be a real number.

• For c > 0, |x| < c is equivalent to−c < x < c.

• For c > 0, |x| ≤ c is equivalent to−c ≤ x ≤ c.

• For c ≤ 0, |x| < c has no soluƟon, and for c < 0, |x| ≤ c has no
soluƟon.

• For c ≥ 0, |x| > c is equivalent to x < −c or x > c.

• For c ≥ 0, |x| ≥ c is equivalent to x ≤ −c or x ≥ c.

• For c < 0, |x| > c and |x| ≥ c are true for all real numbers.

As with Theorem 13 in SecƟon 3.2, we could argue Theorem 18 using cases.
However, in light of what we have developed in this secƟon, we can understand
these statements graphically. For instance, if c > 0, the graph of y = c is a
horizontal line which lies above the x-axis through (0, c). To solve |x| < c, we
are looking for the x values where the graph of y = |x| is below the graph of
y = c. We know that the graphs intersect when |x| = c, which, from SecƟon
3.2, we know happens when x = c or x = −c.

In Figure 3.33 we see that the graph of y = |x| is below y = c for x between
−c and c, and hence we get |x| < c is equivalent to −c < x < c. The other
properƟes in Theorem 18 can be shown similarly.

Example 59 Solving absolute value inequaliƟes
Solve the following inequaliƟes analyƟcally; check your answers graphically.

1. |x− 1| ≥ 3

2. 4− 3|2x+ 1| > −2

3. 2 < |x− 1| ≤ 5

4. |x+ 1| ≥ x+ 4
2

SÊ½çã®ÊÄ

1. From Theorem 18, |x− 1| ≥ 3 is equivalent to x− 1 ≤ −3 or x− 1 ≥ 3.
Solving, we get x ≤ −2 or x ≥ 4, which, in interval notaƟon is (−∞,−2]∪
[4,∞). Graphically, we have Figure 3.34.
We see that the graph of y = |x − 1| is above the horizontal line y = 3
for x < −2 and x > 4 hence this is where |x − 1| > 3. The two graphs
intersect when x = −2 and x = 4, so we have graphical confirmaƟon of
our analyƟc soluƟon.

2. To solve 4 − 3|2x + 1| > −2 analyƟcally, we first isolate the absolute
value before applying Theorem 18. To that end, we get−3|2x+ 1| > −6
or |2x + 1| < 2. RewriƟng, we now have −2 < 2x + 1 < 2 so that
− 3

2 < x < 1
2 . In interval notaƟon, we write

(
− 3

2 ,
1
2
)
. Graphically we see

in Figure 3.35 that the graph of y = 4 − 3|2x + 1| is above y = −2 for x
values between− 3

2 and
1
2 .
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Figure 3.36: Solving 2 < |x − 1| ≤ 5 in
Example 59
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Figure 3.37: Solving |x + 1| ≥ x+ 4
2

in
Example 59
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Figure 3.38: y = x2 − x− 6

Chapter 3 Linear and QuadraƟc FuncƟons

3. RewriƟng the compound inequality 2 < |x − 1| ≤ 5 as ‘2 < |x − 1| and
|x − 1| ≤ 5’ allows us to solve each piece using Theorem 18. The first
inequality, 2 < |x− 1| can be re-wriƩen as |x− 1| > 2 so x− 1 < −2 or
x− 1 > 2. We get x < −1 or x > 3. Our soluƟon to the first inequality is
then (−∞,−1)∪(3,∞). For |x−1| ≤ 5, we combine results in Theorems
13 and 18 to get −5 ≤ x − 1 ≤ 5 so that −4 ≤ x ≤ 6, or [−4, 6]. Our
soluƟon to 2 < |x− 1| ≤ 5 is comprised of values of x which saƟsfy both
parts of the inequality, so we take the intersecƟon of (−∞,−1)∪ (3,∞)
and [−4, 6] to get [−4,−1) ∪ (3, 6]. (see DefiniƟon 4 in SecƟon 1.1.1.)
Graphically, we see that the graph of y = |x−1| is ‘between’ the horizontal
lines y = 2 and y = 5 for x values between −4 and −1 as well as those
between 3 and 6. Including the x values where y = |x − 1| and y = 5
intersect, we get Figure 3.36.

4. We need to exercise some special cauƟon when solving |x+ 1| ≥ x+4
2 . As

we saw in Example 48 in SecƟon 3.2, when variables are both inside and
outside of the absolute value, it’s usually best to refer to the definiƟon of
absolute value, DefiniƟon 33, to remove the absolute values and proceed
from there. To that end, we have |x + 1| = −(x + 1) if x < −1 and
|x + 1| = x + 1 if x ≥ −1. We break the inequality into cases, the first
case being when x < −1. For these values of x, our inequality becomes
−(x + 1) ≥ x+4

2 . Solving, we get −2x − 2 ≥ x + 4, so that −3x ≥ 6,
which means x ≤ −2. Since all of these soluƟons fall into the category
x < −1, we keep them all. For the second case, we assume x ≥ −1. Our
inequality becomes x + 1 ≥ x+4

2 , which gives 2x + 2 ≥ x + 4 or x ≥ 2.
Since all of these values of x are greater than or equal to −1, we accept
all of these soluƟons as well. Our final answer is (−∞,−2] ∪ [2,∞).

We now turn our aƩenƟon to quadraƟc inequaliƟes. In the last example of
SecƟon 3.3, we needed to determine the soluƟon to x2 − x − 6 < 0. We will
now re-visit this problem using some of the techniques developed in this secƟon
not only to reinforce our soluƟon in SecƟon 3.3, but to also help formulate a
general analyƟc procedure for solving all quadraƟc inequaliƟes. If we consider
f(x) = x2 − x − 6 and g(x) = 0, then solving x2 − x − 6 < 0 corresponds
graphically to finding the values of x for which the graph of y = f(x) = x2−x−6
(the parabola) is below the graph of y = g(x) = 0 (the x-axis). See Figure 3.38
for reference.

We can see that the graph of f does dip below the x-axis between its two
x-intercepts. The zeros of f are x = −2 and x = 3 in this case and they divide
the domain (the x-axis) into three intervals: (−∞,−2), (−2, 3) and (3,∞). For
every number in (−∞,−2), the graph of f is above the x-axis; in other words,
f(x) > 0 for all x in (−∞,−2). Similarly, f(x) < 0 for all x in (−2, 3), and
f(x) > 0 for all x in (3,∞). We can schemaƟcally represent this with the sign
diagram below.

−2 3

(+) 0 (−) 0 (+)

Here, the (+) above a porƟon of the number line indicates f(x) > 0 for
those values of x; the (−) indicates f(x) < 0 there. The numbers labeled on the
number line are the zeros of f, so we place 0 above them. We see at once that
the soluƟon to f(x) < 0 is (−2, 3).

Our next goal is to establish a procedure by which we can generate the sign
diagram without graphing the funcƟon. An important property of quadraƟc
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We have to choose a test value in each
interval to construct the sign diagram.
You’ll get the same sign chart if you
choose different test values than the ones
chosen here.

− 3
2

1

(+) 0 (−) 0 (+)

−2 0 2

Figure 3.39: The sign diagram for f(x) =
2x2 + x− 3

x

y

y = 2x2

y = 3 − x

−2 −1 1 2

2
3
4
5
6
7

Figure 3.40: Verifying the soluƟon to
2x2 ≤ 3− x graphically

3.4 InequaliƟes with Absolute Value and QuadraƟc FuncƟons

funcƟons is that if the funcƟon is posiƟve at one point and negaƟve at another,
the funcƟon must have at least one zero in between. Graphically, this means
that a parabola can’t be above the x-axis at one point and below the x-axis at
another point without crossing the x-axis. This allows us to determine the sign
of all of the funcƟon values on a given interval by tesƟng the funcƟon at just one
value in the interval. This gives us the following.

Key Idea 18 Steps for Solving a QuadraƟc Inequality

1. Rewrite the inequality, if necessary, as a quadraƟc funcƟon f(x) on
one side of the inequality and 0 on the other.

2. Find the zeros of f and place them on the number line with the
number 0 above them.

3. Choose a real number, called a test value, in each of the intervals
determined in step 2.

4. Determine the sign of f(x) for each test value in step 3, and write
that sign above the corresponding interval.

5. Choose the intervals which correspond to the correct sign to solve
the inequality.

Example 60 Solving quadraƟc inequaliƟes
Solve the following inequaliƟes analyƟcally using sign diagrams. Verify your an-
swer graphically.

1. 2x2 ≤ 3− x

2. x2 − 2x > 1

3. x2 + 1 ≤ 2x

4. 2x− x2 ≥ |x− 1| − 1

SÊ½çã®ÊÄ

1. To solve 2x2 ≤ 3 − x, we first get 0 on one side of the inequality which
yields 2x2 + x− 3 ≤ 0. We find the zeros of f(x) = 2x2 + x− 3 by solving
2x2 + x− 3 = 0 for x. Factoring gives (2x+ 3)(x− 1) = 0, so x = − 3

2 or
x = 1. We place these values on the number line with 0 above them and
choose test values in the intervals

(
−∞,− 3

2
)
,
(
− 3

2 , 1
)
and (1,∞). For

the interval
(
−∞,− 3

2
)
, we choose x = −2; for

(
− 3

2 , 1
)
, we pick x = 0;

and for (1,∞), x = 2. EvaluaƟng the funcƟon at the three test values
gives us f(−2) = 3 > 0, so we place (+) above

(
−∞,− 3

2
)
; f(0) = −3 <

0, so (−) goes above the interval
(
− 3

2 , 1
)
; and, f(2) = 7, which means

(+) is placed above (1,∞). Since we are solving 2x2+ x−3 ≤ 0, we look
for soluƟons to 2x2 + x− 3 < 0 as well as soluƟons for 2x2 + x− 3 = 0.
For 2x2+x−3 < 0, we need the intervals which we have a (−). Checking
the sign diagram, we see this is

(
− 3

2 , 1
)
. We know 2x2 + x− 3 = 0 when

x = − 3
2 and x = 1, so our final answer is

[
− 3

2 , 1
]
.
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1−
√
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√
2

(+) 0 (−) 0 (+)

−1 0 3

Figure 3.41: The sign diagram for f(x) =
x2 − 2x− 1

x

y

y = 1

y = x2 − 2x

−3 −2 −1 1 2 3

1

2

3

Figure 3.42: Verifying the soluƟon to x2−
2x > 1 graphically

1

(+) 0 (+)

0 2

Figure 3.43: The sign diagram for f(x) =
x2 − 2x+ 1

x

y

y = 2x

y = x2 + 1

−1 1

1

2

3

4

Figure 3.44: Verifying the soluƟon to x2+
1 ≤ 2x graphically

0

(+) 0 (−)

−1 1
2

1

Figure 3.45: The sign diagram for f(x) =
x2 − 3x, where x < 1

2

(−) 0 (+)

31

Figure 3.46: The sign diagram for g(x) =
x2 − x− 2, where x ≥ 1

Chapter 3 Linear and QuadraƟc FuncƟons

To verify our soluƟon graphically, we refer to the original inequality, 2x2 ≤
3−x. We let g(x) = 2x2 and h(x) = 3−x. We are looking for the x values
where the graph of g is below that of h (the soluƟon to g(x) < h(x)) as
well as the points of intersecƟon (the soluƟons to g(x) = h(x)). See Figure
3.40.

2. Once again, we re-write x2 − 2x > 1 as x2 − 2x − 1 > 0 and we idenƟfy
f(x) = x2 − 2x − 1. When we go to find the zeros of f, we find, to our
chagrin, that the quadraƟc x2 − 2x − 1 doesn’t factor nicely. Hence, we
resort to the quadraƟc formula to solve x2 − 2x − 1 = 0, and arrive at
x = 1 ±

√
2. As before, these zeros divide the number line into three

pieces. To help us decide on test values, we approximate 1−
√
2 ≈ −0.4

and 1+
√
2 ≈ 2.4. We choose x = −1, x = 0 and x = 3 as our test values

and find f(−1) = 2, which is (+); f(0) = −1 which is (−); and f(3) = 2
which is (+) again. Our soluƟon to x2 − 2x − 1 > 0 is where we have
(+), so, in interval notaƟon

(
−∞, 1−

√
2
)
∪
(
1+

√
2,∞

)
. To check the

inequality x2 − 2x > 1 graphically, we set g(x) = x2 − 2x and h(x) = 1.
We are looking for the x values where the graph of g is above the graph
of h: see Figure 3.42.

3. To solve x2 + 1 ≤ 2x, as before, we solve x2 − 2x + 1 ≤ 0. Seƫng
f(x) = x2 − 2x + 1 = 0, we find the only one zero of f, x = 1. This one
x value divides the number line into two intervals, from which we choose
x = 0 and x = 2 as test values. We find f(0) = 1 > 0 and f(2) = 1 > 0.
Since we are looking for soluƟons to x2 − 2x+ 1 ≤ 0, we are looking for x
values where x2 − 2x+ 1 < 0 as well as where x2 − 2x+ 1 = 0. Looking
at our sign diagram, there are no places where x2 − 2x+ 1 < 0 (there are
no (−)), so our soluƟon is only x = 1 (where x2 − 2x+ 1 = 0). We write
this as {1}. Graphically, we solve x2 + 1 ≤ 2x by graphing g(x) = x2 + 1
and h(x) = 2x. We are looking for the x values where the graph of g is
below the graph of h (for x2+1 < 2x) and where the two graphs intersect
(x2+1 = 2x); see Figure 3.44. NoƟce that the line and the parabola touch
at (1, 2), but the parabola is always above the line otherwise.

In this case, we say the line y = 2x is tangent to y = x2+1 at (1, 2). Finding
tangent lines to arbitrary funcƟons is a fundamental problem solved, in
general, with Calculus.

4. To solve our last inequality, 2x−x2 ≥ |x−1|−1, we re-write the absolute
value using cases. For x < 1, |x − 1| = −(x − 1) = 1 − x, so we get
2x−x2 ≥ 1−x−1, or x2−3x ≤ 0. Finding the zeros of f(x) = x2−3x, we
get x = 0 and x = 3. However, we are only concerned with the porƟon of
the number line where x < 1, so the only zero that we concern ourselves
with is x = 0. This divides the interval x < 1 into two intervals: (−∞, 0)
and (0, 1). We choose x = −1 and x = 1

2 as our test values. We find
f(−1) = 4 and f

( 1
2
)
= − 5

4 , giving us the signs in Figure 3.45. Hence, our
soluƟon to x2 − 3x ≤ 0 for x < 1 is [0, 1). Next, we turn our aƩenƟon to
the case x ≥ 1. Here, |x− 1| = x− 1, so our original inequality becomes
2x−x2 ≥ x−1−1, or x2−x−2 ≤ 0. Seƫng g(x) = x2−x−2, we find the
zeros of g to be x = −1 and x = 2. Of these, only x = 2 lies in the region
x ≥ 1, so we ignore x = −1. Our test intervals are now [1, 2) and (2,∞).
We choose x = 1 and x = 3 as our test values and find g(1) = −2 and
g(3) = 4, yielding the sign diagram in Figure 3.46. Hence, our soluƟon to
g(x) = x2 − x− 2 ≤ 0, in this region is [1, 2).
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(+) 0 (−) 0 (+)

−1 0 3

Figure 3.47: The overall sign diagram for
Problem 4 in Example 60

x

y

y = 2x− x2

y = |x− 1| − 1

−1 1 2 3

1

Figure 3.48: Verifying the inequality 2x−
x2 ≥ |x− 1| − 1 graphically

3.4 InequaliƟes with Absolute Value and QuadraƟc FuncƟons

Combining these into one sign diagram, we have that our soluƟon is [0, 2].
Graphically, to check 2x − x2 ≥ |x − 1| − 1, we set h(x) = 2x − x2 and
i(x) = |x−1|−1 and look for the x valueswhere the graph of h is above the
the graph of i (the soluƟon of h(x) > i(x)) as well as the x-coordinates of
the intersecƟon points of both graphs (where h(x) = i(x)). The combined
sign chart is given in Figure 3.47 and the graphs are ploƩed in Figure 3.48.

One of the classic applicaƟons of inequaliƟes is the noƟon of tolerances.
Recall that for real numbers x and c, the quanƟty |x − c| may be interpreted as
the distance from x to c. Solving inequaliƟes of the form |x − c| ≤ d for d ≥ 0
can then be interpreted as finding all numbers xwhich lie within d units of c. We
can think of the number d as a ‘tolerance’ and our soluƟons x as being within an
accepted tolerance of c. We use this principle in the next example.

Example 61 CompuƟng tolerance
The area A (in square inches) of a square piece of parƟcle board whichmeasures
x inches on each side is A(x) = x2. Suppose a manufacturer needs to produce a
24 inch by 24 inch square piece of parƟcle board as part of a home office desk
kit. How close does the side of the piece of parƟcle board need to be cut to
24 inches to guarantee that the area of the piece is within a tolerance of 0.25
square inches of the target area of 576 square inches?

SÊ½çã®ÊÄ MathemaƟcally, we express the desire for the area A(x) to
bewithin 0.25 square inches of 576 as |A−576| ≤ 0.25. Since A(x) = x2, we get
|x2 − 576| ≤ 0.25, which is equivalent to −0.25 ≤ x2 − 576 ≤ 0.25. One way
to proceed at this point is to solve the two inequaliƟes −0.25 ≤ x2 − 576 and
x2−576 ≤ 0.25 individually using sign diagrams and then taking the intersecƟon
of the soluƟon sets. While this way will (eventually) lead to the correct answer,
we take this opportunity to showcase the increasing property of the square root:
if 0 ≤ a ≤ b, then

√
a ≤

√
b. To use this property, we proceed as follows

−0.25 ≤x2 − 576 ≤ 0.25
575.75 ≤x2 ≤ 576.25 (add 576 across the inequaliƟes.)

√
575.75 ≤

√
x2 ≤

√
576.25 (take square roots.)

√
575.75 ≤|x| ≤

√
576.25 (

√
x2 = |x|)

By Theorem 18, we find the soluƟon to
√
575.75 ≤ |x| to be(

−∞,−
√
575.75

]
∪
[√

575.75,∞
)

and the soluƟon to |x| ≤
√
576.25 to be

[
−
√
576.25,

√
576.25

]
. To solve√

575.75 ≤ |x| ≤
√
576.25, we intersect these two sets to get

[−
√
576.25,−

√
575.75] ∪ [

√
575.75,

√
576.25].

Since x represents a length, we discard the negaƟve answers and get the interval
[
√
575.75,

√
576.25]. This means that the side of the piece of parƟcle board

must be cut between
√
575.75 ≈ 23.995 and

√
576.25 ≈ 24.005 inches, a

tolerance of (approximately) 0.005 inches of the target length of 24 inches.
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Figure 3.49: Graph of the relaƟon R in Ex-
ample 62
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Figure 3.50: Graph of the relaƟon S in Ex-
ample 62
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Figure 3.51: Graph of the relaƟon T in Ex-
ample 62

Chapter 3 Linear and QuadraƟc FuncƟons

Our last example in the secƟon demonstrates how inequaliƟes can be used
to describe regions in the plane, as we saw earlier in SecƟon 2.1.

Example 62 RelaƟons determined by inequaliƟes
Sketch the following relaƟons.

1. R = {(x, y) : y > |x|}

2. S = {(x, y) : y ≤ 2− x2}

3. T = {(x, y) : |x| < y ≤ 2− x2}

SÊ½çã®ÊÄ

1. The relaƟon R consists of all points (x, y) whose y-coordinate is greater
than |x|. If we graph y = |x|, then we want all of the points in the plane
above the points on the graph. Doƫng the graph of y = |x| as we have
done before to indicate that the points on the graph itself are not in the
relaƟon, we get the shaded region in Figure 3.49.

2. For a point to be in S, its y-coordinate must be less than or equal to the
y-coordinate on the parabola y = 2−x2. This is the set of all points below
or on the parabola y = 2− x2: see Figure 3.50.

3. Finally, the relaƟon T takes the points whose y-coordinates saƟsfy both
the condiƟons given in R and those of S. Thus we shade the region be-
tween y = |x| and y = 2 − x2, keeping those points on the parabola,
but not the points on y = |x|. To get an accurate graph, we need to find
where these two graphs intersect, so we set |x| = 2 − x2. Proceeding
as before, breaking this equaƟon into cases, we get x = −1, 1. Graphing
yields Figure 3.51.
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Exercises 3.4
Problems
In Exercises 1 – 32, solve the inequality. Write your answer
using interval notaƟon.

1. |3x− 5| ≤ 4

2. |7x+ 2| > 10

3. |2x+ 1| − 5 < 0

4. |2− x| − 4 ≥ −3

5. |3x+ 5|+ 2 < 1

6. 2|7− x|+ 4 > 1

7. 2 ≤ |4− x| < 7

8. 1 < |2x− 9| ≤ 3

9. |x+ 3| ≥ |6x+ 9|

10. |x− 3| − |2x+ 1| < 0

11. |1− 2x| ≥ x+ 5

12. x+ 5 < |x+ 5|

13. x ≥ |x+ 1|

14. |2x+ 1| ≤ 6− x

15. x+ |2x− 3| < 2

16. |3− x| ≥ x− 5

17. x2 + 2x− 3 ≥ 0

18. 16x2 + 8x+ 1 > 0

19. x2 + 9 < 6x

20. 9x2 + 16 ≥ 24x

21. x2 + 4 ≤ 4x

22. x2 + 1 < 0

23. 3x2 ≤ 11x+ 4

24. x > x2

25. 2x2 − 4x− 1 > 0

26. 5x+ 4 ≤ 3x2

27. 2 ≤ |x2 − 9| < 9

28. x2 ≤ |4x− 3|

29. x2 + x+ 1 ≥ 0

30. x2 ≥ |x|

31. x|x+ 5| ≥ −6

32. x|x− 3| < 2

33. The profit, in dollars, made by selling x boƩles of 100%
All-Natural CerƟfied Free-Trade Organic Sasquatch Tonic is
given by P(x) = −x2 + 25x − 100, for 0 ≤ x ≤ 35. How
many boƩles of tonic must be sold to make at least $50 in
profit?

34. Suppose C(x) = x2 − 10x+ 27, x ≥ 0 represents the costs,
in hundreds of dollars, to produce x thousand pens. Find
the number of pens which can be produced for no more
than $1100.

35. The temperature T, in degrees Fahrenheit, t hours aŌer 6
AM is given by T(t) = − 1

2 t
2 + 8t + 32, for 0 ≤ t ≤ 12.

When is it warmer than 42◦ Fahrenheit?

36. The height h in feet of a model rocket above the ground t
seconds aŌer liŌ-off is given by h(t) = −5t2 + 100t, for
0 ≤ t ≤ 20. When is the rocket at least 250 feet off the
ground? Round your answer to two decimal places.

37. If a slingshot is used to shoot a marble straight up into the
air from 2 meters above the ground with an iniƟal veloc-
ity of 30 meters per second, for what values of Ɵme t will
the marble be over 35 meters above the ground? (Refer to
Exercise 25 in SecƟon 3.3 for assistance if needed.) Round
your answers to two decimal places.

38. What temperature values in degrees Celsius are equivalent
to the temperature range 50◦F to 95◦F? (Refer to Exercise
35 in SecƟon 3.1 for assistance if needed.)

In Exercises 39 – 42, write and solve an inequality involving
absolute values for the given statement.

39. Find all real numbers x so that x is within 4 units of 2.

40. Find all real numbers x so that 3x is within 2 units of−1.

41. Find all real numbers x so that x2 is within 1 unit of 3.

42. Find all real numbers x so that x2 is at least 7 units away
from 4.

43. The surface area S of a cube with edge length x is given by
S(x) = 6x2 for x > 0. Suppose the cubes your company
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manufactures are supposed to have a surface area of ex-
actly 42 square cenƟmetres, but the machines you own are
old and cannot always make a cube with the precise sur-
face area desired. Write an inequality using absolute value
that says the surface area of a given cube is no more than
3 square cenƟmetres away (high or low) from the target of
42 square cenƟmetres. Solve the inequality and write your
answer using interval notaƟon.

44. Suppose f is a funcƟon, L is a real number and � is a pos-
iƟve number. Discuss with your classmates what the in-
equality |f(x) − L| < � means algebraically and graphi-
cally.(Understanding this type of inequality is really impor-
tant in Calculus.)

In Exercises 45 – 50, sketch the graph of the relaƟon.

45. R = {(x, y) : y ≤ x− 1}

46. R =
{
(x, y) : y > x2 + 1

}
47. R = {(x, y) : −1 < y ≤ 2x+ 1}

48. R =
{
(x, y) : x2 ≤ y < x+ 2

}
49. R = {(x, y) : |x| − 4 < y < 2− x}

50. R =
{
(x, y) : x2 < y ≤ |4x− 3|

}
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4: PÊ½ùÄÊÃ®�½ FçÄ�ã®ÊÄÝ
4.1 Graphs of Polynomial FuncƟons

Threeof the families of funcƟons studied thus far – constant, linear andquadraƟc
– belong to a much larger group of funcƟons called polynomials. We begin our
formal study of general polynomials with a definiƟon and some examples.

DefiniƟon 37 Polynomial funcƟon

A polynomial funcƟon is a funcƟon of the form

f(x) = anxn + an−1xn−1 + . . .+ a2x2 + a1x+ a0,

where a0, a1, …, an are real numbers and n ≥ 1 is a natural number. The
domain of a polynomial funcƟon is (−∞,∞).

There are several things about DefiniƟon 37 thatmay be off-puƫng or down-
right frightening. The best thing to do is look at an example. Consider f(x) =
4x5 − 3x2 + 2x− 5. Is this a polynomial funcƟon? We can re-write the formula
for f as f(x) = 4x5 + 0x4 + 0x3 + (−3)x2 + 2x + (−5). Comparing this with
DefiniƟon 37, we idenƟfy n = 5, a5 = 4, a4 = 0, a3 = 0, a2 = −3, a1 = 2
and a0 = −5. In other words, a5 is the coefficient of x5, a4 is the coefficient of
x4, and so forth; the subscript on the a’s merely indicates to which power of x
the coefficient belongs. The business of restricƟng n to be a natural number lets
us focus on well-behaved algebraic animals. (Yes, there are examples of worse
behaviour sƟll to come!)

Example 63 IdenƟfying polynomial funcƟons
Determine if the following funcƟons are polynomials. Explain your reasoning.

1. g(x) =
4+ x3

x

2. p(x) =
4x+ x3

x

3. q(x) =
4x+ x3

x2 + 4

4. f(x) = 3
√
x

5. h(x) = |x|

6. z(x) = 0

SÊ½çã®ÊÄ

1. We note directly that the domain of g(x) =
x3 + 4

x
is x ̸= 0. By defini-

Ɵon, a polynomial has all real numbers as its domain. Hence, g can’t be a
polynomial.

2. Even though p(x) =
x3 + 4x

x
simplifies to p(x) = x2 + 4, which certainly

looks like the form given in DefiniƟon 37, the domain of p, which, as you
may recall, we determine before we simplify, excludes 0. Alas, p is not a
polynomial funcƟon for the same reason g isn’t.



Oncewe get to calculus, we’ll see that the
absolute value funcƟon is the classic ex-
ample of a funcƟon which is conƟnuous
everywhere, but fails to have a derivaƟve
everywhere: the graph of h(x) = |x| fails
to be “smooth” at the origin.

In the context of limits, results such as
00 are known as indeterminant forms.
These are cases where the funcƟon fails
to be defined, but the methods of calcu-
lus might sƟll be able to extract informa-
Ɵon.
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3. AŌer what happened with p in the previous part, you may be a liƩle shy

about simplifying q(x) =
x3 + 4x
x2 + 4

to q(x) = x, which certainly fits Defini-
Ɵon 37. If we look at the domain of q before we simplified, we see that it
is, indeed, all real numbers. A funcƟon which can be wriƩen in the form
of DefiniƟon 37 whose domain is all real numbers is, in fact, a polynomial.

4. We can rewrite f(x) = 3
√
x as f(x) = x 1

3 . Since 1
3 is not a natural number, f

is not a polynomial.

5. The funcƟon h(x) = |x| isn’t a polynomial, since it can’t be wriƩen as a
combinaƟon of powers of x even though it can be wriƩen as a piecewise
funcƟon involving polynomials. As we shall see in this secƟon, graphs of
polynomials possess a quality that the graph of h does not.

6. There’s nothing in DefiniƟon 37which prevents all the coefficients an, etc.,
from being 0. Hence, z(x) = 0, is an honest-to-goodness polynomial.

DefiniƟon 38 Polynomial terminology

Suppose f is a polynomial funcƟon.

• Given f(x) = anxn+an−1xn−1+ . . .+a2x2+a1x+a0 with an ̸= 0,
we say

– The natural number n is called the degree of the polynomial
f.

– The term anxn is called the leading term of the polynomial f.
– The real number an is called the leading coefficient of the
polynomial f.

– The real number a0 is called the constant term of the poly-
nomial f.

• If f(x) = a0, and a0 ̸= 0, we say f has degree 0.

• If f(x) = 0, we say f has no degree.

The reader may well wonder why we have chosen to separate off constant
funcƟons from the other polynomials in DefiniƟon 38. Why not just lump them
all together and, instead of forcing n to be a natural number, n = 1, 2, . . ., allow
n to be a whole number, n = 0, 1, 2, . . .. We could unify all of the cases, since,
aŌer all, isn’t a0x0 = a0? The answer is ‘yes, as long as x ̸= 0.’ The funcƟon
f(x) = 3 and g(x) = 3x0 are different, because their domains are different. The
number f(0) = 3 is defined, whereas g(0) = 3(0)0 is not. Indeed, much of the
theory we will develop in this chapter doesn’t include the constant funcƟons,
so we might as well treat them as outsiders from the start. One good thing that
comes from DefiniƟon 38 is that we can now think of linear funcƟons as degree
1 (or ‘first degree’) polynomial funcƟons and quadraƟc funcƟons as degree 2 (or
‘second degree’) polynomial funcƟons.
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Figure 4.1: ConstrucƟng the box in Exam-
ple 65

4.1 Graphs of Polynomial FuncƟons

Example 64 Using polynomial terminiology
Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial funcƟons.

1. f(x) = 4x5 − 3x2 + 2x− 5

2. g(x) = 12x+ x3

3. h(x) =
4− x
5

4. p(x) = (2x− 1)3(x− 2)(3x+ 2)

SÊ½çã®ÊÄ

1. There are no surprises with f(x) = 4x5 − 3x2 + 2x− 5. It is wriƩen in the
form of DefiniƟon 38, and we see that the degree is 5, the leading term is
4x5, the leading coefficient is 4 and the constant term is−5.

2. The form given in DefiniƟon 38 has the highest power of x first. To that
end, we re-write g(x) = 12x+ x3 = x3 + 12x, and see that the degree of
g is 3, the leading term is x3, the leading coefficient is 1 and the constant
term is 0.

3. We need to rewrite the formula for h so that it resembles the form given
in DefiniƟon 38: h(x) = 4−x

5 = 4
5 − x

5 = − 1
5x +

4
5 . The degree of h is

1, the leading term is− 1
5x, the leading coefficient is− 1

5 and the constant
term is 4

5 .

4. It may seem that we have some work ahead of us to get p in the form of
DefiniƟon 38. However, it is possible to glean the informaƟon requested
about pwithoutmulƟplying out the enƟre expression (2x−1)3(x−2)(3x+
2). The leading term of p will be the term which has the highest power
of x. The way to get this term is to mulƟply the terms with the highest
power of x from each factor together - in other words, the leading term
of p(x) is the product of the leading terms of the factors of p(x). Hence,
the leading term of p is (2x)3(x)(3x) = 24x5. This means that the degree
of p is 5 and the leading coefficient is 24. As for the constant term, we can
perform a similar trick. The constant term is obtained by mulƟplying the
constant terms from each of the factors (−1)3(−2)(2) = 4.

Our next example shows how polynomials of higher degree arise ‘naturally’
in even the most basic geometric applicaƟons.

Example 65 OpƟmizing a box construcƟon
A box with no top is to be fashioned from a 10 inch× 12 inch piece of cardboard
by cuƫng out congruent squares from each corner of the cardboard and then
folding the resulƟng tabs. Let x denote the length of the side of the squarewhich
is removed from each corner: see Figure 4.1.

1. Find the volume V of the box as a funcƟon of x. Include an appropriate
applied domain.

2. Use soŌwareor a graphing calculator to graph y = V(x)on thedomain you
found in part 1 and approximate the dimensions of the boxwithmaximum
volume to two decimal places. What is the maximum volume?
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Whenwewrite V(x), it is in the context of
funcƟon notaƟon, not the volumeVƟmes
the quanƟty x. There’s no harm in taking
the Ɵme here to make sure that our defi-
niƟonofV(x)makes sense. If we chopped
out a 1 inch square from each side, then
the width would be 8 inches, so chopping
out x inches would leave 10− 2x inches.

The graph y = V(x)

The graph y = V(x) with maximum shown

Figure 4.2: OpƟmizing the volume of the
box in Example 65

When x → ∞we think of x as moving far
to the right of zero and becoming a very
large posiƟve number. When x → −∞
we think of x as becoming a very large (in
the sense of its absolute value) negaƟve
number far to the leŌ of zero.

See Theorems 9 and 10 in SecƟon 2.6
if you need a reminder on the effect of
scalings and reflecƟons on the graph of a
funcƟon.
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SÊ½çã®ÊÄ

1. From Geometry, we know that Volume = width × height × depth. The
key is to find each of these quanƟƟes in terms of x. From the figure, we
see that the height of the box is x itself. The cardboard piece is iniƟally 10
inches wide. Removing squares with a side length of x inches from each
corner leaves 10−2x inches for thewidth. As for the depth, the cardboard
is iniƟally 12 inches long, so aŌer cuƫng out x inches from each side, we
would have 12− 2x inches remaining. As a funcƟon of x, the volume is

V(x) = x(10− 2x)(12− 2x) = 4x3 − 44x2 + 120x

To find a suitable applied domain, we note that to make a box at all we
need x > 0. Also the shorter of the two dimensions of the cardboard
is 10 inches, and since we are removing 2x inches from this dimension,
we also require 10 − 2x > 0 or x < 5. Hence, our applied domain is
0 < x < 5.

2. Using GeoGebra to plot V(x), we see that the graph of y = V(x) has a
relaƟvemaximum. The graph of V is shown in Figure 4.2; note that we had
to rescale the y-axis significantly to get everything to fit on the screen. For
0 < x < 5, this is also the absolute maximum. Using the ‘Max’ command,
we get x ≈ 1.81, y ≈ 96.77. This yields a height of x ≈ 1.81 inches, a
width of 10 − 2x ≈ 6.38 inches, and a depth of 12 − 2x ≈ 8.38 inches.
The y-coordinate is the maximum volume, which is approximately 96.77
cubic inches (also wriƩen in3).

In order to solve Example 65, we made good use of the graph of the poly-
nomial y = V(x), so we ought to turn our aƩenƟon to graphs of polynomials in
general. In Figure 4.3 the graphs of y = x2, y = x4 and y = x6, are shown. We
have omiƩed the axes to allow you to see that as the exponent increases, the
‘boƩom’ becomes ‘flaƩer’ and the ‘sides’ become ‘steeper.’ If you take the the
Ɵme to graph these funcƟons by hand, (make sure you choose some x-values
between−1 and 1.) you will see why.

All of these funcƟons are even, (Do you remember how to show this?) and it
is exactly because the exponent is even. (Herein lies one of the possible origins
of the term ‘even’ when applied to funcƟons.) This symmetry is important, but
we want to explore a different yet equally important feature of these funcƟons
which we can be seen graphically – their end behaviour.

The end behaviour of a funcƟon is a way to describe what is happening to
the funcƟon values (the y-values) as the x-values approach the ‘ends’ of the x-
axis. (Of course, there are no ends to the x-axis.) That is, what happens to y as
x becomes small without bound (wriƩen x → −∞) and, on the flip side, as x
becomes large without bound (wriƩen x → ∞).

For example, given f(x) = x2, as x → −∞, we imagine subsƟtuƟng x =
−100, x = −1000, etc., into f to get f(−100) = 10000, f(−1000) = 1000000,
and so on. Thus the funcƟon values are becoming larger and larger posiƟve
numbers (without bound). To describe this behaviour, we write: as x → −∞,
f(x) → ∞. If we study the behaviour of f as x → ∞, we see that in this case,
too, f(x) → ∞. (We told you that the symmetry was important!) The same can
be said for any funcƟon of the form f(x) = xn where n is an even natural number.
If we generalize just a bit to include verƟcal scalings and reflecƟons across the
x-axis, we have
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y = x2

y = x4

y = x6

Figure 4.3: Graphing even powers of x

y = x3

y = x5

y = x7

Figure 4.4: Graphing odd powers of x

4.1 Graphs of Polynomial FuncƟons

Key Idea 19 End behaviour of funcƟons f(x) = axn, n even.

Suppose f(x) = axn where a ̸= 0 is a real number and n is an even
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → −∞

This is illustrated graphically below:

a > 0 a < 0

We now turn our aƩenƟon to funcƟons of the form f(x) = xn where n ≥ 3
is an odd natural number. (We ignore the case when n = 1, since the graph
of f(x) = x is a line and doesn’t fit the general paƩern of higher-degree odd
polynomials.) In Figure 4.4 we have graphed y = x3, y = x5, and y = x7. The
‘flaƩening’ and ‘steepening’ that we saw with the even powers presents itself
here as well, and, it should come as no surprise that all of these funcƟons are
odd. (And are, perhaps, the inspiraƟon for the moniker ‘odd funcƟon’.) The end
behaviour of these funcƟons is all the same, with f(x) → −∞ as x → −∞ and
f(x) → ∞ as x → ∞.

As with the even degreed funcƟons we studied earlier, we can generalize
their end behaviour.

Key Idea 20 End behaviour of funcƟons f(x) = axn, n odd.

Suppose f(x) = axn where a ̸= 0 is a real number and n ≥ 3 is an odd
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → −∞

This is illustrated graphically as follows:

a > 0 a < 0

Despite having different end behaviour, all funcƟons of the form f(x) = axn
for natural numbers n share two properƟes which help disƟnguish them from
other animals in the algebra zoo: they are conƟnuous and smooth. While these
concepts are formally defined using Calculus, informally, graphs of conƟnuous
funcƟons have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth funcƟons

159



In fact, when we get to Calculus, you’ll
find that smooth funcƟons are automat-
ically conƟnuous, so that saying ‘polyno-
mials are conƟnuous and smooth’ is re-
dundant.

‘corner’

‘break’

‘cusp’

‘hole’

Figure 4.5: Pathologies not found on
graphs of polynomials

Figure 4.6: The graph of a polynomial

The validity of the result in Example 66 of
course relies on having a rigorous proof of
Theorem 19. Although intuiƟve, its proof
is one of the most difficult in single vari-
able calculus. At most universiƟes, you
don’t see a proof unƟl a first course in
Analysis, like Math 3500.
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have no ‘sharp turns’. It turns out that these traits are preservedwhen funcƟons
are added together, so general polynomial funcƟons inherit these qualiƟes. In
Figure 4.5, we find the graph of a funcƟon which is neither smooth nor conƟnu-
ous, and to its right we have a graph of a polynomial, for comparison. The func-
Ɵonwhose graph appears on the leŌ fails to be conƟnuouswhere it has a ‘break’
or ‘hole’ in the graph; everywhere else, the funcƟon is conƟnuous. The funcƟon
is conƟnuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’,
so these are places where the funcƟon fails to be smooth. Apart from these
four places, the funcƟon is smooth and conƟnuous. Polynomial funcƟons are
smooth and conƟnuous everywhere, as exhibited in Figure 4.6.

ThenoƟonof smoothness iswhat tells us graphically that, for example, f(x) =
|x|, whose graph is the characterisƟc ‘∨’ shape, cannot be a polynomial. The no-
Ɵon of conƟnuity is what allowed us to construct the sign diagram for quadraƟc
inequaliƟes as we did in SecƟon 3.4. This last result is formalized in the following
theorem.

Theorem 19 The Intermediate Value Theorem (Zero Version)

Suppose f is a conƟnuous funcƟon on an interval containing x = a and
x = bwith a < b. If f(a) and f(b) have different signs, then f has at least
one zero between x = a and x = b; that is, for at least one real number
c such that a < c < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart
of what it means to be a real number, and is one of the most oŌen used and un-
der appreciated theorems in MathemaƟcs. With that being said, most students
see the result as common sense since it says, geometrically, that the graph of a
polynomial funcƟon cannot be above the x-axis at one point and below the x-
axis at another point without crossing the x-axis somewhere in between. We’ll
return to the Intermediate Value Theorem later in the Calculus porƟon of the
course, when we study conƟnuity in general. The following example uses the
Intermediate Value Theorem to establish a fact that that most students take for
granted. Many students, and sadly some instructors, will find it silly.

Example 66 Existence of
√
2

Use the Intermediate Value Theorem to establish that
√
2 is a real number.

SÊ½çã®ÊÄ Consider the polynomial funcƟon f(x) = x2−2. Then f(1) =
−1 and f(3) = 7. Since f(1) and f(3) have different signs, the Intermediate
Value Theorem guarantees us a real number c between 1 and 3 with f(c) = 0. If
c2 − 2 = 0 then c = ±

√
2. Since c is between 1 and 3, c is posiƟve, so c =

√
2.

Our primary use of the Intermediate Value Theorem is in the construcƟon of
sign diagrams, as in SecƟon 3.4, since it guarantees us that polynomial funcƟons
are always posiƟve (+) or always negaƟve (−) on intervals which do not contain
any of its zeros. The general algorithm for polynomials is given below.
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(+)

−3

0 (−)

−1
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4

Figure 4.7: The sign diagram of f in Exam-
ple 67

x

y

Figure 4.8: The graph y = f(x) for Exam-
ple 67

4.1 Graphs of Polynomial FuncƟons

Key Idea 21 Steps for ConstrucƟng a Sign Diagram for a Polynomial
FuncƟon

Suppose f is a polynomial funcƟon.

1. Find the zeros of f and place them on the number line with the
number 0 above them.

2. Choose a real number, called a test value, in each of the intervals
determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write
that sign above the corresponding interval.

Example 67 Using a sign diagram to sketch a polynomial
Construct a sign diagram for f(x) = x3(x − 3)2(x + 2)

(
x2 + 1

)
. Use it to give a

rough sketch of the graph of y = f(x).

SÊ½çã®ÊÄ First, wefind the zeros of fby solving x3(x−3)2(x+2)
(
x2 + 1

)
=

0. We get x = 0, x = 3 and x = −2. (The equaƟon x2 + 1 = 0 produces no
real soluƟons.) These three points divide the real number line into four inter-
vals: (−∞,−2), (−2, 0), (0, 3) and (3,∞). We select the test values x = −3,
x = −1, x = 1 and x = 4. We find f(−3) is (+), f(−1) is (−) and f(1) is (+)
as is f(4). Wherever f is (+), its graph is above the x-axis; wherever f is (−), its
graph is below the x-axis. The x-intercepts of the graph of f are (−2, 0), (0, 0)
and (3, 0). Knowing f is smooth and conƟnuous allows us to sketch its graph in
Figure 4.8.

A couple of notes about the Example 67 are in order. First, note that we
purposefully did not label the y-axis in the sketch of the graph of y = f(x). This
is because the sign diagram gives us the zeros and the relaƟve posiƟon of the
graph - it doesn’t give us any informaƟon as to how high or low the graph strays
from the x-axis. Furthermore, as we have menƟoned earlier in the text, without
Calculus, the values of the relaƟve maximum and minimum can only be found
approximately using a calculator. If we took the Ɵme to find the leading term of
f, we would find it to be x8. Looking at the end behaviour of f, we noƟce that it
matches the end behaviour of y = x8. This is no accident, as we find out in the
next theorem.

Theorem 20 End behaviour for Polynomial FuncƟons

The end behaviour of a polynomial f(x) = anxn+an−1xn−1+. . .+a2x2+
a1x+ a0 with an ̸= 0 matches the end behaviour of y = anxn.

To see why Theorem 20 is true, let’s first look at a specific example. Consider
f(x) = 4x3 − x + 5. If we wish to examine end behaviour, we look to see the
behaviour of f as x → ±∞. Since we’re concerned with x’s far down the x-axis,
we are far away from x = 0 so can rewrite f(x) for these values of x as

f(x) = 4x3
(
1− 1

4x2
+

5
4x3

)
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A view close to the origin

A ‘zoomed out’ view

Figure 4.9: Two views of the polynomials
f(x) and g(x)

Chapter 4 Polynomial FuncƟons

As x becomes unbounded (in either direcƟon), the terms
1
4x2

and
5
4x3

be-
come closer and closer to 0, as the table below indicates.

x 1
4x2

5
4x3

−1000 0.00000025 −0.00000000125
−100 0.000025 −0.00000125
−10 0.0025 −0.00125
10 0.0025 0.00125

100 0.000025 0.00000125
1000 0.00000025 0.00000000125

In other words, as x → ±∞, f(x) ≈ 4x3 (1− 0+ 0) = 4x3, which is the
leading term of f. The formal proof of Theorem 20 works in much the same way.
Factoring out the leading term leaves

f(x) = anxn
(
1+

an−1

anx
+ . . .+

a2
anxn−2 +

a1
anxn−1 +

a0
anxn

)
As x → ±∞, any term with an x in the denominator becomes closer and

closer to 0, and we have f(x) ≈ anxn. Geometrically, Theorem 20 says that if we
graph y = f(x) using a graphing calculator, and conƟnue to ‘zoomout’, the graph
of it and its leading term become indisƟnguishable. In Figure 4.9 the graphs of
y = 4x3 − x+ 5 and y = 4x3 ) in two different windows.

Let’s return to the funcƟon in Example 67, f(x) = x3(x−3)2(x+2)
(
x2 + 1

)
,

whose sign diagram and graph are given in Figures 4.7 and 4.8. Theorem 20 tells
us that the end behaviour is the same as that of its leading term x8. This tells us
that the graph of y = f(x) starts and ends above the x-axis. In other words, f(x)
is (+) as x → ±∞, and as a result, we no longer need to evaluate f at the test
values x = −3 and x = 4. Is there a way to eliminate the need to evaluate f at
the other test values? What we would really need to know is how the funcƟon
behaves near its zeros - does it cross through the x-axis at these points, as it
does at x = −2 and x = 0, or does it simply touch and rebound like it does at
x = 3. From the sign diagram, the graph of f will cross the x-axis whenever the
signs on either side of the zero switch (like they do at x = −2 and x = 0); it will
touch when the signs are the same on either side of the zero (as is the case with
x = 3). What we need to determine is the reason behind whether or not the
sign change occurs.

Fortunately, f was given to us in factored form: f(x) = x3(x − 3)2(x + 2).
When we aƩempt to determine the sign of f(−4), we are aƩempƟng to find the
sign of the number (−4)3(−7)2(−2), which works out to be (−)(+)(−) which
is (+). If we move to the other side of x = −2, and find the sign of f(−1), we
are determining the sign of (−1)3(−4)2(+1), which is (−)(+)(+) which gives
us the (−). NoƟce that signs of the first two factors in both expressions are the
same in f(−4) and f(−1). The only factor which switches sign is the third factor,
(x + 2), precisely the factor which gave us the zero x = −2. If we move to the
other side of 0 and look closely at f(1), we get the sign paƩern (+1)3(−2)2(+3)
or (+)(+)(+) and we note that, once again, going from f(−1) to f(1), the only
factor which changed sign was the first factor, x3, which corresponds to the
zero x = 0. Finally, to find f(4), we subsƟtute to get (+4)3(+2)2(+5) which
is (+)(+)(+) or (+). The sign didn’t change for the middle factor (x − 3)2.
Even though this is the factor which corresponds to the zero x = 3, the fact that
the quanƟty is squared kept the sign of the middle factor the same on either
side of 3. If we look back at the exponents on the factors (x+ 2) and x3, we see
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x

y

Figure 4.10: The graph y = f(x) for Exam-
ple 68

4.1 Graphs of Polynomial FuncƟons

that they are both odd, so as we subsƟtute values to the leŌ and right of the cor-
responding zeros, the signs of the corresponding factors change which results in
the sign of the funcƟon value changing. This is the key to the behaviour of the
funcƟon near the zeros. We need a definiƟon and then a theorem.

DefiniƟon 39 MulƟplicity of a zero

Suppose f is a polynomial funcƟon andm is a natural number. If (x− c)m
is a factor of f(x) but (x − c)m+1 is not, then we say x = c is a zero of
mulƟplicitym.

Hence, rewriƟng f(x) = x3(x−3)2(x+2) as f(x) = (x−0)3(x−3)2(x−(−2))1,
we see that x = 0 is a zero of mulƟplicity 3, x = 3 is a zero of mulƟplicity 2 and
x = −2 is a zero of mulƟplicity 1.

Theorem 21 The Role of MulƟplicity

Suppose f is a polynomial funcƟon and x = c is a zero of mulƟplicitym.

• Ifm is even, the graph of y = f(x) touches and rebounds from the
x-axis at (c, 0).

• If m is odd, the graph of y = f(x) crosses through the x-axis at
(c, 0).

Our last example showshowendbehaviour andmulƟplicity allowus to sketch
a decent graph without appealing to a sign diagram.

Example 68 Using end behaviour and mulƟplicity
Sketch the graph of f(x) = −3(2x − 1)(x + 1)2 using end behaviour and the
mulƟplicity of its zeros.

SÊ½çã®ÊÄ The end behaviour of the graph of f will match that of its
leading term. To find the leading term, wemulƟply by the leading terms of each
factor to get (−3)(2x)(x)2 = −6x3. This tells us that the graph will start above
the x-axis, in Quadrant II, and finish below the x-axis, in Quadrant IV. Next, we
find the zeros of f. Fortunately for us, f is factored. (Obtaining the factored form
of a polynomial is the main focus of the next few secƟons.) Seƫng each factor
equal to zero gives is x = 1

2 and x = −1 as zeros. To find the mulƟplicity of
x = 1

2 we note that it corresponds to the factor (2x − 1). This isn’t strictly
in the form required in DefiniƟon 39. If we factor out the 2, however, we get
(2x−1) = 2

(
x− 1

2
)
, and we see that the mulƟplicity of x = 1

2 is 1. Since 1 is an
odd number, we know from Theorem 21 that the graph of f will cross through
the x-axis at

( 1
2 , 0
)
. Since the zero x = −1 corresponds to the factor (x+ 1)2 =

(x−(−1))2, we find itsmulƟplicity to be 2which is an even number. As such, the
graph of f will touch and rebound from the x-axis at (−1, 0). Though we’re not
asked to, we can find the y-intercept by finding f(0) = −3(2(0)−1)(0+1)2 = 3.
Thus (0, 3) is an addiƟonal point on the graph. Puƫng this together gives us the
graph in Figure 4.10.
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Exercises 4.1
Problems
In Exercises 1 – 10, solve the inequality. Write your answer
using interval notaƟon.

1. f(x) = 4− x− 3x2

2. g(x) = 3x5 − 2x2 + x+ 1

3. q(r) = 1− 16r4

4. Z(b) = 42b− b3

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3

6. s(t) = −4.9t2 + v0t+ s0

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

8. p(t) = −t2(3− 5t)(t2 + t+ 4)

9. f(x) = −2x3(x+ 1)(x+ 2)2

10. G(t) = 4(t− 2)2
(
t+ 1

2

)
In Exercises 11 – 20, find the real zeros of the given polyno-
mial and their correspondingmulƟpliciƟes. Use this informa-
Ɵon along with a sign chart to provide a rough sketch of the
graph of the polynomial. Compare your answer with the re-
sult from a graphing uƟlity.

11. a(x) = x(x+ 2)2

12. g(x) = x(x+ 2)3

13. f(x) = −2(x− 2)2(x+ 1)

14. g(x) = (2x+ 1)2(x− 3)

15. F(x) = x3(x+ 2)2

16. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

17. Q(x) = (x+ 5)2(x− 3)4

18. h(x) = x2(x− 2)2(x+ 2)2

19. H(t) = (3− t)(t2 + 1)

20. Z(b) = b(42− b2)

In Exercises 21 – 26, given the pair of funcƟons f and g, sketch
the graph of y = g(x) by starƟng with the graph of y = f(x)
and using transformaƟons. Track at least three points of your
choice through the transformaƟons. State the domain and
range of g.

21. f(x) = x3, g(x) = (x+ 2)3 + 1

22. f(x) = x4, g(x) = (x+ 2)4 + 1

23. f(x) = x4, g(x) = 2− 3(x− 1)4

24. f(x) = x5, g(x) = −x5 − 3

25. f(x) = x5, g(x) = (x+ 1)5 + 10

26. f(x) = x6, g(x) = 8− x6

27. Use the Intermediate Value Theorem to prove that f(x) =
x3−9x+5 has a real zero in each of the following intervals:
[−4,−3], [0, 1] and [2, 3].

28. Rework Example 65 assuming the box is to be made from
an 8.5 inch by 11 inch sheet of paper. Using scissors and
tape, construct the box. Are you surprised?1

In Exercises 29 – 31, suppose the revenue R, in thousands of
dollars, fromproducing and selling x hundred LCD TVs is given
by R(x) = −5x3 + 35x2 + 155x for 0 ≤ x ≤ 10.07.

29. Use a graphing uƟlity to graph y = R(x) and determine the
number of TVs which should be sold to maximize revenue.
What is the maximum revenue?

30. Assume that the cost, in thousands of dollars, to produce x
hundred LCD TVs is given by C(x) = 200x + 25 for x ≥ 0.
Find and simplify an expression for the profit funcƟon P(x).
(Remember: Profit = Revenue - Cost.)

31. Use a graphing uƟlity to graph y = P(x) and determine
the number of TVs which should be sold tomaximize profit.
What is the maximum profit?

32. While developing their newest game, Sasquatch AƩack!,
themakers of the PortaBoy (from Example 45) revised their
cost funcƟon and now use C(x) = .03x3 − 4.5x2 + 225x+
250, for x ≥ 0. As before, C(x) is the cost to make x
PortaBoy Game Systems. Market research indicates that
the demand funcƟon p(x) = −1.5x + 250 remains un-
changed. Use a graphing uƟlity to find the producƟon level
x that maximizes the profit made by producing and selling
x PortaBoy game systems.

33. According to US Postal regulaƟons, a rectangular shipping
box must saƟsfy the inequality “Length + Girth ≤ 130
inches” for Parcel Post and “Length + Girth ≤ 108 inches”
for other services. Let’s assume we have a closed rectan-
gular box with a square face of side length x as drawn be-
low. The length is the longest side and is clearly labeled.
The girth is the distance around the box in the other two
dimensions so in our case it is the sum of the four sides of
the square, 4x.

1Consider decoraƟng the box and presenƟng it to your instructor. If done well enough, maybe your instructor will issue you some bonus points.
Or maybe not.
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(a) Assuming that we’ll be mailing a box via Parcel Post
where Length + Girth = 130 inches, express the
length of the box in terms of x and then express the
volume V of the box in terms of x.

(b) Find the dimensions of the box of maximum volume
that can be shipped via Parcel Post.

(c) Repeat parts 33a and 33b if the box is shipped using
“other services”.

length

x

x

34. Show that the end behaviour of a linear funcƟon f(x) =
mx + b is as it should be according to the results we’ve
established in the secƟon for polynomials of odd degree.2
(That is, show that the graph of a linear funcƟon is “up
on one side and down on the other” just like the graph of
y = anxn for odd numbers n.)

35. There is one subtlety about the role of mulƟplicity that we
need to discuss further; specifically we need to see ‘how’
the graph crosses the x-axis at a zero of odd mulƟplicity. In
the secƟon, we deliberately excluded the funcƟon f(x) = x
from the discussion of the end behaviour of f(x) = xn for
odd numbers n and we said at the Ɵme that it was due
to the fact that f(x) = x didn’t fit the paƩern we were
trying to establish. You just showed in the previous exer-
cise that the end behaviour of a linear funcƟon behaves

like every other polynomial of odd degree, so what doesn’t
f(x) = x do that g(x) = x3 does? It’s the ‘flaƩening’
for values of x near zero. It is this local behaviour that
will disƟnguish between a zero of mulƟplicity 1 and one of
higher odd mulƟplicity. Look again closely at the graphs of
a(x) = x(x + 2)2 and F(x) = x3(x + 2)2 from Exercise
21. Discuss with your classmates how the graphs are fun-
damentally different at the origin. It might help to use a
graphing calculator to zoom in on the origin to see the dif-
ferent crossing behaviour. Also compare the behaviour of
a(x) = x(x+ 2)2 to that of g(x) = x(x+ 2)3 near the point
(−2, 0). What do you predict will happen at the zeros of
f(x) = (x− 1)(x− 2)2(x− 3)3(x− 4)4(x− 5)5?

36. Here are a few other quesƟons for you to discuss with your
classmates.

(a) How many local extrema could a polynomial of de-
gree n have? How few local extrema can it have?

(b) Could a polynomial have two local maxima but no lo-
cal minima?

(c) If a polynomial has two local maxima and two local
minima, can it be of odd degree? Can it be of even
degree?

(d) Can a polynomial have local extrema without having
any real zeros?

(e) Why must every polynomial of odd degree have at
least one real zero?

(f) Can a polynomial have two disƟnct real zeros and no
local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield
an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what
can we say about the degree of the polynomial and
the sign of the leading coefficient?

2Remember, to be a linear funcƟon,m ̸= 0.
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Figure 4.11: The graph y = x3 + 4x2 −
5x− 14

Chapter 4 Polynomial FuncƟons

4.2 The Factor Theoremand theRemainder Theorem

Suppose we wish to find the zeros of f(x) = x3 + 4x2 − 5x− 14. Seƫng f(x) =
0 results in the polynomial equaƟon x3 + 4x2 − 5x − 14 = 0. Despite all of
the factoring techniques we learned (and probably forgot) in high school, this
equaƟon foils us at every turn. If we graph f using GeoGebra, we get the result
in Figure 4.11.

The graph suggests that the funcƟon has three zeros, one of which is x =
2. It’s easy to show that f(2) = 0, but the other two zeros seem to be less
friendly. Asking GeoGebra to intersect the graph with the x-axis gives us the
decimal approximaƟons shown in the figure, but we seek a method to find the
remaining zeros exactly. Based on our experience, if x = 2 is a zero, it seems
that there should be a factor of (x − 2) lurking around in the factorizaƟon of
f(x). In other words, we should expect that x3 + 4x2 − 5x− 14 = (x− 2) q(x),
where q(x) is some other polynomial. How could we find such a q(x), if it even
exists? The answer comes from our old friend, polynomial division. Dividing
x3 + 4x2 − 5x− 14 by x− 2 gives

x2 + 6x + 7
x−2 x3 + 4x2 − 5x − 14

−
(
x3−2x2

)
6x2 − 5x

−
(
6x2−12x)

7x − 14
− (7x −14)

0

As youmay recall, this means x3+4x2−5x−14 = (x−2)
(
x2 + 6x+ 7

)
, so

to find the zeros of f, we now solve (x−2)
(
x2 + 6x+ 7

)
= 0. We get x−2 = 0

(which gives us our known zero, x = 2) as well as x2 + 6x + 7 = 0. The laƩer
doesn’t factor nicely, so we apply the QuadraƟc Formula to get x = −3 ±

√
2.

The point of this secƟon is to generalize the technique applied here. First up is
a friendly reminder of what we can expect when we divide polynomials.

Theorem 22 Polynomial Division

Suppose d(x) and p(x) are nonzero polynomials where the degree of p
is greater than or equal to the degree of d. There exist two unique poly-
nomials, q(x) and r(x), such that p(x) = d(x) q(x) + r(x), where either
r(x) = 0 or the degree of r is strictly less than the degree of d.

As you may recall, all of the polynomials in Theorem 22 have special names.
The polynomial p is called the dividend; d is the divisor; q is the quoƟent; r is the
remainder. If r(x) = 0 then d is called a factor of p. The proof of Theorem 22 is
usually relegated to a course in Abstract Algebra, but we can sƟll use the result
to establish two important facts which are the basis of the rest of the chapter.
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4.2 The Factor Theorem and the Remainder Theorem

Theorem 23 The Remainder Theorem

Suppose p is a polynomial of degree at least 1 and c is a real number.
When p(x) is divided by x− c the remainder is p(c).

The proof of Theorem 23 is a direct consequence of Theorem 22. When
a polynomial is divided by x − c, the remainder is either 0 or has degree less
than the degree of x − c. Since x − c is degree 1, the degree of the remainder
must be 0, which means the remainder is a constant. Hence, in either case,
p(x) = (x − c) q(x) + r, where r, the remainder, is a real number, possibly 0.
It follows that p(c) = (c − c) q(c) + r = 0 · q(c) + r = r, so we get r = p(c)
as required. There is one more piece of ‘low hanging fruit’ to collect, which we
present below.

Theorem 24 The Factor Theorem

Suppose p is a nonzero polynomial. The real number c is a zero of p if
and only if (x− c) is a factor of p(x).

The proof of The Factor Theorem is a consequence of what we already know.
If (x− c) is a factor of p(x), this means p(x) = (x− c) q(x) for some polynomial
q. Hence, p(c) = (c− c) q(c) = 0, so c is a zero of p. Conversely, if c is a zero of
p, then p(c) = 0. In this case, The Remainder Theorem tells us the remainder
when p(x) is divided by (x− c), namely p(c), is 0, which means (x− c) is a factor
of p. What we have established is the fundamental connecƟon between zeros
of polynomials and factors of polynomials.

Of the things The Factor Theorem tells us, the most pragmaƟc is that we had
beƩer find a more efficient way to divide polynomials by quanƟƟes of the form
x− c. Fortunately, people like Ruffini and Horner have already blazed this trail.
Let’s take a closer look at the long division we performed at the beginning of the
secƟon and try to streamline it. First off, let’s change all of the subtracƟons into
addiƟons by distribuƟng through the−1s.

x2 + 6x + 7
x−2 x3 + 4x2 − 5x −14

−x3+ 2x2

6x2 − 5x
−6x2+ 12x

7x −14
−7x+14

0

Next, observe that the terms −x3, −6x2 and −7x are the exact opposite of
the terms above them. The algorithm we use ensures this is always the case, so
we can omit them without losing any informaƟon. Also note that the terms we
‘bring down’ (namely the−5x and−14) aren’t really necessary to recopy, so we
omit them, too.
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x2 + 6x + 7
x−2 x3+4x2− 5x −14

2x2

6x2

12x
7x

14
0

Now, let’s move things up a bit and, for reasons which will become clear in
a moment, copy the x3 into the last row.

x2 + 6x + 7
x−2 x3+4x2− 5x −14

2x2 12x 14
x3 6x2 7x 0

Note that by arranging things in this manner, each term in the last row is
obtained by adding the two terms above it. NoƟce also that the quoƟent poly-
nomial can be obtained by dividing each of the first three terms in the last row
by x and adding the results. If you take the Ɵme to work back through the origi-
nal division problem, you will find that this is exactly the way we determined the
quoƟent polynomial. This means that we no longer need to write the quoƟent
polynomial down, nor the x in the divisor, to determine our answer.

−2 x3+4x2− 5x −14
2x2 12x 14

x3 6x2 7x 0

We’ve streamlined things quite a bit so far, but we can sƟll do more. Let’s
take a moment to remind ourselves where the 2x2, 12x and 14 came from in the
second row. Each of these terms was obtained by mulƟplying the terms in the
quoƟent, x2, 6x and 7, respecƟvely, by the −2 in x − 2, then by −1 when we
changed the subtracƟon to addiƟon. MulƟplying by−2 then by−1 is the same
as mulƟplying by 2, so we replace the −2 in the divisor by 2. Furthermore, the
coefficients of the quoƟent polynomial match the coefficients of the first three
terms in the last row, so we now take the plunge and write only the coefficients
of the terms to get

2 1 4 −5 −14
2 12 14

1 6 7 0

Wehave constructed a syntheƟcdivision tableau for this polynomial division
problem. Let’s re-work our division problem using this tableau to see how it
greatly streamlines the division process. To divide x3 + 4x2 − 5x− 14 by x− 2,
we write 2 in the place of the divisor and the coefficients of x3 + 4x2 − 5x− 14
in for the dividend. Then ‘bring down’ the first coefficient of the dividend.

2 1 4 −5 −14 2 1 4 −5 −14
↓
1
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CauƟon: It is important to note that it
works only for divisors of the form x − a,
where a is a constant. For divisors of the
form ax+b, you need to either first factor
out thea, or use long division. For divisors
of higher degree (such as x2+1), you have
no other opƟon but to use long division.

4.2 The Factor Theorem and the Remainder Theorem

Next, take the 2 from the divisor and mulƟply by the 1 that was ‘brought
down’ to get 2. Write this underneath the 4, then add to get 6.

2 1 4 −5 −14
↓ 2
1

2 1 4 −5 −14
↓ 2
1 6

Now take the 2 from the divisor Ɵmes the 6 to get 12, and add it to the −5
to get 7.

2 1 4 −5 −14
↓ 2 12
1 6

2 1 4 −5 −14
↓ 2 12
1 6 7

Finally, take the 2 in the divisor Ɵmes the 7 to get 14, and add it to the −14
to get 0.

2 1 4 −5 −14
↓ 2 12 14
1 6 7

2 1 4 −5 −14
↓ 2 12 14
1 6 7 0

The first three numbers in the last row of our tableau are the coefficients of
the quoƟent polynomial. Remember, we started with a third degree polynomial
and divided by a first degree polynomial, so the quoƟent is a second degree
polynomial. Hence the quoƟent is x2 + 6x + 7. The number in the box is the
remainder. SyntheƟc division is our tool of choice for dividing polynomials by
divisors of the form x− c. Also take note that when a polynomial (of degree at
least 1) is divided by x − c, the result will be a polynomial of exactly one less
degree. Finally, it is worth the Ɵme to trace each step in syntheƟc division back
to its corresponding step in long division. While the authors have done their best
to indicate where the algorithm comes from, there is no subsƟtute for working
through it yourself.

Example 69 Using syntheƟc division
Use syntheƟc division to perform the following polynomial divisions. Find the
quoƟent and the remainder polynomials, then write the dividend, quoƟent and
remainder in the form given in Theorem 22.

1.
(
5x3 − 2x2 + 1

)
÷ (x− 3)

2.
(
x3 + 8

)
÷ (x+ 2)

3.
4− 8x− 12x2

2x− 3

SÊ½çã®ÊÄ

1. When seƫng up the syntheƟc division tableau, we need to enter 0 for the
coefficient of x in the dividend. Doing so gives

3 5 −2 0 1
↓ 15 39 117
5 13 39 118
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Since the dividendwas a third degreepolynomial, the quoƟent is a quadraƟc
polynomial with coefficients 5, 13 and 39. Our quoƟent is q(x) = 5x2 +
13x+ 39 and the remainder is r(x) = 118. According to Theorem 22, we
have 5x3 − 2x2 + 1 = (x− 3)

(
5x2 + 13x+ 39

)
+ 118.

2. For this division, we rewrite x+ 2 as x− (−2) and proceed as before

−2 1 0 0 8
↓ −2 4 −8
1 −2 4 0

We get the quoƟent q(x) = x2 − 2x + 4 and the remainder r(x) =
0. RelaƟng the dividend, quoƟent and remainder gives x3 + 8 = (x +
2)
(
x2 − 2x+ 4

)
.

3. To divide 4 − 8x − 12x2 by 2x − 3, two things must be done. First, we
write the dividend in descending powers of x as−12x2 − 8x+ 4. Second,
since syntheƟc division works only for factors of the form x− c, we factor
2x− 3 as 2

(
x− 3

2
)
. Our strategy is to first divide−12x2 − 8x+ 4 by 2, to

get−6x2 − 4x+ 2. Next, we divide by
(
x− 3

2
)
. The tableau becomes

3
2 −6 −4 2

↓ −9 − 39
2

−6 −13 − 35
2

From this, we get−6x2−4x+2 =
(
x− 3

2
)
(−6x−13)− 35

2 . MulƟplying both
sides by 2 and distribuƟng gives−12x2−8x+4 = (2x− 3) (−6x−13)−35. At
this stage, we have wriƩen−12x2 − 8x+ 4 in the form (2x− 3)q(x) + r(x), but
how can we be sure the quoƟent polynomial is −6x − 13 and the remainder is
−35? The answer is the word ‘unique’ in Theorem 22. The theorem states that
there is only one way to decompose−12x2 − 8x+ 4 into a mulƟple of (2x− 3)
plus a constant term. Since we have found such a way, we can be sure it is the
only way.

The next example pulls together all of the concepts discussed in this secƟon.

Example 70 Factoring a cubic polynomial
Let p(x) = 2x3 − 5x+ 3.

1. Find p(−2) using The Remainder Theorem. Check your answer by subsƟ-
tuƟon.

2. Use the fact that x = 1 is a zero of p to factor p(x) and then find all of the
real zeros of p.

SÊ½çã®ÊÄ

1. The Remainder Theorem states p(−2) is the remainder when p(x) is di-
vided by x − (−2). We set up our syntheƟc division tableau below. We
are careful to record the coefficient of x2 as 0, and proceed as above.

−2 2 0 −5 3
↓ −4 8 −6
2 −4 3 −3
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According to the Remainder Theorem, p(−2) = −3. We can check this by
direct subsƟtuƟon into the formula for p(x): p(−2) = 2(−2)3− 5(−2)+
3 = −16+ 10+ 3 = −3.

2. The Factor Theorem tells us that since x = 1 is a zero of p, x− 1 is a factor
of p(x). To factor p(x), we divide by x− 1, giving us

1 2 0 −5 3
↓ 2 2 −3
2 2 −3 0

We get a remainder of 0 which verifies that, indeed, p(1) = 0. Our
quoƟent polynomial is a second degree polynomial with coefficients 2,
2, and −3. So q(x) = 2x2 + 2x − 3. Theorem 22 tells us p(x) = (x −
1)
(
2x2 + 2x− 3

)
. To find the remaining real zeros of p, we need to solve

2x2+2x−3 = 0 for x. Since this doesn’t factor nicely, we use the quadraƟc
formula to find that the remaining zeros are x = −1±

√
7

2 .

In SecƟon 4.1, we discussed the noƟon of the mulƟplicity of a zero. Roughly
speaking, a zero with mulƟplicity 2 can be divided twice into a polynomial; mul-
Ɵplicity 3, three Ɵmes and so on. This is illustrated in the next example.

Example 71 Factoring out a zero of mulƟplicity two
Let p(x) = 4x4 − 4x3 − 11x2 + 12x− 3. Given that x = 1

2 is a zero of mulƟplicity
2, find all of the real zeros of p.

SÊ½çã®ÊÄ We set up for syntheƟc division. Since we are told the mul-
Ɵplicity of 1

2 is two, we conƟnue our tableau and divide
1
2 into the quoƟent poly-

nomial

1
2 4 −4 −11 12 −3

↓ 2 −1 −6 3
1
2 4 −2 −12 6 0

↓ 2 0 −6
4 0 −12 0

From thefirst division, we get 4x4−4x3−11x2+12x−3 =
(
x− 1

2
) (

4x3 − 2x2 − 12x+ 6
)
.

The second division tells us 4x3−2x2−12x+6 =
(
x− 1

2
) (

4x2 − 12
)
. Combin-

ing these results, we have 4x4 − 4x3 − 11x2 + 12x− 3 =
(
x− 1

2
)2 (4x2 − 12

)
.

To find the remaining zeros of p, we set 4x2 − 12 = 0 and get x = ±
√
3.

A couple of things about the last example are worth menƟoning. First, the
extension of the syntheƟc division tableau for repeated divisions will be a com-
mon sight in the secƟons to come. Typically, we will start with a higher order
polynomial and peel off one zero at a Ɵme unƟl we are leŌ with a quadraƟc,
whose roots can always be found using the QuadraƟc Formula. Secondly, we
found x = ±

√
3 are zeros of p. The Factor Theorem guarantees

(
x−

√
3
)
and(

x−
(
−
√
3
))

are both factors of p. We can certainly put the Factor Theorem
to the test and conƟnue the syntheƟc division tableau from above to see what
happens.
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1
2 4 −4 −11 12 −3

↓ 2 −1 −6 3
1
2 4 −2 −12 6 0

↓ 2 0 −6√
3 4 0 −12 0

↓ 4
√
3 12

−
√
3 4 4

√
3 0

↓ −4
√
3

4 0

This gives us 4x4−4x3−11x2+12x−3 =
(
x− 1

2
)2 (x−√

3
) (

x−
(
−
√
3
))

(4),
or, when wriƩen with the constant in front

p(x) = 4
(
x− 1

2

)2 (
x−

√
3
)(

x−
(
−
√
3
))

We have shown that p is a product of its leading coefficient Ɵmes linear fac-
tors of the form (x − c) where c are zeros of p. It may surprise and delight the
reader that, in theory, all polynomials can be reduced to this kind of factoriza-
Ɵon; however, some of the zeros may be complex numbers. Our final theorem
in the secƟon gives us an upper bound on the number of real zeros.

Theorem 25 Number of zeros is bounded above by degree

Suppose f is a polynomial of degree n ≥ 1. Then f has at most n real
zeros, counƟng mulƟpliciƟes.

Theorem 25 is a consequence of the Factor Theorem and polynomial mulƟ-
plicaƟon. Every zero c of f gives us a factor of the form (x − c) for f(x). Since f
has degree n, there can be at most n of these factors. The next secƟon provides
us some tools which not only help us determine where the real zeros are to be
found, but which real numbers they may be.

We close this secƟon with a summary of several concepts previously pre-
sented. You should take the Ɵme to look back through the text to see where
each concept was first introduced and where each connecƟon to the other con-
cepts was made.

Key Idea 22 ConnecƟons Between Zeros, Factors and Graphs of
Polynomial FuncƟons

Suppose p is a polynomial funcƟon of degree n ≥ 1. The following state-
ments are equivalent:

• The real number c is a zero of p

• p(c) = 0

• x = c is a soluƟon to the polynomial equaƟon p(x) = 0

• (x− c) is a factor of p(x)

• The point (c, 0) is an x-intercept of the graph of y = p(x)
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Exercises 4.2
Problems
In Exercises 1 – 6, use polynomial long division to perform
the indicated division. Write the polynomial in the form
p(x) = d(x)q(x) + r(x).

1.
(
4x2 + 3x− 1

)
÷ (x− 3)

2.
(
2x3 − x+ 1

)
÷
(
x2 + x+ 1

)
3.
(
5x4 − 3x3 + 2x2 − 1

)
÷
(
x2 + 4

)
4.
(
−x5 + 7x3 − x

)
÷
(
x3 − x2 + 1

)
5.
(
9x3 + 5

)
÷ (2x− 3)

6.
(
4x2 − x− 23

)
÷
(
x2 − 1

)
In Exercises 7 – 20, use syntheƟc division to perform the in-
dicated division. Write the polynomial in the form p(x) =
d(x)q(x) + r(x).

7.
(
3x2 − 2x+ 1

)
÷ (x− 1)

8.
(
x2 − 5

)
÷ (x− 5)

9.
(
3− 4x− 2x2

)
÷ (x+ 1)

10.
(
4x2 − 5x+ 3

)
÷ (x+ 3)

11.
(
x3 + 8

)
÷ (x+ 2)

12.
(
4x3 + 2x− 3

)
÷ (x− 3)

13.
(
18x2 − 15x− 25

)
÷
(
x− 5

3

)
14.

(
4x2 − 1

)
÷
(
x− 1

2

)
15.

(
2x3 + x2 + 2x+ 1

)
÷
(
x+ 1

2

)
16.

(
3x3 − x+ 4

)
÷
(
x− 2

3

)
17.

(
2x3 − 3x+ 1

)
÷
(
x− 1

2

)
18.

(
4x4 − 12x3 + 13x2 − 12x+ 9

)
÷
(
x− 3

2

)
19.

(
x4 − 6x2 + 9

)
÷
(
x−

√
3
)

20.
(
x6 − 6x4 + 12x2 − 8

)
÷
(
x+

√
2
)

In Exercises 21 – 30, determine p(c) using the Remainder The-
orem for the given polynomial funcƟons and value of c. If
p(c) = 0, factor p(x) = (x− c)q(x).

21. p(x) = 2x2 − x+ 1, c = 4

22. p(x) = 4x2 − 33x− 180, c = 12

23. p(x) = 2x3 − x+ 6, c = −3

24. p(x) = x3 + 2x2 + 3x+ 4, c = −1

25. p(x) = 3x3 − 6x2 + 4x− 8, c = 2

26. p(x) = 8x3 + 12x2 + 6x+ 1, c = − 1
2

27. p(x) = x4 − 2x2 + 4, c = 3
2

28. p(x) = 6x4 − x2 + 2, c = − 2
3

29. p(x) = x4 + x3 − 6x2 − 7x− 7, c = −
√
7

30. p(x) = x2 − 4x+ 1, c = 2−
√
3

In Exercises 31 – 40, you are given a polynomial and one of
its zeros. Use the techniques in this secƟon to find the rest of
the real zeros and factor the polynomial.

31. x3 − 6x2 + 11x− 6, c = 1

32. x3 − 24x2 + 192x− 512, c = 8

33. 3x3 + 4x2 − x− 2, c = 2
3

34. 2x3 − 3x2 − 11x+ 6, c = 1
2

35. x3 + 2x2 − 3x− 6, c = −2

36. 2x3 − x2 − 10x+ 5, c = 1
2

37. 4x4 − 28x3 + 61x2 − 42x+ 9, c = 1
2 is a zero of mulƟplicity

2

38. x5 + 2x4 − 12x3 − 38x2 − 37x − 12, c = −1 is a zero of
mulƟplicity 3

39. 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324, c = − 3
5

is a zero of mulƟplicity 3

40. x2 − 2x− 2, c = 1−
√
3

In Exercises 41 – 45, create a polynomial p which has the de-
sired characterisƟcs. You may leave the polynomial in fac-
tored form.

41. • The zeros of p are c = ±2 and c = ±1
• The leading term of p(x) is 117x4.

42. • The zeros of p are c = 1 and c = 3
• c = 3 is a zero of mulƟplicity 2.
• The leading term of p(x) is−5x3

43. • The soluƟons to p(x) = 0 are x = ±3 and x = 6
• The leading term of p(x) is 7x4
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• The point (−3, 0) is a local minimum on the graph of
y = p(x).

44. • The soluƟons to p(x) = 0 are x = ±3, x = −2, and
x = 4.

• The leading term of p(x) is−x5.
• The point (−2, 0) is a local maximum on the graph of

y = p(x).

45. • p is degree 4.

• as x → ∞, p(x) → −∞

• p has exactly three x-intercepts: (−6, 0), (1, 0) and
(117, 0)

• The graph of y = p(x) crosses through the x-axis at
(1, 0).

46. Find a quadraƟc polynomial with integer coefficients which

has x = 3
5
±

√
29
5

as its real zeros.
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4.3 Real Zeros of Polynomials
In SecƟon 4.2, we found that we can use syntheƟc division to determine if a
given real number is a zero of a polynomial funcƟon. This secƟon presents re-
sults which will help us determine good candidates to test using syntheƟc divi-
sion. Our ability to find zeros of a polynomial depends on a number of factors,
including the degree of the polynomial (by now, you should know exactly what
to do if handed a linear or quadraƟc polynomial!) and whether or not we have
access to technology.

If we are searching for zeros by hand for polynomials of degree three or
higher, we can only realisƟcally hope to find raƟonal roots. The following theo-
rem tells us which raƟonal numbers are possibiliƟes.

Theorem 26 RaƟonal Zeros Theorem

Suppose f(x) = anxn + an−1xn−1 + . . . + a1x + a0 is a polynomial of
degree nwith n ≥ 1, and a0, a1, …an are integers. If r is a raƟonal zero of
f, then r is of the form ± p

q , where p is a factor of the constant term a0,
and q is a factor of the leading coefficient an.

The RaƟonal Zeros Theorem gives us a list of numbers to try in our syntheƟc
division and that is a lot nicer than simply guessing. If none of the numbers in
the list are zeros, then either the polynomial has no real zeros at all, or all of the
real zeros are irraƟonal numbers. To see why the RaƟonal Zeros Theoremworks,
suppose c is a zero of f and c = p

q in lowest terms. This means p and q have no
common factors. Since f(c) = 0, we have

an
(
p
q

)n

+ an−1

(
p
q

)n−1

+ . . .+ a1
(
p
q

)
+ a0 = 0.

MulƟplying both sides of this equaƟon by qn, we clear the denominators to get

anpn + an−1pn−1q+ . . .+ a1pqn−1 + a0qn = 0

Rearranging this equaƟon, we get

anpn = −an−1pn−1q− . . .− a1pqn−1 − a0qn

Now, the leŌ hand side is an integer mulƟple of p, and the right hand side is an
integer mulƟple of q. (Can you see why?) This means anpn is both a mulƟple
of p and a mulƟple of q. Since p and q have no common factors, an must be a
mulƟple of q. If we rearrange the equaƟon

anpn + an−1pn−1q+ . . .+ a1pqn−1 + a0qn = 0

as
a0qn = −anpn − an−1pn−1q− . . .− a1pqn−1

we can play the same game and conclude a0 is a mulƟple of p, and we have the
result.

Example 72 Finding raƟonal zeros
Let f(x) = 2x4 + 4x3 − x2 − 6x− 3. Use the RaƟonal Zeros Theorem to list all of
the possible raƟonal zeros of f.
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Figure 4.12: The graph y = f(x) = 2x4 +
4x3 − x2 − 6x− 3

4.3 Real Zeros of Polynomials

SÊ½çã®ÊÄ To generate a complete list of raƟonal zeros, we need to take
each of the factors of constant term, a0 = −3, and divide them by each of the
factors of the leading coefficient a4 = 2. The factors of −3 are ± 1 and ± 3.
Since the RaƟonal Zeros Theorem tacks on a± anyway, for themoment, we con-
sider only the posiƟve factors 1 and 3. The factors of 2 are 1 and 2, so the RaƟo-
nal Zeros Theorem gives the list

{
± 1

1 ,±
1
2 ,±

3
1 ,±

3
2
}
or
{
± 1

2 ,± 1,± 3
2 ,± 3

}
.

Example 72 gave us a list of possible raƟonal zeros for the funcƟon f(x) =
2x4+ 4x3− x2− 6x− 3, but it doesn’t rule out the possibility of irraƟonal zeros.
One way to proceed at this point is to plot f(x) using soŌware or a graphing
calculator, as illustrated in the next example.

Example 73 Using technology to find the zeros of a polynomial
Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Graph y = f(x) on the calculator or computer.

2. Use the graph to shorten the list of possible raƟonal zeros obtained in
Example 72.

3. Use syntheƟc division to find the real zeros of f, and state their mulƟplici-
Ɵes.

SÊ½çã®ÊÄ

1. We plot f(x) using GeoGebra, and zoom out unƟl it looks like all the main
features of the graph are visible: see Figure 4.12.

2. In Example 72, we learned that any raƟonal zero of f must be in the list{
± 1

2 ,± 1,± 3
2 ,± 3

}
. From the graph, it looks as if we can rule out any of

the posiƟve raƟonal zeros, since the graph seems to cross the x-axis at a
value just a liƩle greater than 1. On the negaƟve side, −1 looks good, so
we try that for our syntheƟc division.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3
2 2 −3 −3 0

We have a winner! Remembering that f was a fourth degree polynomial,
we know that our quoƟent is a third degree polynomial. If we can do one
more successful division, we will have knocked the quoƟent down to a
quadraƟc, and, if all else fails, we can use the quadraƟc formula to find
the last two zeros. Since there seems to be no other raƟonal zeros to try,
we conƟnue with −1. Also, the shape of the crossing at x = −1 leads us
to wonder if the zero x = −1 has mulƟplicity 3.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3
2 0 −3 0

Success! Our quoƟent polynomial is now 2x2 − 3. Seƫng this to zero
gives 2x2 − 3 = 0, or x2 = 3

2 , which gives us x = ±
√
6
2 . Concerning

mulƟpliciƟes, based on our division, we have that−1 has a mulƟplicity of
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The y-axis isn’t visible in Figure 4.13, so
it’s worth poinƟng out that in order to
get a good view of the two local extrema,
we had to shrink the y scale significantly:
the y-value of the local minimum at x =
−
√
6/2 is just shy of−0.01.

Figure 4.13: Zooming in on the repeated
zero in Example 73

(a)

(b)

Figure 4.14: Two views of the graph
y = f(x) = x4 + x2 − 12 in Example 74

Chapter 4 Polynomial FuncƟons

at least 2. The Factor Theorem tells us our remaining zeros, ±
√
6
2 , each

have mulƟplicity at least 1. However, Theorem 25 tells us f can have at
most 4 real zeros, counƟng mulƟplicity, and so we conclude that −1 is of
mulƟplicity exactly 2 and ±

√
6
2 each has mulƟplicity 1. (Thus, we were

wrong to think that−1 had mulƟplicity 3.)

It is interesƟng to note that we could greatly improve on the graph of y =
f(x) in the previous example given to us by GeoGebra. For instance, from our de-
terminaƟon of the zeros of f and their mulƟpliciƟes, we know the graph crosses
at x = −

√
6
2 ≈ −1.22 then turns back upwards to touch the x−axis at x = −1.

This tells us that, despite what the soŌware showed us the first Ɵme, there is
a relaƟve maximum occurring at x = −1 and not a ‘flaƩened crossing’ as we
originally believed. AŌer zooming in and rescaling the coordinate axes, we see
not only the relaƟve maximum but also a relaƟve minimum (this is an example
of what is called ‘hidden behaviour.’) just to the leŌ of x = −1 which shows us,
once again, that MathemaƟcs enhances the technology, instead of vice-versa:
see Figure 4.13.

Our next example shows how even a mild-mannered polynomial can cause
problems.

Example 74 Factoring using a u-subsƟtuƟon
Let f(x) = x4 + x2 − 12.

1. Use the RaƟonal Zeros Theorem to determine a list of possible raƟonal
zeros of f.

2. Graph y = f(x) using your graphing calculator.

3. Find all of the real zeros of f and their mulƟpliciƟes.

SÊ½çã®ÊÄ

1. Applying the RaƟonal Zeros Theorem with constant term a0 = −12 and
leading coefficient a4 = 1, we get the list {± 1,± 2,± 3,± 4,± 6,± 12}.

2. Graphing y = f(x) on the interval [−13, 13] produces the graph in Figure
4.14 (a). Zooming in a bit gives the graph (b). Based on the graph, none
of our raƟonal zeros will work. (Do you see why not?)

3. From the graph, we know f has two real zeros, one posiƟve, and one
negaƟve. Our only hope at this point is to try and find the zeros of f
by seƫng f(x) = x4 + x2 − 12 = 0 and solving. If we stare at this
equaƟon long enough, we may recognize it as a ‘quadraƟc in disguise’
or ‘quadraƟc in form’. In other words, we have three terms: x4, x2 and
12, and the exponent on the first term, x4, is exactly twice that of the
second term, x2. We may rewrite this as

(
x2
)2

+
(
x2
)
− 12 = 0. To

beƩer see the forest for the trees, we momentarily replace x2 with the
variable u. In terms of u, our equaƟon becomes u2 + u − 12 = 0, which
we can readily factor as (u + 4)(u − 3) = 0. In terms of x, this means
x4 + x2 − 12 =

(
x2 − 3

) (
x2 + 4

)
= 0. We get x2 = 3, which gives us

x = ±
√
3, or x2 = −4, which admits no real soluƟons. Since

√
3 ≈ 1.73,

the two zeros match what we expected from the graph. In terms of mul-
Ɵplicity, the Factor Theorem guarantees

(
x−

√
3
)
and

(
x+

√
3
)
are fac-

tors of f(x). Since f(x) can be factored as f(x) =
(
x2 − 3

) (
x2 + 4

)
, and
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x2+4 has no real zeros, the quanƟƟes
(
x−

√
3
)
and

(
x+

√
3
)
must both

be factors of x2 − 3. According to Theorem 25, x2 − 3 can have at most 2
zeros, counƟngmulƟplicity, hence each of±

√
3 is a zero of f ofmulƟplicity

1.

The technique used to factor f(x) in Example 74 is called u-subsƟtuƟon. In
general, subsƟtuƟon can help us idenƟfy a ‘quadraƟc in disguise’ provided that
there are exactly three terms and the exponent of the first term is exactly twice
that of the second. It is enƟrely possible that a polynomial has no real roots at
all, orworse, it has real roots but none of the techniques discussed in this secƟon
can help us find them exactly. In the laƩer case, we are forced to approximate,
which in this subsecƟon means we use the ‘Zero’ command on the graphing
calculator. (In GeoGebra, there is a ‘root’ command available, or you can simply
use the Intersect tool to plot the points where the graph intersects the x-axis.)

Let us now return to the funcƟon f(x) = 2x4+4x3−x2−6x−3 from Example
73, and aƩempt to find its zeros without the aid of technology.

Example 75 Finding real zeros by hand
Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Find all of the real zeros of f and their mulƟpliciƟes.

2. Sketch the graph of y = f(x).

SÊ½çã®ÊÄ

1. We know that our possible raƟonal zeros are ± 1
2 , ± 1, ± 3

2 and ± 3. We
try our posiƟve raƟonal zeros, starƟng with the smallest, 1

2 . Since the re-
mainder isn’t zero, we know 1

2 isn’t a zero. Sadly, the final line in the divi-
sion tableau has both posiƟve and negaƟve numbers, so 1

2 is not an upper
bound. The only informaƟon we get from this division is courtesy of the
Remainder Theorem which tells us f

( 1
2
)
= − 45

8 so the point
( 1
2 ,−

45
8
)
is

on the graph of f. We conƟnue to our next possible zero, 1. As before, the
only informaƟon we can glean from this is that (1,−4) is on the graph of
f. When we try our next possible zero, 3

2 , we get that it is not a zero, and
the same is true of 3, our last possible posiƟve raƟonal zero. Although
we did not find any posiƟve raƟonal zeros, we can conclude that there
must be a posiƟve irraƟonal zero: we found that f(1) = −4 < 0 and
f
( 3
2
)
= 75

8 > 0, so the Intermediate Value Theorem, Theorem 19, tells us
the zero lies between 1 and 3

2 .

1
2 2 4 −1 −6 −3

↓ 1 5
2

3
4 − 21

8

2 5 3
2 − 21

4 − 45
8

1 2 4 −1 −6 −3
↓ 2 6 5 −1

2 6 5 −1 −4
3
2 2 4 −1 −6 −3

↓ 3 21
2

57
4

99
8

2 7 19
2

33
4

75
8
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x

y

Figure 4.15: The graph y = 2x4 + 4x3 −
x2 − 6x− 3

Chapter 4 Polynomial FuncƟons

We now turn our aƩenƟon to negaƟve real zeros. We try the largest pos-
sible zero,− 1

2 . SyntheƟc division shows us it is not a zero, so we proceed
to −1. This division shows −1 is a zero. Since we’re only aware of one
posiƟve real zero and f has degree 4, wemay have as many as three nega-
Ɵve real zeros, counƟngmulƟplicity, so we try−1 again, and it works once
more. At this point, we have taken f, a fourth degree polynomial, and per-
formed two successful divisions. Our quoƟent polynomial is quadraƟc, so
we look at it to find the remaining zeros.

− 1
2 2 4 −1 −6 −3

↓ −1 − 3
2

5
4

19
8

2 3 − 5
2 − 19

4 − 5
8

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3
2 0 −3 0

Seƫng the quoƟent polynomial equal to zero yields 2x2 − 3 = 0, so that
x2 = 3

2 , or x = ±
√
6
2 . We now have two zeros of mulƟplicity one yielding

factors
(
x−

√
6
2

)
and

(
x+

√
6
2

)
, respecƟvely and one zero of mulƟplicity

two, which yields the factor (x+1)2. Since mulƟplying the corresponding
factors together produces a polynomial of degree 4, we know thatwehave
found all possible zeros of f. (If there were another zero, we would have
another factor, andmulƟplying by this factor would produce a polynomial
of degree 5 or more.)

2. We know the end behaviour of y = f(x) resembles that of its leading term
y = 2x4. This means that the graph enters the scene in Quadrant II and
exits in Quadrant I. Since±

√
6
2 are zeros of odd mulƟplicity, we have that

the graph crosses through the x-axis at the points
(
−

√
6
2 , 0

)
and

(√
6
2 , 0

)
.

Since −1 is a zero of mulƟplicity 2, the graph of y = f(x) touches and
rebounds off the x-axis at (−1, 0). Puƫng this together, we get the graph
in Figure 4.15.

You can see why the ‘no calculator’ approach is not very popular these days.
It requires more computaƟon and more theorems than the alternaƟve. (This is
apparently a bad thing.) In general, no maƩer how many theorems you throw
at a polynomial, it may well be impossible to find their zeros exactly. The poly-
nomial f(x) = x5 − x − 1 is one such beast. The RaƟonal Zeros Test gives us
±1 as raƟonal zeros to try but neither of these work since f(1) = f(−1) = −1.
If we try the subsƟtuƟon technique we used in Example 74, we find f(x) has
three terms, but the exponent on the x5 isn’t exactly twice the exponent on x.
How could we go about approximaƟng the posiƟve zero without resorƟng to the
‘Zero’ command of a graphing calculator? We use the BisecƟon Method. The
first step in the BisecƟon Method is to find an interval on which f changes sign.
We know f(1) = −1 andwe find f(2) = 29. By the Intermediate Value Theorem,
we know that the zero of f lies in the interval [1, 2]. Next, we ‘bisect’ this interval
and find the midpoint is 1.5. We have that f(1.5) ≈ 5.09. This means that our
zero is between 1 and 1.5, since f changes sign on this interval. Now, we ‘bisect’
the interval [1, 1.5] and find f(1.25) ≈ 0.80, so now we have the zero between
1 and 1.25. BisecƟng [1, 1.25], we find f(1.125) ≈ −0.32, whichmeans the zero
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We don’t use the word “impossible”
lightly; it can be proven that the zeros of
some polynomials cannot be expressed
using the usual algebraic symbols. See
this page, for example.

− 1
2

1

(−) 0 (+) 0 (+)

−1 0 2

Figure 4.16: The sign diagram for p(x) in
Example 76

(a)

(b)

Figure 4.17: The polynomials f(x) and
g(x) from Example 76, part 3

4.3 Real Zeros of Polynomials

of f is between 1.125 and 1.25. We conƟnue in this fashion unƟl we have ‘sand-
wiched’ the zero between two numbers which differ by no more than a desired
accuracy. You can think of the BisecƟon Method as reversing the sign diagram
process: instead of finding the zeros and checking the sign of f using test values,
we are using test values to determine where the signs switch to find the zeros.
It is a slow and tedious, yet fool-proof, method for approximaƟng a real zero.

Our next example reminds us of the role finding zeros plays in solving equa-
Ɵons and inequaliƟes.

Example 76 Solving a polynomial equaƟon and inequality

1. Find all of the real soluƟons to the equaƟon 2x5 + 6x3 + 3 = 3x4 + 8x2.

2. Solve the inequality 2x5 + 6x3 + 3 ≤ 3x4 + 8x2.

3. Interpret your answer to part 2 graphically, and verify using a graphing
calculator.

SÊ½çã®ÊÄ

1. Finding the real soluƟons to 2x5+6x3+3 = 3x4+8x2 is the same as finding
the real soluƟons to 2x5 − 3x4 + 6x3 − 8x2 + 3 = 0. In other words, we
are looking for the real zeros of p(x) = 2x5 − 3x4 + 6x3 − 8x2 + 3. Using
the techniques developed in this secƟon, we get

1 2 −3 6 −8 0 3
↓ 2 −1 5 −3 −3

1 2 −1 5 −3 −3 0
↓ 2 1 6 3

− 1
2 2 1 6 3 0

↓ −1 0 −3
2 0 6 0

The quoƟent polynomial is 2x2 + 6 which has no real zeros so we get x =
− 1

2 and x = 1.

2. To solve this nonlinear inequality, we follow the same guidelines set forth
in SecƟon 3.4: we get 0 on one side of the inequality and construct a sign
diagram. Our original inequality can be rewriƩen as 2x5 − 3x4 + 6x3 −
8x2 + 3 ≤ 0. We found the zeros of p(x) = 2x5 − 3x4 + 6x3 − 8x2 + 3 in
part 1 to be x = − 1

2 and x = 1. We construct our sign diagram as before,
giving us Figure 4.16.
The soluƟon to p(x) < 0 is

(
−∞,− 1

2
)
, and we know p(x) = 0 at x = − 1

2
and x = 1. Hence, the soluƟon to p(x) ≤ 0 is

(
−∞,− 1

2
]
∪ {1}.

3. To interpret this soluƟon graphically, we set f(x) = 2x5 + 6x3 + 3 and
g(x) = 3x4 + 8x2. We recall that the soluƟon to f(x) ≤ g(x) is the set of x
values for which the graph of f is below the graph of g (where f(x) < g(x))
along with the x values where the two graphs intersect (f(x) = g(x)).
Graphing f and g using GeoGebra produces Figure 4.17(a). (The end be-
haviour should tell youwhich is which.) We see that the graph of f is below
the graph of g on

(
−∞,− 1

2
)
. However, it is difficult to see what is hap-

pening near x = 1. Zooming in (and making the graph of g thicker), we
see in Figure 4.17(b) that the graphs of f and g do intersect at x = 1, but
the graph of g remains below the graph of f on either side of x = 1.
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1 +
√
2 5

(−) 0 (+) 0

0 3 10.07

(−)

Figure 4.18: The sign diagram for P(x) in
Example 77

Figure 4.19: Ploƫng the profit funcƟon
P(x) in Example 77

Chapter 4 Polynomial FuncƟons

Our last example revisits an applicaƟon from page 164 in the Exercises of
SecƟon 4.1.

Example 77 CalculaƟng sales profits
Suppose the profit P, in thousands of dollars, from producing and selling x hun-
dred LCD TVs is given by P(x) = −5x3 + 35x2 − 45x − 25, 0 ≤ x ≤ 10.07.
How many TVs should be produced to make a profit? Check your answer using
a graphing uƟlity.

SÊ½çã®ÊÄ To ‘make a profit’means to solveP(x) = −5x3+35x2−45x−
25 > 0, whichwe do analyƟcally using a sign diagram. To simplify things, we first
factor out the−5 common to all the coefficients to get−5

(
x3 − 7x2 + 9x− 5

)
>

0, so we can just focus on finding the zeros of f(x) = x3 − 7x2 + 9x + 5.
The possible raƟonal zeros of f are ±1 and ±5, and going through the usual
computaƟons, we find x = 5 is the only raƟonal zero. Using this, we factor
f(x) = x3 − 7x2 + 9x + 5 = (x − 5)

(
x2 − 2x− 1

)
, and we find the remaining

zeros by applying the QuadraƟc Formula to x2 − 2x − 1 = 0. We find three
real zeros, x = 1 −

√
2 = −0.414 . . ., x = 1 +

√
2 = 2.414 . . ., and x = 5,

of which only the last two fall in the applied domain of [0, 10.07]. We choose
x = 0, x = 3 and x = 10.07 as our test values and plug them into the funcƟon
P(x) = −5x3 + 35x2 − 45x− 25 (not f(x) = x3 − 7x2 + 9x− 5) to get the sign
diagram in Figure 4.18.

We see immediately that P(x) > 0 on (1 +
√
2, 5). Since x measures the

number of TVs in hundreds, x = 1+
√
2 corresponds to 241.4 . . . TVs. Since we

can’t produce a fracƟonal part of a TV, we need to choose between producing
241 and 242 TVs. From the sign diagram, we see that P(2.41) < 0 but P(2.42) >
0 so, in this case we take the next larger integer value and set the minimum
producƟon to 242 TVs. At the other end of the interval, we have x = 5 which
corresponds to 500 TVs. Here, we take the next smaller integer value, 499 TVs
to ensure that we make a profit. Hence, in order to make a profit, at least 242,
but no more than 499 TVs need to be produced. To check our answer using
GeoGebra, we graph y = P(x) and use the Intersect tool to see where y = P(x)
intersects the x-axis. We see in Figure 4.19 that the soŌware approximaƟons
bear out our analysis.
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Exercises 4.3
Problems
In Exercises 1 – 10, Use the RaƟonal Zeros Theorem to make
a list of possible raƟonal zeros for the given polynomial.

1. f(x) = x3 − 2x2 − 5x+ 6

2. f(x) = x4 + 2x3 − 12x2 − 40x− 32

3. f(x) = x4 − 9x2 − 4x+ 12

4. f(x) = x3 + 4x2 − 11x+ 6

5. f(x) = x3 − 7x2 + x− 7

6. f(x) = −2x3 + 19x2 − 49x+ 20

7. f(x) = −17x3 + 5x2 + 34x− 10

8. f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

9. f(x) = 3x3 + 3x2 − 11x− 10

10. f(x) = 2x4 + x3 − 7x2 − 3x+ 3

In Exercises 11 – 30, find the real zeros of the polynomial us-
ing the techniques specified by your instructor. State themul-
Ɵplicity of each real zero.

11. f(x) = x3 − 2x2 − 5x+ 6

12. f(x) = x4 + 2x3 − 12x2 − 40x− 32

13. f(x) = x4 + 2x3 − 12x2 − 40x− 32

14. f(x) = x3 + 4x2 − 11x+ 6

15. f(x) = x3 − 7x2 + x− 7

16. f(x) = −2x3 + 19x2 − 49x+ 20

17. f(x) = −17x3 + 5x2 + 34x− 10

18. f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

19. f(x) = 3x3 + 3x2 − 11x− 10

20. f(x) = 2x4 + x3 − 7x2 − 3x+ 3

21. f(x) = 9x3 − 5x2 − x

22. f(x) = 6x4 − 5x3 − 9x2

23. f(x) = x4 + 2x2 − 15

24. f(x) = x4 − 9x2 + 14

25. f(x) = 3x4 − 14x2 − 5

26. f(x) = 2x4 − 7x2 + 6

27. f(x) = x6 − 3x3 − 10

28. f(x) = 2x6 − 9x3 + 10

29. f(x) = x5 − 2x4 − 4x+ 8

30. f(x) = 2x5 + 3x4 − 18x− 27

In Exercises 31 – 33, use soŌware or a graphing calculator3
to help you find the real zeros of the polynomial. State the
mulƟplicity of each real zero.

31. f(x) = x5 − 60x3 − 80x2 + 960x+ 2304

32. f(x) = 25x5 − 105x4 + 174x3 − 142x2 + 57x− 9

33. f(x) = 90x4 − 399x3 + 622x2 − 399x+ 90

34. Find the real zeros of f(x) = x3 − 1
12 x

2 − 7
72 x +

1
72 by first

finding a polynomial q(x)with integer coefficients such that
q(x) = N · f(x) for some integer N. (Recall that the RaƟonal
Zeros Theorem required the polynomial in quesƟon to have
integer coefficients.) Show that f and q have the same real
zeros.

In Exercises 35 – 44, find the real soluƟons of the polynomial
equaƟon. (See Example 76.)

35. 9x3 = 5x2 + x

36. 9x2 + 5x3 = 6x4

37. x3 + 6 = 2x2 + 5x

38. x4 + 2x3 = 12x2 + 40x+ 32

39. x3 − 7x2 = 7− x

40. 2x3 = 19x2 − 49x+ 20

41. x3 + x2 = 11x+ 10
3

42. x4 + 2x2 = 15

43. 14x2 + 5 = 3x4

44. 2x5 + 3x4 = 18x+ 27

In Exercises 45 – 54, solve the polynomial inequality and state
your answer using interval notaƟon.

3You can do theseby hand, but it may test your meƩle!
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45. −2x3 + 19x2 − 49x+ 20 > 0

46. x4 − 9x2 ≤ 4x− 12

47. (x− 1)2 ≥ 4

48. 4x3 ≥ 3x+ 1

49. x4 ≤ 16+ 4x− x3

50. 3x2 + 2x < x4

51. x3 + 2x2

2
< x+ 2

52. x3 + 20x
8

≥ x2 + 2

53. 2x4 > 5x2 + 3

54. 2x4 > 5x2 + 3

55. In Example 65 in SecƟon 4.1, a box with no top is con-
structed from a 10 inch × 12 inch piece of cardboard by

cuƫngout congruent squares fromeach corner of the card-
board and then folding the resulƟng tabs. We determined
the volume of that box (in cubic inches) is given by V(x) =
4x3−44x2+120x, where x denotes the length of the side of
the square which is removed from each corner (in inches),
0 < x < 5. Solve the inequality V(x) ≥ 80 analyƟcally and
interpret your answer in the context of that example.

56. From Exercise 32 in SecƟon 4.1, C(x) = .03x3 − 4.5x2 +
225x + 250, for x ≥ 0 models the cost, in dollars, to pro-
duce x PortaBoy game systems. If the producƟon budget
is $5000, find the number of game systems which can be
produced and sƟll remain under budget.

57. Let f(x) = 5x7 − 33x6 + 3x5 − 71x4 − 597x3 + 2097x2 −
1971x + 567. With the help of your classmates, find the
x- and y- intercepts of the graph of f. Find the intervals on
which the funcƟon is increasing, the intervals on which it
is decreasing and the local extrema. Sketch the graph of f,
using more than one picture if necessary to show all of the
important features of the graph.

58. With the help of your classmates, create a list of five poly-
nomials with different degrees whose real zeros cannot be
found using any of the techniques in this secƟon.
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The Fundamental Theorem of Algebra
has since been proved many Ɵmes, using
many different methods, by many math-
emaƟcians. There are probably very few,
if any, results in mathemaƟcs with the
variety of proofs this result has. Unfor-
tunately, none of the proofs can be un-
derstood within the realm of this text,
but if the reader is sufficiently interested,
a collecƟon of proofs can be found at
this website.

4.4 Complex Zeros of Polynomials

4.4 Complex Zeros of Polynomials
In SecƟon 4.3, we were focused on finding the real zeros of a polynomial func-
Ɵon. In this secƟon, we expand our horizons and look for the non-real zeros as
well. Consider the polynomial p(x) = x2 + 1. The zeros of p are the soluƟons to
x2 + 1 = 0, or x2 = −1. This equaƟon has no real soluƟons, but you may recall
SecƟon 1.4 that we can formally extract the square roots of both sides to get
x = ±

√
−1. You may want to review the basics of complex numbers in SecƟon

1.4 before proceeding.

Supposewewish to find the zeros of f(x) = x2−2x+5. To solve the equaƟon
x2 − 2x + 5 = 0, we note that the quadraƟc doesn’t factor nicely, so we resort
to the QuadraƟc Formula, EquaƟon 16 and obtain

x =
−(−2)±

√
(−2)2 − 4(1)(5)
2(1)

=
2±

√
−16

2
=

2± 4i
2

= 1± 2i.

Two things are important to note. First, the zeros 1+ 2i and 1− 2i are complex
conjugates. If ever we obtain non-real zeros to a quadraƟc funcƟon with real
coefficients, the zeros will be a complex conjugate pair. (Do you see why?) Next,
we note that in Example 12, part 6, we found (x − [1 + 2i])(x − [1 − 2i]) =
x2 − 2x+ 5. This demonstrates that the factor theorem holds even for non-real
zeros, i.e, x = 1 + 2i is a zero of f, and, sure enough, (x − [1 + 2i]) is a factor
of f(x). It turns out that polynomial division works the same way for all complex
numbers, real and non-real alike, so the Factor and Remainder Theorems hold
as well. But how do we know if a general polynomial has any complex zeros at
all? We have many examples of polynomials with no real zeros. Can there be
polynomials with no zeroswhatsoever? The answer to that last quesƟon is “No.”
and the theorem which provides that answer is The Fundamental Theorem of
Algebra.

Theorem 27 The Fundamental Theorem of Algebra

Suppose f is a polynomial funcƟon with complex number coefficients of
degree n ≥ 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’ the-
orem in MathemaƟcs. Like the Intermediate Value Theorem, Theorem 19, the
Fundamental Theorem of Algebra guarantees the existence of at least one zero,
but gives us no algorithm to use in finding it. In fact, as we menƟoned in Sec-
Ɵon 4.3, there are polynomials whose real zeros, though they exist, cannot be
expressed using the ‘usual’ combinaƟons of arithmeƟc symbols, and must be
approximated. The authors are fully aware that the full impact and profound na-
ture of the Fundamental Theorem of Algebra is lost onmost students, and that’s
fine. It took mathemaƟcians literally hundreds of years to prove the theorem in
its full generality, and some of that history is recorded in this Wikipedia arƟcle.
Note that the Fundamental Theorem of Algebra applies to not only polynomial
funcƟons with real coefficients, but to those with complex number coefficients
as well.

Suppose f is a polynomial of degree n ≥ 1. The Fundamental Theorem of
Algebra guarantees us at least one complex zero, z1, and as such, the Factor
Theorem guarantees that f(x) factors as f(x) = (x− z1) q1(x) for a polynomial
funcƟon q1, of degree exactly n−1. If n−1 ≥ 1, then the Fundamental Theorem
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of Algebra guarantees a complex zero of q1 aswell, say z2, so then the Factor The-
orem gives us q1(x) = (x− z2) q2(x), and hence f(x) = (x− z1) (x− z2) q2(x).
We can conƟnue this process exactly n Ɵmes, at which point our quoƟent poly-
nomial qn has degree 0 so it’s a constant. This argument gives us the following
factorizaƟon theorem.

Theorem 28 Complex FactorizaƟon Theorem

Suppose f is a polynomial funcƟon with complex number coefficients.
If the degree of f is n and n ≥ 1, then f has exactly n com-
plex zeros, counƟng mulƟplicity. If z1, z2, …, zk are the disƟnct ze-
ros of f, with mulƟpliciƟes m1, m2, …, mk, respecƟvely, then f(x) =
a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)

mk .

Note that the value a in Theorem 28 is the leading coefficient of f(x) (Can
you see why?) and as such, we see that a polynomial is completely determined
by its zeros, their mulƟpliciƟes, and its leading coefficient. We put this theorem
to good use in the next example.

Example 78 Factoring using complex numbers
Let f(x) = 12x5 − 20x4 + 19x3 − 6x2 − 2x+ 1.

1. Find all of the complex zeros of f and state their mulƟpliciƟes.

2. Factor f(x) using Theorem 28

SÊ½çã®ÊÄ

1. Since f is a fiŌh degree polynomial, we know that we need to perform
at least three successful divisions to get the quoƟent down to a quadraƟc
funcƟon. At that point, we canfind the remaining zeros using theQuadraƟc
Formula, if necessary. Using the techniques developed in SecƟon 4.3, we
get

1
2 12 −20 19 −6 −2 1

↓ 6 −7 6 0 −1
1
2 12 −14 12 0 −2 0

↓ 6 −4 4 2
− 1

3 12 −8 8 4 0
↓ −4 4 −4

12 −12 12 0

Our quoƟent is 12x2 − 12x+ 12, whose zeros we find to be 1±i
√
3

2 . From
Theorem 28, we know f has exactly 5 zeros, counƟng mulƟpliciƟes, and as
such we have the zero 1

2 with mulƟplicity 2, and the zeros− 1
3 ,

1+i
√
3

2 and
1−i

√
3

2 , each of mulƟplicity 1.

2. Applying Theorem 28, we are guaranteed that f factors as

f(x) = 12
(
x− 1

2

)2(
x+

1
3

)(
x−

[
1+ i

√
3

2

])(
x−

[
1− i

√
3

2

])
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A true test of Theorem 28 (and a student’s meƩle!) would be to take the
factored form of f(x) in the previous example and mulƟply it out to see that it
really does reduce to the original formula f(x) = 12x5−20x4+19x3−6x2−2x+1.
(You really should do this once in your life to convince yourself that all of the
theory actually does work!) When factoring a polynomial using Theorem 28, we
say that it is factored completely over the complex numbers, meaning that it
is impossible to factor the polynomial any further using complex numbers. If
we wanted to completely factor f(x) over the real numbers then we would have
stopped short of finding the nonreal zeros of f and factored f using our work
from the syntheƟc division to write f(x) =

(
x− 1

2
)2 (x+ 1

3
) (

12x2 − 12x+ 12
)
,

or f(x) = 12
(
x− 1

2
)2 (x+ 1

3
) (

x2 − x+ 1
)
. Since the zeros of x2 − x + 1 are

nonreal, we call x2 − x+ 1 an irreducible quadraƟcmeaning it is impossible to
break it down any further using real numbers.

The last two results of the secƟon showus that, at least in theory, if we have a
polynomial funcƟon with real coefficients, we can always factor it down enough
so that any nonreal zeros come from irreducible quadraƟcs.

Theorem 29 Conjugate Pairs Theorem

If f is a polynomial funcƟon with real number coefficients and z is a zero
of f, then so is z.

To prove the theorem, suppose f is a polynomial with real number coeffi-
cients. Specifically, let f(x) = anxn + an−1xn−1 + . . . + a2x2 + a1x + a0. If z is a
zero of f, then f(z) = 0, whichmeans anzn+an−1zn−1+ . . .+a2z2+a1z+a0 = 0.
Next, we consider f (z) and apply Theorem 4 below.

f (z) = an (z)
n
+ an−1 (z)

n−1
+ . . .+ a2 (z)

2
+ a1z+ a0

= anzn + an−1zn−1 + . . .+ a2z2 + a1z+ a0 since (z)n = zn

= anzn + an−1zn−1 + . . .+ a2z2 + a1 z+ a0 since the coefficients are real
= anzn + an−1zn−1 + . . .+ a2z2 + a1z+ a0 since zw = zw
= anzn + an−1zn−1 + . . .+ a2z2 + a1z+ a0 since z+ w = z+ w
= f(z)
= 0
= 0

This shows that z is a zero of f. So, if f is a polynomial funcƟon with real
number coefficients, Theorem 29 tells us that if a+bi is a nonreal zero of f, then
so is a − bi. In other words, nonreal zeros of f come in conjugate pairs. The
Factor Theorem kicks in to give us both (x− [a+bi]) and (x− [a−bi]) as factors
of f(x) which means (x − [a + bi])(x − [a − bi]) = x2 + 2ax +

(
a2 + b2

)
is an

irreducible quadraƟc factor of f. As a result, we have our last theorem of the
secƟon.
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Theorem 30 Real FactorizaƟon Theorem

Suppose f is a polynomial funcƟon with real number coefficients. Then
f(x) can be factored into a product of linear factors corresponding to the
real zeros of f and irreducible quadraƟc factors which give the nonreal
zeros of f.

We now present an example which pulls together all of the major ideas of
this secƟon.

Example 79 Factoring over the complex numbers
Let f(x) = x4 + 64.

1. Use syntheƟc division to show that x = 2+ 2i is a zero of f.

2. Find the remaining complex zeros of f.

3. Completely factor f(x) over the complex numbers.

4. Completely factor f(x) over the real numbers.

SÊ½çã®ÊÄ

1. Remembering to insert the 0’s in the syntheƟc division tableau we have

2+ 2i 1 0 0 0 64
↓ 2+ 2i 8i −16+ 16i −64
1 2+ 2i 8i −16+ 16i 0

2. Since f is a fourth degree polynomial, we need to make two successful
divisions to get a quadraƟc quoƟent. Since 2+ 2i is a zero, we know from
Theorem 29 that 2− 2i is also a zero. We conƟnue our syntheƟc division
tableau.

2+ 2i 1 0 0 0 64
↓ 2+ 2i 8i −16+ 16i −64

2− 2i 1 2+ 2i 8i −16+ 16i 0
↓ 2− 2i 8− 8i 16− 16i
1 4 8 0

Our quoƟent polynomial is x2 + 4x+ 8. Using the quadraƟc formula, we
obtain the remaining zeros−2+ 2i and−2− 2i.

3. Using Theorem 28, we get f(x) = (x − [2 − 2i])(x − [2 + 2i])(x − [−2 +
2i])(x− [−2− 2i]).

4. We mulƟply the linear factors of f(x) which correspond to complex con-
jugate pairs. We find (x − [2 − 2i])(x − [2 + 2i]) = x2 − 4x + 8, and
(x − [−2 + 2i])(x − [−2 − 2i]) = x2 + 4x + 8. Our final answer is
f(x) =

(
x2 − 4x+ 8

) (
x2 + 4x+ 8

)
.

Our last example turns the tables and asks us to manufacture a polynomial
with certain properƟes of its graph and zeros.
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Example 80 ConstrucƟng a polynomial
Find a polynomial p of lowest degree that has integer coefficients and saƟsfies
all of the following criteria:

• the graph of y = p(x) touches (but doesn’t cross) the x-axis at
( 1
3 , 0
)

• x = 3i is a zero of p.

• as x → −∞, p(x) → −∞

• as x → ∞, p(x) → −∞

SÊ½çã®ÊÄ To solve this problem, wewill need a good understanding of the
relaƟonship between the x-intercepts of the graph of a funcƟon and the zeros of
a funcƟon, the Factor Theorem, the role of mulƟplicity, complex conjugates, the
Complex FactorizaƟon Theorem, and end behaviour of polynomial funcƟons. (In
short, you’ll needmost of themajor concepts of this chapter.) Since the graph of
p touches the x-axis at

( 1
3 , 0
)
, we know x = 1

3 is a zero of evenmulƟplicity. Since
we are aŌer a polynomial of lowest degree, we need x = 1

3 to have mulƟplicity
exactly 2. The Factor Theorem now tells us

(
x− 1

3
)2 is a factor of p(x). Since

x = 3i is a zero and our final answer is to have integer (real) coefficients, x =
−3i is also a zero. The Factor Theorem kicks in again to give us (x − 3i) and
(x + 3i) as factors of p(x). We are given no further informaƟon about zeros or
intercepts so we conclude, by the Complex FactorizaƟon Theorem that p(x) =
a
(
x− 1

3
)2

(x−3i)(x+3i) for some real number a. Expanding this, we get p(x) =
ax4 − 2a

3 x
3 + 82a

9 x2 − 6ax+ a. In order to obtain integer coefficients, we know
a must be an integer mulƟple of 9. Our last concern is end behavior. Since the
leading term of p(x) is ax4, we need a < 0 to get p(x) → −∞ as x → ±∞.
Hence, if we choose x = −9, we get p(x) = −9x4 + 6x3 − 82x2 + 54x− 9. We
can verify our handiwork using the techniques developed in this chapter.

This example concludes our study of polynomial funcƟons. (With the excep-
Ɵon of the Exercises on the next page, of course.) The last few secƟons have
contained what is considered by many to be ‘heavy’ MathemaƟcs. Like a heavy
meal, heavy MathemaƟcs takes Ɵme to digest. Don’t be overly concerned if it
doesn’t seem to sink in all at once, and pace yourself in the Exercises or you’re
liable to get mental cramps. But before we get to the Exercises, we’d like to offer
a bit of an epilogue.

Our main goal in presenƟng the material on the complex zeros of a poly-
nomial was to give the chapter a sense of completeness. Given that it can be
shown that some polynomials have real zeros which cannot be expressed using
the usual algebraic operaƟons, and sƟll others have no real zeros at all, it was
nice to discover that every polynomial of degree n ≥ 1 has n complex zeros. So
like we said, it gives us a sense of closure. But the observant reader will note
that we did not give any examples of applicaƟons which involve complex num-
bers. Students oŌenwonder when complex numbers will be used in ‘real-world’
applicaƟons. AŌer all, didn’t we call i the imaginary unit? How can imaginary
things be used in reality? It turns out that complex numbers are very useful
in many applied fields such as fluid dynamics, electromagneƟsm and quantum
mechanics, but most of the applicaƟons require MathemaƟcs well beyond Col-
lege Algebra to fully understand them. That does not mean you’ll never be be
able to understand them; in fact, it is the authors’ sincere hope that all of you
will reach a point in your studies when the glory, awe and splendour of complex
numbers are revealed to you. For now, however, the really good stuff is beyond
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the scope of this text. We invite you and your classmates to find a few examples
of complex number applicaƟons and see what you can make of them. A simple
Internet search with the phrase ‘complex numbers in real life’ should get you
started. Basic electronics classes are another place to look, but remember, they
might use the leƩer j where we have used i.

For the remainder of the text we will restrict our aƩenƟon to real numbers.
We do this primarily because the calculus in the later chapters of this text in-
volves only funcƟons of real variables. Also, lots of really cool scienƟfic things
don’t require any deep understanding of complex numbers to study them, but
they do need more MathemaƟcs like exponenƟal, logarithmic and trigonomet-
ric funcƟons. We believe it makes more sense pedagogically for you to learn
about those funcƟons now then take a course in Complex FuncƟon Theory in
your junior or senior year once you’ve completed the Calculus sequence. It is
in that course that the true power of the complex numbers is released. But for
now, in order to fully prepare you for life immediately aŌer College Algebra, we
will say that funcƟons like f(x) = 1

x2+1 have a domain of all real numbers, even
thoughwe know x2+1 = 0 has two complex soluƟons, namely x = ±i. Because
x2+1 > 0 for all real numbers x, the fracƟon 1

x2+1 is never undefined in the real
variable seƫng.

190



Exercises 4.4
Problems
In Exercises 1 – 22, find all of the zeros of the polynomial then
completely factor it over the real numbers and completely
factor it over the complex numbers.

1. f(x) = x2 − 4x+ 13

2. f(x) = x2 − 2x+ 5

3. f(x) = 3x2 + 2x+ 10

4. f(x) = x3 − 2x2 + 9x− 18

5. f(x) = x3 + 6x2 + 6x+ 5

6. f(x) = 3x3 − 13x2 + 43x− 13

7. f(x) = x3 + 3x2 + 4x+ 12

8. f(x) = 4x3 − 6x2 − 8x+ 15

9. f(x) = x3 + 7x2 + 9x− 2

10. f(x) = 9x3 + 2x+ 1

11. f(x) = 4x4 − 4x3 + 13x2 − 12x+ 3

12. f(x) = 2x4 − 7x3 + 14x2 − 15x+ 6

13. f(x) = x4 + x3 + 7x2 + 9x− 18

14. f(x) = 6x4 + 17x3 − 55x2 + 16x+ 12

15. f(x) = −3x4 − 8x3 − 12x2 − 12x− 5

16. f(x) = 8x4 + 50x3 + 43x2 + 2x− 4

17. f(x) = x4 + 9x2 + 20

18. f(x) = x4 + 5x2 − 24

19. f(x) = x5 − x4 + 7x3 − 7x2 + 12x− 12

20. f(x) = x6 − 64

21. f(x) = x4 − 2x3 + 27x2 − 2x+ 26 (Hint: x = i is one of the
zeros.)

22. f(x) = 2x4 + 5x3 + 13x2 + 7x + 5 (Hint: x = −1 + 2i is a
zero.)

In Exercises 23 – 27, create a polynomial f with real number
coefficients which has all of the desired characterisƟcs. You
may leave the polynomial in factored form.

23. • The zeros of f are c = ±1 and c = ±i

• The leading term of f(x) is 42x4

24. • c = 2i is a zero.

• the point (−1, 0) is a local minimum on the graph of
y = f(x)

• the leading term of f(x) is 117x4

25. • The soluƟons to f(x) = 0 are x = ±2 and x = ±7i

• The leading term of f(x) is−3x5

• The point (2, 0) is a local maximum on the graph of
y = f(x).

26. • f is degree 5.

• x = 6, x = i and x = 1− 3i are zeros of f

• as x → −∞, f(x) → ∞

27. • The leading term of f(x) is−2x3

• c = 2i is a zero

• f(0) = −16

28. Let z and w be arbitrary complex numbers. Show that
z w = zw and z = z.
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According to DefiniƟon 40, all polyno-
mial funcƟons are also raƟonal funcƟons,
since we can take q(x) = 1.

5: R�ã®ÊÄ�½ FçÄ�ã®ÊÄÝ
5.1 IntroducƟon to RaƟonal FuncƟons
If we add, subtract or mulƟply polynomial funcƟons according to the funcƟon
arithmeƟc rules defined in SecƟon2.4, wewill produce another polynomial func-
Ɵon. If, on the other hand, we divide two polynomial funcƟons, the result may
not be a polynomial. In this chapter we study raƟonal funcƟons - funcƟons
which are raƟos of polynomials.

DefiniƟon 40 RaƟonal FuncƟon

A raƟonal funcƟon is a funcƟon which is the raƟo of polynomial func-
Ɵons. Said differently, r is a raƟonal funcƟon if it is of the form

r(x) =
p(x)
q(x)

,

where p and q are polynomial funcƟons.

As we recall from SecƟon 2.3, we have domain issues any Ɵme the denomi-
nator of a fracƟon is zero. In the example below, we review this concept as well
as some of the arithmeƟc of raƟonal expressions.

Example 81 Domain of raƟonal funcƟons

Find the domain of the following raƟonal funcƟons. Write them in the form
p(x)
q(x)

for polynomial funcƟons p and q and simplify.

1. f(x) =
2x− 1
x+ 1

2. g(x) = 2− 3
x+ 1

3. h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

4. r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

SÊ½çã®ÊÄ

1. To find the domain of f, we proceed as we did in SecƟon 2.3: we find
the zeros of the denominator and exclude them from the domain. Seƫng
x+ 1 = 0 results in x = −1. Hence, our domain is (−∞,−1)∪ (−1,∞).
The expression f(x) is already in the form requested and when we check
for common factors among the numerator anddenominatorwefindnone,
so we are done.

2. Proceeding as before, we determine the domain of g by solving x+1 = 0.
As before, we find the domain of g is (−∞,−1)∪ (−1,∞). To write g(x)
in the form requested, we need to get a common denominator
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g(x) = 2− 3
x+ 1

=
2
1
− 3

x+ 1
=

(2)(x+ 1)
(1)(x+ 1)

− 3
x+ 1

=
(2x+ 2)− 3

x+ 1
=

2x− 1
x+ 1

This formula is now completely simplified.

3. The denominators in the formula for h(x) are both x2−1 whose zeros are
x = ±1. As a result, the domain of h is (−∞,−1) ∪ (−1, 1) ∪ (1,∞).
We now proceed to simplify h(x). Since we have the same denominator
in both terms, we subtract the numerators. We then factor the resulƟng
numerator and denominator, and cancel out the common factor.

h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

=

(
2x2 − 1

)
− (3x− 2)

x2 − 1

=
2x2 − 1− 3x+ 2

x2 − 1
=

2x2 − 3x+ 1
x2 − 1

=
(2x− 1)(x− 1)
(x+ 1)(x− 1)

=
(2x− 1)����(x− 1)
(x+ 1)����(x− 1)

=
2x− 1
x+ 1

4. To find the domain of r, it may help to temporarily rewrite r(x) as

r(x) =

2x2 − 1
x2 − 1
3x− 2
x2 − 1

We need to set all of the denominators equal to zero which means we
need to solve not only x2−1 = 0, but also

3x− 2
x2 − 1

= 0. Wefind x = ±1 for

the former and x = 2
3 for the laƩer. Our domain is (−∞,−1)∪

(
−1, 2

3
)
∪( 2

3 , 1
)
∪(1,∞). We simplify r(x) by rewriƟng the division asmulƟplicaƟon

by the reciprocal and then by cancelling the common factor

r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

=
2x2 − 1
x2 − 1

· x
2 − 1
3x− 2

=

(
2x2 − 1

) (
x2 − 1

)
(x2 − 1) (3x− 2)

=

(
2x2 − 1

)
����(
x2 − 1

)
����(
x2 − 1

)
(3x− 2)

=
2x2 − 1
3x− 2

A few remarks about Example 81 are in order. Note that the expressions
for f(x), g(x) and h(x) work out to be the same. However, only two of these
funcƟons are actually equal. Recall that funcƟons are ulƟmately sets of ordered
pairs (you should review SecƟons 2.1 and 2.2 if this statement caught you off
guard), so for two funcƟons to be equal, they need, among other things, to have
the same domain. Since f(x) = g(x) and f and g have the same domain, they are
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Figure 5.1: The graph of f(x) = 2x− 1
x+ 1

x f(x) (x, f(x))
−1.1 32 (−1.1, 32)

−1.01 302 (−1.01, 302)
−1.001 3002 (−1.001, 3002)

−1.0001 30002 (−1.001, 30002)

x f(x) (x, f(x))
−0.9 −28 (−0.9,−28)

−0.99 −298 (−0.99,−298)
−0.999 −2998 (−0.999,−2998)

−0.9999 −29998 (−0.9999,−29998)

Figure 5.2: Values of f(x) = 2x−1
x+1 near

x = −1

x f(x) ≈ (x, f(x)) ≈
−10 2.3333 (−10, 2.3333)

−100 2.0303 (−100, 2.0303)
−1000 2.0030 (−1000, 2.0030)

−10000 2.0003 (−10000, 2.0003)

x f(x) ≈ (x, f(x)) ≈
10 1.7273 (10, 1.7273)

100 1.9703 (100, 1.9703)
1000 1.9970 (1000, 1.9970)

10000 1.9997 (10000, 1.9997)

Figure 5.3: Values of f(x) =
2x− 1
x+ 1

for
large negaƟve and posiƟve values of x

As we shall see in the next secƟon, the
graphs of raƟonal funcƟons may, in fact,
cross their horizontal asymptotes. If this
happens, however, it does so only a finite
number of Ɵmes, and so for each choice
of x → −∞ and x → ∞, f(x) will ap-
proach c from either below (in the case
f(x) → c−) or above (in the case f(x) →
c+.) We leave f(x) → c generic in our def-
iniƟon, however, to allow this concept to
apply to less tame specimens in the Pre-
calculus zoo, such as Exercise 50 in Sec-
Ɵon 8.5.
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equal funcƟons. Even though the formula h(x) is the same as f(x), the domain
of h is different than the domain of f, and thus they are different funcƟons.

We now turn our aƩenƟon to the graphs of raƟonal funcƟons. Consider the
funcƟon f(x) =

2x− 1
x+ 1

from Example 81. Using GeoGebra calculator, we obtain
the graph in Figure 5.1

Two behaviours of the graph are worthy of further discussion. First, note
that the graph appears to ‘break’ at x = −1. We know from our last example
that x = −1 is not in the domain of f which means f(−1) is undefined. When
we make a table of values to study the behaviour of f near x = −1 we see that
we can get ‘near’ x = −1 from two direcƟons. We can choose values a liƩle
less than−1, for example x = −1.1, x = −1.01, x = −1.001, and so on. These
values are said to ‘approach −1 from the leŌ.’ Similarly, the values x = −0.9,
x = −0.99, x = −0.999, etc., are said to ‘approach −1 from the right.’ If we
make the two tables in Figure 5.2, we find that the numerical results confirm
what we see graphically.

As the x values approach−1 from the leŌ, the funcƟon values become larger
and larger posiƟve numbers. (We would need Calculus to confirm this analyƟ-
cally.) We express this symbolically by staƟng as x → −1−, f(x) → ∞. Simi-
larly, using analogous notaƟon, we conclude from the table that as x → −1+,
f(x) → −∞. For this type of unbounded behaviour, we say the graph of y = f(x)
has a verƟcal asymptote of x = −1. Roughly speaking, this means that near
x = −1, the graph looks very much like the verƟcal line x = −1.

The other feature worthy of note about the graph of y = f(x) is that it seems
to ‘level off’ on the leŌ and right hand sides of the screen. This is a statement
about the end behaviour of the funcƟon. Aswe discussed in SecƟon 4.1, the end
behaviour of a funcƟon is its behaviour as x aƩains larger and larger negaƟve
values without bound (here, the word ‘larger’ means larger in absolute value),
x → −∞, and as x becomes large without bound, x → ∞.

From the tables in Figure 5.3, we see that as x → −∞, f(x) → 2+ and as
x → ∞, f(x) → 2−. Here the ‘+’ means ‘from above’ and the ‘−’ means ‘from
below’. In this case, we say the graph of y = f(x) has a horizontal asymptote
of y = 2. This means that the end behaviour of f resembles the horizontal line
y = 2, which explains the ‘levelling off’ behaviour we see in Figure 5.1. We
formalize the concepts of verƟcal and horizontal asymptotes in the following
definiƟons.

DefiniƟon 41 VerƟcal Asymptote

The line x = c is called a verƟcal asymptote of the graph of a funcƟon
y = f(x) if as x → c− or as x → c+, either f(x) → ∞ or f(x) → −∞.

DefiniƟon 42 Horizontal Asymptote

The line y = c is called a horizontal asymptote of the graph of a funcƟon
y = f(x) if as x → −∞ or as x → ∞, f(x) → c.

Note that in DefiniƟon 42, we write f(x) → c (not f(x) → c+ or f(x) → c−)
because we are unconcerned fromwhich direcƟon the values f(x) approach the
value c, just as long as they do so.
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x h(x) ≈ (x, h(x)) ≈
0.9 0.4210 (0.9, 0.4210)

0.99 0.4925 (0.99, 0.4925)
0.999 0.4992 (0.999, 0.4992)

0.9999 0.4999 (0.9999, 0.4999)

x h(x) ≈ (x, h(x)) ≈
1.1 0.5714 (1.1, 0.5714)

1.01 0.5075 (1.01, 0.5075)
1.001 0.5007 (1.001, 0.5007)

1.0001 0.5001 (1.0001, 0.5001)

Figure 5.4: Values of h(x) = 2x2−1
x2−1 − 3x−2

x2−1
near x = 1

In Calculus, we will see how these ‘holes’
in graphs can be ‘plugged’ once we’ve
made a more advanced study of conƟnu-
ity.

x

y

−4−3−2 1 2 3 4−1
−2
−3
−4
−5
−6

1

3
4
5
6
7
8

Figure 5.5: The graph y = h(x) showing
asymptotes and the ‘hole’

In English, Theorem 31 says that if x = c is
not in the domain of r but, when we sim-
plify r(x), it no longer makes the denom-
inator 0, then we have a hole at x = c.
Otherwise, the line x = c is a verƟcal
asymptote of the graph of y = r(x). In
other words, Theorem 31 tells us ‘How
to tell your asymptote from a hole in the
graph.’
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In our discussion following Example 81, we determined that, despite the fact
that the formula for h(x) reduced to the same formula as f(x), the funcƟons f and
h are different, since x = 1 is in the domain of f, but x = 1 is not in the domain

of h. If we graph h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

using a graphing calculator, we are
surprised to find that the graph looks idenƟcal to the graph of y = f(x). There
is a verƟcal asymptote at x = −1, but near x = 1, everything seem fine. Tables
of values provide numerical evidence which supports the graphical observaƟon:
see Figure 5.4.

We see that as x → 1−, h(x) → 0.5− and as x → 1+, h(x) → 0.5+. In
other words, the points on the graph of y = h(x) are approaching (1, 0.5), but
since x = 1 is not in the domain of h, it would be inaccurate to fill in a point
at (1, 0.5). As we’ve done in past secƟons when something like this occurs (for
instance, graphing piecewise defined funcƟons in SecƟon 2.5), we put an open
circle (also called a hole in this case) at (1, 0.5). Figure 5.5 is a detailed graph of
y = h(x), with the verƟcal and horizontal asymptotes as dashed lines.

Neither x = −1 nor x = 1 are in the domain of h, yet the behaviour of the
graph of y = h(x) is drasƟcally different near these x-values. The reason for
this lies in the second to last step when we simplified the formula for h(x) in

Example 81, where we had h(x) =
(2x− 1)(x− 1)
(x+ 1)(x− 1)

. The reason x = −1 is not

in the domain of h is because the factor (x + 1) appears in the denominator of
h(x); similarly, x = 1 is not in the domain of h because of the factor (x − 1)
in the denominator of h(x). The major difference between these two factors is
that (x − 1) cancels with a factor in the numerator whereas (x + 1) does not.
Loosely speaking, the trouble caused by (x− 1) in the denominator is cancelled
away while the factor (x+1) remains to cause mischief. This is why the graph of
y = h(x) has a verƟcal asymptote at x = −1 but only a hole at x = 1. These ob-
servaƟons are generalized and summarized in the theorem below, whose proof
is found in Calculus.

Theorem 31 LocaƟon of VerƟcal Asymptotes and Holes

Suppose r is a raƟonal funcƟon which can be wriƩen as r(x) =
p(x)
q(x)

where p and q have no common zeros (in other words, r(x) is in lowest
terms). Let c be a real number which is not in the domain of r.

• If q(c) ̸= 0, then the graph of y = r(x) has a hole at
(
c,

p(c)
q(c)

)
.

• If q(c) = 0, then the line x = c is a verƟcal asymptote of the graph
of y = r(x).
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Figure 5.6: The graph y = f(x) in Example
82

Figure 5.7: The graph y = g(x) in Example
82

Figure 5.8: The graph y = g(x) in Example
82

Figure 5.9: The graph y = r(x) in Example
82

5.1 IntroducƟon to RaƟonal FuncƟons

Example 82 Finding verƟcal asymptotes
Find the verƟcal asymptotes of, and/or holes in, the graphs of the following ra-
Ɵonal funcƟons. Verify your answers using soŌware or a graphing calculator,
and describe the behaviour of the graph near them using proper notaƟon.

1. f(x) =
2x

x2 − 3

2. g(x) =
x2 − x− 6
x2 − 9

3. h(x) =
x2 − x− 6
x2 + 9

4. r(x) =
x2 − x− 6
x2 + 4x+ 4

SÊ½çã®ÊÄ

1. To use Theorem 31, we first find all of the real numbers which aren’t in the
domain of f. To do so, we solve x2 − 3 = 0 and get x = ±

√
3. Since the

expression f(x) is in lowest terms, there is no cancellaƟon possible, andwe
conclude that the lines x = −

√
3 and x =

√
3 are verƟcal asymptotes to

the graph of y = f(x). Ploƫng the funcƟon inGeoGebra verifies this claim,
and from the graph in Figure 5.6, we see that as x → −

√
3−, f(x) → −∞,

as x → −
√
3+, f(x) → ∞, as x →

√
3−, f(x) → −∞, and finally as

x →
√
3+, f(x) → ∞.

2. Solving x2 − 9 = 0 gives x = ±3. In lowest terms g(x) =
x2 − x− 6
x2 − 9

=

(x− 3)(x+ 2)
(x− 3)(x+ 3)

=
x+ 2
x+ 3

. Since x = −3 conƟnues to make trouble in the

denominator, we know the line x = −3 is a verƟcal asymptote of the graph
of y = g(x). Since x = 3 no longer produces a 0 in the denominator, we
have a hole at x = 3. To find the y-coordinate of the hole, we subsƟtute
x = 3 into

x+ 2
x+ 3

and find the hole is at
(
3, 5

6
)
. When we graph y = g(x)

using GeoGebra, we clearly see the verƟcal asymptote at x = −3, but
everything seems calm near x = 3: see Figure 5.7. Hence, as x → −3−,
g(x) → ∞, as x → −3+, g(x) → −∞, as x → 3−, g(x) → 5

6
−, and as

x → 3+, g(x) → 5
6
+.

3. The domain of h is all real numbers, since x2+9 = 0 has no real soluƟons.
Accordingly, the graph of y = h(x) is devoid of both verƟcal asymptotes
and holes, as see in Figure 5.8.

4. Seƫng x2 + 4x + 4 = 0 gives us x = −2 as the only real number of

concern. Simplifying, we see r(x) =
x2 − x− 6
x2 + 4x+ 4

=
(x− 3)(x+ 2)

(x+ 2)2
=

x− 3
x+ 2

. Since x = −2 conƟnues to produce a 0 in the denominator of
the reduced funcƟon, we know x = −2 is a verƟcal asymptote to the
graph. The graph in Figure 5.9 bears this out, and, moreover, we see that
as x → −2−, r(x) → ∞ and as x → −2+, r(x) → −∞.

Our next example gives us a physical interpretaƟon of a verƟcal asymptote.
This type of model arises from a family of equaƟons cheerily named ‘dooms-
day’ equaƟons. (These funcƟons arise in DifferenƟal EquaƟons. The unfortu-
nate name will make sense shortly.)
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t P(t)
4.9 10000

4.99 1000000
4.999 100000000

4.9999 10000000000

Figure 5.10: The behaviour of P as t →
5−

Figure 5.11: The graph of P(t), for 0 ≤
t < 5

Chapter 5 RaƟonal FuncƟons

Example 83 Doomsday populaƟon model
A mathemaƟcal model for the populaƟon P, in thousands, of a certain species
of bacteria, t days aŌer it is introduced to an environment is given by P(t) =
100

(5− t)2
, 0 ≤ t < 5.

1. Find and interpret P(0).

2. When will the populaƟon reach 100,000?

3. Determine the behaviour of P as t → 5−. Interpret this result graphically
and within the context of the problem.

SÊ½çã®ÊÄ

1. SubsƟtuƟng t = 0 gives P(0) =
100

(5− 0)2
= 4, whichmeans 4000 bacteria

are iniƟally introduced into the environment.

2. To find when the populaƟon reaches 100,000, we first need to remem-
ber that P(t) is measured in thousands. In other words, 100,000 bac-
teria corresponds to P(t) = 100. SubsƟtuƟng for P(t) gives the equa-

Ɵon
100

(5− t)2
= 100. Clearing denominators and dividing by 100 gives

(5 − t)2 = 1, which, aŌer extracƟng square roots, produces t = 4 or
t = 6. Of these two soluƟons, only t = 4 in our domain, so this is the
soluƟon we keep. Hence, it takes 4 days for the populaƟon of bacteria to
reach 100,000.

3. To determine the behaviour of P as t → 5−, we make the table in Figure
5.10.

In other words, as t → 5−, P(t) → ∞. Graphically, the line t = 5 is a ver-
Ɵcal asymptote of the graph of y = P(t): see Figure 5.11. Physically, this
means that the populaƟon of bacteria is increasing without bound as we
near 5 days, which cannot actually happen. For this reason, t = 5 is called
the ‘doomsday’ for this populaƟon. There is no way any environment can
support infinitely many bacteria, so shortly before t = 5 the environment
would collapse.

Now that we have thoroughly invesƟgated verƟcal asymptotes, we can turn
our aƩenƟon to horizontal asymptotes. The next theorem tells us when to ex-
pect horizontal asymptotes.
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More specifically, as x → −∞, f(x) →
2+, and as x → ∞, f(x) → 2−. NoƟce
that the graph gets close to the same y
value as x → −∞ or x → ∞. This means
that the graph can have only one horizon-
tal asymptote if it is going to have one at
all. Thus we were jusƟfied in using ‘the’
in the previous theorem.

5.1 IntroducƟon to RaƟonal FuncƟons

Theorem 32 LocaƟon of Horizontal Asymptotes

Suppose r is a raƟonal funcƟon and r(x) =
p(x)
q(x)

, where p and q are

polynomial funcƟons with leading coefficients a and b, respecƟvely.

• If the degree of p(x) is the same as the degree of q(x), then y = a
b

is the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is less than the degree of q(x), then y = 0 is
the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is greater than the degree of q(x), then the
graph of y = r(x) has no horizontal asymptotes.

Like Theorem31, Theorem32 is proved using Calculus. Nevertheless, we can
understand the idea behind it using our example f(x) =

2x− 1
x+ 1

. If we interpret
f(x) as a division problem, (2x− 1)÷ (x+ 1), we find that the quoƟent is 2 with
a remainder of−3. Using what we know about polynomial division, specifically
Theorem 22, we get 2x − 1 = 2(x + 1) − 3. Dividing both sides by (x + 1)

gives
2x− 1
x+ 1

= 2 − 3
x+ 1

. (You may remember this as the formula for g(x) in

Example 81.) As x becomes unbounded in either direcƟon, the quanƟty
3

x+ 1
gets closer and closer to 0 so that the values of f(x) become closer and closer
(as seen in the tables in Figure 5.3) to 2. In symbols, as x → ±∞, f(x) → 2, and
we have the result.

AlternaƟvely, we can usewhatwe know about end behaviour of polynomials
to help us understand this theorem. From Theorem 20, we know the end be-
haviour of a polynomial is determined by its leading term. Applying this to the
numerator and denominator of f(x), we get that as x → ±∞, f(x) =

2x− 1
x+ 1

≈
2x
x

= 2. This last approach is useful in Calculus, and, indeed, is made rigorous
there. (Keep this in mind for the remainder of this paragraph.) Applying this

reasoning to the general case, suppose r(x) =
p(x)
q(x)

where a is the leading coef-

ficient of p(x) and b is the leading coefficient of q(x). As x → ±∞, r(x) ≈ axn

bxm
,

where n and m are the degrees of p(x) and q(x), respecƟvely. If the degree of
p(x) and the degree of q(x) are the same, then n = m so that r(x) ≈ a

b , which
means y = a

b is the horizontal asymptote in this case. If the degree of p(x) is less
than the degree of q(x), then n < m, som− n is a posiƟve number, and hence,
r(x) ≈ a

bxm−n → 0 as x → ±∞. If the degree of p(x) is greater than the degree

of q(x), then n > m, and hence n−m is a posiƟve number and r(x) ≈ axn−m

b
,

which becomes unbounded as x → ±∞. As we said before, if a raƟonal func-
Ɵon has a horizontal asymptote, then it will have only one. (This is not true for
other types of funcƟons we shall see in later chapters.)
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y = f(x)

y = g(x)

y = h(x)

Figure 5.12: Graphs of the three funcƟons
in Example 84

Though the populaƟon in Example 85 is
more accurately modelled with the func-
Ɵons in Chapter 7, we can approximate it
(using Calculus, of course!) using a raƟo-
nal funcƟon.

Chapter 5 RaƟonal FuncƟons

Example 84 Finding horizontal asymptotes
List the horizontal asymptotes, if any, of the graphs of the following funcƟons.
Verify your answers using a graphing calculator, and describe the behaviour of
the graph near them using proper notaƟon.

1. f(x) =
5x

x2 + 1

2. g(x) =
x2 − 4
x+ 1

3. h(x) =
6x3 − 3x+ 1

5− 2x3

SÊ½çã®ÊÄ

1. The numerator of f(x) is 5x, which has degree 1. The denominator of f(x)
is x2+1, which has degree 2. Applying Theorem32, y = 0 is the horizontal
asymptote. Sure enough, we see from the graph that as x → −∞, f(x) →
0− and as x → ∞, f(x) → 0+.

2. The numerator of g(x), x2 − 4, has degree 2, but the degree of the de-
nominator, x + 1, has degree 1. By Theorem 32, there is no horizontal
asymptote. From the graph, we see that the graph of y = g(x) doesn’t
appear to level off to a constant value, so there is no horizontal asymptote.
(Sit Ɵght! We’ll revisit this funcƟon and its end behaviour shortly.)

3. The degrees of the numerator and denominator of h(x) are both three,
so Theorem 32 tells us y = 6

−2 = −3 is the horizontal asymptote. We
see from the calculator’s graph that as x → −∞, h(x) → −3+, and as
x → ∞, h(x) → −3−.

Our next example of the secƟon gives us a real-world applicaƟon of a hori-
zontal asymptote.
Example 85 Spread of the flu virus
The number of students N at local college who have had the flu t months aŌer
the semester begins can be modelled by the formula N(t) = 500 − 450

1+ 3t
for

t ≥ 0.

1. Find and interpret N(0).

2. How long will it take unƟl 300 students will have had the flu?

3. Determine the behaviour of N as t → ∞. Interpret this result graphically
and within the context of the problem.

SÊ½çã®ÊÄ

1. N(0) = 500 − 450
1+ 3(0)

= 50. This means that at the beginning of the

semester, 50 students have had the flu.

2. We set N(t) = 300 to get 500 − 450
1+ 3t

= 300 and solve. IsolaƟng the

fracƟon gives
450

1+ 3t
= 200. Clearing denominators gives 450 = 200(1+

3t). Finally, we get t = 5
12 . This means it will take 5

12 months, or about 13
days, for 300 students to have had the flu.
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t N(t)
10 ≈ 485.48

100 ≈ 498.50
1000 ≈ 499.85

10000 ≈ 499.98

Figure 5.13: The long-term behaviour of
N(t)

x g(x) x− 1
−10 ≈ −10.6667 −11

−100 ≈ −100.9697 −101
−1000 ≈ −1000.9970 −1001

−10000 ≈ −10000.9997 −10001

Figure 5.14: The graph y =
x2 − 4
x+ 1

as
x → −∞

x g(x) x− 1
10 ≈ 8.7273 9

100 ≈ 98.9703 99
1000 ≈ 998.9970 999

10000 ≈ 9998.9997 9999

Figure 5.15: The graph y =
x2 − 4
x+ 1

as
x → +∞

5.1 IntroducƟon to RaƟonal FuncƟons

3. To determine the behaviour ofN as t → ∞, we can use the table in Figure
5.13.

The table suggests that as t → ∞, N(t) → 500. (More specifically, 500−.)
This means as Ɵme goes by, only a total of 500 students will have ever had
the flu.

We close this secƟonwith a discussion of the third (and final!) kind of asymp-
tote which can be associated with the graphs of raƟonal funcƟons. Let us return

to the funcƟon g(x) =
x2 − 4
x+ 1

in Example 84. Performing long division, (see

the remarks following Theorem 32) we get g(x) =
x2 − 4
x+ 1

= x − 1 − 3
x+ 1

.

Since the term
3

x+ 1
→ 0 as x → ±∞, it stands to reason that as x becomes

unbounded, the funcƟon values g(x) = x− 1− 3
x+ 1

≈ x− 1. Geometrically,
this means that the graph of y = g(x) should resemble the line y = x − 1 as
x → ±∞. We see this play out both numerically and graphically in Figures 5.14
and 5.15.

The way we symbolize the relaƟonship between the end behaviour of y =
g(x)with that of the line y = x−1 is to write ‘as x → ±∞, g(x) → x−1.’ In this
case, we say the line y = x − 1 is a slant asymptote (or ‘oblique’ asymptote)
to the graph of y = g(x). Informally, the graph of a raƟonal funcƟon has a slant
asymptote if, as x → ∞ or as x → −∞, the graph resembles a non-horizontal,
or ‘slanted’ line. Formally, we define a slant asymptote as follows.

DefiniƟon 43 Slant Asymptote

The line y = mx + b where m ̸= 0 is called a slant asymptote of the
graph of a funcƟon y = f(x) if as x → −∞ or as x → ∞, f(x) → mx+ b.

A few remarks are in order. First, note that the sƟpulaƟonm ̸= 0 inDefiniƟon
43 is what makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when
m = 0 in which case we’d have a horizontal asymptote. Secondly, while we
have moƟvated what me mean intuiƟvely by the notaƟon ‘f(x) → mx+ b,’ like
so many ideas in this secƟon, the formal definiƟon requires Calculus. Another
way to express this senƟment, however, is to rephrase ‘f(x) → mx+b’ as ‘f(x)−
(mx + b) → 0.’ In other words, the graph of y = f(x) has the slant asymptote
y = mx + b if and only if the graph of y = f(x) − (mx + b) has a horizontal
asymptote y = 0.

Our next task is to determine the condiƟons under which the graph of a
raƟonal funcƟon has a slant asymptote, and if it does, how to find it. In the case

of g(x) =
x2 − 4
x+ 1

, the degree of the numerator x2 − 4 is 2, which is exactly
one more than the degree if its denominator x + 1 which is 1. This results in a
linear quoƟent polynomial, and it is this quoƟent polynomial which is the slant
asymptote. Generalizing this situaƟon gives us the following theorem. (Once
again, this theorem is brought to you courtesy of Theorem 22 and Calculus.)
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Figure 5.16: The graph y = f(x) in Exam-
ple 86

Note that we are purposefully avoiding
notaƟon like ‘as x → ∞, f(x) → (−x +
3)+. While it is possible to define these
noƟons formally with Calculus, it is not
standard to do so. Besides, with the in-
troducƟon of the symbol ‘‽’ in the next
secƟon, the authors feel we are in enough
trouble already.

Figure 5.17: The graph y = g(x) in Exam-
ple 86

Note that in part 2 of Example 86 the
graph of g actually coincides with its slant
asymptote. While the word ‘asymptote’
has the connotaƟon of ‘approaching but
not equalling,’ DefiniƟons 42 and 43 invite
the same kind of pathologies we sawwith
DefiniƟons 28 in SecƟon 2.5.

Chapter 5 RaƟonal FuncƟons

Theorem 33 DeterminaƟon of Slant Asymptotes

Suppose r is a raƟonal funcƟon and r(x) =
p(x)
q(x)

, where the degree of

p is exactly one more than the degree of q. Then the graph of y = r(x)
has the slant asymptote y = L(x)where L(x) is the quoƟent obtained by
dividing p(x) by q(x).

In the same way that Theorem 32 gives us an easy way to see if the graph

of a raƟonal funcƟon r(x) =
p(x)
q(x)

has a horizontal asymptote by comparing the

degrees of the numerator and denominator, Theorem 33 gives us an easy way
to check for slant asymptotes. Unlike Theorem 32, which gives us a quick way to
find the horizontal asymptotes (if any exist), Theorem 33 gives us no such ‘short-
cut’. If a slant asymptote exists, we have no recourse but to use long division to
find it. (That’s OK, though. In the next secƟon, we’ll use long division to analyze
end behaviour and it’s worth the effort!)

Example 86 Finding slant asymptotes
Find the slant asymptotes of the graphs of the following funcƟons if they exist.
Verify your answers using soŌware or a graphing calculator and describe the
behaviour of the graph near them using proper notaƟon.

1. f(x) =
x2 − 4x+ 2

1− x

2. g(x) =
x2 − 4
x− 2

3. h(x) =
x3 + 1
x2 − 4

SÊ½çã®ÊÄ

1. The degree of the numerator is 2 and the degree of the denominator is
1, so Theorem 33 guarantees us a slant asymptote. To find it, we divide
1 − x = −x + 1 into x2 − 4x + 2 and get a quoƟent of −x + 3, so our
slant asymptote is y = −x + 3. We confirm this graphically in Figure
5.16, and we see that as x → −∞, the graph of y = f(x) approaches the
asymptote from below, and as x → ∞, the graph of y = f(x) approaches
the asymptote from above.

2. Aswith the previous example, the degree of the numerator g(x) =
x2 − 4
x− 2

is 2 and the degree of the denominator is 1, so Theorem 33 applies. In this
case,

g(x) =
x2 − 4
x− 2

=
(x+ 2)(x− 2)

(x− 2)
=

(x+ 2)����(x− 2)

����: 1
(x− 2)

= x+ 2, x ̸= 2

so we have that the slant asymptote y = x + 2 is idenƟcal to the graph
of y = g(x) except at x = 2 (where the laƩer has a ‘hole’ at (2, 4).) The
graph (using GeoGebra) in Figure 5.17 supports this claim.
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Figure 5.18: The graph y = h(x) in Exam-
ple 86

5.1 IntroducƟon to RaƟonal FuncƟons

3. For h(x) =
x3 + 1
x2 − 4

, the degree of the numerator is 3 and the degree of
the denominator is 2 so again, we are guaranteed the existence of a slant
asymptote. The long division

(
x3 + 1

)
÷
(
x2 − 4

)
gives a quoƟent of just

x, so our slant asymptote is the line y = x. The graph confirms this, and
we find that as x → −∞, the graph of y = h(x) approaches the asymp-
tote from below, and as x → ∞, the graph of y = h(x) approaches the
asymptote from above: see Figure 5.18.

The reader may be a bit disappointed with the authors at this point owing
to the fact that in Examples 82, 84, and 86, we used the calculator to deter-
mine funcƟon behaviour near asymptotes. We recƟfy that in the next secƟon
where we, in excruciaƟng detail, demonstrate the usefulness of ‘number sense’
to reveal this behaviour analyƟcally.
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Exercises 5.1
Problems
In Exercises 1 – 18, for the given raƟonal funcƟon f:

• Find the domain of f.

• IdenƟfy any verƟcal asymptotes of the graph of y =
f(x).

• IdenƟfy any holes in the graph.

• Find the horizontal asymptote, if it exists.

• Find the slant asymptote, if it exists.

• Graph the funcƟon using a graphing uƟlity and de-
scribe the behaviour near the asymptotes.

1. f(x) = x
3x− 6

2. f(x) = 3+ 7x
5− 2x

3. f(x) = x
x2 + x− 12

4. f(x) = x
x2 + 1

5. f(x) = x+ 7
(x+ 3)2

6. f(x) = x3 + 1
x2 − 1

7. f(x) = 4x
x2 + 4

8. f(x) = 4x
x2 − 4

9. f(x) = x2 − x− 12
x2 + x− 6

10. f(x) = 3x2 − 5x− 2
x2 − 9

11. f(x) = x3 + 2x2 + x
x2 − x− 2

12. f(x) = x3 − 3x+ 1
x2 + 1

13. f(x) = 2x2 + 5x− 3
3x+ 2

14. f(x) = −x3 + 4x
x2 − 9

15. f(x) = −5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

16. f(x) = x3

1− x

17. f(x) = 18− 2x2

x2 − 9

18. f(x) = x3 − 4x2 − 4x− 5
x2 + x+ 1

19. The cost C in dollars to remove p% of the invasive species
of IppizuƟ fish from Sasquatch Pond is given by

C(p) = 1770p
100− p

, 0 ≤ p < 100

(a) Find and interpret C(25) and C(95).

(b) What does the verƟcal asymptote at x = 100 mean
within the context of the problem?

(c) What percentage of the IppizuƟ fish can you remove
for $40000?

20. In Exercise 72 in SecƟon 2.3, the populaƟon of Sasquatch
in Portage County was modeled by the funcƟon

P(t) = 150t
t+ 15

,

where t = 0 represents the year 1803. Find the horizon-
tal asymptote of the graph of y = P(t) and explain what it
means.

21. Recall from Example 29 that the cost C (in dollars) to make
x dOpi media players is C(x) = 100x+ 2000, x ≥ 0.

(a) Find a formula for the average cost C(x). Recall:
C(x) = C(x)

x .

(b) Find and interpret C(1) and C(100).

(c) Howmany dOpis need to be produced so that the av-
erage cost per dOpi is $200?

(d) Interpret the behaviour of C(x) as x → 0+. (HINT:
You may want to find the fixed cost C(0) to help in
your interpretaƟon.)

(e) Interpret the behaviour of C(x) as x → ∞. (HINT: You
may want to find the variable cost (defined in Exam-
ple 45 in SecƟon 3.1) to help in your interpretaƟon.)
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Recall that at this stage (prior to dis-
cussing calculus), conƟnuity of a func-
Ɵon means that its graph is devoid of any
breaks, jumps or holes. We’ll define con-
Ɵnuity more carefully once we’ve intro-
duced limits.

x

y

1
2

−4−3−2 1 2 3 4
−1

−2

−3

−4

−5

−6

1

3

4

5

6

7

8

Figure 5.19: The graph y = h(x) from Ex-
ample 81

−1 1
2

1

(+) ‽ (−) 0 (+) ‽ (+)

Figure 5.20: The sign diagram for the
funcƟon h(x) from Example 81

5.2 Graphs of RaƟonal FuncƟons

5.2 Graphs of RaƟonal FuncƟons

In this secƟon, we take a closer look at graphing raƟonal funcƟons. In SecƟon
5.1, we learned that the graphs of raƟonal funcƟonsmay have holes in them and
could have verƟcal, horizontal and slant asymptotes. Theorems 31, 32 and33 tell
us exactly when andwhere these behaviours will occur, and if we combine these
results with what we already know about graphing funcƟons, we will quickly be
able to generate reasonable graphs of raƟonal funcƟons.

One of the standard tools we will use is the sign diagram which was first
introduced in SecƟon 3.4, and then revisited in SecƟon 4.1. In those secƟons,
we operated under the belief that a funcƟon couldn’t change its sign without
its graph crossing through the x-axis. The major theorem we used to jusƟfy this
belief was the Intermediate Value Theorem, Theorem 19. It turns out the In-
termediate Value Theorem applies to all conƟnuous funcƟons, not just polyno-
mials. Although raƟonal funcƟons are conƟnuous on their domains, (another
result from Calculus) Theorem 31 tells us that verƟcal asymptotes and holes oc-
cur at the values excluded from their domains. In otherwords, raƟonal funcƟons
aren’t conƟnuous at these excluded valueswhich leaves open the possibility that
the funcƟon could change signwithout crossing through the x-axis. Consider the
graph of y = h(x) from Example 81, reproduced in Figure 5.19 for convenience.
We have added its x-intercept at

( 1
2 , 0
)
for the discussion that follows. Suppose

we wish to construct a sign diagram for h(x). Recall that the intervals where
h(x) > 0, or (+), correspond to the x-values where the graph of y = h(x) is
above the x-axis; the intervals on which h(x) < 0, or (−) correspond to where
the graph is below the x-axis.

As we examine the graph of y = h(x), reading from leŌ to right, we note that
from (−∞,−1), the graph is above the x-axis, so h(x) is (+) there. At x = −1,
we have a verƟcal asymptote, at which point the graph ‘jumps’ across the x-axis.
On the interval

(
−1, 1

2
)
, the graph is below the x-axis, so h(x) is (−) there. The

graph crosses through the x-axis at
( 1
2 , 0
)
and remains above the x-axis unƟl

x = 1, where we have a ‘hole’ in the graph. Since h(1) is undefined, there is
no sign here. So we have h(x) as (+) on the interval

( 1
2 , 1
)
. ConƟnuing, we see

that on (1,∞), the graph of y = h(x) is above the x-axis, so we mark (+) there.
To construct a sign diagram from this informaƟon, we not only need to denote
the zero of h, but also the places not in the domain of h. As is our custom, we
write ‘0’ above 1

2 on the sign diagram to remind us that it is a zero of h. We need
a different notaƟon for−1 and 1, and we have chosen to use ‘‽’ - a nonstandard
symbol called the interrobang. We use this symbol to convey a sense of surprise,
cauƟon and wonderment - an appropriate aƫtude to take when approaching
these points. The moral of the story is that when construcƟng sign diagrams for
raƟonal funcƟons, we include the zeros as well as the values excluded from the
domain. The final result is shown in Figure 5.20.
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Chapter 5 RaƟonal FuncƟons

Key Idea 23 Steps for ConstrucƟng a Sign Diagram for a RaƟonal
FuncƟon

Suppose r is a raƟonal funcƟon.

1. Place any values excluded from the domain of r on the number line
with an ‘‽’ above them.

2. Find the zeros of r and place them on the number line with the
number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1
and 2.

4. Determine the sign of r(x) for each test value in step 3, and write
that sign above the corresponding interval.

Wenowpresent our procedure for graphing raƟonal funcƟons and apply it to
a few exhausƟve examples. Please note that we decrease the amount of detail
given in the explanaƟons as we move through the examples. The reader should
be able to fill in any details in those steps which we have abbreviated.

Key Idea 24 Steps for Graphing RaƟonal FuncƟons

Suppose r is a raƟonal funcƟon. To plot the graph y = r(x), we use the
following steps:

1. Find the domain of r.

2. Reduce r(x) to lowest terms, if applicable.

3. Find the x- and y-intercepts of the graph of y = r(x), if they exist.

4. Determine the locaƟon of any verƟcal asymptotes or holes in the
graph, if they exist. Analyze the behaviour of r on either side of
the verƟcal asymptotes, if applicable.

5. Analyze the end behaviour of r. Find the horizontal or slant asymp-
tote, if one exists.

6. Use a sign diagram and plot addiƟonal points, as needed, to sketch
the graph of y = r(x).

Example 87 Graphing a raƟonal funcƟon
Sketch a detailed graph of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ We follow the six step procedure outlined in Key Idea 24.

1. As usual, we set the denominator equal to zero to get x2−4 = 0. We find
x = ±2, so our domain is (−∞,−2) ∪ (−2, 2) ∪ (2,∞).

2. To reduce f(x) to lowest terms, we factor the numerator and denominator
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As we menƟoned at least once earlier,
since funcƟons can have at most one y-
intercept, once we find that (0, 0) is on
the graph, we know it is the y-intercept
as well as an x-intercept.

It’s worth going through the analysis be-
low to make sure we understand what’s
going on near the verƟcal asymptotes,
but it’s not 100% necessary. The sign dia-
gram we construct in step 6 is the easiest
way to determine the behaviour near the
verƟcal asymptotes: once we know the
value of f(x) is going to be infinite, it only
remains to determine if it will be +∞ or
−∞. Keep this in mind — it will come in
handy once we reach the discussion of in-
finite limits in our Calculus material.

5.2 Graphs of RaƟonal FuncƟons

which yields f(x) =
3x

(x− 2)(x+ 2)
. There are no common factors which

means f(x) is already in lowest terms.

3. To find the x-intercepts of the graph of y = f(x), we set y = f(x) = 0.

Solving
3x

(x− 2)(x+ 2)
= 0 results in x = 0. Since x = 0 is in our domain,

(0, 0) is the x-intercept. To find the y-intercept, we set x = 0 and find
y = f(0) = 0, so that (0, 0) is our y-intercept as well.

4. The two numbers excluded from the domain of f are x = −2 and x = 2.
Since f(x) didn’t reduce at all, both of these values of x sƟll cause trouble
in the denominator. Thus by Theorem 31, x = −2 and x = 2 are ver-
Ɵcal asymptotes of the graph. We can actually go a step further at this
point and determine exactly how the graph approaches the asymptote
near each of these values. Though not absolutely necessary, it is good
pracƟce for when we reach calculus. For the discussion that follows, it is
best to use the factored form of f(x) =

3x
(x− 2)(x+ 2)

.

• The behaviour of y = f(x)as x → −2: Suppose x → −2−. If wewere
to build a table of values, we’d use x-values a liƩle less than−2, say
−2.1,−2.01 and−2.001. While there is no harm in actually building
a table like we did in SecƟon 5.1, we want to develop a ‘number
sense’ here. Let’s think about each factor in the formula of f(x) as
we imagine subsƟtuƟng a number like x = −2.000001 into f(x). The
quanƟty 3x would be very close to −6, the quanƟty (x − 2) would
be very close to −4, and the factor (x + 2) would be very close to
0. More specifically, (x + 2) would be a liƩle less than 0, in this
case,−0.000001.Wewill call such a number a ‘very small (−)’, ‘very
small’ meaning close to zero in absolute value. So, mentally, as x →
−2−, we esƟmate

f(x) =
3x

(x− 2)(x+ 2)
≈ −6

(−4) (very small (−))

=
3

2 (very small (−))

Now, the closer x gets to−2, the smaller (x+2)will become, so even
though we are mulƟplying our ‘very small (−)’ by 2, the denomina-
tor will conƟnue to get smaller and smaller, and remain negaƟve.
The result is a fracƟon whose numerator is posiƟve, but whose de-
nominator is very small and negaƟve. Mentally,

f(x) ≈ 3
2 (very small (−))

≈ 3
very small (−)

≈ very big (−)

The term ‘very big (−)’ means a number with a large absolute value
which is negaƟve. (The actual retail value of f(−2.000001) is approx-
imately −1,500,000.) What all of this means is that as x → −2−,
f(x) → −∞. Now suppose we wanted to determine the behaviour
of f(x) as x → −2+. If we imagine subsƟtuƟng something a liƩle
larger than−2 in for x, say−1.999999, we mentally esƟmate

f(x) ≈ −6
(−4) (very small (+))

=
3

2 (very small (+))

≈ 3
very small (+)

≈ very big (+)
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We have deliberately leŌ off the labels on
the y-axis because we know only the be-
haviour near x = ±2, not the actual func-
Ɵon values.

x

y

−3 −1 1 3

Figure 5.21: The graph y = 3x
x2−4 near its

verƟcal asymptotes

Aswith the verƟcal asymptotes in the pre-
vious step, we knowonly the behaviour of
the graph as x → ±∞. For that reason,
we provide no x-axis labels.
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y
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1

Figure 5.22: The end behavhiour of the
graph y = 3x

x2−4

−2 0 2

(−)
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−1
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Figure 5.23: The sign diagram for f(x) =
3x

x2−4
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Figure 5.24: The complete graph y =
3x

x2−4 for Example 87
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We conclude that as x → −2+, f(x) → ∞.
• The behaviour of y = f(x) as x → 2: Consider x → 2−. We imagine
subsƟtuƟng x = 1.999999. ApproximaƟng f(x) as we did above, we
get

f(x) ≈ 6
(very small (−)) (4)

=
3

2 (very small (−))

≈ 3
very small (−)

≈ very big (−)

We conclude that as x → 2−, f(x) → −∞. Similarly, as x → 2+,
we imagine subsƟtuƟng x = 2.000001 to get f(x) ≈ 3

very small (+) ≈
very big (+). So as x → 2+, f(x) → ∞.

The appearance of the graph y = f(x) near x = −2 and x = 2 is shown in
Figure 5.21.

5. Next, we determine the end behaviour of the graph of y = f(x). Since
the degree of the numerator is 1, and the degree of the denominator is
2, Theorem 32 tells us that y = 0 is the horizontal asymptote. As with the
verƟcal asymptotes, we can glean more detailed informaƟon using ‘num-
ber sense’. For the discussion below, we use the formula f(x) =

3x
x2 − 4

.

• The behaviour of y = f(x) as x → −∞: If we were to make a ta-
ble of values to discuss the behaviour of f as x → −∞, we would
subsƟtute very ‘large’ negaƟve numbers in for x, say for example,
x = −1 billion. The numerator 3xwould then be−3 billion, whereas
the denominator x2 − 4 would be (−1 billion)2 − 4, which is preƩy
much the same as 1(billion)2. Hence,

f (−1 billion) ≈ −3 billion
1(billion)2

≈ − 3
billion

≈ very small (−)

NoƟce that if we subsƟtuted in x = −1 trillion, essenƟally the same
kind of cancellaƟon would happen, and we would be leŌ with an
even ‘smaller’ negaƟve number. This not only confirms the fact that
as x → −∞, f(x) → 0, it tells us that f(x) → 0−. In other words,
the graph of y = f(x) is a liƩle bit below the x-axis as wemove to the
far leŌ.

• The behaviour of y = f(x) as x → ∞: On the flip side, we can imag-
ine subsƟtuƟng very large posiƟve numbers in for x and looking at
the behaviour of f(x). For example, let x = 1 billion. Proceeding as
before, we get

f (1 billion) ≈ 3 billion
1(billion)2

≈ 3
billion

≈ very small (+)

The larger the number we put in, the smaller the posiƟve number
we would get out. In other words, as x → ∞, f(x) → 0+, so the
graph of y = f(x) is a liƩle bit above the x-axis as we look toward the
far right. See Figure 5.22

6. Lastly, we construct a sign diagram for f(x). The x-values excluded from
the domain of f are x = ±2, and the only zero of f is x = 0. Displaying
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5.2 Graphs of RaƟonal FuncƟons

these appropriately on the number line gives us four test intervals, and
we choose the test values x = −3, x = −1, x = 1 and x = 3. We find
f(−3) is (−), f(−1) is (+), f(1) is (−) and f(3) is (+). Combining this with
our previous work, we get the graph of y = f(x) in Figure 5.24.

A couple of notes are in order. First, the graph of y = f(x) certainly seems
to possess symmetry with respect to the origin. In fact, we can check f(−x) =
−f(x) to see that f is an odd funcƟon. In some textbooks, checking for symmetry
is part of the standard procedure for graphing raƟonal funcƟons; but since it
happens comparaƟvely rarely we’ll just point it out when we see it. Also note
that while y = 0 is the horizontal asymptote, the graph of f actually crosses
the x-axis at (0, 0). The myth that graphs of raƟonal funcƟons can’t cross their
horizontal asymptotes is completely false, (that’s why we called it a MYTH!) as
we shall see again in our next example.

Example 88 Graphing a raƟonal funcƟon

Sketch a detailed graph of g(x) =
2x2 − 3x− 5
x2 − x− 6

.

SÊ½çã®ÊÄ

1. Seƫng x2−x−6 = 0 gives x = −2 and x = 3. Our domain is (−∞,−2)∪
(−2, 3) ∪ (3,∞).

2. Factoring g(x) gives g(x) =
(2x− 5)(x+ 1)
(x− 3)(x+ 2)

. There is no cancellaƟon, so

g(x) is in lowest terms.

3. To find the x-intercept we set y = g(x) = 0. Using the factored form of
g(x) above, we find the zeros to be the soluƟons of (2x− 5)(x+ 1) = 0.
We obtain x = 5

2 and x = −1. Since both of these numbers are in the
domain of g, we have two x-intercepts,

( 5
2 , 0
)
and (−1, 0). To find the

y-intercept, we set x = 0 and find y = g(0) = 5
6 , so our y-intercept is(

0, 5
6
)
.

4. Since g(x) was given to us in lowest terms, we have, once again by Theo-
rem 31 verƟcal asymptotes x = −2 and x = 3. Keeping in mind g(x) =
(2x− 5)(x+ 1)
(x− 3)(x+ 2)

, we proceed to our analysis near each of these values.

• The behaviour of y = g(x) as x → −2: As x → −2−, we imagine
subsƟtuƟng a number a liƩle bit less than−2. We have

g(x) ≈ (−9)(−1)
(−5)(very small (−))

≈ 9
very small (+)

≈ very big (+)

so as x → −2−, g(x) → ∞. On the flip side, as x → −2+, we get

g(x) ≈ 9
very small (−)

≈ very big (−)

so g(x) → −∞.
• The behaviour of y = g(x) as x → 3: As x → 3−, we imagine
plugging in a number just shy of 3. We have

g(x) ≈ (1)(4)
( very small (−))(5)

≈ 4
very small (−)

≈ very big (−)
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x

y

−3 −1 1 2 4

Figure 5.25: The graph y = 2x2−3x−5
x2−x−6 near

the verƟcal asymptotes

In the denominator for g(−1000000000),
we would have (1billion)2 − 1billion− 6.
It’s easy to see why the 6 is insignificant,
but to ignore the 1 billion seems crimi-
nal. However, compared to (1 billion)2,
it’s on the insignificant side; it’s 1018 ver-
sus 109. We are once again using the fact
that for polynomials, end behaviour is de-
termined by the leading term, so in the
denominator, the x2 term wins out over
the x term.

x

y

−1

1

Figure 5.26: The end behaviour of y =
2x2−3x−5
x2−x−6

−2 −1 5
2

3

(+) ‽ (−) 0 (+) 0 (−) ‽ (+)

Figure 5.27: The sign diagram for g(x) =
2x2−3x−5
x2−x−6

Chapter 5 RaƟonal FuncƟons

Hence, as x → 3−, g(x) → −∞. As x → 3+, we get

g(x) ≈ 4
very small (+)

≈ very big (+)

so g(x) → ∞.

Our results are given graphically (again, without labels on the y-axis) in
Figure 5.25.

5. Since the degrees of the numerator anddenominator ofg(x) are the same,
we know from Theorem 32 that we can find the horizontal asymptote
of the graph of g by taking the raƟo of the leading terms coefficients,
y = 2

1 = 2. However, if we take the Ɵme to do a more detailed analysis,
we will be able to reveal some ‘hidden’ behaviour which would be lost
otherwise.(That is, if you use a calculator to graph. Once again, Calculus is
the ulƟmate graphing power tool.) As in the discussion following Theorem
32, we use the result of the long division

(
2x2 − 3x− 5

)
÷
(
x2 − x− 6

)
to rewrite g(x) =

2x2 − 3x− 5
x2 − x− 6

as g(x) = 2 − x− 7
x2 − x− 6

.We focus our

aƩenƟon on the term
x− 7

x2 − x− 6
.

• The behaviour of y = g(x) as x → −∞: If imagine subsƟtuƟng x =
−1 billion into

x− 7
x2 − x− 6

, we esƟmate
x− 7

x2 − x− 6
≈ −1 billion

1billion2
≈

very small (−). Hence,

g(x) = 2− x− 7
x2 − x− 6

≈ 2− very small (−) = 2+ very small (+)

In other words, as x → −∞, the graph of y = g(x) is a liƩle bit
above the line y = 2.

• The behaviour of y = g(x) as x → ∞. To consider
x− 7

x2 − x− 6
as

x → ∞, we imagine subsƟtuƟng x = 1 billion and, going through
the usual mental rouƟne, find

x− 7
x2 − x− 6

≈ very small (+)

Hence, g(x) ≈ 2 − very small (+), in other words, the graph of
y = g(x) is just below the line y = 2 as x → ∞.

Our end behaviour (again, without labels on the x-axis) is given in Figure
5.26.

6. Finally we construct our sign diagram. We place an ‘‽’ above x = −2 and
x = 3, and a ‘0’ above x = 5

2 and x = −1. Choosing test values in the
test intervals gives us f(x) is (+) on the intervals (−∞,−2),

(
−1, 5

2
)
and

(3,∞), and (−) on the intervals (−2,−1) and
( 5
2 , 3
)
, giving us the sign

diagram in Figure 5.27. As we piece together all of the informaƟon, we
note that the graph must cross the horizontal asymptote at some point
aŌer x = 3 in order for it to approach y = 2 from underneath. This is
the subtlety that we would have missed had we skipped the long division
and subsequent end behaviour analysis. We can, in fact, find exactly when
the graph crosses y = 2. As a result of the long division, we have g(x) =
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Figure 5.28: The complete graph y =
2x2−3x−5
x2−x−6 for Example 88

5.2 Graphs of RaƟonal FuncƟons

2− x− 7
x2 − x− 6

. For g(x) = 2, we would need
x− 7

x2 − x− 6
= 0. This gives

x−7 = 0, or x = 7. Note that x−7 is the remainder when 2x2−3x−5 is
divided by x2−x−6, so itmakes sense that for g(x) to equal the quoƟent 2,
the remainder from the division must be 0. Sure enough, we find g(7) =
2. Moreover, it stands to reason that gmust aƩain a relaƟve minimum at
some point past x = 7. Calculus verifies that at x = 13, we have such a
minimum at exactly (13, 1.96).

Our next example gives us an opportunity tomore thoroughly analyze a slant
asymptote.

Example 89 A graph with a slant asymptote

Sketch a detailed graph of h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
.

SÊ½çã®ÊÄ

1. For domain, you know the drill. Solving x2+ 3x+ 2 = 0 gives x = −2 and
x = −1. Our answer is (−∞,−2) ∪ (−2,−1) ∪ (−1,∞).

2. To reduce h(x), we need to factor the numerator and denominator. To
factor the numerator, we use the techniques set forth in SecƟon 4.3 and
we get

h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
=

(2x+ 1)(x+ 1)2

(x+ 2)(x+ 1)

=
(2x+ 1)(x+ 1)���

1

2

(x+ 2)����(x+ 1)
=

(2x+ 1)(x+ 1)
x+ 2

Wewill use this reduced formula for h(x) as long as we’re not subsƟtuƟng

x = −1. Tomake this exclusion specific, wewriteh(x) =
(2x+ 1)(x+ 1)

x+ 2
,

x ̸= −1.

3. To find the x-intercepts, as usual, we set h(x) = 0 and solve. Solving
(2x+ 1)(x+ 1)

x+ 2
= 0 yields x = − 1

2 and x = −1. The laƩer isn’t in the

domain of h, so we exclude it. Our only x-intercept is
(
− 1

2 , 0
)
. To find the

y-intercept, we set x = 0. Since 0 ̸= −1, we can use the reduced formula
for h(x) and we get h(0) = 1

2 for a y-intercept of
(
0, 1

2
)
.

4. From Theorem 31, we know that since x = −2 sƟll poses a threat in the
denominator of the reduced funcƟon, we have a verƟcal asymptote there.
As for x = −1, the factor (x + 1) was cancelled from the denominator
when we reduced h(x), so it no longer causes trouble there. This means
that we get a hole when x = −1. To find the y-coordinate of the hole,

we subsƟtute x = −1 into
(2x+ 1)(x+ 1)

x+ 2
, per Theorem 31 and get 0.

Hence, we have a hole on the x-axis at (−1, 0). It should make you un-
comfortable plugging x = −1 into the reduced formula for h(x), especially
since we’vemade such a big deal concerning the sƟpulaƟon about not let-
Ɵng x = −1 for that formula. What we are really doing is taking a Calculus
short-cut to the more detailed kind of analysis near x = −1 which we will
show below. Speaking of which, for the discussion that follows, we will

use the formula h(x) =
(2x+ 1)(x+ 1)

x+ 2
, x ̸= −1.
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Figure 5.29: The behaviour of y = h(x)
near the hole and verƟcal asymptote

x

y

−4

−3

−2

−1

1

2

3

4

Figure 5.30: End behaviour for y = h(x)
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Figure 5.31: The sign diagram for
h(x) = 2x3+5x2+4x+1

x2+3x+2
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Figure 5.32: The graph y = h(x) for Ex-
ample 89
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• The behaviour of y = h(x) as x → −2: As x → −2−, we imag-
ine subsƟtuƟng a number a liƩle bit less than −2. We have h(x) ≈

(−3)(−1)
(very small (−)) ≈ 3

(very small (−)) ≈ very big (−) thus as x → −2−,
h(x) → −∞. On the other side of −2, as x → −2+, we find that
h(x) ≈ 3

very small (+) ≈ very big (+), so h(x) → ∞.

• The behaviour of y = h(x) as x → −1. As x → −1−, we imag-
ine plugging in a number a bit less than x = −1. We have h(x) ≈
(−1)(very small (−))

1 = very small (+) Hence, as x → −1−, h(x) →
0+. This means that as x → −1−, the graph is a bit above the
point (−1, 0). As x → −1+, we get h(x) ≈ (−1)(very small (+))

1 =
very small (−). This gives us that as x → −1+, h(x) → 0−, so the
graph is a liƩle bit lower than (−1, 0) here. Our results are shown
graphically in Figure 5.29.

5. For end behaviour, we note that the degree of the numerator of h(x),
2x3 + 5x2 + 4x+ 1, is 3 and the degree of the denominator, x2 + 3x+ 2,
is 2 so by Theorem 33, the graph of y = h(x) has a slant asymptote. For
x → ±∞, we are far enough away from x = −1 to use the reduced

formula, h(x) =
(2x+ 1)(x+ 1)

x+ 2
, x ̸= −1. To perform long division,

we mulƟply out the numerator and get h(x) =
2x2 + 3x+ 1

x+ 2
, x ̸= −1,

and rewrite h(x) = 2x − 1 +
3

x+ 2
, x ̸= −1. By Theorem 33, the slant

asymptote is y = 2x − 1, and to beƩer see how the graph approaches
the asymptote, we focus our aƩenƟon on the term generated from the
remainder,

3
x+ 2

.

• The behaviour of y = h(x) as x → −∞: SubsƟtuƟng x = −1 billion

into
3

x+ 2
, we get the esƟmate 3

−1 billion ≈ very small (−). Hence,

h(x) = 2x− 1+
3

x+ 2
≈ 2x− 1+ very small (−). This means the

graph of y = h(x) is a liƩle bit below the line y = 2x−1 as x → −∞.

• The behaviour of y = h(x) as x → ∞: If x → ∞, then
3

x+ 2
≈

very small (+). This means h(x) ≈ 2x− 1+ very small (+), or that
the graph of y = h(x) is a liƩle bit above the line y = 2x − 1 as
x → ∞. The end behaviour is shown in Figure 5.30

6. To make our sign diagram, we place an ‘‽’ above x = −2 and x = −1
and a ‘0’ above x = − 1

2 . On our four test intervals, we find h(x) is (+)
on (−2,−1) and

(
− 1

2 ,∞
)
and h(x) is (−) on (−∞,−2) and

(
−1,− 1

2
)
,

giving us the sign diagram in Figure 5.31. Puƫng all of our work together
yields the graph in Figure 5.32.

We could ask whether the graph of y = h(x) crosses its slant asymptote.

From the formula h(x) = 2x− 1+
3

x+ 2
, x ̸= −1, we see that if h(x) = 2x− 1,

we would have
3

x+ 2
= 0. Since this will never happen, we conclude the graph

never crosses its slant asymptote. (But rest assured, some graphs do!)

We end this secƟon with an example that shows it’s not all pathological
weirdness when it comes to raƟonal funcƟons and technology sƟll has a role
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Figure 5.33: Comparing y = r(x) to y =
x2 − 1
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Figure 5.34: The limitaƟons of our Precal-
culus methods
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to play in studying their graphs at this level (that is, prior to introducing the
techniques of Calculus).

Example 90 A graph requiring calculus for the details

Sketch the graph of r(x) =
x4 + 1
x2 + 1

.

SÊ½çã®ÊÄ

1. The denominator x2 + 1 is never zero so the domain is (−∞,∞).

2. With no real zeros in the denominator, x2 + 1 is an irreducible quadraƟc.
Our only hope of reducing r(x) is if x2 + 1 is a factor of x4 + 1. Performing
long division gives us

x4 + 1
x2 + 1

= x2 − 1+
2

x2 + 1

The remainder is not zero so r(x) is already reduced.

3. To find the x-intercept, we’d set r(x) = 0. Since there are no real soluƟons

to
x4 + 1
x2 + 1

= 0, we have no x-intercepts. Since r(0) = 1, we get (0, 1) as
the y-intercept.

4. This step doesn’t apply to r, since its domain is all real numbers.

5. For end behaviour, we note that since the degree of the numerator is ex-
actly two more than the degree of the denominator, neither Theorems
32 nor 33 apply. We know from our aƩempt to reduce r(x) that we can

rewrite r(x) = x2−1+
2

x2 + 1
, so we focus our aƩenƟon on the term cor-

responding to the remainder,
2

x2 + 1
It should be clear that as x → ±∞,

2
x2 + 1

≈ very small (+), whichmeans r(x) ≈ x2−1+very small (+). So

the graph y = r(x) is a liƩle bit above the graph of the parabola y = x2−1
as x → ±∞. Graphically, we have Figure 5.33.

6. There isn’t much work to do for a sign diagram for r(x), since its domain
is all real numbers and it has no zeros. Our sole test interval is (−∞,∞),
and since we know r(0) = 1, we conclude r(x) is (+) for all real numbers.
At this point, we don’t have much to go on for a graph. We leave it to
the reader to show r(−x) = r(x) so r is even, and, hence, its graph is
symmetric about the y-axis. Figure 5.34 shows a comparison of what we
have determined analyƟcally versus what the computer shows us. We
have noway to detect the relaƟve extrema analyƟcally (without appealing
to Calculus, of course) apart from brute force ploƫng of points, which is
done more efficiently by the computer.

As usual, the authors offer no apologies forwhatmaybe construed as ‘pedantry’
in this secƟon. We feel that the detail presented in this secƟon is necessary to
obtain a firm grasp of the concepts presented here and it also serves as an in-
troducƟon to themethods employed in Calculus. As we have said many Ɵmes in
the past, your instructor will decide howmuch, if any, of the kinds of details pre-
sented here are ‘mission criƟcal’ to your understanding of Precalculus. Without
further delay, we present you with this secƟon’s Exercises.
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Exercises 5.2
Problems
In Exercises 1 – 16, use the six-step procedure from Key Idea
24 to graph the raƟonal funcƟon. Be sure to draw any asymp-
totes as dashed lines.

1. f(x) = 4
x+ 2

2. f(x) = 5x
6− 2x

3. f(x) = 1
x2

4. f(x) = 1
x2 + x− 12

5. f(x) = 2x− 1
−2x2 − 5x+ 3

6. f(x) = x
x2 + x− 12

7. f(x) = 4x
x2 + 4

8. f(x) = 4x
x2 − 4

9. f(x) = x2 − x− 12
x2 + x− 6

10. f(x) = 3x2 − 5x− 2
x2 − 9

11. f(x) = x2 − x− 6
x+ 1

12. f(x) = x2 − x
3− x

13. f(x) = x3 + 2x2 + x
x2 − x− 2

14. f(x) = −x3 + 4x
x2 − 9

15. f(x) = x3 − 2x2 + 3x
2x2 + 2

16. 1 f(x) = x2 − 2x+ 1
x3 + x2 − 2x

In Exercises 17 – 20, graph the raƟonal funcƟon by applying
transformaƟons to the graph of y = 1

x
.

17. f(x) = 1
x− 2

18. g(x) = 1− 3
x

19. h(x) = −2x+ 1
x

(Hint: Divide)

20. j(x) = 3x− 7
x− 2

(Hint: Divide)

21. Discuss with your classmates how you would graph f(x) =
ax+ b
cx+ d

. What restricƟons must be placed on a, b, c and d

so that the graph is indeed a transformaƟon of y = 1
x
?

22. In Example 63 in SecƟon 4.1we showed that p(x) = 4x+x3
x is

not a polynomial even though its formula reduced to 4+x2

for x ̸= 0. However, it is a raƟonal funcƟon similar to those
studied in the secƟon. With the help of your classmates,
graph p(x).

23. Let g(x) =
x4 − 8x3 + 24x2 − 72x+ 135

x3 − 9x2 + 15x− 7
. With the help

of your classmates, find the x- and y- intercepts of the graph
of g. Find the intervals on which the funcƟon is increas-
ing, the intervals on which it is decreasing and the local ex-
trema. Find all of the asymptotes of the graph of g and any
holes in the graph, if they exist. Be sure to show all of your
work including any polynomial or syntheƟc division. Sketch
the graph of g, using more than one picture if necessary to
show all of the important features of the graph.

Example 90 showed us that the six-step procedure cannot tell
us everything of importance about the graph of a raƟonal
funcƟon. Without Calculus, we need to use technology to
reveal the hidden mysteries of raƟonal funcƟon behaviour.
Working with your classmates, use a computer or graphing
calculator to examine the graphs of the raƟonal funcƟons
given in Exercises 24 – 27. Compare and contrast their fea-
tures. Which features can the six-step process reveal and
which features cannot be detected by it?

24. f(x) = 1
x2 + 1

25. f(x) = x
x2 + 1

26. f(x) = x2

x2 + 1

27. f(x) = x3

x2 + 1

1Once you’ve done the six-step procedure, use a computer or graphing calculator to graph this funcƟonon the viewingwindow [0, 12]×[0, 0.25].
What do you see?
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5.3 RaƟonal InequaliƟes and ApplicaƟons
In this secƟon, we solve equaƟons and inequaliƟes involving raƟonal funcƟons
and explore associated applicaƟon problems. Our first example showcases the
criƟcal difference in procedure between solving a raƟonal equaƟon and a raƟo-
nal inequality.

Example 91 RaƟonal equaƟon and inequality

1. Solve
x3 − 2x+ 1

x− 1
=

1
2
x− 1.

2. Solve
x3 − 2x+ 1

x− 1
≥ 1

2
x− 1.

3. Use your computer or calculator to graphically check your answers to 1
and 2.

SÊ½çã®ÊÄ

1. To solve the equaƟon, we clear denominators

x3 − 2x+ 1
x− 1

=
1
2
x− 1(

x3 − 2x+ 1
x− 1

)
· 2(x− 1) =

(
1
2
x− 1

)
· 2(x− 1)

2x3 − 4x+ 2 = x2 − 3x+ 2 expand
2x3 − x2 − x = 0

x(2x+ 1)(x− 1) = 0 factor
x = − 1

2 , 0, 1

Since we cleared denominators, we need to check for extraneous solu-
Ɵons. Sure enough, we see that x = 1 does not saƟsfy the original equa-
Ɵon and must be discarded. Our soluƟons are x = − 1

2 and x = 0.

2. To solve the inequality, it may be tempƟng to begin as we did with the
equaƟon− namely by mulƟplying both sides by the quanƟty (x− 1). The
problem is that, depending on x, (x − 1) may be posiƟve (which doesn’t
affect the inequality) or (x − 1) could be negaƟve (which would reverse
the inequality). Instead of working by cases, we collect all of the terms on
one side of the inequality with 0 on the other and make a sign diagram
using the technique given on page 206 in SecƟon 5.2.

x3 − 2x+ 1
x− 1

≥ 1
2
x− 1

x3 − 2x+ 1
x− 1

− 1
2
x+ 1 ≥ 0

2
(
x3 − 2x+ 1

)
− x(x− 1) + 1(2(x− 1))
2(x− 1)

≥ 0 get a common denominator

2x3 − x2 − x
2x− 2

≥ 0 expand

Viewing the leŌ hand side as a raƟonal funcƟon r(x) we make a sign dia-
gram. The only value excluded from the domain of r is x = 1 which is the
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Figure 5.35: The sign diagram for the in-
equality in Example 91

Figure 5.36: The iniƟal plot of f(x) and
g(x)

Figure 5.37: Zooming in to find the inter-
secƟon points
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soluƟon to 2x−2 = 0. The zeros of r are the soluƟons to 2x3−x2−x = 0,
which we have already found to be x = 0, x = − 1

2 and x = 1, the laƩer
was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we obtain the sign diagram in Figure 5.35.
We are interested in where r(x) ≥ 0. We find r(x) > 0, or (+), on the in-
tervals

(
−∞,− 1

2
)
, (0, 1) and (1,∞). We add to these intervals the zeros

of r,− 1
2 and 0, to get our final soluƟon:

(
−∞,− 1

2
]
∪ [0, 1) ∪ (1,∞).

3. Geometrically, if we set f(x) =
x3 − 2x+ 1

x− 1
and g(x) = 1

2x− 1, the solu-
Ɵons to f(x) = g(x) are the x-coordinates of the points where the graphs
of y = f(x) and y = g(x) intersect. The soluƟon to f(x) ≥ g(x) represents
not only where the graphs meet, but the intervals over which the graph
of y = f(x) is above (>) the graph of g(x). Entering these two funcƟons
into GeoGebra gives us Figure 5.36.
Zooming in and using the Intersect tool, we see in Figure 5.37 that the
graphs cross when x = − 1

2 and x = 0. It is clear from the calculator that
the graph of y = f(x) is above the graph of y = g(x) on

(
−∞,− 1

2
)
as well

as on (0,∞). According to the calculator, our soluƟon is then
(
−∞,− 1

2
]
∪

[0,∞) which almost matches the answer we found analyƟcally. We have
to remember that f is not defined at x = 1, and, even though it isn’t
shown on the calculator, there is a hole in the graph of y = f(x) when
x = 1 which is why x = 1 is not part of our final answer. (There is no
asymptote at x = 1 since the graph is well behaved near x = 1. According
to Theorem 31, there must be a hole there.)

Next, we explore how raƟonal equaƟons can be used to solve some classic
problems involving rates.

Example 92 CalculaƟng the speed of a river
Carl decides to explore theMeander River, where several recent Sasquatch sight-
ings were located. From camp, he canoes downstream five miles to check out
a purported Sasquatch nest. Finding nothing, he immediately turns around, re-
traces his route (this Ɵme travelling upstream), and returns to camp3hours aŌer
he leŌ. If Carl canoes at a rate of 6 miles per hour in sƟll water, how fast was the
Meander River flowing on that day?

SÊ½çã®ÊÄ We are given informaƟon about distances, rates (speeds)
and Ɵmes. The basic principle relaƟng these quanƟƟes is:

distance = rate · Ɵme

The first observaƟon to make, however, is that the distance, rate and Ɵme given
to us aren’t ‘compaƟble’: the distance given is the distance for only part of the
trip, the rate given is the speed Carl can canoe in sƟll water, not in a flowing
river, and the Ɵme given is the duraƟon of the enƟre trip. UlƟmately, we are
aŌer the speed of the river, so let’s call that Rmeasured in miles per hour to be
consistent with the other rate given to us. To get started, let’s divide the trip
into its two parts: the iniƟal trip downstream and the return trip upstream. For
the downstream trip, all we know is that the distance travelled is 5 miles.

distance downstream = speed downstream · Ɵme travelling downstream
5miles = speed downstream · Ɵme travelling downstream
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This is an example of a system of equa-
Ɵons. If you didn’t encounter such crea-
tures in high school, don’t worry: you
won’t need to solve any systems in this
course. If you’re wondering if there’s a
general procedure for tackling such prob-
lems, you might want to check out Math
1410.

Although we usually discourage dividing
both sides of an equaƟon by a variable ex-
pression, we know (6+R) ̸= 0 since oth-
erwise we couldn’t possibly mulƟply it by
tdown and get 5.

5.3 RaƟonal InequaliƟes and ApplicaƟons

Since the return trip upstream followed the same route as the trip down-
stream, we know that the distance travelled upstream is also 5 miles.

distance upstream = speed upstream · Ɵme travelling upstream
5miles = speed upstream · Ɵme travelling upstream

We are told Carl can canoe at a rate of 6 miles per hour in sƟll water. How
does this figure into the rates travelling upstream and downstream? The speed
the canoe travels in the river is a combinaƟon of the speed at which Carl can
propel the canoe in sƟll water, 6miles per hour, and the speed of the river, which
we’re calling R. When travelling downstream, the river is helping Carl along, so
we add these two speeds:

speed downstream = rate Carl propels the canoe+ speed of the river
= 6miles

hour + Rmiles
hour

So our downstream speed is (6+R)miles
hour . SubsƟtuƟng this into our ‘distance-

rate-Ɵme’ equaƟon for the downstream part of the trip, we get:

5miles = speed downstream · Ɵme traveling downstream
5miles = (6+ R)miles

hour · Ɵme traveling downstream

When travelling upstream, Carl works against the current. Since the canoe
manages to travel upstream, the speed Carl can canoe in sƟll water is greater
than the river’s speed, so we subtract the river’s speed from Carl’s canoeing
speed to get:

speed upstream = rate Carl propels the canoe− river speed
= 6miles

hour − Rmiles
hour

Proceeding as before, we get

5miles = speed upstream · Ɵme traveling upstream
5miles = (6− R)miles

hour · Ɵme traveling upstream

The last piece of informaƟon given to us is that the total trip lasted 3 hours.
If we let tdown denote the Ɵme of the downstream trip and tup the Ɵme of the
upstream trip, we have: tdown+tup = 3 hours. SubsƟtuƟng tdown and tup into the
‘distance-rate-Ɵme’ equaƟons, we get (suppressing the units) three equaƟons in
three unknowns:  E1 (6+ R) tdown = 5

E2 (6− R) tup = 5
E3 tdown + tup = 3

Since we are ulƟmately aŌer R, we need to use these three equaƟons to
get at least one equaƟon involving only R. To that end, we solve E1 for tdown by
dividing both sides by the quanƟty (6 + R) to get tdown =

5
6+ R

. Similarly, we

solve E2 for tup and get tup =
5

6− R
. SubsƟtuƟng these into E3, we get:

5
6+ R

+
5

6− R
= 3.
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(The reader is encouraged to verify that the units in this equaƟon are the same
on both sides. To get you started, the units on the ‘3’ is ‘hours.’) Clearing de-
nominators, we get 5(6 − R) + 5(6 + R) = 3(6 + R)(6 − R) which reduces to
R2 = 16. We find R = ±4, and since R represents the speed of the river, we
choose R = 4. On the day in quesƟon, the Meander River is flowing at a rate of
4 miles per hour.

One of the important lessons to learn from Example 92 is that speeds, and
more generally, rates, are addiƟve. As we see in our next example, the concept
of rate and its associated principles can be applied to a wide variety of problems
- not just ‘distance-rate-Ɵme’ scenarios.

Example 93 CalculaƟng work rates
Working alone, Taylor can weed the garden in 4 hours. If Carl helps, they can
weed the garden in 3 hours. How long would it take for Carl to weed the garden
on his own?

SÊ½çã®ÊÄ The key relaƟonship between work and Ɵme which we use
in this problem is:

amount of work done = rate of work · Ɵme spent working

We are told that, working alone, Taylor can weed the garden in 4 hours. In
Taylor’s case then:

work done by Taylor = rate of Taylor working · Ɵme Taylor spent working
1 garden = (rate of Taylor working) · (4 hours)

So we have that the rate Taylor works is 1 garden
4 hours = 1

4
garden
hour . We are also told

that whenworking together, Taylor and Carl canweed the garden in just 3 hours.
We have:

work done together = rate of working together · Ɵme working together
1 garden = (rate of working together) · (3 hours)

From this, we find that the rate of Taylor and Carl working together is equal
to 1 garden

3 hours = 1
3
garden
hour . We are asked to find out how long it would take for Carl to

weed the garden on his own. Let us call this unknown t, measured in hours to
be consistent with the other Ɵmes given to us in the problem. Then:

work done by Carl = rate of Carl working · Ɵme Carl spent working
1 garden = (rate of Carl working) · (t hours)

In order to find t, we need to find the rate of Carl working, so let’s call this
quanƟty R, with units garden

hour . Using the fact that rates are addiƟve, we have:

rate working together = rate of Taylor working+ rate of Carl working
1
3
garden
hour = 1

4
garden
hour + R garden

hour

so that R = 1
12

garden
hour . SubsƟtuƟng this into our ‘work-rate-Ɵme’ equaƟon for

Carl, we get:

1 garden = (rate of Carl working) · (t hours)

1 garden =
( 1
12

garden
hour

)
· (t hours)
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Figure 5.38: The sign digram for r(x)

5.3 RaƟonal InequaliƟes and ApplicaƟons

Solving 1 = 1
12 t, we get t = 12, so it takes Carl 12 hours to weed the gar-

den on his own. (Carl would much rather spend his Ɵme wriƟng open-source
MathemaƟcs texts than gardening anyway.)

As is common with ‘word problems’ like Examples 92 and 93, there is no
short-cut to the answer. We encourage the reader to carefully think through
and apply the basic principles of rate to each (potenƟally different!) situaƟon.
It is Ɵme well spent. We also encourage the tracking of units, especially in the
early stages of the problem. Not only does this promote uniformity in the units,
it also serves as a quick means to check if an equaƟon makes sense. (In other
words, make sure you don’t try to add apples to oranges!)

Our next example deals with the average cost funcƟon, first introduced on
page 75, as applied to PortaBoy Game systems from Example 45 in SecƟon 3.1.

Example 94 A raƟonal cost funcƟon
Given a cost funcƟon C(x), which returns the total cost of producing x items,
recall that the average cost funcƟon, C(x) = C(x)

x computes the cost per item
when x items are produced. Suppose the costC, in dollars, to produce x PortaBoy
game systems for a local retailer is C(x) = 80x+ 150, x ≥ 0.

1. Find an expression for the average cost funcƟon C(x).

2. Solve C(x) < 100 and interpret.

3. Determine the behaviour of C(x) as x → ∞ and interpret.

SÊ½çã®ÊÄ

1. From C(x) =
C(x)
x

, we obtain C(x) =
80x+ 150

x
. The domain of C is

x ≥ 0, but since x = 0 causes problems for C(x), we get our domain to be
x > 0, or (0,∞).

2. Solving C(x) < 100 means we solve
80x+ 150

x
< 100. We proceed as in

the previous example.

80x+ 150
x

< 100

80x+ 150
x

− 100 < 0

80x+ 150− 100x
x

< 0 common denominator

150− 20x
x

< 0

If we take the leŌ hand side to be a raƟonal funcƟon r(x), we need to keep
in mind that the applied domain of the problem is x > 0. This means we
consider only the posiƟve half of the number line for our sign diagram.
On (0,∞), r is defined everywhere so we need only look for zeros of r.
Seƫng r(x) = 0 gives 150 − 20x = 0, so that x = 15

2 = 7.5. The test
intervals on our domain are (0, 7.5) and (7.5,∞). We find r(x) < 0 on
(7.5,∞), giving us the sign diagram in Figure 5.38.
In the context of the problem, x represents the number of PortaBoy games
systems produced and C(x) is the average cost to produce each system.
Solving C(x) < 100 means we are trying to find how many systems we
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width, x

height depth

Figure 5.39: The box in Example 95
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need to produce so that the average cost is less than $100 per system.
Our soluƟon, (7.5,∞) tells us that we need to produce more than 7.5
systems to achieve this. Since it doesn’t make sense to produce half a
system, our final answer is [8,∞).

3. When we apply Theorem 32 to C(x) we find that y = 80 is a horizontal
asymptote to the graph of y = C(x). To more precisely determine the
behaviour of C(x) as x → ∞, we first use long division and rewrite C(x) =

80+
150
x

. (In this case, long division amounts to term-by-term division.)

As x → ∞,
150
x

→ 0+, which means C(x) ≈ 80 + very small (+). Thus
the average cost per system is geƫng closer to $80 per system. If we set
C(x) = 80, we get

150
x

= 0, which is impossible, so we conclude that
C(x) > 80 for all x > 0. This means that the average cost per system is
always greater than $80 per system, but the average cost is approaching
this amount as more and more systems are produced. Looking back at
Example 45, we realize $80 is the variable cost per system− the cost per
system above and beyond the fixed iniƟal cost of $150. Another way to
interpret our answer is that ‘infinitely’ many systems would need to be
produced to effecƟvely ‘zero out’ the fixed cost.

Our next example is another classic ‘box with no top’ problem.

Example 95 Minimizing surface area
A box with a square base and no top is to be constructed so that it has a volume
of 1000 cubic cenƟmetres. Let x denote the width of the box, in cenƟmetres as
seen in Figure 5.39.

1. Express the height h in cenƟmetres as a funcƟon of the width x and state
the applied domain.

2. Solve h(x) ≥ x and interpret.

3. Find and interpret the behaviour of h(x) as x → 0+ and as x → ∞.

4. Express the surface area S of the box as a funcƟon of x and state the ap-
plied domain.

5. Use a calculator to approximate (to two decimal places) the dimensions
of the box which minimize the surface area.

SÊ½çã®ÊÄ

1. We are told that the volume of the box is 1000 cubic cenƟmetres and
that x represents the width, in cenƟmetres. From geometry, we know
Volume = width× height× depth. Since the base of the box is a square,
the width and the depth are both x cenƟmetres. Using h for the height,
we have 1000 = x2h, so that h =

1000
x2

. Using funcƟon notaƟon, (that is,

h(x)means ‘h of x’, not ‘h Ɵmes x’ here) h(x) =
1000
x2

. As for the applied
domain, in order for there to be a box at all, x > 0, and since every such
choice of xwill return a posiƟve number for the height hwe have no other
restricƟons and conclude our domain is (0,∞).
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Figure 5.40: The sign digram for h(x)

Figure 5.41: Minimizing the surface area
in Example 95
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2. To solve h(x) ≥ x, we proceed as before and collect all nonzero terms on
one side of the inequality in order to use a sign diagram.

h(x) ≥ x

1000
x2

≥ x

1000
x2

− x ≥ 0

1000− x3

x2
≥ 0 common denominator

We consider the leŌ hand side of the inequality as our raƟonal funcƟon
r(x). We see r is undefined at x = 0, but, as in the previous example, the
applied domain of the problem is x > 0, so we are considering only the
behaviour of r on (0,∞). The sole zero of r comes when 1000 − x3 = 0,
which is x = 10. Choosing test values in the intervals (0, 10) and (10,∞)
gives the diagram in Figure 5.40.
We see r(x) > 0 on (0, 10), and since r(x) = 0 at x = 10, our soluƟon
is (0, 10]. In the context of the problem, h represents the height of the
box while x represents the width (and depth) of the box. Solving h(x) ≥ x
is tantamount to finding the values of x which result in a box where the
height is at least as big as the width (and, in this case, depth.) Our answer
tells us the width of the box can be at most 10 cenƟmetres for this to
happen.

3. As x → 0+, h(x) =
1000
x2

→ ∞. This means that the smaller the width x
(and, in this case, depth), the larger the height h has to be in order tomain-
tain a volume of 1000 cubic cenƟmetres. As x → ∞, we find h(x) → 0+,
which means that in order to maintain a volume of 1000 cubic cenƟme-
tres, the width and depth must get bigger as the height becomes smaller.

4. Since the box has no top, the surface area can be found by adding the
area of each of the sides to the area of the base. The base is a square of
dimensions x by x, and each side has dimensions x by h. We get the surface
area, S = x2 + 4xh. To get S as a funcƟon of x, we subsƟtute h =

1000
x2

to

obtain S = x2+4x
(
1000
x2

)
. Hence, as a funcƟon of x, S(x) = x2+

4000
x

.

The domain of S is the same as h, namely (0,∞), for the same reasons as
above.

5. A first aƩempt at the graph of y = S(x) on the calculator or computer
may lead to frustraƟon. On the calculator, chances are good that the first
window chosen to view the graph will suggest y = S(x) has the x-axis
as a horizontal asymptote. (On GeoGebra, you’ll probably have to zoom
out a long way before you can even see the graph!) From the formula
S(x) = x2 +

4000
x

, however, we get S(x) ≈ x2 as x → ∞, so S(x) → ∞.
ReadjusƟng the window, we find S does possess a relaƟve minimum at
x ≈ 12.60. As far as we can tell, (without Calculus, that is) this is the only
relaƟve extremum, so it is the absolute minimum as well. This means that
thewidth and depth of the box should eachmeasure approximately 12.60
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cenƟmetres. To determine the height, we find h(12.60) ≈ 6.30, so the
height of the box should be approximately 6.30 cenƟmetres.

5.3.1 VariaƟon
In many instances in the sciences, raƟonal funcƟons are encountered as a result
of fundamental natural lawswhich are typically a result of assuming certain basic
relaƟonships between variables. These basic relaƟonships are summarized in
the definiƟon below.

DefiniƟon 44 VariaƟon

Suppose x, y and z are variable quanƟƟes. We say

• y varies directly with (or is directly proporƟonal to) x if there is a
constant k such that y = kx.

• y varies inversely with (or is inversely proporƟonal to) x if there
is a constant k such that y =

k
x
.

• z varies jointly with (or is jointly proporƟonal to) x and y if there
is a constant k such that z = kxy.

The constant k in the above definiƟons is called the constant of propor-
Ɵonality.

Example 96 Some famous variaƟonal relaƟonships
Translate the following into mathemaƟcal equaƟons using DefiniƟon 44.

1. Hooke’s Law: The force F exerted on a spring is directly proporƟonal the
extension x of the spring.

2. Boyle’s Law: At a constant temperature, the pressure P of an ideal gas is
inversely proporƟonal to its volume V.

3. The volume V of a right circular cone varies jointly with the height h of the
cone and the square of the radius r of the base.

4. Ohm’s Law: The current I through a conductor between two points is di-
rectly proporƟonal to the voltage V between the two points and inversely
proporƟonal to the resistance R between the two points.

5. Newton’s Law of Universal GravitaƟon: Suppose two objects, one ofmass
m and one of massM, are posiƟoned so that the distance between their
centers of mass is r. The gravitaƟonal force F exerted on the two objects
varies directly with the product of the two masses and inversely with the
square of the distance between their centers of mass.

SÊ½çã®ÊÄ

1. Applying the definiƟon of direct variaƟon, we get F = kx for some con-
stant k.
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2. Since P and V are inversely proporƟonal, we write P =
k
V
.

3. There is a bit of ambiguity here. It’s clear that the volume and the height
of the cone are represented by the quanƟƟes V and h, respecƟvely, but
does r represent the radius of the base or the square of the radius of the
base? It is the former. Usually, if an algebraic operaƟon is specified (like
squaring), it is meant to be expressed in the formula. We apply DefiniƟon
44 to get V = khr2.

4. Even though the problem doesn’t use the phrase ‘varies jointly’, it is im-
plied by the fact that the current I is related to two different quanƟƟes.
Since I varies directly with V but inversely with R, we write I =

kV
R
.

5. We write the product of the masses mM and the square of the distance
as r2. We have that F varies directly with mM and inversely with r2, so
F =

kmM
r2

.
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Exercises 5.3
Problems
In Exercises 1 – 6, solve the raƟonal equaƟon. Be sure to
check for extraneous soluƟons.

1. x
5x+ 4

= 3

2. 3x− 1
x2 + 1

= 1

3. 1
x+ 3

+
1

x− 3
=

x2 − 3
x2 − 9

4. 2x+ 17
x+ 1

= x+ 5

5. x2 − 2x+ 1
x3 + x2 − 2x

= 1

6. −x3 + 4x
x2 − 9

= 4x

In Exercises 7 – 20, solve the raƟonal inequality. Express your
answer using interval notaƟon.

7. 1
x+ 2

≥ 0

8. x− 3
x+ 2

≤ 0

9. x
x2 − 1

> 0

10. 4x
x2 + 4

≥ 0

11. x2 − x− 12
x2 + x− 6

> 0

12. 3x2 − 5x− 2
x2 − 9

< 0

13. x3 + 2x2 + x
x2 − x− 2

≥ 0

14. x2 + 5x+ 6
x2 − 1

> 0

15. 3x− 1
x2 + 1

≤ 1

16. 2x+ 17
x+ 1

> x+ 5

17. −x3 + 4x
x2 − 9

≥ 4x

18. 1
x2 + 1

< 0

19. x4 − 4x3 + x2 − 2x− 15
x3 − 4x2

≥ x

20. 5x3 − 12x2 + 9x+ 10
x2 − 1

≥ 3x− 1

21. Carl and Mike start a 3 mile race at the same Ɵme. If Mike
ran the race at 6 miles per hour and finishes the race 10
minutes before Carl, how fast does Carl run?

22. One day, Donnie observes that the wind is blowing at 6
miles per hour. A unladen swallow nesƟng near Donnie’s
house flies three quarters of a mile down the road (in the
direcƟon of the wind), turns around, and returns exactly 4
minutes later. What is the airspeed of the unladen swal-
low? (Here, ‘airspeed’ is the speed that the swallow can fly
in sƟll air.)

23. In order to remove water from a flooded basement, two
pumps, each rated at 40 gallons per minute, are used. Af-
ter half an hour, the one pump burns out, and the second
pump finishes removing the water half an hour later. How
many gallons of water were removed from the basement?

24. A faucet can fill a sink in 5 minutes while a drain will empty
the same sink in 8 minutes. If the faucet is turned on and
the drain is leŌ open, how long will it take to fill the sink?

25. Working together, Daniel and Donnie can clean the llama
pen in 45 minutes. On his own, Daniel can clean the pen in
an hour. How long does it take Donnie to clean the llama
pen on his own?

26. In Exercise 32, the funcƟon C(x) = .03x3 − 4.5x2 + 225x+
250, for x ≥ 0 was used to model the cost (in dollars) to
produce x PortaBoy game systems. Using this cost funcƟon,
find the number of PortaBoys which should be produced
to minimize the average cost C. Round your answer to the
nearest number of systems.

27. Suppose we are in the same situaƟon as Example 95. If the
volume of the box is to be 500 cubic cenƟmetres, use your
calculator or computer to find the dimensions of the box
whichminimize the surface area. What is theminimum sur-
face area? Round your answers to two decimal places.

28. The box for the new Sasquatch-themed cereal, ‘Crypt-Os’, is
to have a volumeof 140 cubic inches. For aestheƟc reasons,
the height of the box needs to be 1.62 Ɵmes the width of
the base of the box.2 Find the dimensions of the box which
will minimize the surface area of the box. What is the min-
imum surface area? Round your answers to two decimal
places.

21.62 is a crude approximaƟon of the so-called ‘Golden RaƟo’ ϕ = 1+
√
5

2 .
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29. Sally is Skippy’s neighbour from Exercise 19 in SecƟon 3.3.
Sally also wants to plant a vegetable garden along the side
of her home. She doesn’t have any fencing, but wants to
keep the size of the garden to 100 square feet. What are the
dimensions of the garden which will minimize the amount
of fencing she needs to buy? What is theminimum amount
of fencing she needs to buy? Round your answers to the
nearest foot. (Note: Since one side of the garden will bor-
der the house, Sally doesn’t need fencing along that side.)

30. Another Classic Problem: A can is made in the shape of
a right circular cylinder and is to hold one pint. (For dry
goods, one pint is equal to 33.6 cubic inches.)3

(a) Find an expression for the volume V of the can in
terms of the height h and the base radius r.

(b) Find an expression for the surface area S of the can
in terms of the height h and the base radius r. (Hint:
The top and boƩom of the can are circles of radius r
and the side of the can is really just a rectangle that
has been bent into a cylinder.)

(c) Using the fact that V = 33.6, write S as a funcƟon of
r and state its applied domain.

(d) Use your graphing calculator to find the dimensions
of the can which has minimal surface area.

31. A right cylindrical drum is to hold 7.35 cubic feet of liquid.
Find the dimensions (radius of the base and height) of the
drum which would minimize the surface area. What is the
minimum surface area? Round your answers to two deci-
mal places.

32. In Exercise 72 in SecƟon 2.3, the populaƟon of Sasquatch in
Portage County was modeled by the funcƟon P(t) = 150t

t+15 ,
where t = 0 represents the year 1803. When were there
fewer than 100 Sasquatch in Portage County?

In Exercises 33 – 38, translate the following into mathemaƟ-
cal equaƟons.

33. At a constant pressure, the temperature T of an ideal gas is
directly proporƟonal to its volume V. (This is Charles’s Law)

34. The frequency of a wave f is inversely proporƟonal to the
wavelength of the wave4 λ.

35. The density d of a material is directly proporƟonal to the
mass of the object m and inversely proporƟonal to its vol-
ume V.

36. The square of the orbital period of a planet P is directly pro-
porƟonal to the cube of the semi-major axis of its orbit a.
(This is Kepler’s Third Law of Planetary MoƟon )

37. The drag of an object travelling through a fluid D varies
jointly with the density of the fluid5 ρ and the square of
the velocity of the object ν.

38. Suppose two electric point charges, one with charge q and
onewith chargeQ, are posiƟoned runits apart. The electro-
staƟc force F exerted on the charges varies directly with the
product of the two charges and inversely with the square of
the distance between the charges.6 (This is Coulomb’s Law)

39. According to this webpage, the frequency f of a vibraƟng

string is given by f = 1
2L

√
T
µ

where T is the tension, µ is

the linear mass7 of the string and L is the length of the vi-
braƟng part of the string. Express this relaƟonship using
the language of variaƟon.

40. According to the Centers for Disease Control and Preven-
Ɵon www.cdc.gov, a person’s Body Mass Index B is directly
proporƟonal to his weight W in pounds and inversely pro-
porƟonal to the square of his height h in inches.

(a) Express this relaƟonship as amathemaƟcal equaƟon.

(b) If a person who was 5 feet, 10 inches tall weighed
235 pounds had a Body Mass Index of 33.7, what is
the value of the constant of proporƟonality?

(c) Rewrite themathemaƟcal equaƟon found in part 40a
to include the value of the constant found in part 40b
and then find your Body Mass Index.

41. We know that the circumference of a circle varies directly
with its radius with 2π as the constant of proporƟonality.
(That is, we know C = 2πr.) With the help of your class-
mates, compile a list of other basic geometric relaƟonships
which can be seen as variaƟons.

3According to www.dicƟonary.com, there are different values given for this conversion. We will sƟck with 33.6in3 for this problem.
4The character λ is the lower case Greek leƩer ‘lambda.’
5The characters ρ and ν are the lower case Greek leƩers ‘rho’ and ‘nu,’ respecƟvely.
6Note the similarity to this formula and Newton’s Law of Universal GravitaƟon as discussed in Example 5.
7Also known as the linear density. It is simply a measure of mass per unit length.
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If we broaden our concept of funcƟons
to allow for complex valued coefficients,
then every polynomial can be completely
factored, so that every funcƟon we have
studied thus far is in fact a combinaƟon of
linear funcƟons.

f g

g ◦ f

x f(x)
g(f(x))

Figure 6.1: ComposiƟon of funcƟons

6: FçÄ�ã®ÊÄ CÊÃÖÊÝ®ã®ÊÄ �Ä�
IÄò�ÙÝ�Ý
6.1 FuncƟon ComposiƟon
Before we embark upon any further adventures with funcƟons, we need to take
some Ɵme to gather our thoughts and gain some perspecƟve. Chapter 2 first
introduced us to funcƟons in SecƟon 2.2. At that Ɵme, funcƟons were specific
kinds of relaƟons - sets of points in the planewhich passed the VerƟcal Line Test,
Theorem 6. In SecƟon 2.3, we developed the idea that funcƟons are processes
- rules which match inputs to outputs - and this gave rise to the concepts of
domain and range. We spoke about how funcƟons could be combined in Sec-
Ɵon 2.4 using the four basic arithmeƟc operaƟons, took a more detailed look
at their graphs in SecƟon 2.5 and studied how their graphs behaved under cer-
tain classes of transformaƟons in SecƟon 2.6. In Chapter 3, we took a closer
look at three families of funcƟons: linear funcƟons (SecƟon 3.1), absolute value
funcƟons (which were introduced, as you may recall, as piecewise-defined lin-
ear funcƟons in SecƟon 3.2), and quadraƟc funcƟons (SecƟon 3.3). Linear and
quadraƟc funcƟons were special cases of polynomial funcƟons, which we stud-
ied in generality in Chapter 4. One can prove (using complex numbers!) that all
polynomial funcƟons with real coefficients can be factored as products of linear
and quadraƟc funcƟons. Our next step was to enlarge our field (this is a really
bad math pun) of study to raƟonal funcƟons in Chapter 5. Being quoƟents of
polynomials, we can ulƟmately view this family of funcƟons as being built up of
linear and quadraƟc funcƟons as well. So in some sense, Chapters 3, 4, and 5
can be thought of as an exhausƟve study of linear and quadraƟc funcƟons and
their arithmeƟc combinaƟons as described in SecƟon 2.4. We nowwish to study
other algebraic funcƟons, such as f(x) =

√
x and g(x) = x2/3, and the purpose

of the first two secƟons of this chapter is to see how these kinds of funcƟons
arise from polynomial and raƟonal funcƟons. To that end, we first study a new
way to combine funcƟons as defined below.

DefiniƟon 45 ComposiƟon of FuncƟons

Suppose f and g are two funcƟons. The composite of g with f, denoted
g ◦ f, is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an
element of the domain of f and f(x) is an element of the domain of g.

The quanƟty g ◦ f is also read ‘g composed with f’ or, more simply ‘g of f.’
At its most basic level, DefiniƟon 45 tells us to obtain the formula for (g ◦ f) (x),
we replace every occurrence of x in the formula for g(x) with the formula we
have for f(x). If we take a step back and look at this from a procedural, ‘inputs
and outputs’ perspecƟve, DefinƟon 45 tells us the output from g ◦ f is found by
taking the output from f, f(x), and then making that the input to g. The result,
g(f(x)), is the output from g ◦ f. From this perspecƟve, we see g ◦ f as a two
step process taking an input x and first applying the procedure f then applying
the procedure g. This is diagrammed abstractly in Figure 6.1.

In the expression g(f(x)), the funcƟon f is oŌen called the ‘inside’ funcƟon
while g is oŌen called the ‘outside’ funcƟon. There are two ways to go about
evaluaƟng composite funcƟons - ‘inside out’ and ‘outside in’ - depending on
which funcƟon we replace with its formula first. Both ways are demonstrated in



1 3

(+) 0 (−) 0 (+)

Figure 6.2: The sign diagram of r(x) =
x2 − 4x+ 3

Chapter 6 FuncƟon ComposiƟon and Inverses

the following example.

Example 97 EvaluaƟng composite funcƟons
Let f(x) = x2 − 4x, g(x) = 2−

√
x+ 3, and h(x) =

2x
x+ 1

.
Find the indicated funcƟon value for each of the following:

1. (g ◦ f)(1) 2. (f ◦ g)(1) 3. (g ◦ g)(6)

SÊ½çã®ÊÄ

1. Using DefiniƟon 45, (g ◦ f)(1) = g(f(1)). We find f(1) = −3, so

(g ◦ f)(1) = g(f(1)) = g(−3) = 2

2. As before, we use DefiniƟon 45 to write (f ◦ g)(1) = f(g(1)). We find
g(1) = 0, so

(f ◦ g)(1) = f(g(1)) = f(0) = 0

3. Oncemore, DefiniƟon 45 tells us (g◦g)(6) = g(g(6)). That is, we evaluate
g at 6, then plug that result back into g. Since g(6) = −1,

(g ◦ g)(6) = g(g(6)) = g(−1) = 2−
√
2

Example 98 Composing in different orders
With f(x) = x2 − 4x, g(x) = 2−

√
x+ 3 as in Example 97 find and simplify the

composite funcƟons (g◦ f)(x) and (f◦g)(x). State the domain of each funcƟon.

SÊ½çã®ÊÄ By definiƟon, (g ◦ f)(x) = g(f(x)). We now illustrate two
ways to approach this problem.

• inside out: We insert the expression f(x) into g first to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3

= 2−
√

x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

• outside in: We use the formula for g first to get

(g ◦ f)(x) = g(f(x)) = 2−
√

f(x) + 3 = 2−
√
(x2 − 4x) + 3

= 2−
√

x2 − 4x+ 3

We get the same answer as before, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f, we need to find the elements in the domain of f
whose outputs f(x) are in the domain of g. We accomplish this by following the
rule set forth in SecƟon 2.3, that is, we find the domain before we simplify. To
that end, we examine (g ◦ f)(x) = 2−

√
(x2 − 4x) + 3. To keep the square root

happy, we solve the inequality x2 − 4x+ 3 ≥ 0 by creaƟng a sign diagram. If we
let r(x) = x2 − 4x+ 3, we find the zeros of r to be x = 1 and x = 3. We obtain
the sign diagram in Figure 6.2.

Our soluƟon to x2− 4x+ 3 ≥ 0, and hence the domain of g ◦ f, is (−∞, 1]∪
[3,∞).

To find (f ◦ g)(x), we find f(g(x)).
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6.1 FuncƟon ComposiƟon

• inside out: We insert the expression g(x) into f first to get

(f ◦ g)(x) = f(g(x)) = f
(
2−

√
x+ 3

)
=
(
2−

√
x+ 3

)2 − 4
(
2−

√
x+ 3

)
= 4− 4

√
x+ 3+

(√
x+ 3

)2 − 8+ 4
√
x+ 3

= 4+ x+ 3− 8
= x− 1

• outside in: We use the formula for f(x) first to get

(f ◦ g)(x) = f(g(x)) = (g(x))2 − 4 (g(x))

=
(
2−

√
x+ 3

)2 − 4
(
2−

√
x+ 3

)
= x− 1 same algebra as before

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to
the step before we did any simplificaƟon and find (f ◦ g)(x) =

(
2−

√
x+ 3

)2−
4
(
2−

√
x+ 3

)
. To keep the square root happy, we set x + 3 ≥ 0 and find our

domain to be [−3,∞).

NoƟce that in Example 98, we found (g ◦ f)(x) ̸= (f ◦ g)(x). In Example 99
we add evidence that this is the rule, rather than the excepƟon.

Example 99 Comparing order of composiƟon
Find and simplify the funcƟons (g ◦ h)(x) and (h ◦ g)(x), where we again take

g(x) = 2−
√
x+ 3 and h(x) =

2x
x+ 1

. State the domain of each funcƟon.

SÊ½çã®ÊÄ To find (g ◦ h)(x), we compute g(h(x)).

• inside out: We insert the expression h(x) into g first to get

(g ◦ h)(x) = g(h(x)) = g
(

2x
x+ 1

)
= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

2x
x+ 1

+
3(x+ 1)
x+ 1

get common denominators

= 2−
√

5x+ 3
x+ 1

• outside in: We use the formula for g(x) first to get

(g ◦ h)(x) = g(h(x)) = 2−
√

h(x) + 3

= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

5x+ 3
x+ 1

get common denominators
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Figure 6.3: The sign diagram of
r(x) = 5x+ 3

x+ 1

Chapter 6 FuncƟon ComposiƟon and Inverses

To find the domain of (g◦h), we look to the step beforewe began to simplify:

(g ◦ h)(x) = 2−

√(
2x

x+ 1

)
+ 3

To avoid division by zero, we need x ̸= −1. To keep the radical happy, we need
to solve

2x
x+ 1

+ 3 =
5x+ 3
x+ 1

≥ 0

Defining r(x) =
5x+ 3
x+ 1

, we see r is undefined at x = −1 and r(x) = 0 at x = − 3
5 .

Our sign diagram is given in Figure 6.3.
Our domain is (−∞,−1) ∪

[
− 3

5 ,∞
)
.

Next, we find (h ◦ g)(x) by finding h(g(x)).

• inside out: We insert the expression g(x) into h first to get

(h ◦ g)(x) = h(g(x)) = h
(
2−

√
x+ 3

)
=

2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

• outside in: We use the formula for h(x) first to get

(h ◦ g)(x) = h(g(x)) =
2 (g(x))

(g(x)) + 1

=
2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

To find the domain of h ◦ g, we look to the step before any simplificaƟon:

(h ◦ g)(x) =
2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

To keep the square root happy, we require x+ 3 ≥ 0 or x ≥ −3. Seƫng the de-
nominator equal to zero gives

(
2−

√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3. Squaring

both sides gives us x+ 3 = 9, or x = 6. Since x = 6 checks in the original equa-
Ɵon,

(
2−

√
x+ 3

)
+1 = 0, we know x = 6 is the only zero of the denominator.

Hence, the domain of h ◦ g is [−3, 6) ∪ (6,∞).
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6.1 FuncƟon ComposiƟon

Example 100 Composing a funcƟon with itself
Using the funcƟon h(x) =

2x
x+ 1

from our previous examples, compute the
funcƟon (h ◦ h)(x), and state its domain.

SÊ½çã®ÊÄ To find (h ◦ h)(x), we subsƟtute the funcƟon h into itself,
forming h(h(x)).

• inside out: We insert the expression h(x) into h to get

(h ◦ h)(x) = h(h(x)) = h
(

2x
x+ 1

)

=

2
(

2x
x+ 1

)
(

2x
x+ 1

)
+ 1

=

4x
x+ 1
2x

x+ 1
+ 1

· (x+ 1)
(x+ 1)

=

4x
x+ 1

· (x+ 1)(
2x

x+ 1

)
· (x+ 1) + 1 · (x+ 1)

=

4x

����: 1
(x+ 1)

·����(x+ 1)

2x

����: 1
(x+ 1)

·����(x+ 1) + x+ 1

=
4x

3x+ 1

• outside in: This approach yields

(h ◦ h)(x) = h(h(x)) =
2(h(x))
h(x) + 1

=

2
(

2x
x+ 1

)
(

2x
x+ 1

)
+ 1

=
4x

3x+ 1
,

using the same algebra as before. To find the domain of h ◦ h, we analyze

(h ◦ h)(x) =
2
(

2x
x+ 1

)
(

2x
x+ 1

)
+ 1

To keep the denominator x+1 happy, we need x ̸= −1. Seƫng the denominator

2x
x+ 1

+ 1 = 0

gives x = − 1
3 . Our domain is (−∞,−1) ∪

(
−1,− 1

3
)
∪
(
− 1

3 ,∞
)
.
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Chapter 6 FuncƟon ComposiƟon and Inverses

For our last example, we sƟck with the same three funcƟons as above, but
we consider two different composiƟons involving all three funcƟons.

Example 101 Composing three funcƟons
Let f(x) = x2 − 4x, g(x) = 2−

√
x+ 3, and h(x) =

2x
x+ 1

. Find and simplify the
funcƟons (h◦ (g◦ f))(x) and ((h◦g)◦ f)(x). State the domain of each funcƟon.

SÊ½çã®ÊÄ The expression (h ◦ (g ◦ f))(x) indicates that we first find
the composite, g ◦ f and compose the funcƟon hwith the result. We know from
Example 98 that (g ◦ f)(x) = 2−

√
x2 − 4x+ 3. We now proceed as usual.

• inside out: We insert the expression (g ◦ f)(x) into h first to get

h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h
(
2−

√
x2 − 4x+ 3

)
=

2
(
2−

√
x2 − 4x+ 3

)(
2−

√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

• outside in: We use the formula for h(x) first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = 2 ((g ◦ f)(x))
((g ◦ f)(x)) + 1

=
2
(
2−

√
x2 − 4x+ 3

)(
2−

√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

To find the domain of (h ◦ (g ◦ f)), we look at the step before we began to
simplify,

(h ◦ (g ◦ f))(x) =
2
(
2−

√
x2 − 4x+ 3

)(
2−

√
x2 − 4x+ 3

)
+ 1

For the square root, we need x2 − 4x+ 3 ≥ 0, which we determined in number
1 to be (−∞, 1] ∪ [3,∞). Next, we set the denominator to zero and solve:(
2−

√
x2 − 4x+ 3

)
+ 1 = 0. We get

√
x2 − 4x+ 3 = 3, and, aŌer squaring

both sides, wehave x2−4x+3 = 9. To solve x2−4x−6 = 0, weuse the quadraƟc
formula and get x = 2 ±

√
10. The reader is encouraged to check that both

of these numbers saƟsfy the original equaƟon,
(
2−

√
x2 − 4x+ 3

)
+ 1 = 0.

Hence we must exclude these numbers from the domain of h ◦ (g ◦ f). Our
final domain for h ◦ (f ◦ g) is (−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2+

√
10
)
∪(

2+
√
10,∞

)
.

The expression ((h◦g)◦ f)(x) indicates that we first find the composite h◦g
and then compose that with f. From Example 99, we have

(h ◦ g)(x) = 4− 2
√
x+ 3

3−
√
x+ 3

We now proceed as before.
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This shows us funcƟon composiƟon isn’t
commutaƟve. An example of an opera-
Ɵonweperformon two funcƟonswhich is
commutaƟve is funcƟon addiƟon, which
we defined in SecƟon 2.4. In other words,
the funcƟons f + g and g + f are always
equal. Which of the remaining operaƟons
on funcƟons we have discussed are com-
mutaƟve?

6.1 FuncƟon ComposiƟon

• inside out: We insert the expression f(x) into h ◦ g first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = (h ◦ g)
(
x2 − 4x

)
=

4− 2
√
(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

• outside in: We use the formula for (h ◦ g)(x) first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) =
4− 2

√
(f(x)) + 3

3−
√

f(x)) + 3

=
4− 2

√
(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

We note that the formula for ((h ◦g) ◦ f)(x) before simplificaƟon is idenƟcal
to that of (h ◦ (g ◦ f))(x) before we simplified it. Hence, the two funcƟons have
the same domain, h ◦ (f ◦ g) is (−∞, 2−

√
10)∪ (2−

√
10, 1]∪

[
3, 2+

√
10
)
∪(

2+
√
10,∞

)
.

It should be clear from Examples 98 and 99 that, in general, when you com-
pose two funcƟons, such as f and g above, the order maƩers. We found that the
funcƟons f◦g and g◦fwere different aswere g◦h and h◦g. Thinking of funcƟons
as processes, this isn’t all that surprising. If we think of one process as puƫng on
our socks, and the other as puƫng on our shoes, the order in which we do these
two tasks does maƩer. Also note the importance of finding the domain of the
composite funcƟon before simplifying. For instance, the domain of f ◦ g is much
different than its simplified formula would indicate. Composing a funcƟon with
itself, as in the case of finding (g ◦ g)(6) and (h ◦ h)(x), may seem odd. Looking
at this from a procedural perspecƟve, however, this merely indicates perform-
ing a task h and then doing it again - like seƫng the washing machine to do a
‘double rinse’. Composing a funcƟon with itself is called ‘iteraƟng’ the funcƟon,
and we could easily spend an enƟre course on just that. The last two problems
in Example 98 serve to demonstrate the associaƟve property of funcƟons. That
is, when composing three (or more) funcƟons, as long as we keep the order the
same, it doesn’t maƩer which two funcƟons we compose first. This property as
well as another important property are listed in the theorem below.

Theorem 34 ProperƟes of FuncƟon ComposiƟon

Suppose f, g, and h are funcƟons.

• h ◦ (g ◦ f) = (h ◦ g) ◦ f, provided the composite funcƟons are
defined.

• If I is defined as I(x) = x for all real numbers x, then I◦ f = f◦ I = f.

233



When we get to Calculus, we’ll see that
being able to decompose a complicated
funcƟon into simpler pieces is a necessary
skill for applying the Chain Rule for deriva-
Ɵves.

Chapter 6 FuncƟon ComposiƟon and Inverses

By repeated applicaƟons of DefiniƟon 45, we find (h ◦ (g ◦ f))(x) = h((g ◦
f)(x)) = h(g(f(x))). Similarly, ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))). This
establishes that the formulas for the two funcƟons are the same. We leave it to
the reader to think about why the domains of these two funcƟons are idenƟcal,
too. These two facts establish the equality h◦(g◦f) = (h◦g)◦f. A consequence
of the associaƟvity of funcƟon composiƟon is that there is no need for paren-
theses when we write h ◦ g ◦ f. The second property can also be verified using
DefiniƟon 45. Recall that the funcƟon I(x) = x is called the idenƟty funcƟon and
was introduced in Exercise 73 in SecƟon 3.1. If we compose the funcƟon I with
a funcƟon f, then we have (I ◦ f)(x) = I(f(x)) = f(x), and a similar computaƟon
shows (f ◦ I)(x) = f(x). This establishes that we have an idenƟty for funcƟon
composiƟonmuch in the sameway the real number 1 is an idenƟty for real num-
ber mulƟplicaƟon. That is, just as for any real number x, 1 · x = x · 1 = x , we
have for any funcƟon f, I ◦ f = f ◦ I = f. We shall see the concept of an idenƟty
take on great significance in the next secƟon. Out in the wild, funcƟon compo-
siƟon is oŌen used to relate two quanƟƟes which may not be directly related,
but have a variable in common, as illustrated in our next example.

Example 102 InflaƟng a sphere
The surface area S of a sphere is a funcƟon of its radius r and is given by the
formula S(r) = 4πr2. Suppose the sphere is being inflated so that the radius of
the sphere is increasing according to the formula r(t) = 3t2, where t ismeasured
in seconds, t ≥ 0, and r is measured in inches. Find and interpret (S ◦ r)(t).

SÊ½çã®ÊÄ If we look at the funcƟons S(r) and r(t) individually, we see
the former gives the surface area of a sphere of a given radius while the laƩer
gives the radius at a given Ɵme. So, given a specific Ɵme, t, we could find the
radius at that Ɵme, r(t) and feed that into S(r) to find the surface area at that
Ɵme. From this we see that the surface area S is ulƟmately a funcƟon of Ɵme
t and we find (S ◦ r)(t) = S(r(t)) = 4π(r(t))2 = 4π

(
3t2
)2

= 36πt4. This
formula allows us to compute the surface area directly given the Ɵme without
going through the ‘middle man’ r.

A useful skill in Calculus is to be able to take a complicated funcƟon and break
it down into a composiƟon of easier funcƟons which our last example illustrates.

Example 103 Decomposing funcƟons
Write each of the following funcƟons as a composiƟon of two or more (non-
idenƟty) funcƟons. Check your answer by performing the funcƟon composiƟon.

1. F(x) = |3x− 1|

2. G(x) =
2

x2 + 1

3. H(x) =
√
x+ 1√
x− 1

SÊ½çã®ÊÄ There are many approaches to this kind of problem, and we
showcase a different methodology in each of the soluƟons below.

1. Our goal is to express the funcƟon F as F = g ◦ f for funcƟons g and f.
From DefiniƟon 45, we know F(x) = g(f(x)), and we can think of f(x) as
being the ‘inside’ funcƟon and g as being the ‘outside’ funcƟon. Looking
at F(x) = |3x − 1| from an ‘inside versus outside’ perspecƟve, we can
think of 3x − 1 being inside the absolute value symbols. Taking this cue,
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6.1 FuncƟon ComposiƟon

we define f(x) = 3x− 1. At this point, we have F(x) = |f(x)|. What is the
outside funcƟon? The funcƟonwhich takes the absolute value of its input,
g(x) = |x|. Sure enough, (g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F(x),
so we are done.

2. We aƩack deconstrucƟngG from an operaƟonal approach. Given an input
x, the first step is to square x, then add 1, then divide the result into 2. We
will assign each of these steps a funcƟon so as to write G as a composite
of three funcƟons: f, g and h. Our first funcƟon, f, is the funcƟon that
squares its input, f(x) = x2. The next funcƟon is the funcƟon that adds 1
to its input, g(x) = x + 1. Our last funcƟon takes its input and divides it
into 2, h(x) = 2

x . The claim is that G = h ◦ g ◦ f. We find

(h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) = h

(
x2 + 1

)
=

2
x2 + 1

= G(x),

so we are done.

3. If we look H(x) =

√
x+ 1√
x− 1

with an eye towards building a complicated

funcƟon from simpler funcƟons, we see the expression
√
x is a simple

piece of the larger funcƟon. If we define f(x) =
√
x, we have H(x) =

f(x)+1
f(x)−1 . If we want to decompose H = g◦ f, then we can glean the formula
for g(x) by looking at what is being done to f(x). We take g(x) = x+1

x−1 , so

(g ◦ f)(x) = g(f(x)) =
f(x) + 1
f(x)− 1

=

√
x+ 1√
x− 1

= H(x),

as required.
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Exercises 6.1
Problems
In Exercises 1 – 12, use the given pair of funcƟons to find the
following values if they exist.

• (g ◦ f)(0)

• (f ◦ g)(−1)

• (f ◦ f)(2)

• (g ◦ f)(−3)

• (f ◦ g)
( 1
2

)
• (f ◦ f)(−2)

1. f(x) = x2, g(x) = 2x+ 1

2. f(x) = 4− x, g(x) = 1− x2

3. f(x) = 4− 3x, g(x) = |x|

4. f(x) = |x− 1|, g(x) = x2 − 5

5. f(x) = 4x+ 5, g(x) =
√
x

6. f(x) =
√
3− x, g(x) = x2 + 1

7. f(x) = 6− x− x2, g(x) = x
√
x+ 10

8. f(x) = 3√x+ 1, g(x) = 4x2 − x

9. f(x) = 3
1− x

, g(x) = 4x
x2 + 1

10. f(x) = x
x+ 5

, g(x) = 2
7− x2

11. f(x) = 2x
5− x2

, g(x) =
√
4x+ 1

12. f(x) =
√
2x+ 5, g(x) = 10x

x2 + 1

In Exercises 13 – 24, use the given pair of funcƟons to find and
simplify expressions for the following funcƟons and state the
domain of each using interval notaƟon.

• (g ◦ f)(x) • (f ◦ g)(x) • (f ◦ f)(x)

13. f(x) = 2x+ 3, g(x) = x2 − 9

14. f(x) = x2 − x+ 1, g(x) = 3x− 5

15. f(x) = x2 − 4, g(x) = |x|

16. f(x) = 3x− 5, g(x) =
√
x

17. f(x) = |x+ 1|, g(x) =
√
x

18. f(x) = 3− x2, g(x) =
√
x+ 1

19. f(x) = |x|, g(x) =
√
4− x

20. f(x) = x2 − x− 1, g(x) =
√
x− 5

21. f(x) = 3x− 1, g(x) = 1
x+ 3

22. f(x) = 3x
x− 1

, g(x) = x
x− 3

23. f(x) = x
2x+ 1

, g(x) = 2x+ 1
x

24. f(x) = 2x
x2 − 4

, g(x) =
√
1− x

In Exercises 25 – 31, use f(x) = −2x, g(x) =
√
x and h(x) =

|x| to find and simplify expressions for the following funcƟons
and state the domain of each using interval notaƟon.

25. (h ◦ g ◦ f)(x)

26. (h ◦ f ◦ g)(x)

27. (g ◦ f ◦ h)(x)

28. (g ◦ h ◦ f)(x)

29. (f ◦ h ◦ g)(x)

30. (f ◦ g ◦ h)(x)

31. f(x) = |x|, g(x) =
√
4− x

In Exercises 32 – 41, write the given funcƟon as a composiƟon
of two ormore non-idenƟty funcƟons. (There are several cor-
rect answers, so check your answer using funcƟon composi-
Ɵon.)

32. p(x) = (2x+ 3)3

33. P(x) =
(
x2 − x+ 1

)5
34. h(x) =

√
2x− 1

35. H(x) = |7− 3x|

36. r(x) = 2
5x+ 1

37. R(x) = 7
x2 − 1

38. q(x) = |x|+ 1
|x| − 1

39. Q(x) = 2x3 + 1
x3 − 1

40. v(x) = 2x+ 1
3− 4x
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41. w(x) = x2

x4 + 1

42. Write the funcƟon F(x) =

√
x3 + 6
x3 − 9

as a composiƟon of
three or more non-idenƟty funcƟons.

43. Let g(x) = −x, h(x) = x+2, j(x) = 3x and k(x) = x−4. In
what order must these funcƟons be composed with f(x) =√
x to create F(x) = 3

√
−x+ 2− 4?

44. What linear funcƟons could be used to transform f(x) = x3

into F(x) = − 1
2 (2x− 7)3 + 1? What is the proper order of

composiƟon?

In Exercises 45 – 56, let f be the funcƟon defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the funcƟon defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.

Find the value if it exists.

45. (f ◦ g)(3)

46. f(g(−1))

47. (f ◦ f)(0)

48. (f ◦ g)(−3)

49. (g ◦ f)(3)

50. g(f(−3))

51. (g ◦ g)(−2)

52. (g ◦ f)(−2)

53. g(f(g(0)))

54. f(f(f(−1)))

55. f(f(f(f(f(1)))))

56. (g ◦ g ◦ · · · ◦ g)︸ ︷︷ ︸
n Ɵmes

(0)

In Exercises 57 – 62, use the graphs of y = f(x) and y = g(x)
below to find the funcƟon value.

x

y

1 2 3 4

1

2

3

4

x

y

1 2 3 4

1

2

3

4

57. (g ◦ f)(1)

58. (f ◦ g)(3)

59. (g ◦ f)(2)

60. (f ◦ g)(0)

61. (f ◦ f)(1)

62. (g ◦ g)(1)

63. The volumeVof a cube is a funcƟonof its side length x. Let’s
assume that x = t+ 1 is also a funcƟon of Ɵme t, where x
is measured in inches and t is measured in minutes. Find a
formula for V as a funcƟon of t.

64. Suppose a local vendor charges $2 per hot dog and that
the number of hot dogs sold per hour x is given by x(t) =
−4t2 + 20t + 92, where t is the number of hours since 10
AM, 0 ≤ t ≤ 4.

(a) Find an expression for the revenue per hour R as a
funcƟon of x.

(b) Find and simplify (R ◦ x) (t). What does this repre-
sent?

(c) What is the revenue per hour at noon?

65. Discuss with your classmates how ‘real-world’ processes
such as filling out federal income tax forms or compuƟng
your final course grade could be viewed as a use of funcƟon
composiƟon. Find a process for which composiƟon with it-
self (iteraƟon) makes sense.
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f

g

x = g(f(x)) y = f(x)

Figure 6.4: The relaƟonship between a
funcƟon and its inverse

Chapter 6 FuncƟon ComposiƟon and Inverses

6.2 Inverse FuncƟons
Thinking of a funcƟon as a process like we did in SecƟon 2.3, in this secƟon we
seek another funcƟon which might reverse that process. As in real life, we will
find that some processes (like puƫng on socks and shoes) are reversible while
some (like cooking a steak) are not. We start by discussing a very basic funcƟon
which is reversible, f(x) = 3x + 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in SecƟon 2.3

1. mulƟply by 3

2. add 4

To reverse this process, we seek a funcƟon g which will undo each of these
steps and take the output from f, 3x + 4, and return the input x. If we think of
the real-world reversible two-step process of first puƫng on socks then puƫng
on shoes, to reverse the process, we first take off the shoes, and then we take
off the socks. In much the same way, the funcƟon g should undo the second
step of f first. That is, the funcƟon g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) = x−4
3 . Let’s check to see if the func-

Ɵon g does the job. If x = 5, then f(5) = 3(5) + 4 = 15 + 4 = 19. Taking
the output 19 from f, we subsƟtute it into g to get g(19) = 19−4

3 = 15
3 = 5,

which is our original input to f. To check that g does the job for all x in the
domain of f, we take the generic output from f, f(x) = 3x + 4, and subsƟ-
tute that into g. That is, g(f(x)) = g(3x + 4) = (3x+4)−4

3 = 3x
3 = x, which

is our original input to f. If we carefully examine the arithmeƟc as we sim-
plify g(f(x)), we actually see g first ‘undoing’ the addiƟon of 4, and then ‘un-
doing’ the mulƟplicaƟon by 3. Not only does g undo f, but f also undoes g.
That is, if we take the output from g, g(x) = x−4

3 , and put that into f, we get
f(g(x)) = f

( x−4
3
)
= 3

( x−4
3
)
+ 4 = (x − 4) + 4 = x. Using the language of

funcƟon composiƟon developed in SecƟon 6.1, the statements g(f(x)) = x and
f(g(x)) = x can be wriƩen as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respecƟvely.
Abstractly, we can visualize the relaƟonship between f and g in Figure 6.4.

The main idea to get from Figure 6.4 is that g takes the outputs from f and
returns them to their respecƟve inputs, and conversely, f takes outputs from g
and returns them to their respecƟve inputs. We now have enough background
to state the central definiƟon of the secƟon.

DefiniƟon 46 Inverse of a funcƟon

Suppose f and g are two funcƟons such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g

then f and g are inverses of each other and the funcƟons f and g are said
to be inverƟble.
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x

y

y = f(x)

y = g(x)

y = x

−2−1 1 2
−1

−2

1

2

Figure 6.5: ReflecƟng y = f(x) across y =
x to obtain y = g(x)
The idenƟty funcƟon I, which was intro-
duced in SecƟon 3.1 and menƟoned in
Theorem34, has a domain of all real num-
bers. Since the domains of f and g may
not be all real numbers, we need the re-
stricƟons listed here.

In the interests of full disclosure, the au-
thors would like to admit that much of
the discussion in the previous paragraphs
could have easily been avoided had we
appealed to the descripƟon of a funcƟon
as a set of ordered pairs. We make no
apology for our discussion from a func-
Ɵon composiƟon standpoint, however,
since it exposes the reader to more ab-
stract ways of thinking of funcƟons and
inverses.

6.2 Inverse FuncƟons

We now formalize the concept that inverse funcƟons exchange inputs and
outputs.

Theorem 35 ProperƟes of Inverse FuncƟons

Suppose f and g are inverse funcƟons.

• The range (recall this is the set of all outputs of a funcƟon) of f is
the domain of g and the domain of f is the range of g

• f(a) = b if and only if g(b) = a

• (a, b) is on the graph of f if and only if (b, a) is on the graph of g

Theorem 35 is a consequence of DefiniƟon 46 and the Fundamental Graph-
ing Principle for FuncƟons. We note the third property in Theorem 35 tells us
that the graphs of inverse funcƟons are reflecƟons about the line y = x. For a
proof of this, see Example 11 in SecƟon 1.3 and Exercise 72 in SecƟon 3.1. For
example, we plot the inverse funcƟons f(x) = 3x+4 and g(x) =

x− 4
3

in Figure
6.5.

If we abstract one step further, we can express the senƟment in DefiniƟon 46
by saying that f and g are inverses if and only if g◦ f = I1 and f◦g = I2 where I1 is
the idenƟty funcƟon restricted to the domain of f and I2 is the idenƟty funcƟon
restricted to the domain of g. In other words, I1(x) = x for all x in the domain
of f and I2(x) = x for all x in the domain of g. Using this descripƟon of inverses
along with the properƟes of funcƟon composiƟon listed in Theorem 34, we can
show that funcƟon inverses are unique. (In other words, inverƟble funcƟons
have exactly one inverse.) Suppose g and h are both inverses of a funcƟon f.
By Theorem 35, the domain of g is equal to the domain of h, since both are
the range of f. This means the idenƟty funcƟon I2 applies both to the domain
of h and the domain of g. Thus h = h ◦ I2 = h ◦ (f ◦ g) = (h ◦ f) ◦ g =
I1 ◦ g = g, as required. (It is an excellent exercise to explain each step in this
string of equaliƟes.) We summarize the discussion of the last two paragraphs in
the following theorem.

Theorem 36 Uniqueness of Inverse FuncƟons and Their Graphs

Suppose f is an inverƟble funcƟon.

• There is exactly one inverse funcƟon for f, denoted f−1 (read f-
inverse)

• The graph of y = f−1(x) is the reflecƟon of the graph of y = f(x)
across the line y = x.

The notaƟon f−1 is an unfortunate choice since you’ve been programmed
since Elementary Algebra to think of this as 1

f . This is most definitely not the
case since, for instance, f(x) = 3x + 4 has as its inverse f−1(x) = x−4

3 , which is
certainly different than 1

f(x) = 1
3x+4 . Why does this confusing notaƟon persist?

AswemenƟoned in SecƟon 6.1, the idenƟty funcƟon I is to funcƟon composiƟon
what the real number 1 is to real number mulƟplicaƟon. The choice of notaƟon
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x = −2
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Figure 6.6: The funcƟon f(x) = x2 is not
inverƟble
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(a) y = f(x) = x2

(4,−2)

(4, 2)

x

y
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(b) y = f−1(x)?

Figure 6.7: ReflecƟng y = x2 across the
line y = x does not produce a funcƟon

Chapter 6 FuncƟon ComposiƟon and Inverses

f−1 alludes to the property that f−1 ◦ f = I1 and f ◦ f−1 = I2, in much the same
way as 3−1 · 3 = 1 and 3 · 3−1 = 1.

Let’s turn our aƩenƟon to the funcƟon f(x) = x2. Is f inverƟble? A likely
candidate for the inverse is the funcƟon g(x) =

√
x. Checking the composiƟon

yields (g ◦ f)(x) = g(f(x)) =
√
x2 = |x|, which is not equal to x for all x in

the domain (−∞,∞). For example, when x = −2, f(−2) = (−2)2 = 4, but
g(4) =

√
4 = 2, which means g failed to return the input−2 from its output 4.

What g did, however, is match the output 4 to a different input, namely 2, which
saƟsfies f(2) = 4. This issue is presented schemaƟcally in Figure 6.6.

We see from the diagram that since both f(−2) and f(2) are 4, it is impossi-
ble to construct a funcƟon which takes 4 back to both x = 2 and x = −2. (By
definiƟon, a funcƟon matches a real number with exactly one other real num-
ber.) From a graphical standpoint, we know that if y = f−1(x) exists, its graph
can be obtained by reflecƟng y = x2 about the line y = x, in accordance with
Theorem 36. Doing so takes the graph in Figure 6.7 (a) to the one in Figure 6.7
(b).

We see that the line x = 4 intersects the graph of the supposed inverse
twice - meaning the graph fails the VerƟcal Line Test, Theorem 6, and as such,
does not represent y as a funcƟon of x. The verƟcal line x = 4 on the graph
on the right corresponds to the horizontal line y = 4 on the graph of y = f(x).
The fact that the horizontal line y = 4 intersects the graph of f twice means two
different inputs, namely x = −2 and x = 2, are matched with the same output,
4, which is the cause of all of the trouble. In general, for a funcƟon to have an
inverse, different inputs must go to different outputs, or else wewill run into the
same problem we did with f(x) = x2. We give this property a name.

DefiniƟon 47 One-to-one funcƟon

A funcƟon f is said to be one-to-one if f matches different inputs to dif-
ferent outputs. Equivalently, f is one-to-one if and only if whenever
f(c) = f(d), then c = d.

Graphically, we detect one-to-one funcƟons using the test below.

Theorem 37 The Horizontal Line Test

A funcƟon f is one-to-one if and only if no horizontal line intersects the
graph of fmore than once.

We say that the graph of a funcƟon passes the Horizontal Line Test if no hor-
izontal line intersects the graph more than once; otherwise, we say the graph of
the funcƟon fails the Horizontal Line Test. We have argued that if f is inverƟble,
then f must be one-to-one, otherwise the graph given by reflecƟng the graph
of y = f(x) about the line y = x will fail the VerƟcal Line Test. It turns out that
being one-to-one is also enough to guarantee inverƟbility. To see this, we think
of f as the set of ordered pairs which consƟtute its graph. If switching the x- and
y-coordinates of the points results in a funcƟon, then f is inverƟble and we have
found f−1. This is precisely what the Horizontal Line Test does for us: it checks to
see whether or not a set of points describes x as a funcƟon of y. We summarize
these results below.
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Figure 6.8: The funcƟon f is one-to-one

6.2 Inverse FuncƟons

Theorem 38 Equivalent CondiƟons for InverƟbility

Suppose f is a funcƟon. The following statements are equivalent.
• f is inverƟble

• f is one-to-one

• The graph of f passes the Horizontal Line Test

We put this result to work in the next example.

Example 104 Finding one-to-one funcƟons
Determine if the following funcƟons are one-to-one in two ways: (a) analyƟcally
using DefiniƟon 47 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

3. h(x) = x2 − 2x+ 4

4. F = {(−1, 1), (0, 2), (2, 1)}

SÊ½çã®ÊÄ

1. (a) To determine if f is one-to-one analyƟcally, we assume f(c) = f(d)
and aƩempt to deduce that c = d.

f(c) = f(d)
1− 2c

5
=

1− 2d
5

1− 2c = 1− 2d
−2c = −2d

c = d X

Hence, f is one-to-one.
(b) To check if f is one-to-one graphically, we look to see if the graph of

y = f(x) passes the Horizontal Line Test. We have that f is a non-
constant linear funcƟon, which means its graph is a non-horizontal
line. Thus the graph of f passes the Horizontal Line Test: see Figure
6.8.

2. (a) We begin with the assumpƟon that g(c) = g(d) and try to show
c = d.

g(c) = g(d)
2c

1− c
=

2d
1− d

2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.
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Figure 6.10: The funcƟon h is not one-to-
one
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Figure 6.11: The funcƟon F is not one-to-
one

Chapter 6 FuncƟon ComposiƟon and Inverses

(b) We can graph g using the six step procedure outlined in SecƟon 5.2.
We get the sole intercept at (0, 0), a verƟcal asymptote x = 1 and a
horizontal asymptote (which the graph never crosses) y = −2. We
see from that the graph of g in Figure 6.9 that g passes the Horizontal
Line Test.

3. (a) We begin with h(c) = h(d). As we work our way through the prob-
lem, we encounter a nonlinear equaƟon. We move the non-zero
terms to the leŌ, leave a 0 on the right and factor accordingly.

h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that
c = 2−d. This suggests that fmay not be one-to-one. Taking d = 0,
we get c = 0 or c = 2. With h(0) = 4 and h(2) = 4, we have
produced two different inputs with the same output meaning h is
not one-to-one.

(b) We note that h is a quadraƟc funcƟon and we graph y = h(x) using
the techniques presented in SecƟon 3.3. The vertex is (1, 3) and the
parabola opens upwards. We see immediately from the graph in Fig-
ure 6.10 that h is not one-to-one, since there are several horizontal
lines which cross the graph more than once.

4. (a) The funcƟon F is given to us as a set of ordered pairs. The condiƟon
F(c) = F(d)means the outputs from the funcƟon (the y-coordinates
of the ordered pairs) are the same. We see that the points (−1, 1)
and (2, 1) are both elements of F with F(−1) = 1 and F(2) = 1.
Since−1 ̸= 2, we have established that F is not one-to-one.

(b) Graphically, we see in Figure 6.11 that the horizontal line y = 1
crosses the graph more than once. Hence, the graph of F fails the
Horizontal Line Test.

We have shown that the funcƟons f and g in Example 104 are one-to-one.
This means they are inverƟble, so it is natural to wonder what f−1(x) and g−1(x)
would be. For f(x) = 1−2x

5 , we can think our way through the inverse since
there is only one occurrence of x. We can track step-by-step what is done to x
and reverse those steps as we did at the beginning of the chapter. The funcƟon
g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one evaluates
g(x) for a specific value of x, which is first, the 2x or the 1 − x? We can imag-
ine funcƟons more complicated than these so we need to develop a general
methodology to aƩack this problem. Theorem 35 tells us equaƟon y = f−1(x)
is equivalent to f(y) = x and this is the basis of our algorithm.
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6.2 Inverse FuncƟons

Key Idea 25 Steps for finding the Inverse of a One-to-one FuncƟon

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply wriƩen ‘Solve x = f(y) for y’ and be done
with it. The act of interchanging the x and y is there to remind us that we are
finding the inverse funcƟon by switching the inputs and outputs.

Example 105 CompuƟng inverse funcƟons
Find the inverse of the following one-to-one funcƟons. Check your answers an-
alyƟcally using funcƟon composiƟon and graphically.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

SÊ½çã®ÊÄ

1. AswemenƟoned earlier, it is possible to think ourway through the inverse
of f by recording the steps we apply to x and the order in which we apply
them and then reversing those steps in the reverse order. We encourage
the reader to do this. We, on the other hand, will pracƟce the algorithm.
We write y = f(x) and proceed to switch x and y

y = f(x)

y =
1− 2x

5
x =

1− 2y
5

switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1
−2

= y

y = −5
2
x+

1
2

We have f−1(x) = − 5
2x +

1
2 . To check this answer analyƟcally, we first

check that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f, which is all real

numbers. (
f−1 ◦ f

)
(x) = f−1(f(x))

= −5
2
f(x) +

1
2

= −5
2

(
1− 2x

5

)
+

1
2

= −1
2
(1− 2x) +

1
2

= −1
2
+ x+

1
2

= x X
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Figure 6.12: The graphs of f and f−1 from
Example 105

Chapter 6 FuncƟon ComposiƟon and Inverses

We now check that
(
f ◦ f−1) (x) = x for all x in the range of fwhich is also

all real numbers. (Recall that the domain of f−1) is the range of f.)

(
f ◦ f−1) (x) = f(f−1(x)) =

1− 2f−1(x)
5

=
1− 2

(
− 5

2x+
1
2
)

5
=

1+ 5x− 1
5

=
5x
5

= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the
same set of axes in Figure 6.12. They appear to be reflecƟons across the
line y = x.

2. To find g−1(x), we start with y = g(x). We note that the domain of g is
(−∞, 1) ∪ (1,∞).

y = g(x)
2x

1− x

x =
2y

1− y
switch x and y

x(1− y) = 2y
x− xy = 2y

x = xy+ 2y = y(x+ 2) factor

y =
x

x+ 2

We obtain g−1(x) =
x

x+ 2
. To check this analyƟcally, we first check(

g−1 ◦ g
)
(x) = x for all x in the domain of g, that is, for all x ̸= 1.

(
g−1 ◦ g

)
(x) = g−1(g(x)) = g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

· (1− x)
(1− x)

clear denominators

=
2x

2x+ 2(1− x)
=

2x
2x+ 2− 2x

=
2x
2

= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph

of g in Example 104, we have that the range of g is (−∞,−2)∪ (−2,∞).
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Figure 6.13: The graphs of g and g−1 from
Example 105
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(a) y = f(x) = x2
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(b) y = g(x) = x2, x ≥ 0

Figure 6.14: RestricƟng the domain of
f(x) = x2

6.2 Inverse FuncƟons

This matches the domain we get from the formula g−1(x) = x
x+2 , as it

should.

(
g ◦ g−1) (x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)
(x+ 2)

clear denominators

=
2x

(x+ 2)− x
=

2x
2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we
can see the symmetric relaƟonship if we thicken the curve for y = g−1(x).
Note that the verƟcal asymptote x = 1 of the graph of g corresponds to
the horizontal asymptote y = 1 of the graph of g−1, as it should since x
and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the verƟcal asymptote x = −2 of the graph of
g−1. See Figure 6.13

We now return to f(x) = x2. We know that f is not one-to-one, and thus, is
not inverƟble. However, if we restrict the domain of f, we can produce a new
funcƟon g which is one-to-one. If we define g(x) = x2, x ≥ 0, then we have the
graph in Figure 6.14 (b).

The graph of g passes the Horizontal Line Test. To find an inverse of g, we
proceed as usual

y = g(x)
y = x2, x ≥ 0
x = y2, y ≥ 0 switch x and y
y = ±

√
x

y =
√
x since y ≥ 0

We get g−1(x) =
√
x. At first it looks like we’ll run into the same trouble as

before, but when we check the composiƟon, the domain restricƟon on g saves
the day. We get

(
g−1 ◦ g

)
(x) = g−1(g(x)) = g−1 (x2) = √

x2 = |x| = x, since
x ≥ 0. Checking

(
g ◦ g−1) (x) = g

(
g−1(x)

)
= g

(√
x
)
=
(√

x
)2

= x. Graphing
g and g−1 on the same set of axes in Figure 6.15 shows that they are reflecƟons
about the line y = x.

Our next example conƟnues the theme of domain restricƟon.
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Figure 6.15: The restricted funcƟon g and
its inverse
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Figure 6.16: y = x2 − 2x+ 4, for x ≤ 1

Chapter 6 FuncƟon ComposiƟon and Inverses

Example 106 InverƟng restricted funcƟons
Graph the following funcƟons to show they are one-to-one and find their in-
verses. Check your answers analyƟcally using funcƟon composiƟon and graphi-
cally.

1. j(x) = x2 − 2x+ 4, x ≤ 1.

2. k(x) =
√
x+ 2− 1

SÊ½çã®ÊÄ

1. The funcƟon j is a restricƟon of the funcƟon h fromExample 104. Since the
domain of j is restricted to x ≤ 1, we are selecƟng only the ‘leŌ half’ of the
parabola. We see in Figure 6.16 that the graph of j passes the Horizontal
Line Test and thus j is inverƟble.

We now use our algorithm to find j−1(x). (Here, we use the QuadraƟc
Formula to solve for y. For ‘completeness,’ we note you can (and should!)
also consider solving for y by ‘compleƟng’ the square.)

y = j(x)
y = x2 − 2x+ 4, x ≤ 1
x = y2 − 2y+ 4, y ≤ 1 switch x and y
0 = y2 − 2y+ 4− x

y =
2±

√
(−2)2 − 4(1)(4− x)

2(1)
quadraƟc formula, c = 4− x

y =
2±

√
4x− 12
2

y =
2±

√
4(x− 3)
2

y =
2± 2

√
x− 3

2

y =
2
(
1±

√
x− 3

)
2

y = 1±
√
x− 3

y = 1−
√
x− 3 since y ≤ 1.

We have j−1(x) = 1 −
√
x− 3. When we simplify

(
j−1 ◦ j

)
(x), we need

to remember that the domain of j is x ≤ 1.

(
j−1 ◦ j

)
(x) = j−1(j(x))

= j−1 (x2 − 2x+ 4
)
, x ≤ 1

= 1−
√
(x2 − 2x+ 4)− 3

= 1−
√
x2 − 2x+ 1

= 1−
√
(x− 1)2

= 1− |x− 1|
= 1− (−(x− 1)) since x ≤ 1
= x X

Checking j ◦ j−1, we get
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Figure 6.17: The graphs of j and j−1 from
Example 106
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Figure 6.18: y =
√
x+ 2− 1
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Figure 6.19: The graphs of k and k−1 from
Example 106

6.2 Inverse FuncƟons

(
j ◦ j−1) (x) = j

(
j−1(x)

)
= j
(
1−

√
x− 3

)
=
(
1−

√
x− 3

)2 − 2
(
1−

√
x− 3

)
+ 4

= 1− 2
√
x− 3+

(√
x− 3

)2 − 2+ 2
√
x− 3+ 4

= 3+ x− 3 = x X

Using what we know from SecƟon 2.6, we graph y = j−1(x) and y = j(x)
in Figure 6.17.

2. We graph y = k(x) =
√
x+ 2− 1 in Figure 6.18 using what we learned in

SecƟon 2.6 and see k is one-to-one.
We now try to find k−1.

y = k(x)
y =

√
x+ 2− 1

x =
√
y+ 2− 1 switch x and y

x+ 1 =
√
y+ 2

(x+ 1)2 =
(√

y+ 2
)2

x2 + 2x+ 1 = y+ 2
y = x2 + 2x− 1

We have k−1(x) = x2+ 2x− 1. Based on our experience, we know some-
thing isn’t quite right. We determined k−1 is a quadraƟc funcƟon, and
we have seen several Ɵmes in this secƟon that these are not one-to-one
unless their domains are suitably restricted. Theorem 35 tells us that the
domain of k−1 is the range of k. From the graph of k, we see that the range
is [−1,∞), which means we restrict the domain of k−1 to x ≥ −1. We
now check that this works in our composiƟons.

(
k−1 ◦ k

)
(x) = k−1(k(x))

= k−1 (√x+ 2− 1
)
, x ≥ −2

=
(√

x+ 2− 1
)2

+ 2
(√

x+ 2− 1
)
− 1

=
(√

x+ 2
)2 − 2

√
x+ 2+ 1+ 2

√
x+ 2− 2− 1

= x+ 2− 2
= x X

and (
k ◦ k−1) (x) = k

(
x2 + 2x− 1

)
x ≥ −1

=
√
(x2 + 2x− 1) + 2− 1

=
√
x2 + 2x+ 1− 1

=
√
(x+ 1)2 − 1

= |x+ 1| − 1
= x+ 1− 1 since x ≥ −1
= x X

Graphically, everything checks out as well in Figure 6.19, provided that we
remember the domain restricƟon on k−1 means we take the right half of
the parabola.
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Our last example of the secƟon gives an applicaƟon of inverse funcƟons.

Example 107 InverƟng a price funcƟon
Recall from SecƟon 3.1 that the price-demand equaƟon for the PortaBoy game
system is p(x) = −1.5x+ 250 for 0 ≤ x ≤ 166, where x represents the number
of systems sold weekly and p is the price per system in dollars.

1. Explain why p is one-to-one and find a formula for p−1(x). State the re-
stricted domain.

2. Find and interpret p−1(220).

3. Recall from SecƟon 3.3 that the weekly profit P, in dollars, as a result of
selling x systems is given by P(x) = −1.5x2 + 170x− 150. Find and inter-
pret

(
P ◦ p−1) (x).

4. Use your answer to part 3 to determine the price per PortaBoy which
would yield the maximum profit. Compare with Example 54.

SÊ½çã®ÊÄ

1. We leave to the reader to show the graph of p(x) = −1.5x + 250, 0 ≤
x ≤ 166, is a line segment from (0, 250) to (166, 1), and as such passes
the Horizontal Line Test. Hence, p is one-to-one. We find the expression
for p−1(x) as usual and get p−1(x) = 500−2x

3 . The domain of p−1 should
match the range of p, which is [1, 250], and as such, we restrict the domain
of p−1 to 1 ≤ x ≤ 250.

2. We find p−1(220) = 500−2(220)
3 = 20. Since the funcƟon p took as in-

puts the weekly sales and furnished the price per system as the output,
p−1 takes the price per system and returns the weekly sales as its output.
Hence, p−1(220) = 20 means 20 systems will be sold in a week if the
price is set at $220 per system.

3. We compute
(
P ◦ p−1) (x) = P

(
p−1(x)

)
= P

( 500−2x
3
)
= −1.5

( 500−2x
3
)2
+

170
( 500−2x

3
)
− 150. AŌer a heŌy amount of Elementary Algebra, (it is

good review to actually do this!) weobtain
(
P ◦ p−1) (x) = − 2

3x
2+220x−

40450
3 . To understand what this means, recall that the original profit func-

Ɵon P gave us the weekly profit as a funcƟon of the weekly sales. The
funcƟon p−1 gives us the weekly sales as a funcƟon of the price. Hence,
P◦p−1 takes as its input a price. The funcƟon p−1 returns theweekly sales,
which in turn is fed into P to return theweekly profit. Hence,

(
P ◦ p−1) (x)

gives us the weekly profit (in dollars) as a funcƟon of the price per system,
x, using the weekly sales p−1(x) as the ‘middle man’.

4. Weknow fromSecƟon3.3 that the graphof y =
(
P ◦ p−1) (x) is a parabola

opening downwards. The maximum profit is realized at the vertex. Since
we are concerned only with the price per system, we need only find the
x-coordinate of the vertex. IdenƟfying a = − 2

3 and b = 220, we get, by
the Vertex Formula, EquaƟon 15, x = − b

2a = 165. Hence, weekly profit
is maximized if we set the price at $165 per system. Comparing this with
our answer from Example 54, there is a slight discrepancy to the tune of
$0.50. We leave it to the reader to balance the books appropriately.
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Exercises 6.2
Problems
In Exercises 1 – 20, show that the given funcƟon is one-to-
one and find its inverse. Check your answers algebraically
and graphically. Verify that the range of f is the domain of
f−1 and vice-versa.

1. f(x) = 6x− 2

2. f(x) = 42− x

3. f(x) = x− 2
3

+ 4

4. f(x) = 1− 4+ 3x
5

5. f(x) =
√
3x− 1+ 5

6. f(x) = 2−
√
x− 5

7. f(x) = 3
√
x− 1− 4

8. f(x) = 1− 2
√
2x+ 5

9. f(x) = 5√3x− 1

10. f(x) = 3− 3√x− 2

11. f(x) = x2 − 10x, x ≥ 5

12. f(x) = 3(x+ 4)2 − 5, x ≤ −4

13. f(x) = x2 − 6x+ 5, x ≤ 3

14. f(x) = 4x2 + 4x+ 1, x < −1

15. f(x) = 3
4− x

16. f(x) = x
1− 3x

17. f(x) = 2x− 1
3x+ 4

18. f(x) = 4x+ 2
3x− 6

19. f(x) = −3x− 2
x+ 3

20. f(x) = x− 2
2x− 1

With help from your classmates, find the inverses of the func-
Ɵons in Exercises 21 – 24.

21. f(x) = ax+ b, a ̸= 0

22. f(x) = a
√
x− h+ k, a ̸= 0, x ≥ h

23. f(x) = ax2 + bx+ c where a ̸= 0, x ≥ − b
2a

.

24. f(x) = ax+ b
cx+ d

, (See Exercise 33 below.)

25. In Example 29, the price of a dOpi media player, in dollars
per dOpi, is given as a funcƟon of theweekly sales x accord-
ing to the formula p(x) = 450− 15x for 0 ≤ x ≤ 30.

(a) Find p−1(x) and state its domain.

(b) Find and interpret p−1(105).

(c) In Example 29, we determined that the profit (in dol-
lars) made from producing and selling x dOpis per
week is P(x) = −15x2 + 350x − 2000, for 0 ≤ x ≤
30. Find

(
P ◦ p−1) (x) and determine what price per

dOpi would yield the maximum profit. What is the
maximum profit? How many dOpis need to be pro-
duced and sold to achieve the maximum profit?

26. Show that the Fahrenheit to Celsius conversion funcƟon
found in Exercise 35 in SecƟon 3.1 is inverƟble and that its
inverse is the Celsius to Fahrenheit conversion funcƟon.

27. AnalyƟcally show that the funcƟon f(x) = x3 + 3x + 1 is
one-to-one. Since finding a formula for its inverse is be-
yond the scope of this textbook, use Theorem 35 to help
you compute f−1(1), f−1(5), and f−1(−3).

28. Let f(x) =
2x

x2 − 1
. Using the techniques in SecƟon 5.2,

graph y = f(x). Verify that f is one-to-one on the interval
(−1, 1). Use the procedure outlined on Page 243 and your
graphing calculator to find the formula for f−1(x). Note that
since f(0) = 0, it should be the case that f−1(0) = 0.
What goes wrong when you aƩempt to subsƟtute x = 0
into f−1(x)? Discuss with your classmates how this prob-
lem arose and possible remedies.

29. With the help of your classmates, explain why a funcƟon
which is either strictly increasing or strictly decreasing on
its enƟre domain would have to be one-to-one, hence in-
verƟble.

30. If f is odd and inverƟble, prove that f−1 is also odd.

31. Let f and g be inverƟble funcƟons. With the help of your
classmates show that (f ◦ g) is one-to-one, hence invert-
ible, and that (f ◦ g)−1(x) = (g−1 ◦ f−1)(x).

32. What graphical feature must a funcƟon f possess for it to
be its own inverse?

33. What condiƟonsmust you place on the values of a, b, c and
d in Exercise 24 in order to guarantee that the funcƟon is
inverƟble?
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When n is even, it is necessary to specify
that the principal nth root is non-negaƟve
for it to be uniquely defined. For example,
both x = −2 and x = 2 saƟsfy x4 = 16,
but 4√16 = 2, not−2.

y =
√
x

y = 4
√
x

y = 6
√
x

Figure 6.20: Graphs of the first three even
root funcƟons

y = 3
√
x

y = 5
√
x

y = 7
√
x

Figure 6.21: Graphs of the first three odd
root funcƟons
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6.3 Algebraic FuncƟons

This secƟon serves as a watershed for funcƟons which are combinaƟons of poly-
nomial, and more generally, raƟonal funcƟons, with the operaƟons of radicals.
It is business of Calculus to discuss these funcƟons in all the detail they demand
so our aim in this secƟon is to help shore up the requisite skills needed so that
the reader can answer Calculus’s call when the Ɵme comes. We briefly recall the
definiƟon and some of the basic properƟes of radicals. Although we discussed
imaginary numbers in SecƟon 4.4, we restrict our aƩenƟon to real numbers in
this secƟon. See the epilogue on page 189 for more details. Recall that we de-
fined the principal nth root in DefiniƟon 15. We repeat the definiƟon here for
convenience.

DefiniƟon 48 Principal nth root

Let x be a real number and n a natural number. If n is odd, the principal
nth root of x, denoted n

√
x is the unique real number saƟsfying

(
n
√
x
)n

= x.
If n is even, n

√
x is defined similarly provided x ≥ 0 and n

√
x ≥ 0. The index

is the number n and the radicand is the number x. For n = 2, we write√
x instead of 2

√
x.

It is worth remarking that, in light of SecƟon 6.2, we could define f(x) = n
√
x

funcƟonally as the inverse of g(x) = xn with the sƟpulaƟon that when n is even,
the domain of g is restricted to [0,∞). From what we know about g(x) = xn
from SecƟon 4.1 along with Theorem 36, we can produce the graphs of f(x) =
n
√
x by reflecƟng the graphs of g(x) = xn across the line y = x. Figure 6.20 shows

the graphs of y =
√
x, y = 4

√
x and y = 6

√
x. The point (0, 0) is indicated as a

reference. The axes are hidden so we can see the verƟcal steepening near x = 0
and the horizontal flaƩening as x → ∞.

The odd-indexed radical funcƟons also follow a predictable trend - steep-
ening near x = 0 and flaƩening as x → ±∞, as seen in Figure 6.21. In the
exercises, you’ll have a chance to graph some basic radical funcƟons using the
techniques presented in SecƟon 2.6.

Next, we recall the properƟes of radicals given in DefiniƟon 3. We have used
all of these properƟes at some point in the textbook for the case n = 2 (the
square root), but we repeat them here in generality for completeness.

Theorem 39 ProperƟes of Radicals

Let x and y be real numbers andm and n be natural numbers. If n
√
x, n
√y

are real numbers, then

• Product Rule: n
√xy = n

√
x n
√y

• Powers of Radicals: n
√
xm =

(
n
√
x
)m

• QuoƟent Rule: n

√
x
y
=

n
√
x

n
√y

, provided y ̸= 0.

• If n is odd, n
√
xn = x; if n is even, n

√
xn = |x|.
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As menƟoned in SecƟon 3.2, f(x) =√
x2 = |x| so that absolute value is also

considered an algebraic funcƟon.

6.3 Algebraic FuncƟons

The proof of Theorem 39 is based on the definiƟon of the principal roots and
properƟes of exponents. To establish the product rule, consider the following. If
n is odd, thenbydefiniƟon n

√xy is the unique real number such that ( n
√xy)n = xy.

Given that
(

n
√
x n
√y
)n

=
(

n
√
x
)n (

n
√y
)n

= xy, it must be the case that n
√xy =

n
√
x n
√y. If n is even, then n

√xy is the unique non-negaƟve real number such that
( n
√xy)n = xy. Also note that since n is even, n

√
x and n

√y are also non-negaƟve
and hence so is n

√
x n
√y. Proceeding as above, we find that n

√xy = n
√
x n
√y. The

quoƟent rule is proved similarly and is leŌ as an exercise. The power rule results
from repeated applicaƟon of the product rule, so long as n

√
x is a real number

to start with.(Otherwise we’d run into the same paradox we did in SecƟon 4.4.)
The last property is an applicaƟon of the power rule when n is odd, and the
occurrence of the absolute value when n is even is due to the requirement that
n
√
x ≥ 0 in DefiniƟon 48. For instance, 4

√
(−2)4 = 4

√
16 = 2 = | − 2|, not −2.

It’s this last property which makes composiƟons of roots and powers delicate.
This is especially true when we use exponenƟal notaƟon for radicals. Recall the
following definiƟon, first given in DefiniƟon 16.

DefiniƟon 49 RaƟonal power funcƟon

Let x be a real number,m an integer and n a natural number.

• x 1
n = n

√
x and is defined whenever n

√
x is defined.

• x m
n =

(
n
√
x
)m

= n
√
xm, whenever

(
n
√
x
)m is defined.

The raƟonal exponents defined in DefiniƟon 49 behave very similarly to the
usual integer exponents from Elementary Algebra with one criƟcal excepƟon.
Consider the expression

(
x2/3

)3/2. Applying the usual laws of exponents, we’d
be tempted to simplify this as

(
x2/3

)3/2
= x 2

3 ·
3
2 = x1 = x. However, if we

subsƟtute x = −1 and apply DefiniƟon 49, we find (−1)2/3 =
(

3
√
−1
)2

=

(−1)2 = 1 so that
(
(−1)2/3

)3/2
= 13/2 =

(√
1
)3

= 13 = 1. We see in this case
that

(
x2/3

)3/2 ̸= x. If we take the Ɵme to rewrite
(
x2/3

)3/2 with radicals, we see
(
x2/3

)3/2
=
((

3
√
x
)2)3/2

=

(√(
3
√
x
)2)3

=
(∣∣ 3
√
x
∣∣)3 = ∣∣∣( 3

√
x
)3∣∣∣ = |x|

In the play-by-play analysis, we see that when we cancelled the 2’s in mul-
Ɵplying 2

3 · 3
2 , we were, in fact, aƩempƟng to cancel a square with a square

root. The fact that
√
x2 = |x| and not simply x is the root of the trouble. (Pun

intended.) It may amuse the reader to know that
(
x3/2

)2/3
= x, and this ver-

ificaƟon is leŌ as an exercise. The moral of the story is that when simplifying
fracƟonal exponents, it’s usually best to rewrite them as radicals. (In most other
cases, though, raƟonal exponents are preferred.) The lastmajor propertywewill
state, and leave to Calculus to prove, is that radical funcƟons are conƟnuous on
their domains, so the Intermediate Value Theorem, Theorem 19, applies. This
means that if we take combinaƟons of radical funcƟons with polynomial and ra-
Ɵonal funcƟons to form what the authors consider the algebraic funcƟons, we
can make sign diagrams using the procedure set forth in SecƟon 5.2.
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(−)

0

0 (+)

2

0 (−)

Sign diagram for f(x)

The graph y = f(x)

Figure 6.22: f(x) = 3x 3√2− x

Chapter 6 FuncƟon ComposiƟon and Inverses

Key Idea 26 Steps for ConstrucƟng a Sign Diagram for an Algebraic
FuncƟon

Suppose f is an algebraic funcƟon.

1. Place any values excluded from the domain of f on the number line
with an ‘‽’ above them.

2. Find the zeros of f and place them on the number line with the
number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1
and 2.

4. Determine the sign of f(x) for each test value in step 3, and write
that sign above the corresponding interval.

Our next example reviews quite a bit of Intermediate Algebra and demon-
strates some of the new features of these graphs.

Example 108 Analyzing algebraic funcƟons
For the following funcƟons, state their domains and create sign diagrams. Check
your answer graphically using your computer or calculator.

1. f(x) = 3x 3
√
2− x

2. g(x) =
√
2− 4

√
x+ 3

3. h(x) = 3

√
8x

x+ 1

4. k(x) =
2x√
x2 − 1

SÊ½çã®ÊÄ

1. As far as domain is concerned, f(x) has no denominators and no even
roots, which means its domain is (−∞,∞). To create the sign diagram,
we find the zeros of f.

f(x) = 0
3x 3
√
2− x = 0

3x = 0 or 3
√
2− x = 0

x = 0 or
(

3
√
2− x

)3
= 03

x = 0 or 2− x = 0
x = 0 or x = 2

The zeros 0 and 2 divide the real number line into three test intervals. The
sign diagram and accompanying graph are below. Note that the intervals
on which f is (+) correspond to where the graph of f is above the x-axis,
and where the graph of f is below the x-axis we have that f is (−). Plot-
Ɵng the funcƟon in GeoGebra, we noƟce that the graph becomes nearly
verƟcal near x = 2. You’ll have to wait unƟl Calculus to fully understand
this phenomenon.
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−3

(+)

13

0 (−)

Figure 6.23: Sign diagram for r(x) = 2 −
4√x+ 3

−3

(+)

13
Sign diagram for g(x)

Complete graph of y = g(x)

Figure 6.24: g(x) =
√

2− 4√x+ 3

(+)

−1

‽ (−)

0

0 (+)

Sign diagram for h(x)

Graph of y = h(x)

Figure 6.25: h(x) = 3

√
8x

x+ 1

(+)

−1

0 (−)

1

0 (+)

Figure 6.26: The sign diagram of r(x) =
x2 − 1

6.3 Algebraic FuncƟons

2. In g(x) =
√
2− 4

√
x+ 3, we have two radicals both of which are even

indexed. To saƟsfy 4
√
x+ 3, we require x + 3 ≥ 0 or x ≥ −3. To saƟsfy√

2− 4
√
x+ 3, we need 2 − 4

√
x+ 3 ≥ 0. While it may be tempƟng to

write this as 2 ≥ 4
√
x+ 3 and take both sides to the fourth power, there are

Ɵmes when this technique will produce erroneous results. (For instance,
−2 ≥ 4

√
x+ 3, which has no soluƟon or −2 ≤ 4

√
x+ 3 whose soluƟon is

[−3,∞).) Instead, we solve 2 − 4
√
x+ 3 ≥ 0 using a sign diagram. If we

let r(x) = 2 − 4
√
x+ 3, we know x ≥ −3, so we concern ourselves with

only this porƟon of the number line. To find the zeros of rwe set r(x) = 0
and solve 2 − 4

√
x+ 3 = 0. We get 4

√
x+ 3 = 2 so that

(
4
√
x+ 3

)4
=

24 from which we obtain x + 3 = 16 or x = 13. Since we raised both
sides of an equaƟon to an even power, we need to check to see if x = 13
is an extraneous soluƟon. (Recall that this means we have produced a
candidate which doesn’t saƟsfy the original equaƟon. Do you remember
how raising both sides of an equaƟon to an even power could cause this?)
We find x = 13 does check since 2− 4

√
x+ 3 = 2− 4

√
13+ 3 = 2− 4

√
16 =

2− 2 = 0. Our sign diagram for r is given in Figure 6.23.
Wefind2− 4

√
x+ 3 ≥ 0on [−3, 13] so this is the domain of g. To find a sign

diagram for g, we look for the zeros of g. Seƫng g(x) = 0 is equivalent
to
√
2− 4

√
x+ 3 = 0. AŌer squaring both sides, we get 2− 4

√
x+ 3 = 0,

whose soluƟonwe have found to be x = 13. Since we squared both sides,
we double check and find g(13) is, in fact, 0. Our sign diagram and graph
of g are below. Since the domain of g is [−3, 13], what we have below is
not just a porƟon of the graph of g, but the complete graph. It is always
above or on the x-axis, which verifies our sign diagram: see Figure 6.24.

3. The radical in h(x) is odd, so our only concern is the denominator. Seƫng
x + 1 = 0 gives x = −1, so our domain is (−∞,−1) ∪ (−1,∞). To find
the zeros of h, we set h(x) = 0. To solve 3

√
8x
x+1 = 0, we cube both sides to

get 8x
x+1 = 0. We get 8x = 0, or x = 0. Below is the resulƟng sign diagram

and corresponding graph. From the graph, it appears as though x = −1 is
a verƟcal asymptote. Carrying out an analysis as x → −1 as in SecƟon 5.2
confirms this. (We leave the details to the reader.) Near x = 0, we have
a situaƟon similar to x = 2 in the graph of f in number 1 above. Finally,
it appears as if the graph of h has a horizontal asymptote y = 2. Using
techniques from SecƟon 5.2, we find as x → ±∞, 8x

x+1 → 8. From this, it

is hardly surprising that as x → ±∞, h(x) = 3
√

8x
x+1 ≈ 3

√
8 = 2. The sign

diagram and graph for h are given in Figure 6.25.

4. To find the domain of k, we have both an even root and a denominator to
concern ourselves with. To saƟsfy the square root, x2 − 1 ≥ 0. Seƫng
r(x) = x2 − 1, we find the zeros of r to be x = ±1, and we find the sign
diagram of r shown in Figure 6.26.
We find x2 − 1 ≥ 0 for (−∞,−1] ∪ [1,∞). To keep the denominator
of k(x) away from zero, we set

√
x2 − 1 = 0. We leave it to the reader

to verify the soluƟons are x = ±1, both of which must be excluded from
the domain. Hence, the domain of k is (−∞,−1) ∪ (1,∞). To build the
sign diagram for k, we need the zeros of k. Seƫng k(x) = 0 results in

2x√
x2−1 = 0. We get 2x = 0 or x = 0. However, x = 0 isn’t in the domain

of k, which means k has no zeros. We construct our sign diagram on the
domain of k in Figure 6.27 along with the graph of k. It appears that the
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(−)

−1

‽
1

‽ (+)

Sign diagram for k(x)

Graph of y = k(x)

Figure 6.27: k(x) = 2x√
x2 − 1
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graph of k has two verƟcal asymptotes, one at x = −1 and one at x = 1.
The gap in the graph between the asymptotes is because of the gap in the
domain of k. Concerning end behaviour, there appear to be twohorizontal
asymptotes, y = 2 and y = −2. To see why this is the case, we think of
x → ±∞. The radicand of the denominator x2 − 1 ≈ x2, and as such,
k(x) = 2x√

x2−1 ≈ 2x√
x2

= 2x
|x| . As x → ∞, we have |x| = x so k(x) ≈ 2x

x = 2.
On the other hand, as x → −∞, |x| = −x, and as such k(x) ≈ 2x

−x = −2.
Finally, it appears as though the graph of k passes the Horizontal Line Test
which means k is one to one and k−1 exists. CompuƟng k−1 is leŌ as an
exercise.

As the previous example illustrates, the graphs of general algebraic funcƟons
can have featureswe’ve seen before, like verƟcal and horizontal asymptotes, but
they can occur in new and exciƟng ways. For example, k(x) = 2x√

x2−1 had two
disƟnct horizontal asymptotes. You’ll recall that raƟonal funcƟons could have
at most one horizontal asymptote. Also some new characterisƟcs like ‘unusual
steepness’ (the proper Calculus term for this is ‘verƟcal tangent’, but for now
we’ll be okay calling it ‘unusual steepness’) and cusps (see page 160 for the first
reference to this feature) can appear in the graphs of arbitrary algebraic func-
Ɵons. Our next example first demonstrates how we can use sign diagrams to
solve nonlinear inequaliƟes. (Don’t panic. The technique is very similar to the
ones used in Chapters 3, 4 and 5.) We then check our answers graphically with
a calculator and see some of the new graphical features of the funcƟons in this
extended family.

Example 109 InequaliƟes with algebraic funcƟons
Solve the following inequaliƟes. Check your answers graphically with a com-
puter or calculator.

1. x2/3 < x4/3 − 6

2. 3(2− x)1/3 ≤ x(2− x)−2/3

SÊ½çã®ÊÄ

1. To solve x2/3 < x4/3 − 6, we get 0 on one side and aƩempt to solve
x4/3 − x2/3 − 6 > 0. We set r(x) = x4/3 − x2/3 − 6 and note that since
the denominators in the exponents are 3, they correspond to cube roots,
which means the domain of r is (−∞,∞). To find the zeros for the sign
diagram, we set r(x) = 0 and aƩempt to solve x4/3− x2/3−6 = 0. At this
point, it may be unclear how to proceed. We could always try as a last re-
sort converƟng back to radical notaƟon, but in this case we can take a cue
from Example 74. Since there are three terms, and the exponent on one
of the variable terms, x4/3, is exactly twice that of the other, x2/3, we have
ourselves a ‘quadraƟc in disguise’ and we can rewrite x4/3 − x2/3 − 6 = 0
as
(
x2/3

)2 − x2/3 − 6 = 0. If we let u = x2/3, then in terms of u, we get
u2 − u− 6 = 0. Solving for u, we obtain u = −2 or u = 3. Replacing x2/3
back in for u, we get x2/3 = −2 or x2/3 = 3. To avoid the trouble we en-
countered in the discussion following DefiniƟon 16, we now convert back
to radical notaƟon. By interpreƟng x2/3 as 3

√
x2 we have 3

√
x2 = −2 or

3
√
x2 = 3. Cubing both sides of these equaƟons results in x2 = −8, which

admits no real soluƟon, or x2 = 27, which gives x = ±3
√
3. We construct

a sign diagram and find x4/3−x2/3−6 > 0 on
(
−∞,−3

√
3
)
∪
(
3
√
3,∞

)
.
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(+)

−3
√
3

0 (−)

3
√
3

0 (+)

Sign diagram for x4/3 − x2/3 − 6

Graphs y = f(x) and y = g(x)

Figure 6.28: Sign diagram and graph for
Example 109.1

y = f(x)

y = g(x)

Figure 6.29: The graphs of f and g near
x = 0

6.3 Algebraic FuncƟons

To check our answer graphically, we set f(x) = x2/3 and g(x) = x4/3 − 6.
The soluƟon to x2/3 < x4/3− 6 corresponds to the inequality f(x) < g(x),
which means we are looking for the x values for which the graph of f is
below the graph of g. Using the ‘Intersect’ tool we confirm (or at least,
confirm to a few decimal places) that the graphs cross at x = ±3

√
3. We

see in Figure 6.28 that the graph of f (in grey) is below the graph of g (in
black) on

(
−∞,−3

√
3
)
∪
(
3
√
3,∞

)
.

As a point of interest, if we take a closer look at the graphs of f and g near
x = 0 with the axes off, we see in Figure 6.29 that despite the fact they
both involve cube roots, they exhibit different behaviour near x = 0. The
graph of f has a sharp turn, or cusp, while g does not. (Recall that we
introduced this feature on page 160 as a feature which makes the graph
of a funcƟon ‘not smooth’.)

2. To solve 3(2 − x)1/3 ≤ x(2 − x)−2/3, we gather all the nonzero terms
on one side and obtain 3(2 − x)1/3 − x(2 − x)−2/3 ≤ 0. We set r(x) =
3(2 − x)1/3 − x(2 − x)−2/3. As in number 1, the denominators of the
raƟonal exponents are odd, which means there are no domain concerns
there. However, the negaƟve exponent on the second term indicates a
denominator. RewriƟng r(x) with posiƟve exponents, we obtain

r(x) = 3(2− x)1/3 − x
(2− x)2/3

Seƫng thedenominator equal to zeroweget (2−x)2/3 = 0, or 3
√

(2− x)2 =
0. AŌer cubing both sides, and subsequently taking square roots, we get
2− x = 0, or x = 2. Hence, the domain of r is (−∞, 2) ∪ (2,∞). To find
the zeros of r, we set r(x) = 0. There are two school of thought on how
to proceed and we demonstrate both.

• Factoring Approach. From r(x) = 3(2−x)1/3−x(2−x)−2/3, we note
that the quanƟty (2 − x) is common to both terms. When we fac-
tor out common factors, we factor out the quanƟty with the smaller
exponent. In this case, since − 2

3 < 1
3 , we factor (2 − x)−2/3 from

both quanƟƟes. While it may seem odd to do so, we need to factor
(2−x)−2/3 from (2−x)1/3, which results in subtracƟng the exponent
− 2

3 from 1
3 . We proceed using the usual properƟes of exponents.

(And we exercise special care when reducing the 3
3 power to 1.)

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= (2− x)−2/3
[
3(2− x)

1
3−(−

2
3 ) − x

]
= (2− x)−2/3 [3(2− x)3/3 − x

]
= (2− x)−2/3 [3(2− x)1 − x

]
since 3

√
u3 =

(
3
√
u
)3

= u
= (2− x)−2/3 (6− 4x)
= (2− x)−2/3 (6− 4x)

To solve r(x) = 0, we set (2− x)−2/3 (6− 4x) = 0, or 6−4x
(2−x)2/3 = 0.

We have 6− 4x = 0 or x = 3
2 .

• Common Denominator Approach. We rewrite
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(+)

3
2

0 (−)

2

‽ (−)

Sign diagram for 3(2− x)1/3 − x(2− x)−2/3

Graphs y = f(x) and y = g(x)

Figure 6.30: Sign diagram and graph for
Example 109.2

Outpost

Junction Box
xy

z

Route 117

50miles

3
0
m
ile
s

Figure 6.31: Diagram for Example 110
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r(x) = 3(2− x)1/3 − x(2− x)−2/3

= 3(2− x)1/3 − x
(2− x)2/3

=
3(2− x)1/3(2− x)2/3

(2− x)2/3
− x

(2− x)2/3
common denominator

=
3(2− x) 1

3+
2
3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)3/3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)1

(2− x)2/3
− x

(2− x)2/3
since 3

√
u3 =

(
3
√
u
)3

= u

=
3(2− x)− x
(2− x)2/3

=
6− 4x

(2− x)2/3

As before, when we set r(x) = 0 we obtain x = 3
2 .

We now create our sign diagram and find 3(2− x)1/3 − x(2− x)−2/3 ≤ 0
on
[ 3
2 , 2
)
∪ (2,∞). To check this graphically, we set f(x) = 3(2 − x)1/3

(the red curve) and g(x) = x(2 − x)−2/3 (the blue curve) in Figure 6.30.
We confirm that the graphs intersect at x = 3

2 and the graph of f is below
the graph of g for x ≥ 3

2 , with the excepƟon of x = 2 where it appears the
graph of g has a verƟcal asymptote.

One applicaƟon of algebraic funcƟons was given in Example 35 in SecƟon
1.3. Our last example is a more sophisƟcated applicaƟon of distance.

Example 110 Pricing cable installaƟon
Carl wishes to get high speed internet service installed in his remote Sasquatch
observaƟon post located 30 miles from Route 117. The nearest juncƟon box is
located 50 miles downroad from the post, as indicated in Figure 6.31. Suppose
it costs $15 per mile to run cable along the road and $20 per mile to run cable
off of the road.

1. Express the total cost C of connecƟng the JuncƟon Box to the Outpost as a
funcƟon of x, the number of miles the cable is run along Route 117 before
heading off road directly towards the Outpost. Determine a reasonable
applied domain for the problem.

2. Use your calculator to graph y = C(x)on its domain. What is theminimum
cost? How far along Route 117 should the cable be run before turning off
of the road?

SÊ½çã®ÊÄ

1. The cost is broken into two parts: the cost to run cable along Route 117
at $15 per mile, and the cost to run it off road at $20 per mile. Since x
represents themiles of cable run along Route 117, the cost for that porƟon
is 15x. From the diagram, we see that the number ofmiles the cable is run
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off road is z, so the cost of that porƟon is 20z. Hence, the total cost is C =
15x+ 20z. Our next goal is to determine z as a funcƟon of x. The diagram
suggests we can use the Pythagorean Theorem to get y2 + 302 = z2. But
we also see x+ y = 50 so that y = 50− x. Hence, z2 = (50− x)2 + 900.
Solving for z, we obtain z = ±

√
(50− x)2 + 900. Since z represents a

distance, we choose z =
√

(50− x)2 + 900 so that our cost as a funcƟon
of x only is given by

C(x) = 15x+ 20
√
(50− x)2 + 900

From the context of the problem, we have 0 ≤ x ≤ 50.

2. Graphing y = C(x) on a calculator and using the ‘Minimum’ feature, we
find the relaƟve minimum (which is also the absolute minimum in this
case) to two decimal places to be (15.98, 1146.86). Here the x-coordinate
tells us that in order to minimize cost, we should run 15.98 miles of cable
along Route 117 and then turn off of the road and head towards the out-
post. The y-coordinate tells us that the minimum cost, in dollars, to do so
is $1146.86. The ability to stream live SasquatchCasts? Priceless.
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Exercises 6.3
Problems
For each funcƟon in Exercises 1 – 10below,

• Find its domain.
• Create a sign diagram.
• Use your computer or calculator to help you sketch its

graph and idenƟfy any verƟcal or horizontal asymp-
totes, ‘unusual steepness’ or cusps.

1. f(x) =
√
1− x2

2. f(x) =
√
x2 − 1

3. f(x) = x
√
1− x2

4. f(x) = x
√
x2 − 1

5. f(x) = 4

√
16x

x2 − 9

6. f(x) = 5x
3√x3 + 8

7. f(x) = x
2
3 (x− 7)

1
3

8. f(x) = x
3
2 (x− 7)

1
3

9. f(x) =
√

x(x+ 5)(x− 4)

10. f(x) = 3√x3 + 3x2 − 6x− 8

In Exercises 11 – 16, sketch the graph of y = g(x) by start-
ing with the graph of y = f(x) and using the transformaƟons
presented in SecƟon 2.6.

11. f(x) = 3
√
x, g(x) = 3√x− 1− 2

12. f(x) = 3
√
x, g(x) = −2 3√x+ 1+ 4

13. f(x) = 4
√
x, g(x) = 4√x− 1− 2

14. f(x) = 4
√
x, g(x) = 3 4√x− 7− 1

15. f(x) = 5
√
x, g(x) = 5√x+ 2+ 3

16. f(x) = 8
√
x, g(x) = 8

√
−x− 2

In Exercises 17 – 35, solve the equaƟon or inequality.

17. x+ 1 =
√
3x+ 7

18. 2x+ 1 =
√
3− 3x

19. x+
√
3x+ 10 = −2

20. 3x+
√
6− 9x = 2

21. 2x− 1 =
√
x+ 3

22. x
3
2 = 8

23. x
2
3 = 4

24.
√
x− 2+

√
x− 5 = 3

25.
√
2x+ 1 = 3+

√
4− x

26. 5− (4− 2x)
2
3 = 1

27. 10−
√
x− 2 ≤ 11

28. 3
√
x ≤ x

29. 2(x− 2)−
1
3 − 2

3 x(x− 2)−
4
3 ≤ 0

30. − 4
3 (x− 2)−

4
3 + 8

9 x(x− 2)−
7
3 ≥ 0

31. 2x−
1
3 (x− 3)

1
3 + x

2
3 (x− 3)−

2
3 ≥ 0

32. 3√x3 + 3x2 − 6x− 8 > x+ 1

33. 1
3 x

3
4 (x− 3)−

2
3 + 3

4 x
− 1

4 (x− 3)
1
3 < 0

34. x−
1
3 (x− 3)−

2
3 − x−

4
3 (x− 3)−

5
3 (x2 − 3x+ 2) ≥ 0

35. 2
3 (x+ 4)

3
5 (x− 2)−

1
3 + 3

5 (x+ 4)−
2
5 (x− 2)

2
3 ≥ 0

36. Rework Example 110 so that the outpost is 10 miles from
Route 117 and the nearest juncƟon box is 30 miles down
the road for the post.

37. The volume V of a right cylindrical cone depends on the ra-
dius of its base r and its height h and is given by the for-
mula V = 1

3πr
2h. The surface area S of a right cylindri-

cal cone also depends on r and h according to the formula
S = πr

√
r2 + h2. Suppose a cone is to have a volume of

100 cubic cenƟmetres.

(a) Use the formula for volume to find the height h as a
funcƟon of r.

(b) Use the formula for surface area and your answer to
37a to find the surface area S as a funcƟon of r.

(c) Use your calculator to find the values of r and hwhich
minimize the surface area. What is the minimum
surface area? Round your answers to two decimal
places.

38. TheNaƟonal Weather Service uses the following formula to
calculate the wind chill:

W = 35.74+ 0.6215 Ta − 35.75 V0.16 + 0.4275 Ta V0.16

where W is the wind chill temperature in ◦F, Ta is the air
temperature in ◦F, and V is the wind speed in miles per
hour. Note thatW is defined only for air temperatures at or
lower than 50◦F and wind speeds above 3 miles per hour.
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(a) Suppose the air temperature is 42◦ and the wind
speed is 7 miles per hour. Find the wind chill tem-
perature. Round your answer to two decimal places.

(b) Suppose the air temperature is 37◦F and the wind
chill temperature is 30◦F. Find the wind speed.
Round your answer to two decimal places.

39. As a follow-up to Exercise 38, suppose the air temperature
is 28◦F.

(a) Use the formula from Exercise 38 to find an expres-
sion for the wind chill temperature as a funcƟon of
the wind speed,W(V).

(b) Solve W(V) = 0, round your answer to two decimal
places, and interpret.

(c) Graph the funcƟonW using your calculator and check
your answer to part 39b.

40. The period of a pendulum in seconds is given by

T = 2π
√

L
g

(for small displacements) where L is the length of the pen-
dulum inmetres and g = 9.8metres per second per second
is the acceleraƟon due to gravity. My Seth-Thomas anƟque
schoolhouse clock needs T = 1

2 second and I can adjust the
length of the pendulum via a small dial on the boƩom of
the bob. At what length should I set the pendulum?

41. The Cobb-Douglas producƟon model states that the yearly
total dollar value of the producƟon output P in an econ-
omy is a funcƟon of labour x (the total number of hours
worked in a year) and capital y (the total dollar value of all
of the stuff purchased in order tomake things). Specifically,
P = axby1−b. By fixing P, we create what’s known as an
‘isoquant’ and we can then solve for y as a funcƟon of x.
Let’s assume that the Cobb-Douglas producƟon model for
the country of Sasquatchia is P = 1.23x0.4y0.6.

(a) Let P = 300 and solve for y in terms of x. If x = 100,
what is y?

(b) Graph the isoquant 300 = 1.23x0.4y0.6. What in-
formaƟon does an ordered pair (x, y) which makes
P = 300 give you? With the help of your class-
mates, find several different combinaƟons of labour
and capital all of which yield P = 300. Discuss any
paƩerns you may see.

42. According to Einstein’s Theory of Special RelaƟvity, the ob-
served mass m of an object is a funcƟon of how fast the
object is travelling. Specifically,

m(x) = mr√
1− x2

c2

wherem(0) = mr is the mass of the object at rest, x is the
speed of the object and c is the speed of light.

(a) Find the applied domain of the funcƟon.

(b) Computem(.1c), m(.5c), m(.9c) andm(.999c).

(c) As x → c−, what happens tom(x)?

(d) How slowly must the object be travelling so that the
observed mass is no greater than 100 Ɵmes its mass
at rest?

43. Find the inverse of k(x) = 2x√
x2 − 1

.

44. Suppose Fritzy the Fox, posiƟoned at a point (x, y) in the
first quadrant, spots Chewbacca the Bunny at (0, 0). Chew-
bacca begins to run along a fence (the posiƟve y-axis) to-
wards his warren. Fritzy, of course, takes chase and con-
stantly adjusts his direcƟon so that he is always running di-
rectly at Chewbacca. If Chewbacca’s speed is v1 and Fritzy’s
speed is v2, the path Fritzywill take to intercept Chewbacca,
provided v2 is directly proporƟonal to, but not equal to, v1
is modelled by

y = 1
2

(
x1+v1/v2

1+ v1/v2
− x1−v1/v2

1− v1/v2

)
+

v1v2
v22 − v21

(a) Determine the path that Fritzy will take if he runs ex-
actly twice as fast as Chewbacca; that is, v2 = 2v1.
Use your calculator to graph this path for x ≥ 0.
What is the significance of the y-intercept of the
graph?

(b) Determine the path Fritzy will take if Chewbacca runs
exactly twice as fast as he does; that is, v1 = 2v2. Use
your calculator to graph this path for x > 0. Describe
the behaviour of y as x → 0+ and interpret this phys-
ically.

(c) With the help of your classmates, generalize parts (a)
and (b) to two cases: v2 > v1 and v2 < v1. We will
discuss the case of v1 = v2 in Exercise 32 in SecƟon
7.5.

45. Verify the QuoƟent Rule for Radicals in Theorem 3.

46. Show that
(
x

3
2

) 2
3
= x for all x ≥ 0.

47. Show that 3√2 is an irraƟonal number by first showing that
it is a zero of p(x) = x3 − 2 and then showing p has no ra-
Ɵonal zeros. (You’ll need the RaƟonal Zeros Theorem, The-
orem 26, in order to show this last part.)

48. With the help of your classmates, generalize Exercise 47 to
show that n

√
c is an irraƟonal number for any natural num-

bers c ≥ 2 and n ≥ 2 provided that c ̸= pn for some natural
number p.
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ExponenƟal and logarithmic funcƟons
frequently occur in soluƟons to differen-
Ɵal equaƟons, which are used to pro-
duce mathemaƟcal models of phenom-
ena throughout the physical, life, and so-
cial sciences. You’ll see some examples if
you conƟnue on to Calculus I and II, and
evenmore if you takeMath 3600, our first
course in differenƟal equaƟons.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)

x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

Figure 7.1: Ploƫng f(x) = 2x

You (yes, you) can actually prove that
√
3

is irraƟonal by considering the polynomial
p(x) = x2 − 3 and showing it has no ra-
Ɵonal zeros by applying Theorem 26.

To fully understand the argument we
used to define 2x when x is irraƟonal,
you’ll have to proceed far enough through
the Calculus sequence (Calculus III should
do it) to encounter the topic of conver-
gence of infinite sequences.

7: EøÖÊÄ�Äã®�½ �Ä�
LÊ¦�Ù®ã«Ã®� FçÄ�ã®ÊÄÝ

7.1 IntroducƟon to ExponenƟal and Logarithmic Func-
Ɵons

Of all of the funcƟons we study in this text, exponenƟal and logarithmic func-
Ɵons are possibly the ones which impact everyday life the most. This secƟon
introduces us to these funcƟons while the rest of the chapter will more thor-
oughly explore their properƟes. Up to this point, we have dealt with funcƟons
which involve terms like x2 or x2/3, in other words, terms of the form xp where
the base of the term, x, varies but the exponent of each term, p, remains con-
stant. In this chapter, we study funcƟons of the form f(x) = bx where the base
b is a constant and the exponent x is the variable. We start our exploraƟon of
these funcƟons with f(x) = 2x. (Apparently this is a tradiƟon. Every textbook
we have ever read starts with f(x) = 2x.) We make a table of values, plot the
points and connect the dots in a pleasing fashion: see Figure 7.1

A few remarks about the graph of f(x) = 2x which we have constructed are
in order. As x → −∞ and aƩains values like x = −100 or x = −1000, the
funcƟon f(x) = 2x takes on values like f(−100) = 2−100 = 1

2100 or f(−1000) =
2−1000 = 1

21000 . In other words, as x → −∞,

2x ≈ 1
very big (+)

≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the
line y = 0) as a horizontal asymptote. On the flip side, as x → ∞, we find
f(100) = 2100, f(1000) = 21000, and so on, thus 2x → ∞. As a result, our graph
suggests the range of f is (0,∞). The graph of f passes the Horizontal Line Test
which means f is one-to-one and hence inverƟble. We also note that when we
‘connected the dots in a pleasing fashion’, we havemade the implicit assumpƟon
that f(x) = 2x is conƟnuous (recall that this means there are no holes or other
kinds of breaks in the graph) and has a domain of all real numbers. In parƟcular,
we have suggested that things like 2

√
3 exist as real numbers. We should take

a moment to discuss what something like 2
√
3 might mean, and refer the inter-

ested reader to a solid course in Calculus for a more rigorous explanaƟon. The
number

√
3 = 1.73205 . . . is an irraƟonal number and as such, its decimal repre-

sentaƟon neither repeats nor terminates. We can, however, approximate
√
3 by

terminaƟng decimals, and it stands to reason (this is where Calculus and conƟ-
nuity come into play) that we can use these to approximate 2

√
3. For example, if

we approximate
√
3 by 1.73, we can approximate 2

√
3 ≈ 21.73 = 2 173

100 =
100
√
2173.

It is not, by anymeans, a pleasant number, but it is at least a number that we un-
derstand in terms of powers and roots. It also stands to reason that beƩer and
beƩer approximaƟons of

√
3 yield beƩer and beƩer approximaƟons of 2

√
3, so

the value of 2
√
3 should be the result of this sequence of approximaƟons.
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(a) y = f(x) = 2x
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(b) y = g(x) = f(−x) = 2−x

Figure 7.2: ReflecƟng y = 2x across the
y-axis to obtain the graph y = 2−x

Chapter 7 ExponenƟal and Logarithmic FuncƟons

Suppose we wish to study the family of funcƟons f(x) = bx. Which bases b
make sense to study? We find that we run into difficulty if b < 0. For example,
if b = −2, then the funcƟon f(x) = (−2)x has trouble, for instance, at x = 1

2
since (−2)1/2 =

√
−2 is not a real number. In general, if x is any raƟonal num-

ber with an even denominator, then (−2)x is not defined, so we must restrict
our aƩenƟon to bases b ≥ 0. What about b = 0? The funcƟon f(x) = 0x is
undefined for x ≤ 0 because we cannot divide by 0 and 00 is an indeterminant
form. For x > 0, 0x = 0 so the funcƟon f(x) = 0x is the same as the funcƟon
f(x) = 0, x > 0. We know everything we can possibly know about this func-
Ɵon, so we exclude it from our invesƟgaƟons. The only other base we exclude
is b = 1, since the funcƟon f(x) = 1x = 1 is, once again, a funcƟon we have
already studied. We are now ready for our definiƟon of exponenƟal funcƟons.

DefiniƟon 50 ExponenƟal funcƟon

A funcƟon of the form f(x) = bx where b is a fixed real number, b > 0,
b ̸= 1 is called a base b exponenƟal funcƟon.

We leave it to the reader to verify (by graphing somemore examples on your
own) that if b > 1, then the exponenƟal funcƟon f(x) = bx will share the same
basic shape and characterisƟcs as f(x) = 2x. What if 0 < b < 1? Consider
g(x) =

( 1
2
)x. We could certainly build a table of values and connect the points,

or we could take a step back and note that g(x) =
( 1
2
)x

=
(
2−1)x = 2−x =

f(−x), where f(x) = 2x. Thinking back to SecƟon 2.6, the graph of f(−x) is
obtained from the graph of f(x) by reflecƟng it across the y-axis. We get the
graph in Figure 7.2 (b).

We see that the domain and range of gmatch that of f, namely (−∞,∞) and
(0,∞), respecƟvely. Like f, g is also one-to-one. Whereas f is always increasing,
g is always decreasing. As a result, as x → −∞, g(x) → ∞, and on the flip
side, as x → ∞, g(x) → 0+. It shouldn’t be too surprising that for all choices
of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of
g. We summarize the basic properƟes of exponenƟal funcƟons in the following
theorem. (The proof of which, like many things discussed in the text, requires
Calculus.)
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Theorem 40 ProperƟes of ExponenƟal FuncƟons

Suppose f(x) = bx.

• The domain of f is (−∞,∞) and the range of f is (0,∞).

• (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to
the graph of f.

• f is one-to-one, conƟnuous and smooth (the graph of f has no
sharp turns or corners).

• If b > 1:

– f is always increasing
– As x → −∞, f(x) →
0+

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = bx, b > 1

• If 0 < b < 1:

– f is always decreasing
– As x → −∞, f(x) →
∞

– As x → ∞, f(x) → 0+

– The graph of f resem-
bles:

y = bx, 0 < b < 1

Of all of the bases for exponenƟal funcƟons, two occur the most oŌen in
scienƟfic circles. The first, base 10, is oŌen called the common base. The sec-
ond base is an irraƟonal number, e ≈ 2.718, called the natural base. You may
encounter a more formal discussion of the number e in later Calculus courses.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing ex-
ponenƟal funcƟon. The following examples give us an idea how these funcƟons
are used in the wild.

Example 111 Modelling vehicle depreciaƟon
The value of a car can be modelled by V(x) = 25

( 4
5
)x, where x ≥ 0 is age of the

car in years and V(x) is the value in thousands of dollars.

1. Find and interpret V(0).

2. Sketch the graph of y = V(x) using transformaƟons.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

SÊ½çã®ÊÄ

1. To find V(0), we replace x with 0 to obtain V(0) = 25
( 4
5
)0

= 25. Since x
represents the age of the car in years, x = 0 corresponds to the car being
brand new. Since V(x) is measured in thousands of dollars, V(0) = 25
corresponds to a value of $25,000. Puƫng it all together, we interpret
V(0) = 25 to mean the purchase price of the car was $25,000.
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(0, 1)

H.A. y = 0
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y = f(x) =
( 4
5

)x
↓

(0, 25)

H.A. y = 0
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y = V(x) = 25f(x), x ≥ 0

Figure 7.3: The graph y = V(x) in Exam-
ple 111

Chapter 7 ExponenƟal and Logarithmic FuncƟons

2. To graph y = 25
( 4
5
)x, we start with the basic exponenƟal funcƟon f(x) =( 4

5
)x. Since the base b = 4

5 is between 0 and 1, the graph of y = f(x) is
decreasing. We plot the y-intercept (0, 1) and two other points,

(
−1, 5

4
)

and
(
1, 4

5
)
, and label the horizontal asymptote y = 0. To obtain V(x) =

25
( 4
5
)x, x ≥ 0, we mulƟply the output from f by 25, in other words,

V(x) = 25f(x). In accordance with Theorem 10, this results in a verƟ-
cal stretch by a factor of 25. We mulƟply all of the y values in the graph
by 25 (including the y value of the horizontal asymptote) and obtain the
points

(
−1, 125

4
)
, (0, 25) and (1, 20). The horizontal asymptote remains

y = 0. Finally, we restrict the domain to [0,∞) to fit with the applied
domain given to us. We have the result in Figure 7.3.

3. We see from the graph of V that its horizontal asymptote is y = 0. (We
leave it to reader to verify this analyƟcally by thinking aboutwhat happens
as we take larger and larger powers of 4

5 .) This means as the car gets older,
its value diminishes to 0.

The funcƟon in the previous example is oŌen called a ‘decay curve’. Increas-
ing exponenƟal funcƟons are used to model ‘growth curves’ many examples of
which are encountered in applicaƟons of exponenƟal funcƟons. For now, we
present another common decay curve which will serve as the basis for further
study of exponenƟal funcƟons. Although it may lookmore complicated than the
previous example, it is actually just a basic exponenƟal funcƟon which has been
modified by a few transformaƟons from SecƟon 2.6.

Example 112 Newton’s Law of Cooling
According to Newton’s Law of Cooling the temperature of coffee T (in degrees
Fahrenheit) tminutes aŌer it is served can bemodelled by T(t) = 70+90e−0.1t.

1. Find and interpret T(0).

2. Sketch the graph of y = T(t) using transformaƟons.

3. Find and interpret the horizontal asymptote of the graph.

SÊ½çã®ÊÄ

1. To find T(0), we replace every occurrence of the independent variable t
with 0 to obtain T(0) = 70+90e−0.1(0) = 160. Thismeans that the coffee
was served at 160◦F.

2. To graph y = T(t) using transformaƟons, we start with the basic funcƟon,
f(t) = et. As we have already remarked, e ≈ 2.718 > 1 so the graph of f is
an increasing exponenƟalwith y-intercept (0, 1) andhorizontal asymptote
y = 0. The points

(
−1, e−1) ≈ (−1, 0.37) and (1, e) ≈ (1, 2.72) are also

on the graph. Since the formula T(t) looks rather complicated, we rewrite
T(t) in the form presented in Theorem 12 and use that result to track the
changes to our three points and the horizontal asymptote. We have

T(t) = 70+ 90e−0.1t = 90e−0.1t + 70 = 90f(−0.1t) + 70

MulƟplicaƟon of the input to f, t, by−0.1 results in a horizontal expansion
by a factor of 10 as well as a reflecƟon about the y-axis. We divide each
of the x values of our points by−0.1 (which amounts to mulƟplying them
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Figure 7.4: Graphing T(t) in Example 112

The reader is cauƟoned that in more ad-
vanced mathemaƟcs textbooks, the no-
taƟon log(x) is oŌen used to denote the
natural logarithm (or its generalizaƟon to
the complex numbers). In mathemaƟcs,
the natural logarithm is preferred since
it is beƩer behaved with respect to the
operaƟons of Calculus. The base 10 log-
arithm tends to appear in other science
fields.
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by −10) to obtain
(
10, e−1), (0, 1), and (−10, e). Since none of these

changes affected the y values, the horizontal asymptote remains y = 0.
Next, we see that the output from f is being mulƟplied by 90. This re-
sults in a verƟcal stretch by a factor of 90. We mulƟply the y-coordinates
by 90 to obtain

(
10, 90e−1), (0, 90), and (−10, 90e). We also mulƟply

the y value of the horizontal asymptote y = 0 by 90, and it remains
y = 0. Finally, we add 70 to all of the y-coordinates, which shiŌs the
graph upwards to obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and

(−10, 90e+ 70) ≈ (−10, 314.64). Adding 70 to the horizontal asymp-
tote shiŌs it upwards as well to y = 70. We connect these three points
using the same shape in the same direcƟon as in the graph of f and, last
but not least, we restrict the domain to match the applied domain [0,∞).
The result is given in Figure 7.4.

3. From the graph, we see that the horizontal asymptote is y = 70. It is
worth a moment or two of our Ɵme to see how this happens analyƟcally
and to review some of the ‘number sense’ developed in Chapter 5. As
t → ∞, We get T(t) = 70+ 90e−0.1t ≈ 70+ 90every big (−). Since e > 1,

every big (−) =
1

every big (+)
≈ 1

very big (+)
≈ very small (+)

The larger t becomes, the smaller e−0.1t becomes, so the term 90e−0.1t ≈
very small (+). Hence, T(t) ≈ 70+very small (+)whichmeans the graph
is approaching the horizontal line y = 70 from above. This means that as
Ɵme goes by, the temperature of the coffee is cooling to 70◦F, presumably
room temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizon-
tal Line Test. Thus the exponenƟal funcƟons are inverƟble. We now turn our
aƩenƟon to these inverses, the logarithmic funcƟons, which are called ‘logs’ for
short.

DefiniƟon 51 Logarithm funcƟon

The inverse of the exponenƟal funcƟon f(x) = bx is called the base b
logarithm funcƟon, and is denoted f−1(x) = logb(x) We read ‘logb(x)’
as ‘log base b of x.’

We have special notaƟons for the common base, b = 10, and the natural
base, b = e.

DefiniƟon 52 Common and Natural Logarithms

The common logarithm of a real number x is log10(x) and is usually writ-
ten log(x). The natural logarithm of a real number x is loge(x) and is
usually wriƩen ln(x).

Since logs are defined as the inverses of exponenƟal funcƟons, we can use
Theorems 35 and 36 to tell us about logarithmic funcƟons. For example, we
know that the domain of a log funcƟon is the range of an exponenƟal funcƟon,
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y = bx, b > 1

y = logb(x), b > 1

y = bx, 0 < b < 1

y = logb(x), 0 < b < 1

Figure 7.5: The logarithm is the inverse of
the exponenƟal funcƟon
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namely (0,∞), and that the range of a log funcƟon is the domain of an exponen-
Ɵal funcƟon, namely (−∞,∞). Since we know the basic shapes of y = f(x) =
bx for the different cases of b, we can obtain the graph of y = f−1(x) = logb(x)
by reflecƟng the graph of f across the line y = x as shown below. The y-intercept
(0, 1) on the graph of f corresponds to an x-intercept of (1, 0) on the graph of
f−1. The horizontal asymptotes y = 0 on the graphs of the exponenƟal funcƟons
become verƟcal asymptotes x = 0 on the log graphs: see Figure 7.5.

On a procedural level, logs undo the exponenƟals. Consider the funcƟon
f(x) = 2x. When we evaluate f(3) = 23 = 8, the input 3 becomes the exponent
on the base 2 to produce the real number 8. The funcƟon f−1(x) = log2(x)
then takes the number 8 as its input and returns the exponent 3 as its output.
In symbols, log2(8) = 3. More generally, log2(x) is the exponent you put on 2 to
get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes
the basic properƟes of logarithmic funcƟons, all ofwhich come from the fact that
they are inverses of exponenƟal funcƟons.

Theorem 41 ProperƟes of Logarithmic FuncƟons

Suppose f(x) = logb(x).

• The domain of f is (0,∞) and the range of f is (−∞,∞).

• (1, 0) is on the graph of f and x = 0 is a verƟcal asymptote of the
graph of f.

• f is one-to-one, conƟnuous and smooth

• ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you
put on b to obtain c.

• logb (bx) = x for all x and blogb(x) = x for all x > 0

• If b > 1:

– f is always increasing
– As x → 0+, f(x) →
−∞

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = logb(x), b > 1

• If 0 < b < 1:

– f is always decreasing

– As x → 0+, f(x) → ∞

– As x → ∞, f(x) → −∞

– The graph of f resem-
bles:

y = logb(x), 0 < b < 1

As we have menƟoned, Theorem 41 is a consequence of Theorems 35 and
36. However, it is worth the reader’s Ɵme to understand Theorem41 froman ex-
ponenƟal perspecƟve. For instance, we know that the domain of g(x) = log2(x)
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It is worth a moment of your Ɵme to
think yourway throughwhy 117log117(6) =
6. By definiƟon, log117(6) is the expo-
nent we put on 117 to get 6. What are
we doing with this exponent? We are
puƫng it on 117. By definiƟon we get 6.
In other words, the exponenƟal funcƟon
f(x) = 117x undoes the logarithmic func-
Ɵon g(x) = log117(x).
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is (0,∞). Why? Because the range of f(x) = 2x is (0,∞). In a way, this says
everything, but at the same Ɵme, it doesn’t. For example, if we try to find
log2(−1), we are trying to find the exponent we put on 2 to give us−1. In other
words, we are looking for x that saƟsfies 2x = −1. There is no such real number,
since all powers of 2 are posiƟve. While what we have said is exactly the same
thing as saying ‘the domain of g(x) = log2(x) is (0,∞) because the range of
f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand the
statements in Theorem 41 at this level instead of just merely memorizing the
facts.

Example 113 Using properƟes of logarithms
Simplify the following.

1. log3(81)

2. log2
(
1
8

)
3. log√5(25)

4. ln
(

3
√
e2
)

5. log(0.001)

6. 2log2(8)

7. 117− log117(6)

SÊ½çã®ÊÄ

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we
want to write 81 as a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2
( 1
8
)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 =

2−3, so log2
( 1
8
)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√
5. We

know 25 = 52, and 5 =
(√

5
)2, so we have 25 =

((√
5
)2)2

=
(√

5
)4.

We get log√5(25) = 4.

4. First, recall that the notaƟon ln
(

3
√
e2
)
means loge

(
3
√
e2
)
, so we are look-

ing for the exponent to put on e to obtain 3
√
e2. RewriƟng 3

√
e2 = e2/3, we

find ln
(

3
√
e2
)
= ln

(
e2/3

)
= 2

3 .

5. RewriƟng log(0.001) as log10(0.001), we see that we need to write 0.001
as a power of 10. Wehave 0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) =

log
(
10−3) = −3.

6. We can use Theorem 41 directly to simplify 2log2(8) = 8. We can also
understand this problem by first finding log2(8). By definiƟon, log2(8) is
the exponent we put on 2 to get 8. Since 8 = 23, we have log2(8) = 3.
We now subsƟtute to find 2log2(8) = 23 = 8.

7. From Theorem 41, we know 117log117(6) = 6, but we cannot directly apply
this formula to the expression 117− log117(6). (Can you see why?) At this
point, we use a property of exponents followed by Theorem 41 to get

117− log117(6) =
1

117log117(6)
=

1
6
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Figure 7.6: y = f(x) = 2 log(3− x)− 1

(+)

0

0 (−)

1

‽ (+)

Figure 7.7: Sign diagram for r(x) = x
x−1

Figure 7.8: y = g(x) = ln
(

x
x−1

)
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Up unƟl this point, restricƟons on the domains of funcƟons came fromavoid-
ing division by zero and keeping negaƟve numbers from beneath even radicals.
With the introducƟon of logs, we now have another restricƟon. Since the do-
main of f(x) = logb(x) is (0,∞), the argument of the log must be strictly posi-
Ɵve.

Example 114 Domain for logarithmic funcƟons
Find the domain of the following funcƟons. Check your answers graphically us-
ing the computer or calculator.

1. f(x) = 2 log(3− x)− 1

2. g(x) = ln
(

x
x− 1

)

SÊ½çã®ÊÄ

1. We set 3 − x > 0 to obtain x < 3, or (−∞, 3). The graph in Figure 7.6
verifies this. Note that we could have graphed f using transformaƟons.
Taking a cue from Theorem 12, we rewrite f(x) = 2 log10(−x + 3) − 1
and find the main funcƟon involved is y = h(x) = log10(x). We select
three points to track,

( 1
10 ,−1

)
, (1, 0) and (10, 1), along with the verƟcal

asymptote x = 0. Since f(x) = 2h(−x + 3) − 1, Theorem 12 tells us
that to obtain the desƟnaƟons of these points, we first subtract 3 from
the x-coordinates (shiŌing the graph leŌ 3 units), then divide (mulƟply)
by the x-coordinates by−1 (causing a reflecƟon across the y-axis). These
transformaƟons apply to the verƟcal asymptote x = 0 aswell. SubtracƟng
3 gives us x = −3 as our asymptote, then mulƟplying by −1 gives us the
verƟcal asymptote x = 3. Next, we mulƟply the y-coordinates by 2 which
results in a verƟcal stretch by a factor of 2, then we finish by subtracƟng 1
from the y-coordinates which shiŌs the graph down 1 unit. We leave it to
the reader to perform the indicated arithmeƟc on the points themselves
and to verify the graph produced by the calculator below.

2. To find the domain of g, we need to solve the inequality x
x−1 > 0. As

usual, we proceed using a sign diagram. If we define r(x) =
x

x− 1
, we

find r is undefined at x = 1 and r(x) = 0 when x = 0. Choosing some test
values, we generate the sign diagram in Figure 7.7.
We find x

x−1 > 0 on (−∞, 0) ∪ (1,∞) to get the domain of g. The graph
of y = g(x) in Figure 7.8 confirms this. We can tell from the graph of
g that it is not the result of SecƟon 2.6 transformaƟons being applied to
the graph y = ln(x), so barring a more detailed analysis using Calculus,
the calculator graph is the best we can do. One thing worthy of note,
however, is the end behaviour of g. The graph suggests that as x → ±∞,
g(x) → 0. We can verify this analyƟcally. Using results from Chapter 5
and conƟnuity, we know that as x → ±∞, x

x−1 ≈ 1. Hence, it makes

sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

While logarithmshave some interesƟng applicaƟons of their ownwhich you’ll
explore in the exercises, their primary use to uswill be to undo exponenƟal func-
Ɵons. (This is, aŌer all, how they were defined.) Our last example solidifies this
and reviews all of the material in the secƟon.
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Figure 7.9: Graphing f(x) = 2x−1 − 3 in
Example 115
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Example 115 InverƟng an exponenƟal funcƟon
Let f(x) = 2x−1 − 3.

1. Graph f using transformaƟons and state the domain and range of f.

2. Explain why f is inverƟble and find a formula for f−1(x).

3. Graph f−1 using transformaƟons and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1) (x) = x

for all x in the domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about
the line y = x.

SÊ½çã®ÊÄ

1. If we idenƟfy g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the
points

(
−1, 1

2
)
, (0, 1) and (1, 2) on the graph of g along with the horizon-

tal asymptote y = 0 to track through the transformaƟons. By Theorem 12
we first add 1 to the x-coordinates of the points on the graph of g (shiŌing
g to the right 1 unit) to get

(
0, 1

2
)
, (1, 1) and (2, 2). The horizontal asymp-

tote remains y = 0. Next, we subtract 3 from the y-coordinates, shiŌing
the graph down 3 units. We get the points

(
0,− 5

2
)
, (1,−2) and (2,−1)

with the horizontal asymptote now at y = −3. ConnecƟng the dots in
the order and manner as they were on the graph of g, we get the boƩom
graph in Figure 7.9. We see that the domain of f is the same as g, namely
(−∞,∞), but that the range of f is (−3,∞).

2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence
inverƟble. To find a formula for f−1(x), we normally set y = f(x), inter-
change the x and y, then proceed to solve for y. Doing so in this situaƟon
leads us to the equaƟon x = 2y−1 − 3. We have yet to discuss how to
solve this kind of equaƟon, so we will aƩempt to find the formula for f−1

from a procedural perspecƟve. If we break f(x) = 2x−1 − 3 into a series
of steps, we find f takes an input x and applies the steps

(a) subtract 1
(b) put as an exponent on 2
(c) subtract 3

Clearly, to undo subtracƟng 1, we will add 1, and similarly we undo sub-
tracƟng 3 by adding 3. How do we undo the second step? The answer is
we use the logarithm. By definiƟon, log2(x) undoes exponenƟaƟon by 2.
Hence, f−1 should

(a) add 3
(b) take the logarithm base 2
(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transformaƟons, we start with
j(x) = log2(x). We track the points

( 1
2 ,−1

)
, (1, 0) and (2, 1) on the graph

of j along with the verƟcal asymptote x = 0 through the transformaƟons
using Theorem 12. Since f−1(x) = j(x + 3) + 1, we first subtract 3 from
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Figure 7.10: Graphing f−1(x) = log2(x +
3) + 1 in Example 115
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Figure 7.11: The graphs of f and f−1 in Ex-
ample 115
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each of the x values (including the verƟcal asymptote) to obtain
(
− 5

2 ,−1
)
,

(−2, 0) and (−1, 1) with a verƟcal asymptote x = −3. Next, we add 1 to
the y values on the graph and get

(
− 5

2 , 0
)
, (−2, 1) and (−1, 2). If you are

experiencing déjà vu, there is a good reason for it but we leave it to the
reader to determine the source of this uncanny familiarity. We obtain the
graph below. The domain of f−1 is (−3,∞), which matches the range of
f, and the range of f−1 is (−∞,∞), which matches the domain of f.

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x+ 3) + 1 saƟsfy
the composiƟon requirement for inverses. For all real numbers x,

(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1 (2x−1 − 3
)

= log2
([
2x−1 − 3

]
+ 3
)
+ 1

= log2
(
2x−1)+ 1

= (x− 1) + 1
Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have (pay aƩenƟon - can you spot in
which step below we need x > −3?)

(
f ◦ f−1) (x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3
= (x+ 3)− 3

Since 2log2(u) = u for all real numbers u > 0
= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the
same set of axes and see the symmetry about the line y = x in Figure 7.11
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Exercises 7.1
Problems
In Exercises 1 – 15, use the property: ba = c if and only if
logb(c) = a from Theorem 41 to rewrite the given equaƟon
in the other form. That is, rewrite the exponenƟal equaƟons
as logarithmic equaƟons and rewrite the logarithmic equa-
Ɵons as exponenƟal equaƟons.

1. 23 = 8

2. 5−3 = 1
125

3. 45/2 = 32

4.
( 1
3

)−2
= 9

5.
( 4
25

)−1/2
= 5

2

6. 10−3 = 0.001

7. e0 = 1

8. log5(25) = 2

9. log25(5) = 1
2

10. log3
( 1
81

)
= −4

11. log 4
3

( 3
4

)
= −1

12. log(100) = 2

13. log(0.1) = −1

14. ln(e) = 1

15. ln
(

1√
e

)
= − 1

2

In Exercises 16 – 42, evaluate the expression.

16. log3(27)

17. log6(216)

18. log2(32)

19. log6
( 1
36

)
20. log8(4)

21. log36(216)

22. log 1
5
(625)

23. log 1
6
(216)

24. log36(36)

25. log
( 1
1000000

)
26. log(0.01)

27. ln
(
e3
)

28. log4(8)

29. log6(1)

30. log13
(√

13
)

31. log36
( 4√36

)
32. 7log7(3)

33. 36log36(216)

34. log36
(
36216

)
35. ln

(
e5
)

36. log
(

9√1011
)

37. log
(

3√105
)

38. ln
(

1√
e

)
39. log5

(
3log3(5)

)
40. log

(
eln(100)

)
41. log2

(
3− log3(2)

)
42. ln

(
426 log(1)

)
In Exercises 43 – 57, find the domain of the funcƟon.

43. f(x) = ln(x2 + 1)

44. f(x) = log7(4x+ 8)

45. f(x) = ln(4x− 20)

46. f(x) = log
(
x2 + 9x+ 18

)
47. f(x) = log

(
x+ 2
x2 − 1

)

48. f(x) = log
(
x2 + 9x+ 18

4x− 20

)
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49. f(x) = ln(7− x) + ln(x− 4)

50. f(x) = ln(4x− 20) + ln
(
x2 + 9x+ 18

)
51. f(x) = log

(
x2 + x+ 1

)
52. f(x) = 4

√
log4(x)

53. f(x) = log9(|x+ 3| − 4)

54. f(x) = ln(
√
x− 4− 3)

55. f(x) = 1
3− log5(x)

56. f(x) =
√
−1− x
log 1

2
(x)

57. f(x) = ln(−2x3 − x2 + 13x− 6)

In Exercises 58 – 63, sketch the graph of y = g(x) by start-
ing with the graph of y = f(x) and using transformaƟons.
Track at least three points of your choice and the horizontal
asymptote through the transformaƟons. State the domain
and range of g.

58. f(x) = 2x, g(x) = 2x − 1

59. f(x) =
( 1
3

)x, g(x) = ( 13)x−1

60. f(x) = 3x, g(x) = 3−x + 2

61. f(x) = 10x, g(x) = 10
x+1
2 − 20

62. f(x) = ex, g(x) = 8− e−x

63. f(x) = ex, g(x) = 10e−0.1x

In Exercises 64 – 69, sketch the graph of y = g(x) by starƟng
with the graph of y = f(x) and using transformaƟons. Track
at least three points of your choice and the verƟcal asymptote
through the transformaƟons. State the domain and range of
g.

64. f(x) = log2(x), g(x) = log2(x+ 1)

65. f(x) = log 1
3
(x), g(x) = log 1

3
(x) + 1

66. f(x) = log3(x), g(x) = − log3(x− 2)

67. f(x) = log(x), g(x) = 2 log(x+ 20)− 1

68. f(x) = ln(x), g(x) = − ln(8− x)

69. f(x) = ln(x), g(x) = −10 ln
( x
10

)
70. Verify that each funcƟon in Exercises 64 - 69 is the inverse

of the corresponding funcƟon in Exercises 58 - 63. (Match
up #58 and #64, and so on.)

In Exercises 71 – 74, find the inverse of the funcƟon from the
‘procedural perspecƟve’ discussed in Example 115 and graph
the funcƟon and its inverse on the same set of axes.

71. f(x) = 3x+2 − 4

72. f(x) = log4(x− 1)

73. f(x) = −2−x + 1

74. f(x) = 5 log(x)− 2

(Logarithmic Scales) In Exercises 75 – 77, we introduce three
widely usedmeasurement scales which involve common log-
arithms: the Richter scale, the decibel scale and the pH scale.
The computaƟons involved in all three scales are nearly iden-
Ɵcal so pay aƩenƟon to the subtle differences.

75. Earthquakes are complicated events and it is not our intent
to provide a complete discussion of the science involved in
them. Instead, we refer the interested reader to a solid
course in Geology1 or the U.S. Geological Survey’s Earth-
quake Hazards Program found here and present only a sim-
plified version of the Richter scale. The Richter scale mea-
sures the magnitude of an earthquake by comparing the
amplitude of the seismic waves of the given earthquake to
those of a “magnitude 0 event”, which was chosen to be
a seismograph reading of 0.001 millimetres recorded on a
seismometer 100 kilometres from the earthquake’s epicen-
tre. Specifically, themagnitude of an earthquake is given by

M(x) = log
( x
0.001

)
where x is the seismograph reading in millimetres of the
earthquake recorded 100 kilometres from the epicentre.

(a) Show thatM(0.001) = 0.
(b) ComputeM(80, 000).
(c) Show that an earthquake which registered 6.7 on the

Richter scale had a seismograph reading ten Ɵmes
larger than one which measured 5.7.

(d) Find two news stories about recent earthquakes
which give their magnitudes on the Richter scale.
Howmany Ɵmes larger was the seismograph reading
of the earthquake with larger magnitude?

76. While the decibel scale can be used in many disciplines,2
we shall restrict our aƩenƟon to its use in acousƟcs, specif-
ically its use in measuring the intensity level of sound.3 The

1Rock-solid, perhaps?
2See this webpage for more informaƟon.
3As of the wriƟng of this exercise, the Wikipedia page given here states that it may not meet the “general notability guideline” nor does it cite

any references or sources. I find this odd because it is this very usage of the decibel scale which shows up in every College Algebra book I have
read. Perhaps those other books have been wrong all along and we’re just blindly following tradiƟon.
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Sound Intensity Level L (measured in decibels) of a sound
intensity I (measured in waƩs per square meter) is given by

L(I) = 10 log
(

I
10−12

)
.

Like the Richter scale, this scale compares I to baseline:
10−12 W

m2 is the threshold of human hearing.

(a) Compute L(10−6).
(b) Damage to your hearing can start with short term ex-

posure to sound levels around 115 decibels. What
intensity I is needed to produce this level?

(c) Compute L(1). How does this compare with the
threshold of pain which is around 140 decibels?

77. The pH of a soluƟon is a measure of its acidity or alkalinity.
Specifically, pH = − log[H+] where [H+] is the hydrogen

ion concentraƟon in moles per litre. A soluƟon with a pH
less than 7 is an acid, one with a pH greater than 7 is a base
(alkaline) and a pH of 7 is regarded as neutral.

(a) The hydrogen ion concentraƟon of pure water is
[H+] = 10−7. Find its pH.

(b) Find the pH of a soluƟon with [H+] = 6.3× 10−13.

(c) The pH of gastric acid (the acid in your stomach) is
about 0.7. What is the corresponding hydrogen ion
concentraƟon?

78. Show that logb 1 = 0 and logb b = 1 for every b > 0, b ̸=
1.

79. (Crazy bonus quesƟon) Without using your calculator, de-
termine which is larger: eπ or πe.
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Chapter 7 ExponenƟal and Logarithmic FuncƟons

7.2 ProperƟes of Logarithms

In SecƟon 7.1, we introduced the logarithmic funcƟons as inverses of exponen-
Ɵal funcƟons and discussed a few of their funcƟonal properƟes from that per-
specƟve. In this secƟon, we explore the algebraic properƟes of logarithms. His-
torically, these have played a huge role in the scienƟfic development of our so-
ciety since, among other things, they were used to develop analog compuƟng
devices called slide rules which enabled scienƟsts and engineers to perform ac-
curate calculaƟons leading to such things as space travel and the moon landing.
As we shall see shortly, logs inherit analogs of all of the properƟes of exponents
you learned in Elementary and Intermediate Algebra. We first extract two prop-
erƟes from Theorem 41 to remind us of the definiƟon of a logarithm as the in-
verse of an exponenƟal funcƟon.

Theorem 42 Inverse ProperƟes of ExponenƟal and Logarithmic
FuncƟons

Let b > 0, b ̸= 1.

• ba = c if and only if logb(c) = a

• logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out what it means for exponenƟal and logarithmic funcƟons
to be one-to-one.

Theorem43 One-to-one ProperƟes of ExponenƟal and Logarithmic
FuncƟons

Let f(x) = bx and g(x) = logb(x) where b > 0, b ̸= 1. Then f and g are
one-to-one and

• bu = bw if and only if u = w for all real numbers u and w.

• logb(u) = logb(w) if and only if u = w for all real numbers u > 0,
w > 0.

We now state the algebraic properƟes of exponenƟal funcƟons which will
serve as a basis for the properƟes of logarithms. While these properƟes may
look idenƟcal to the ones you learned in Elementary and Intermediate Algebra,
they apply to real number exponents, not just raƟonal exponents. Note that
in the theorem that follows, we are interested in the properƟes of exponenƟal
funcƟons, so the base b is restricted to b > 0, b ̸= 1.
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7.2 ProperƟes of Logarithms

Theorem 44 Algebraic ProperƟes of ExponenƟal FuncƟons

Let f(x) = bx be an exponenƟal funcƟon (b > 0, b ̸= 1) and let u and w
be real numbers.

• Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

• QuoƟent Rule: f(u− w) =
f(u)
f(w)

. In other words, bu−w =
bu

bw

• Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the properƟes listed in Theorem 44 are certainly believable based on
similar properƟes of integer and raƟonal exponents, the full proofs require Cal-
culus. To each of these properƟes of exponenƟal funcƟons corresponds an anal-
ogous property of logarithmic funcƟons. We list these below in our next theo-
rem.

Theorem 45 Algebraic ProperƟes of Logarithmic FuncƟons

Let g(x) = logb(x) be a logarithmic funcƟon (b > 0, b ̸= 1) and let u > 0
and w > 0 be real numbers.

• Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) =
logb(u) + logb(w)

• QuoƟent Rule: g
( u
w

)
= g(u) − g(w). In other words,

logb
( u
w

)
= logb(u)− logb(w)

• Power Rule: g (uw) = wg(u). In other words, logb (uw) =
w logb(u)

There are a couple of different ways to understand why Theorem 45 is true.
Consider the product rule: logb(uw) = logb(u) + logb(w). Let a = logb(uw),
c = logb(u), and d = logb(w). Then, by definiƟon, ba = uw, bc = u and bd = w.
Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By the one-to-one property
of bx, we have a = c + d. In other words, logb(uw) = logb(u) + logb(w). The
remaining properƟes are proved similarly. From a purely funcƟonal approach,
we can see the properƟes in Theorem45 as an example of how inverse funcƟons
interchange the roles of inputs in outputs. For instance, the Product Rule for ex-
ponenƟal funcƟons given in Theorem 44, f(u+w) = f(u)f(w), says that adding
inputs results in mulƟplying outputs. Hence, whatever f−1 is, it must take the
products of outputs from f and return them to the sum of their respecƟve in-
puts. Since the outputs from f are the inputs to f−1 and vice-versa, we have that
that f−1 must take products of its inputs to the sum of their respecƟve outputs.
This is precisely what the Product Rule for Logarithmic funcƟons states in Theo-
rem 45: g(uw) = g(u)+ g(w). The reader is encouraged to view the remaining
properƟes listed in Theorem 45 similarly. The following examples help build fa-
miliarity with these properƟes. In our first example, we are asked to ‘expand’
the logarithms. This means that we read the properƟes in Theorem 45 from leŌ
to right and rewrite products inside the log as sums outside the log, quoƟents
inside the log as differences outside the log, and powers inside the log as factors
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InteresƟngly enough, expanding loga-
rithms is the exact opposite process
(which we will pracƟce later) that is most
useful in Algebra. The uƟlity of expanding
logarithms becomes apparent in Calculus.

Chapter 7 ExponenƟal and Logarithmic FuncƟons

outside the log.

Example 116 Expanding logarithmic expressions
Expand the following using the properƟes of logarithms and simplify. Assume
when necessary that all quanƟƟes represent posiƟve real numbers.

1. log2
(
8
x

)

2. log0.1
(
10x2

)
3. ln

(
3
ex

)2

4. log 3

√
100x2

yz5

5. log117
(
x2 − 4

)

SÊ½çã®ÊÄ

1. To expand log2
( 8
x

)
, we use the QuoƟent Rule idenƟfying u = 8 andw = x

and simplify.

log2
(
8
x

)
= log2(8)− log2(x) QuoƟent Rule

= 3− log2(x) Since 23 = 8
= − log2(x) + 3

2. In the expression log0.1
(
10x2

)
, we have a power (the x2) and a product.

In order to use the Product Rule, the enƟre quanƟty inside the logarithm
must be raised to the same exponent. Since the exponent 2 applies only
to the x, we first apply the Product Rule with u = 10 and w = x2. Once
we get the x2 by itself inside the log, we may apply the Power Rule with
u = x and w = 2 and simplify.

log0.1
(
10x2

)
= log0.1(10) + log0.1

(
x2
)

Product Rule
= log0.1(10) + 2 log0.1(x) Power Rule
= −1+ 2 log0.1(x) Since (0.1)−1 = 10
= 2 log0.1(x)− 1

3. We have a power, quoƟent and product occurring in ln
( 3
ex

)2. Since the
exponent 2 applies to the enƟre quanƟty inside the logarithm, we begin
with the Power Rule with u = 3

ex and w = 2. Next, we see the QuoƟent
Rule is applicable, with u = 3 and w = ex, so we replace ln

( 3
ex

)
with the

quanƟty ln(3) − ln(ex). Since ln
( 3
ex

)
is being mulƟplied by 2, the enƟre

quanƟty ln(3)−ln(ex) ismulƟplied by 2. Finally, we apply the Product Rule
with u = e and w = x, and replace ln(ex) with the quanƟty ln(e) + ln(x),
and simplify, keeping in mind that the natural log is log base e.
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At this point in the text, the reader is en-
couraged to carefully read through each
step and think of which quanƟty is play-
ing the role of u and which is playing the
role of w as we apply each property.

7.2 ProperƟes of Logarithms

ln
(

3
ex

)2

= 2 ln
(

3
ex

)
Power Rule

= 2 [ln(3)− ln(ex)] QuoƟent Rule
= 2 ln(3)− 2 ln(ex)
= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule
= 2 ln(3)− 2 ln(e)− 2 ln(x)
= 2 ln(3)− 2− 2 ln(x) Since e1 = e
= −2 ln(x) + 2 ln(3)− 2

4. In Theorem 45, there is no menƟon of how to deal with radicals. How-
ever, thinking back to DefiniƟon 16, we can rewrite the cube root as a 1

3
exponent. We begin by using the Power Rule, and we keep in mind that
the common log is log base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

=
1
3
log
(
100x2

yz5

)
Power Rule

=
1
3
[
log
(
100x2

)
− log

(
yz5
)]

QuoƟent Rule

=
1
3
log
(
100x2

)
− 1

3
log
(
yz5
)

=
1
3
[
log(100) + log

(
x2
)]

− 1
3
[
log(y) + log

(
z5
)]

Product Rule

=
1
3
log(100) +

1
3
log
(
x2
)
− 1

3
log(y)− 1

3
log
(
z5
)

=
1
3
log(100) +

2
3
log(x)− 1

3
log(y)− 5

3
log(z)

Power Rule

=
2
3
+

2
3
log(x)− 1

3
log(y)− 5

3
log(z) Since 102 = 100

=
2
3
log(x)− 1

3
log(y)− 5

3
log(z) +

2
3

5. At first it seems as if we have nomeans of simplifying log117
(
x2 − 4

)
, since

none of the properƟes of logs addresses the issue of expanding a differ-
ence inside the logarithm. However, wemay factor x2−4 = (x+2)(x−2)
thereby introducing a product which gives us license to use the Product
Rule.

log117
(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor
= log117(x+ 2) + log117(x− 2) Product Rule
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A couple of remarks about Example 116 are in order. First, while not explic-
itly stated in the above example, a general rule of thumb to determine which
log property to apply first to a complicated problem is ‘reverse order of oper-
aƟons.’ For example, if we were to subsƟtute a number for x into the expres-
sion log0.1

(
10x2

)
, we would first square the x, then mulƟply by 10. The last

step is the mulƟplicaƟon, which tells us the first log property to apply is the
Product Rule. In a mulƟ-step problem, this rule can give the required guidance
on which log property to apply at each step. The reader is encouraged to look
through the soluƟons to Example 116 to see this rule in acƟon. Second, while
we were instructed to assume when necessary that all quanƟƟes represented
posiƟve real numbers, the authors would be commiƫng a sin of omission if
we failed to point out that, for instance, the funcƟons f(x) = log117

(
x2 − 4

)
and g(x) = log117(x + 2) + log117(x − 2) have different domains, and, hence,
are different funcƟons. We leave it to the reader to verify the domain of f is
(−∞,−2) ∪ (2,∞) whereas the domain of g is (2,∞). In general, when us-
ing log properƟes to expand a logarithm, we may very well be restricƟng the
domain as we do so. One last comment before we move to reassembling logs
from their various bits and pieces. The authors are well aware of the propen-
sity for some students to become overexcited and invent their own properƟes
of logs like log117

(
x2 − 4

)
= log117

(
x2
)
− log117(4), which simply isn’t true,

in general. The unwriƩen (the authors relish the irony involved in wriƟng what
follows) property of logarithms is that if it isn’t wriƩen in a textbook, it probably
isn’t true.

Example 117 Combining logarithmic expressions
Use the properƟes of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1) 2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3 4. − ln(x)− 1
2

SÊ½çã®ÊÄ Whereas in Example 116we read the properƟes in Theorem
45 from leŌ to right to expand logarithms, in this example we read them from
right to leŌ.

1. The difference of logarithms requires the QuoƟent Rule: log3(x − 1) −
log3(x+ 1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x)+2 log(y)−log(z), we have both a sumand differ-
ence of logarithms. However, before we use the product rule to combine
log(x) + 2 log(y), we note that we need to somehow deal with the co-
efficient 2 on log(y). This can be handled using the Power Rule. We can
then apply the Product and QuoƟent Rules as we move from leŌ to right.
Puƫng it all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log
(
xy2

z

)
QuoƟent Rule

3. We can certainly get started rewriƟng 4 log2(x)+3 by applying the Power
Rule to 4 log2(x) to obtain log2

(
x4
)
, but in order to use the Product Rule
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to handle the addiƟon, we need to rewrite 3 as a logarithm base 2. From
Theorem 42, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2
(
x4
)
+ 3 Power Rule

= log2
(
x4
)
+ log2

(
23
)

Since 3 = log2
(
23
)

= log2
(
x4
)
+ log2(8)

= log2
(
8x4
)

Product Rule

4. To get started with− ln(x)− 1
2 , we rewrite− ln(x) as (−1) ln(x). We can

then use the Power Rule to obtain (−1) ln(x) = ln
(
x−1). In order to use

the QuoƟent Rule, we need to write 1
2 as a natural logarithm. Theorem

42 gives us 1
2 = ln

(
e1/2

)
= ln

(√
e
)
. We have

− ln(x)− 1
2
= (−1) ln(x)− 1

2

= ln
(
x−1)− 1

2
Power Rule

= ln
(
x−1)− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1)− ln

(√
e
)

= ln
(
x−1
√
e

)
QuoƟent Rule

= ln
(

1
x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the
opposite of what it was for dismantling them. That is, if we are interested in
rewriƟng an expression as a single logarithm, we apply log properƟes following
the usual order of operaƟons: deal with mulƟples of logs first with the Power
Rule, then deal with addiƟon and subtracƟon using the Product and QuoƟent
Rules, respecƟvely. AddiƟonally, we find that using log properƟes in this fash-
ion can increase the domain of the expression. For example, we leave it to the
reader to verify the domain of f(x) = log3(x−1)− log3(x+1) is (1,∞) but the
domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1) ∪ (1,∞).

The two logarithm buƩons commonly found on calculators are the ‘LOG’ and
‘LN’ buƩons which correspond to the common and natural logs, respecƟvely.
Suppose we wanted an approximaƟon to log2(7). The answer should be a liƩle
less than 3, (Can you explain why?) but how do we coerce the calculator into
telling us a more accurate answer? We need the following theorem.

Theorem 46 Change of Base Formulas

Let a, b > 0, a, b ̸= 1.

• ax = bx logb(a) for all real numbers x.

• loga(x) =
logb(x)
logb(a)

for all real numbers x > 0.
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While, in the grand scheme of things,
both change of base formulas are really
saying the same thing, the logarithmic
form is the one usually encountered in
Algebra while the exponenƟal form isn’t
usually introduced unƟl Calculus. The au-
thors feel so strongly about showing stu-
dents that every property of logarithms
comes from and corresponds to a prop-
erty of exponents that we have broken
tradiƟon with the vast majority of other
authors in this field. This isn’t the first
Ɵme this happened, and it certainly won’t
be the last.

Figure 7.12: y = f(x) = 2x and y =
g(x) = ex ln(2)

Figure 7.13: y = f(x) = 2x and y =
g(x) = ex ln(2)

Chapter 7 ExponenƟal and Logarithmic FuncƟons

The proofs of the Change of Base formulas are a result of the other proper-
Ɵes studied in this secƟon. If we start with bx logb(a) and use the Power Rule in
the exponent to rewrite x logb(a) as logb (ax) and then apply one of the Inverse
ProperƟes in Theorem 42, we get

bx logb(a) = blogb(a
x) = ax,

as required. To verify the logarithmic form of the property, we also use the
Power Rule and an Inverse Property. We note that

loga(x) · logb(a) = logb
(
aloga(x)

)
= logb(x),

and we get the result by dividing through by logb(a). Of course, the authors
can’t help but point out the inverse relaƟonship between these two change of
base formulas. To change the base of an exponenƟal expression, we mulƟply
the input by the factor logb(a). To change the base of a logarithmic expression,
we divide the output by the factor logb(a). What Theorem 46 really tells us is
that all exponenƟal and logarithmic funcƟons are just scalings of one another.
Not only does this explain why their graphs have similar shapes, but it also tells
us that we could do all of mathemaƟcs with a single base - be it 10, e, 42, or 117.

Example 118 Using change of base formulas
Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a computer or calcu-
lator, as appropriate.

1. 32 to base 10

2. 2x to base e

3. log4(5) to base e

4. ln(x) to base 10

SÊ½çã®ÊÄ

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain
32 = 102 log(3). Typing the laƩer in the calculator produces an answer of
9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our
calculator, we can graph f(x) = 2x (in black) and g(x) = ex ln(2) (in grey).
Their graphs are indisƟnguishable which provides evidence that they are
the same funcƟon: see Figure 7.12.

3. Applying the change of base with a = 4 and b = e leads us to write
log4(5) =

ln(5)
ln(4) . EvaluaƟng this in the calculator gives ln(5)

ln(4) ≈ 1.16. How
do we check this really is the value of log4(5)? By definiƟon, log4(5) is the
exponent we put on 4 to get 5. The plot from GeoGebra in Figure 7.13
confirms this. (Which means if it is lying to us about the first answer it
gave us, at least it is being consistent.)

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and

g(x) = log(x)
log(e) and find both graphs appear to be idenƟcal.
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Exercises 7.2
Problems
In Exercises 1 – 15, expand the given logarithm and simplify.
Assumewhen necessary that all quanƟƟes represent posiƟve
real numbers.

1. ln(x3y2)

2. log2
(

128
x2 + 4

)

3. log5
( z
25

)3
4. log(1.23× 1037)

5. ln
(√

z
xy

)

6. log5
(
x2 − 25

)
7. log√2

(
4x3
)

8. log 1
3
(9x(y3 − 8))

9. log
(
1000x3y5

)
10. log3

(
x2

81y4

)

11. ln
(

4

√
xy
ez

)

12. log6
(
216
x3y

)4

13. log
(
100x√y

3√10

)

14. log 1
2

(
4 3√x2

y
√
z

)

15. ln
(

3
√
x

10√yz

)
In Exercises 16 – 29, use the properƟes of logarithms to write
the expression as a single logarithm.

16. 4 ln(x) + 2 ln(y)

17. log2(x) + log2(y)− log2(z)

18. log3(x)− 2 log3(y)

19. 1
2 log3(x)− 2 log3(y)− log3(z)

20. 2 ln(x)− 3 ln(y)− 4 ln(z)

21. log(x)− 1
3 log(z) +

1
2 log(y)

22. − 1
3 ln(x)−

1
3 ln(y) +

1
3 ln(z)

23. log5(x)− 3

24. 3− log(x)

25. log7(x) + log7(x− 3)− 2

26. ln(x) + 1
2

27. log2(x) + log4(x)

28. log2(x) + log4(x− 1)

29. log2(x) + log 1
2
(x− 1)

In Exercises 30 – 33, use the appropriate change of base for-
mula to convert the given expression to an expression with
the indicated base.

30. 7x−1 to base e

31. log3(x+ 2) to base 10

32.
(
2
3

)x

to base e

33. log(x2 + 1) to base e

In Exercises 34 – 39, use the appropriate change of base for-
mula to approximate the logarithm.

34. log3(12)

35. log5(80)

36. log6(72)

37. log4
(

1
10

)
38. log 3

5
(1000)

39. log 2
3
(50)

40. Compare and contrast the graphs of y = ln(x2) and y =
2 ln(x).

41. Prove the QuoƟent Rule and Power Rule for Logarithms.

42. Give numerical examples to show that, in general,

(a) logb(x+ y) ̸= logb(x) + logb(y)
(b) logb(x− y) ̸= logb(x)− logb(y)
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(c) logb
(
x
y

)
̸= logb(x)

logb(y)

43. The Henderson-Hasselbalch EquaƟon: Suppose HA repre-
sents a weak acid. Then we have a reversible chemical re-
acƟon

HA 
 H+ + A−.

The acid disassociaƟon constant, Ka, is given by

Kα =
[H+][A−]

[HA]
= [H+]

[A−]

[HA]
,

where the square brackets denote the concentraƟons just
as they did in Exercise 77 in SecƟon 7.1. The symbol pKa is
defined similarly to pH in that pKa = − log(Ka). Using the

definiƟon of pH from Exercise 77 and the properƟes of log-
arithms, derive the Henderson-Hasselbalch EquaƟonwhich
states

pH = pKa + log [A−]

[HA]

44. Research the history of logarithms including the origin of
the word ‘logarithm’ itself. Why is the abbreviaƟon of nat-
ural log ‘ln’ and not ‘nl’?

45. There is a scene in the movie ‘Apollo 13’ in which several
people at Mission Control use slide rules to verify a compu-
taƟon. Was that scene accurate? Look for other pop cul-
ture references to logarithms and slide rules.
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Please resist the temptaƟon to divide
both sides by ‘ln’ instead of ln(2). Just
like it wouldn’t make sense to divide both
sides by the square root symbol ‘

√
’ when

solving x
√
2 = 5, it makes no sense to di-

vide by ‘ln’.

7.3 ExponenƟal EquaƟons and InequaliƟes

7.3 ExponenƟal EquaƟons and InequaliƟes

In this secƟon we will develop techniques for solving equaƟons involving ex-
ponenƟal funcƟons. Suppose, for instance, we wanted to solve the equaƟon
2x = 128. AŌer a moment’s calculaƟon, we find 128 = 27, so we have 2x = 27.
The one-to-one property of exponenƟal funcƟons, detailed in Theorem 43, tells
us that 2x = 27 if and only if x = 7. This means that not only is x = 7 a soluƟon
to 2x = 27, it is the only soluƟon. Now suppose we change the problem ever so
slightly to 2x = 129. We could use one of the inverse properƟes of exponenƟals
and logarithms listed in Theorem 42 to write 129 = 2log2(129). We’d then have
2x = 2log2(129), which means our soluƟon is x = log2(129). This makes sense
because, aŌer all, the definiƟon of log2(129) is ‘the exponent we put on 2 to
get 129.’ Indeed we could have obtained this soluƟon directly by rewriƟng the
equaƟon 2x = 129 in its logarithmic form log2(129) = x. Either way, in order
to get a reasonable decimal approximaƟon to this number, we’d use the change
of base formula, Theorem 46, to give us something more calculator friendly, say
log2(129) =

ln(129)
ln(2) . (You can use natural logs or common logs. We choose nat-

ural logs. When we reach Calculus we’ll see that natural logs are the easiest to
work with.) Another way to arrive at this answer is as follows

2x = 129
ln (2x) = ln(129) Take the natural log of both sides.
x ln(2) = ln(129) Power Rule

x =
ln(129)
ln(2)

‘Taking the natural log’ of both sides is akin to squaring both sides: since
f(x) = ln(x) is a funcƟon, as long as two quanƟƟes are equal, their natural logs
are equal. (This is also the ‘if’ part of the statement logb(u) = logb(w) if and
only if u = w in Theorem 43.) Also note that we treat ln(2) as any other non-
zero real number and divide it through to isolate the variable x. We summarize
below the two common ways to solve exponenƟal equaƟons, moƟvated by our
examples.

Key Idea 27 Steps for Solving an EquaƟon involving ExponenƟal
FuncƟons

1. Isolate the exponenƟal funcƟon.

2. (a) If convenient, express both sides with a common base and
equate the exponents.

(b) Otherwise, take the natural log of both sides of the equaƟon
and use the Power Rule.
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Figure 7.14: y = f(x) = 23x and
y = g(x) = 161−x

Figure 7.15: y = f(x) = 2000 and
y = g(x) = 1000 · e−0.1x

Figure 7.16: y = f(x) = 9 · 3x and
y = g(x) = 72x

Figure 7.17: y = f(x) = 75 and
y = g(x) = 100

1+3e−2x

Chapter 7 ExponenƟal and Logarithmic FuncƟons

Example 119 Solving exponenƟal equaƟons
Solve the following equaƟons. Check your answer graphically using a computer
or calculator.

1. 23x = 161−x

2. 2000 = 1000 · 3−0.1t

3. 9 · 3x = 72x

4. 75 = 100
1+3e−2t

5. 25x = 5x + 6

6. ex−e−x

2 = 5

SÊ½çã®ÊÄ

1. Since 16 is a power of 2, we can rewrite 23x = 161−x as 23x =
(
24
)1−x.

Using properƟes of exponents, we get 23x = 24(1−x). Using the one-to-
one property of exponenƟal funcƟons, we get 3x = 4(1− x) which gives
x = 4

7 . To check graphically, we set f(x) = 23x and g(x) = 161−x and see
that they intersect at x = 4

7 ≈ 0.5714: see Figure 7.14.

2. We begin solving 2000 = 1000 · 3−0.1t by dividing both sides by 1000 to
isolate the exponenƟal which yields 3−0.1t = 2. Since it is inconvenient to
write 2 as a power of 3, we use the natural log to get ln

(
3−0.1t) = ln(2).

Using the Power Rule, we get−0.1t ln(3) = ln(2), so we divide both sides
by−0.1 ln(3) to get t = − ln(2)

0.1 ln(3) = − 10 ln(2)
ln(3) . Using GeoGebra, we graph

f(x) = 2000 and g(x) = 1000 · 3−0.1x and find that they intersect at
x = − 10 ln(2)

ln(3) ≈ −6.3093: see Figure 7.15.

3. We first note that we can rewrite the equaƟon 9 ·3x = 72x as 32 ·3x = 72x
to obtain 3x+2 = 72x. Since it is not convenient to express both sides as
a power of 3 (or 7 for that maƩer) we use the natural log: ln

(
3x+2) =

ln
(
72x
)
. The power rule gives (x + 2) ln(3) = 2x ln(7). Even though this

equaƟon appears very complicated, keep in mind that ln(3) and ln(7) are
just constants. The equaƟon (x + 2) ln(3) = 2x ln(7) is actually a linear
equaƟon and as such we gather all of the terms with x on one side, and
the constants on the other. We then divide both sides by the coefficient
of x, which we obtain by factoring.

(x+ 2) ln(3) = 2x ln(7)
x ln(3) + 2 ln(3) = 2x ln(7)

2 ln(3) = 2x ln(7)− x ln(3)
2 ln(3) = x(2 ln(7)− ln(3)) Factor.

x = 2 ln(3)
2 ln(7)−ln(3)

Graphing f(x) = 9 ·3x and g(x) = 72x in GeoGebra, we see that these two
graphs intersect at x = 2 ln(3)

2 ln(7)−ln(3) ≈ 0.7866: see Figure 7.16.

4. Our objecƟve in solving 75 = 100
1+3e−2t is to first isolate the exponenƟal.

To that end, we clear denominators and get 75
(
1+ 3e−2t) = 100. From

this we get 75+225e−2t = 100, which leads to 225e−2t = 25, and finally,
e−2t = 1

9 . Taking the natural log of both sides gives ln
(
e−2t) = ln

( 1
9
)
.

Since natural log is log base e, ln
(
e−2t) = −2t. We can also use the

Power Rule to write ln
( 1
9
)
= − ln(9). Puƫng these two steps together,

we simplify ln
(
e−2t) = ln

( 1
9
)
to −2t = − ln(9). We arrive at our so-

luƟon, t = ln(9)
2 which simplifies to t = ln(3). (Can you explain why?)
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Figure 7.18: y = f(x) = 25x and
y = g(x) = 5x + 6

Figure 7.19: y = f(x) = ex − e−x

2
and

y = g(x) = 5

7.3 ExponenƟal EquaƟons and InequaliƟes

GeoGebra confirms the graphs of f(x) = 75 and g(x) = 100
1+3e−2x intersect

at x = ln(3) ≈ 1.099: see Figure 7.17.

5. We start solving 25x = 5x+6 by rewriƟng 25 = 52 so thatwehave
(
52
)x

=
5x+6, or 52x = 5x+6. Even though we have a common base, having two
terms on the right hand side of the equaƟon foils our plan of equaƟng
exponents or taking logs. If we stare at this long enough, we noƟce that
we have three terms with the exponent on one term exactly twice that
of another. To our surprise and delight, we have a ‘quadraƟc in disguise’.
Leƫng u = 5x, we have u2 = (5x)2 = 52x so the equaƟon 52x = 5x + 6
becomes u2 = u + 6. Solving this as u2 − u − 6 = 0 gives u = −2 or
u = 3. Since u = 5x, we have 5x = −2 or 5x = 3. Since 5x = −2 has no
real soluƟon, (Why not?) we focus on 5x = 3. Since it isn’t convenient to
express 3 as a power of 5, we take natural logs and get ln (5x) = ln(3) so
that x ln(5) = ln(3) or x = ln(3)

ln(5) . Using GeoGebra, we see the graphs of
f(x) = 25x and g(x) = 5x + 6 intersect at x = ln(3)

ln(5) ≈ 0.6826: see Figure
7.18.

6. At first, it’s unclear how to proceed with ex−e−x

2 = 5, besides clearing the
denominator to obtain ex − e−x = 10. Of course, if we rewrite e−x = 1

ex ,
we see we have another denominator lurking in the problem: ex − 1

ex =
10. Clearing this denominator gives us e2x − 1 = 10ex, and once again,
we have an equaƟon with three terms where the exponent on one term
is exactly twice that of another - a ‘quadraƟc in disguise.’ If we let u = ex,
then u2 = e2x so the equaƟon e2x − 1 = 10ex can be viewed as u2 − 1 =
10u. Solving u2 − 10u − 1 = 0, we obtain by the quadraƟc formula u =
5±

√
26. From this, we have ex = 5±

√
26. Since 5−

√
26 < 0, we get no

real soluƟon to ex = 5−
√
26, but for ex = 5+

√
26, we take natural logs

to obtain x = ln
(
5+

√
26
)
. If we graph f(x) = ex−e−x

2 and g(x) = 5, we
see in Figure 7.19 that the graphs intersect at x = ln

(
5+

√
26
)
≈ 2.312.

The authors would be remiss not to menƟon that Example 119 sƟll holds
great educaƟonal value. Much can be learned about logarithms and exponen-
Ɵals by verifying the soluƟons obtained in Example 119 analyƟcally. For exam-
ple, to verify our soluƟon to 2000 = 1000 · 3−0.1t, we subsƟtute t = − 10 ln(2)

ln(3)
and obtain

2000 ?
= 1000 · 3−0.1(− 10 ln(2)

ln(3) )

2000 ?
= 1000 · 3

ln(2)
ln(3)

2000 ?
= 1000 · 3log3(2) Change of Base

2000 ?
= 1000 · 2 Inverse Property

2000 X
= 2000

The other soluƟons can be verified by using a combinaƟon of log and inverse
properƟes. Some fall out quite quickly, while others aremore involved. We leave
them to the reader.

Since exponenƟal funcƟons are conƟnuous on their domains, the Interme-
diate Value Theorem 19 applies. As with the algebraic funcƟons in SecƟon 6.3,
this allows us to solve inequaliƟes using sign diagrams as demonstrated below.
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(+)

−1

0 (−)

4

0 (+)

Sign diagram for r(x) = 2x
2−3x − 16

y = r(x) = 2x
2−3x − 16

Figure 7.20: Solving 2x
2−3x − 16 ≥ 0

(−)

ln(4)

‽ (+)

ln(6)

0 (−)

Sign diagram for r(x) = 12− 2ex

ex − 4

y = f(x) = ex

ex − 4
y = g(x) = 3

Figure 7.21: Solving ex

ex − 4
≤ 3

Chapter 7 ExponenƟal and Logarithmic FuncƟons

Example 120 ExponenƟal inequaliƟes
Solve the following inequaliƟes. Check your answer graphically using a computer
or calculator.

1. 2x2−3x − 16 ≥ 0 2.
ex

ex − 4
≤ 3 3. xe2x < 4x

SÊ½çã®ÊÄ

1. Since we already have 0 on one side of the inequality, we set r(x) =

2x2−3x − 16. The domain of r is all real numbers, so in order to construct
our sign diagram, we need to find the zeros of r. Seƫng r(x) = 0 gives
2x2−3x − 16 = 0 or 2x2−3x = 16. Since 16 = 24 we have 2x2−3x = 24, so
by the one-to-one property of exponenƟal funcƟons, x2−3x = 4. Solving
x2 − 3x− 4 = 0 gives x = 4 and x = −1. From the sign diagram, we see
r(x) ≥ 0 on (−∞,−1] ∪ [4,∞), which corresponds to where the graph
of y = r(x) = 2x2−3x − 16, is on or above the x-axis: see Figure 7.20.

2. The first step we need to take to solve ex
ex−4 ≤ 3 is to get 0 on one side

of the inequality. To that end, we subtract 3 from both sides and get a
common denominator.

ex

ex − 4
≤ 3

ex

ex − 4
− 3 ≤ 0

ex

ex − 4
− 3 (ex − 4)

ex − 4
≤ 0 Common denomintors.

12− 2ex

ex − 4
≤ 0

We set r(x) = 12−2ex
ex−4 and we note that r is undefined when its denomi-

nator ex − 4 = 0, or when ex = 4. Solving this gives x = ln(4), so the
domain of r is (−∞, ln(4)) ∪ (ln(4),∞). To find the zeros of r, we solve
r(x) = 0 and obtain 12 − 2ex = 0. Solving for ex, we find ex = 6, or
x = ln(6). When we build our sign diagram, finding test values may be a
liƩle tricky since we need to check values around ln(4) and ln(6). Recall
that the funcƟon ln(x) is increasing whichmeans ln(3) < ln(4) < ln(5) <
ln(6) < ln(7). (This is because the base of ln(x) is e > 1. If the base b
were in the interval 0 < b < 1, then logb(x) would decreasing.) While
the prospect of determining the sign of r (ln(3)) may be very unseƩling,
remember that eln(3) = 3, so

r (ln(3)) =
12− 2eln(3)

eln(3) − 4
=

12− 2(3)
3− 4

= −6

We determine the signs of r (ln(5)) and r (ln(7)) similarly. (We could, of
course, use the calculator, but what fun would that be?) From the sign
diagram, we find our answer to be (−∞, ln(4)) ∪ [ln(6),∞). Using Ge-
oGebra, we see the graph of f(x) = ex

ex−4 is below the graph of g(x) = 3
on (−∞, ln(4)) ∪ (ln(6),∞), and they intersect at x = ln(6) ≈ 1.792.

3. As before, we start solving xe2x < 4x by geƫng 0 on one side of the
inequality, xe2x − 4x < 0. We set r(x) = xe2x − 4x and since there
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(+)

0

0 (−)

ln(2)

0 (+)

Sign diagram for r(x) = xe2x − 4x

y = f(x) = xe2x

y = g(x) = 4x

Figure 7.22: Solving xe2x < 4x

0

(+)

10 ln(3)

0 (−)

Sign diagram for r(t) = 90e−0.1t − 30

H.A. y = 70

y = 100

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

120

140

160

180

y = T(t) and y = 100

Figure 7.23: Solving T(t) = 100 in Exam-
ple 121

7.3 ExponenƟal EquaƟons and InequaliƟes

are no denominators, even-indexed radicals, or logs, the domain of r is
all real numbers. Seƫng r(x) = 0 produces xe2x − 4x = 0. We fac-
tor to get x

(
e2x − 4

)
= 0 which gives x = 0 or e2x − 4 = 0. To solve

the laƩer, we isolate the exponenƟal and take logs to get 2x = ln(4), or
x = ln(4)

2 = ln(2). (Can you explain the last equality using properƟes of
logs?) As in the previous example, we need to be careful about choosing
test values. Since ln(1) = 0, we choose ln

( 1
2
)
, ln
( 3
2
)
and ln(3). Evaluat-

ing, we get

r
(
ln
(
1
2

))
= ln

(
1
2

)
e2 ln(

1
2 ) − 4 ln

(
1
2

)
= ln

(
1
2

)
eln(

1
2 )

2

− 4 ln
(
1
2

)
Power Rule

= ln
(
1
2

)
eln(

1
4 ) − 4 ln

(
1
2

)
=

1
4
ln
(
1
2

)
− 4 ln

(
1
2

)
= −15

4
ln
(
1
2

)

Since 1
2 < 1, ln

( 1
2
)
< 0 and we get r(ln

( 1
2
)
) is (+), so r(x) < 0 on

(0, ln(2)). Ploƫng in GeoGebra confirms that the graph of f(x) = xe2x is
below the graph of g(x) = 4x on these intervals: see Figure 7.22. (Note:
ln(2) ≈ 0.693.)

Example 121 Newton’s Law of Cooling
Recall from Example 112 that the temperature of coffee T (in degrees Fahren-
heit) tminutes aŌer it is served can bemodelled by T(t) = 70+90e−0.1t. When
will the coffee be warmer than 100◦F?

SÊ½çã®ÊÄ We need to find when T(t) > 100, or in other words, we
need to solve the inequality 70 + 90e−0.1t > 100. Geƫng 0 on one side of
the inequality, we have 90e−0.1t − 30 > 0, and we set r(t) = 90e−0.1t − 30.
The domain of r is arƟficially restricted due to the context of the problem to
[0,∞), so we proceed to find the zeros of r. Solving 90e−0.1t − 30 = 0 results
in e−0.1t = 1

3 so that t = −10 ln
( 1
3
)
which, aŌer a quick applicaƟon of the

Power Rule leaves us with t = 10 ln(3). If we wish to avoid using the calculator
to choose test values, we note that since 1 < 3, 0 = ln(1) < ln(3) so that
10 ln(3) > 0. So we choose t = 0 as a test value in [0, 10 ln(3)). Since 3 < 4,
10 ln(3) < 10 ln(4), so the laƩer is our choice of a test value for the interval
(10 ln(3),∞). Our sign diagram is given in Figure 7.23, along with our graph of
y = T(t) from Example 112 with the horizontal line y = 100 shown.

In order to interpret what this means in the context of the real world, we
need a reasonable approximaƟon of the number 10 ln(3) ≈ 10.986. This means
it takes approximately 11minutes for the coffee to cool to 100◦F. UnƟl then, the
coffee is warmer than that.

We close this secƟon by finding the inverse of a funcƟon which is a compo-
siƟon of a raƟonal funcƟon with an exponenƟal funcƟon.
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Figure 7.24: y = f(x) = 5ex
ex+1

y = g(x) = ln
(

x
5−x

)

Chapter 7 ExponenƟal and Logarithmic FuncƟons

Example 122 InverƟng a fracƟonal exponenƟal funcƟon
The funcƟon f(x) =

5ex

ex + 1
is one-to-one. Find a formula for f−1(x) and check

your answer graphically using your calculator.

SÊ½çã®ÊÄ We start by wriƟng y = f(x), and interchange the roles of x
and y. To solve for y, wefirst clear denominators and then isolate the exponenƟal
funcƟon.

y =
5ex

ex + 1

x =
5ey

ey + 1
Switch x and y

x (ey + 1) = 5ey

xey + x = 5ey

x = 5ey − xey

x = ey(5− x)

ey =
x

5− x

ln (ey) = ln
(

x
5− x

)
y = ln

(
x

5− x

)
We claim f−1(x) = ln

(
x

5−x

)
. To verify this analyƟcally, we would need to

verify the composiƟons
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that(

f ◦ f−1) (x) = x for all x in the domain of f−1. We leave this to the reader.
To verify our soluƟon graphically, we graph y = f(x) = 5ex

ex+1 and y = g(x) =

ln
(

x
5−x

)
on the same set of axes and observe the symmetry about the line y = x

in Figure 7.24. Note the domain of f is the range of g and vice-versa.
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Exercises 7.3
Problems
In Exercises 1 – 33, solve the equaƟon analyƟcally.

1. 24x = 8

2. 3(x−1) = 27

3. 52x−1 = 125

4. 42x = 1
2

5. 8x = 1
128

6. 2(x
3−x) = 1

7. 37x = 814−2x

8. 9 · 37x =
( 1
9

)2x
9. 32x = 5

10. 5−x = 2

11. 5x = −2

12. 3(x−1) = 29

13. (1.005)12x = 3

14. e−5730k = 1
2

15. 2000e0.1t = 4000

16. 500
(
1− e2x

)
= 250

17. 70+ 90e−0.1t = 75

18. 30− 6e−0.1x = 20

19. 100ex

ex + 2
= 50

20. 5000
1+ 2e−3t = 2500

21. 150
1+ 29e−0.8t = 75

22. 25
( 4
5

)x
= 10

23. e2x = 2ex

24. 7e2x = 28e−6x

25. 3(x−1) = 2x

26. 3(x−1) =
( 1
2

)(x+5)

27. 73+7x = 34−2x

28. e2x − 3ex − 10 = 0

29. e2x = ex + 6

30. 4x + 2x = 12

31. ex − 3e−x = 2

32. ex + 15e−x = 8

33. 3x + 25 · 3−x = 10

In Exercises 34 – 39, solve the inequality analyƟcally.

34. ex > 53

35. 1000 (1.005)12t ≥ 3000

36. 2(x
3−x) < 1

37. 25
( 4
5

)x ≥ 10

38. 150
1+ 29e−0.8t ≤ 130

39. 70+ 90e−0.1t ≤ 75

In Exercises 40 – 45, use your computer or calculator to help
you solve the equaƟon or inequality.

40. 2x = x2

41. ex = ln(x) + 5

42. e
√

x = x+ 1

43. e−x − xe−x ≥ 0

44. 3(x−1) < 2x

45. ex < x3 − x

46. Since f(x) = ln(x) is a strictly increasing funcƟon, if 0 <
a < b then ln(a) < ln(b). Use this fact to solve the in-
equality e(3x−1) > 6 without a sign diagram.

47. Use the technique in Exercise 46 to solve the inequaliƟes in
Exercises 34 - 39. (NOTE: Isolate the exponenƟal funcƟon
first!)

48. Compute the inverse of f(x) = ex − e−x

2
. State the domain

and range of both f and f−1.
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49. In Example 122, we found that the inverse of f(x) = 5ex

ex + 1
was f−1(x) = ln

(
x

5− x

)
but we leŌ a few loose ends for

you to Ɵe up.

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of

f and that
(
f ◦ f−1) (x) = x for all x in the domain of

f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) = 5x
x+ 1

and h(x) = ex. Show that f = g◦h

and that (g◦h)−1 = h−1◦g−1. (We know this is true
in general by Exercise 31 in SecƟon 6.2, but it’s nice
to see a specific example of the property.)

50. With the help of your classmates, solve the inequality ex >
xn for a variety of natural numbers n. What might you con-
jecture about the “speed” at which f(x) = ex grows versus
any polynomial?
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Figure 7.25: y = f(x) = log117(1− 3x)
and y = g(x) = log117(x2 − 3)

Figure 7.26: y = f(x) = 2− ln(x− 3)
and y = g(x) = 1

7.4 Logarithmic EquaƟons and InequaliƟes

7.4 Logarithmic EquaƟons and InequaliƟes
In SecƟon 7.3 we solved equaƟons and inequaliƟes involving exponenƟal func-
Ɵons using one of two basic strategies. We now turn our aƩenƟon to equaƟons
and inequaliƟes involving logarithmic funcƟons, and not surprisingly, there are
two basic strategies to choose from. For example, suppose we wish to solve
log2(x) = log2(5). Theorem 43 tells us that the only soluƟon to this equaƟon is
x = 5. Now suppose we wish to solve log2(x) = 3. If we want to use Theorem
43, we need to rewrite 3 as a logarithmbase 2. We can use Theorem42 to do just
that: 3 = log2

(
23
)
= log2(8). Our equaƟon then becomes log2(x) = log2(8)

so that x = 8. However, we could have arrived at the same answer, in fewer
steps, by using Theorem 42 to rewrite the equaƟon log2(x) = 3 as 23 = x, or
x = 8. We summarize the two common ways to solve log equaƟons below.

Key Idea 28 Steps for Solving an EquaƟon involving Logarithmic
FuncƟons

1. Isolate the logarithmic funcƟon.

2. (a) If convenient, express both sides as logs with the same base
and equate the arguments of the log funcƟons.

(b) Otherwise, rewrite the log equaƟon as an exponenƟal equa-
Ɵon.

Example 123 Logarithmic equaƟons
Solve the following equaƟons. Check your soluƟons graphically using a com-
puter or calculator.

1. log117(1−3x) = log117
(
x2 − 3

)
2. 2− ln(x− 3) = 1

3. log6(x+ 4) + log6(3− x) = 1 4. log7(1− 2x) = 1− log7(3− x)

5. log2(x+ 3) = log2(6− x) + 3 6. 1+ 2 log4(x+ 1) = 2 log2(x)

SÊ½çã®ÊÄ

1. Since we have the same base on both sides of the equaƟon log117(1 −
3x) = log117

(
x2 − 3

)
, we equate what’s inside the logs to get 1 − 3x =

x2 − 3. Solving x2 + 3x − 4 = 0 gives x = −4 and x = 1. To check
these answers using the calculator, we make use of the change of base
formula and graph f(x) = ln(1−3x)

ln(117) and g(x) =
ln(x2−3)
ln(117) and we see they

intersect only at x = −4. To see what happened to the soluƟon x = 1, we
subsƟtute it into our original equaƟon to obtain log117(−2) = log117(−2).
While these expressions look idenƟcal, neither is a real number, which
means x = 1 is not in the domain of the original equaƟon, and is not a
soluƟon. Using GeoGebra to solve the equaƟon graphically gives us Figure
7.25.

2. Our first objecƟve in solving 2− ln(x− 3) = 1 is to isolate the logarithm.
We get ln(x − 3) = 1, which, as an exponenƟal equaƟon, is e1 = x − 3.
We get our soluƟon x = e+ 3. In Figure 7.26, we see the graph of f(x) =
2− ln(x− 3) intersects the graph of g(x) = 1 at x = e+ 3 ≈ 5.718.
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Figure 7.27: y = f(x) = log6(x + 4) +
log6(3− x) and y = g(x) = 1

Figure 7.28: y = f(x) = log7(1− 2x)
and y = g(x) = 1− log7(3− x)

Figure 7.29: y = f(x) = log2(x+ 3)
and y = g(x) = log2(6− x) + 3

Figure 7.30: y = f(x) = 1+ 2 log4(x+ 1)
and y = g(x) = 2 log2(x)

Chapter 7 ExponenƟal and Logarithmic FuncƟons

3. We can start solving log6(x + 4) + log6(3 − x) = 1 by using the Product
Rule for logarithms to rewrite the equaƟon as log6 [(x+ 4)(3− x)] = 1.
RewriƟng this as an exponenƟal equaƟon, we get 61 = (x + 4)(3 − x).
This reduces to x2 + x− 6 = 0, which gives x = −3 and x = 2. Graphing
y = f(x) = ln(x+4)

ln(6) + ln(3−x)
ln(6) and y = g(x) = 1, we see they intersect

twice, at x = −3 and x = 2 (Figure 7.27).

4. Taking a cue from the previous problem, we begin solving log7(1− 2x) =
1− log7(3−x) by first collecƟng the logarithms on the same side, log7(1−
2x) + log7(3 − x) = 1, and then using the Product Rule to get log7[(1 −
2x)(3−x)] = 1. RewriƟng this as an exponenƟal equaƟon gives 71 = (1−
2x)(3− x) which gives the quadraƟc equaƟon 2x2 − 7x− 4 = 0. Solving,
we find x = − 1

2 and x = 4. Graphing, we find y = f(x) = ln(1−2x)
ln(7) and

y = g(x) = 1− ln(3−x)
ln(7) intersect only at x = − 1

2 : see Figure 7.28. Checking
x = 4 in the original equaƟon produces log7(−7) = 1− log7(−1), which
is a clear domain violaƟon.

5. StarƟng with log2(x+ 3) = log2(6− x) + 3, we gather the logarithms to
one side and get log2(x+3)− log2(6− x) = 3. We then use the QuoƟent
Rule and convert to an exponenƟal equaƟon

log2
(
x+ 3
6− x

)
= 3 ⇐⇒ 23 =

x+ 3
6− x

This reduces to the linear equaƟon 8(6 − x) = x + 3, which gives us
x = 5. When we graph f(x) = ln(x+3)

ln(2) and g(x) = ln(6−x)
ln(2) +3, we find they

intersect at x = 5: see Figure 7.29.

6. StarƟng with 1+ 2 log4(x+ 1) = 2 log2(x), we gather the logs to one side
to get the equaƟon 1 = 2 log2(x)− 2 log4(x+ 1). Before we can combine
the logarithms, however, we need a common base. Since 4 is a power of
2, we use change of base to convert

log4(x+ 1) =
log2(x+ 1)
log2(4)

=
1
2
log2(x+ 1)

Hence, our original equaƟon becomes

1 = 2 log2(x)− 2
(
1
2
log2(x+ 1)

)
1 = 2 log2(x)− log2(x+ 1)
1 = log2

(
x2
)
− log2(x+ 1) Power Rule

1 = log2
(

x2

x+ 1

)
QuoƟent Rule

RewriƟng this in exponenƟal form, we get x2
x+1 = 2 or x2 − 2x − 2 = 0.

Using the quadraƟc formula, we get x = 1 ±
√
3. Graphing f(x) = 1 +

2 ln(x+1)
ln(4) and g(x) = 2 ln(x)

ln(2) , we see in Figure 7.30 that the graphs intersect
only at x = 1 +

√
3 ≈ 2.732. The soluƟon x = 1 −

√
3 < 0, which

means if subsƟtuted into the original equaƟon, the term 2 log2
(
1−

√
3
)

is undefined.
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0

(+)

1
e

‽ (−)

1

0 (+)

Sign diagram for r(x) = ln(x)
ln(x) + 1

y = f(x) = 1
ln(x) + 1

and y = g(x) = 1

Figure 7.31: Solving 1
ln(x) + 1

≤ 1

0

(+)

1
2

0 (−)

8

0 (+)

Sign diagram for
r(x) = (log2(x))2 − 2 log2(x)− 3

y = f(x) = (log2(x))2 and
y = g(x) = 2 log2(x) + 3

Figure 7.32: Solving
(log2(x))2 < 2 log2(x) + 3

7.4 Logarithmic EquaƟons and InequaliƟes

If nothing else, Example 123 demonstrates the importance of checking for
extraneous soluƟons when solving equaƟons involving logarithms. (Recall that
an extraneous soluƟon is an answer obtained analyƟcally which does not sat-
isfy the original equaƟon.) Even though we checked our answers graphically,
extraneous soluƟons are easy to spot - any supposed soluƟon which causes a
negaƟve number inside a logarithm needs to be discarded. As with the equa-
Ɵons in Example 119, much can be learned from checking all of the answers in
Example 123 analyƟcally. We leave this to the reader and turn our aƩenƟon
to inequaliƟes involving logarithmic funcƟons. Since logarithmic funcƟons are
conƟnuous on their domains, we can use sign diagrams.

Example 124 Logarithmic inequaliƟes
Solve the following inequaliƟes. Check your answer graphically using a computer
or calculator.

1.
1

ln(x) + 1
≤ 1 2. (log2(x))

2
<

2 log2(x) + 3
3. x log(x+ 1) ≥ x

SÊ½çã®ÊÄ

1. We start solving
1

ln(x) + 1
≤ 1 by geƫng 0 on one side of the inequality:

1
ln(x) + 1

− 1 ≤ 0. Geƫng a common denominator yields
1

ln(x) + 1
−

ln(x) + 1
ln(x) + 1

≤ 0 which reduces to
− ln(x)
ln(x) + 1

≤ 0, or
ln(x)

ln(x) + 1
≥ 0. We

define r(x) =
ln(x)

ln(x) + 1
and set about finding the domain and the zeros of

r. Due to the appearance of the term ln(x), we require x > 0. In order to
keep the denominator away from zero, we solve ln(x) + 1 = 0 so ln(x) =
−1, so x = e−1 = 1

e . Hence, the domain of r is
(
0, 1

e

)
∪
( 1
e ,∞

)
. To find

the zeros of r, we set r(x) =
ln(x)

ln(x) + 1
= 0 so that ln(x) = 0, and we find

x = e0 = 1. In order to determine test values for r without resorƟng to
the calculator, we need to find numbers between 0, 1

e , and 1 which have a
base of e. Since e ≈ 2.718 > 1, 0 < 1

e2 < 1
e < 1√

e < 1 < e. To determine
the sign of r

( 1
e2
)
, we use the fact that ln

( 1
e2
)
= ln

(
e−2) = −2, and

find r
( 1
e2
)
= −2

−2+1 = 2, which is (+). The rest of the test values are
determined similarly. From our sign diagram, we find the soluƟon to be(
0, 1

e

)
∪ [1,∞). Graphing f(x) = 1

ln(x)+1 and g(x) = 1, we see in Figure
7.31 the graph of f is below the graph of g on the soluƟon intervals, and
that the graphs intersect at x = 1.

2. Moving all of the nonzero terms of (log2(x))
2
< 2 log2(x) + 3 to one

side of the inequality, we have (log2(x))
2 − 2 log2(x) − 3 < 0. Defining

r(x) = (log2(x))
2 − 2 log2(x) − 3, we get the domain of r is (0,∞), due

to the presence of the logarithm. To find the zeros of r, we set r(x) =

(log2(x))
2 − 2 log2(x) − 3 = 0 which results in a ‘quadraƟc in disguise.’

We set u = log2(x) so our equaƟon becomes u2−2u−3 = 0 which gives
us u = −1 and u = 3. Since u = log2(x), we get log2(x) = −1, which
gives us x = 2−1 = 1

2 , and log2(x) = 3, which yields x = 23 = 8. We use
test values which are powers of 2: 0 < 1

4 < 1
2 < 1 < 8 < 16, and from

our sign diagram, we see r(x) < 0 on
( 1
2 , 8
)
. Geometrically, we see the
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−1

(+)

0

0 (−)

9

0 (+)

Sign diagram for r(x) = x log(x+ 1)− x

y = f(x) = x log(x+ 1)
and y = g(x) = x

Figure 7.33: Solving x log(x+ 1) ≥ x

Figure 7.34: The graphs of y = f(x) =
− log(x), y = 7.8 and y = 8.5

Chapter 7 ExponenƟal and Logarithmic FuncƟons

graph of f(x) =
(

ln(x)
ln(2)

)2
is below the graph of y = g(x) = 2 ln(x)

ln(2) + 3 on
the soluƟon interval: see Figure 7.32.

3. We begin to solve x log(x + 1) ≥ x by subtracƟng x from both sides to
get x log(x + 1) − x ≥ 0. We define r(x) = x log(x + 1) − x and due
to the presence of the logarithm, we require x + 1 > 0, or x > −1. To
find the zeros of r, we set r(x) = x log(x + 1) − x = 0. Factoring, we get
x (log(x+ 1)− 1) = 0, which gives x = 0 or log(x + 1) − 1 = 0. The
laƩer gives log(x + 1) = 1, or x + 1 = 101, which admits x = 9. We
select test values x so that x + 1 is a power of 10, and we obtain −1 <
−0.9 < 0 <

√
10−1 < 9 < 99. Our sign diagram gives the soluƟon to be

(−1, 0]∪[9,∞). Figure 7.33 indicates the graph of y = f(x) = x log(x+1)
is above y = g(x) = x on the soluƟon intervals, and the graphs intersect
at x = 0 and x = 9.

Our next example revisits the concept of pH first seen in Exercise 77 in Sec-
Ɵon 7.1.

Example 125 CalculaƟng pH range
In order to successfully breed IppizuƟ fish the pH of a freshwater tank must be
at least 7.8 but can be no more than 8.5. Determine the corresponding range of
hydrogen ion concentraƟon, and check your answer using a calculator.

SÊ½çã®ÊÄ Recall from Exercise 77 in SecƟon 7.1 that pH = − log[H+]
where [H+] is the hydrogen ion concentraƟon in moles per liter. We require
7.8 ≤ − log[H+] ≤ 8.5 or −7.8 ≥ log[H+] ≥ −8.5. To solve this com-
pound inequality we solve −7.8 ≥ log[H+] and log[H+] ≥ −8.5 and take
the intersecƟon of the soluƟon sets. (Refer to page 2 for a discussion of what
this means.) The former inequality yields 0 < [H+] ≤ 10−7.8 and the lat-
ter yields [H+] ≥ 10−8.5. Taking the intersecƟon gives us our final answer
10−8.5 ≤ [H+] ≤ 10−7.8. (Your Chemistry professor may want the answer writ-
ten as 3.16×10−9 ≤ [H+] ≤ 1.58×10−8.) AŌer carefully adjusƟng the viewing
window on GeoGebra we see that the graph of f(x) = − log(x) lies between the
lines y = 7.8 and y = 8.5 on the interval [3.16× 10−9, 1.58× 10−8]: see Figure
7.34.

We close this secƟon by finding an inverse of a one-to-one funcƟon which
involves logarithms.
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Figure 7.35: y = f(x) = log(x)
1− log(x)

and y = g(x) = 10
x

x+1

7.4 Logarithmic EquaƟons and InequaliƟes

Example 126 InverƟng a fracƟonal logarithmic funcƟon

The funcƟon f(x) =
log(x)

1− log(x)
is one-to-one. Find a formula for f−1(x) and

check your answer graphically using your calculator.

SÊ½çã®ÊÄ We first write y = f(x) then interchange the x and y and
solve for y.

y = f(x)

y =
log(x)

1− log(x)

x =
log(y)

1− log(y)
Interchange x and y.

x (1− log(y)) = log(y)
x− x log(y) = log(y)

x = x log(y) + log(y)
x = (x+ 1) log(y)

x
x+ 1

= log(y)

y = 10
x

x+1 Rewrite as an exponenƟal equaƟon.

We have f−1(x) = 10
x

x+1 . Graphing f and f−1 in GeoGebra gives us Figure 7.35.
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Exercises 7.4
Problems
In Exercises 1 – 24, solve the equaƟon analyƟcally.

1. log(3x− 1) = log(4− x)

2. log2
(
x3
)
= log2(x)

3. ln
(
8− x2

)
= ln(2− x)

4. log5
(
18− x2

)
= log5(6− x)

5. log3(7− 2x) = 2

6. log 1
2
(2x− 1) = −3

7. ln
(
x2 − 99

)
= 0

8. log(x2 − 3x) = 1

9. log125
(
3x− 2
2x+ 3

)
=

1
3

10. log
( x
10−3

)
= 4.7

11. − log(x) = 5.4

12. 10 log
( x
10−12

)
= 150

13. 6− 3 log5(2x) = 0

14. 3 ln(x)− 2 = 1− ln(x)

15. log3(x− 4) + log3(x+ 4) = 2

16. log5(2x+ 1) + log5(x+ 2) = 1

17. log169(3x+ 7)− log169(5x− 9) = 1
2

18. ln(x+ 1)− ln(x) = 3

19. 2 log7(x) = log7(2) + log7(x+ 12)

20. log(x)− log(2) = log(x+ 8)− log(x+ 2)

21. log3(x) = log 1
3
(x) + 8

22. ln(ln(x)) = 3

23. (log(x))2 = 2 log(x) + 15

24. ln(x2) = (ln(x))2

In Exercises 25 – 30, solve the inequality analyƟcally.

25. 1− ln(x)
x2

< 0

26. x ln(x)− x > 0

27. 10 log
( x
10−12

)
≥ 90

28. 5.6 ≤ log
( x
10−3

)
≤ 7.1

29. 2.3 < − log(x) < 5.4

30. ln(x2) ≤ (ln(x))2

In Exercises 31 – 34, use your calculator or computer to help
you solve the equaƟon or inequality.

31. ln(x) = e−x

32. ln(x) = 4
√
x

33. ln(x2 + 1) ≥ 5

34. ln(−2x3 − x2 + 13x− 6) < 0

35. Since f(x) = ex is a strictly increasing funcƟon, if a < b then
ea < eb. Use this fact to solve the inequality ln(2x+1) < 3
without a sign diagram.

36. Use the technique from Exercise 35 to solve the inequaliƟes
in Exercises 27 - 29. (Compare this to Exercise 46 in SecƟon
7.3.)

37. Solve ln(3− y)− ln(y) = 2x+ ln(5) for y.

38. In Example 126 we found the inverse of f(x) = log(x)
1− log(x)

to be f−1(x) = 10
x

x+1 .

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of

f and that
(
f ◦ f−1) (x) = x for all x in the domain of

f−1.
(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
x

1− x
and h(x) = log(x). Show that

f = g ◦ h and (g ◦ h)−1 = h−1 ◦ g−1.
(We know this is true in general by Exercise 31 in Sec-
Ɵon 6.2, but it’s nice to see a specific example of the
property.)

39. Let f(x) = 1
2
ln
(
1+ x
1− x

)
. Compute f−1(x) and find its do-

main and range.

40. Explain the equaƟon in Exercise 10 and the inequality in Ex-
ercise 28 above in terms of the Richter scale for earthquake
magnitude. (See Exercise 75 in SecƟon 7.1.)

296



41. Explain the equaƟon in Exercise 12 and the inequality in
Exercise 27 above in terms of sound intensity level as mea-
sured in decibels. (See Exercise 76 in SecƟon 7.1.)

42. Explain the equaƟon in Exercise 11 and the inequality in
Exercise 29 above in terms of the pH of a soluƟon. (See
Exercise 77 in SecƟon 7.1.)
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Chapter 7 ExponenƟal and Logarithmic FuncƟons

7.5 ApplicaƟonsof ExponenƟal and Logarithmic Func-
Ɵons

As wemenƟoned in SecƟon 7.1, exponenƟal and logarithmic funcƟons are used
tomodel a wide variety of behaviours in the real world. In the examples that fol-
low, note that while the applicaƟons are drawn from many different disciplines,
themathemaƟcs remains essenƟally the same. Due to the applied nature of the
problems we will examine in this secƟon, the calculator is oŌen used to express
our answers as decimal approximaƟons.

7.5.1 ApplicaƟons of ExponenƟal FuncƟons

Perhaps the most well-known applicaƟon of exponenƟal funcƟons comes from
the financial world. Suppose you have $100 to invest at your local bank and they
are offering a whopping 5% annual percentage interest rate. This means that
aŌer one year, the bank will pay you 5% of that $100, or $100(0.05) = $5 in
interest, so you now have $105. (How generous of them!) This is in accordance
with the formula for simple interest which you have undoubtedly run across at
some point before.

Key Idea 29 Simple Interest

The amount of interest I accrued at an annual rate r on an investment
(called the principal) P aŌer t years is

I = Prt

The amount A in the account aŌer t years is given by

A = P+ I = P+ Prt = P(1+ rt)

Suppose, however, that six months into the year, you hear of a beƩer deal
at a rival bank. (Some restricƟons may apply.) Naturally, you withdraw your
money and try to invest it at the higher rate there. Since six months is one half
of a year, that iniƟal $100 yields $100(0.05)

( 1
2
)
= $2.50 in interest. You take

your $102.50 off to the compeƟtor and find out that those restricƟons which
may apply actually do apply to you, and you return to your bank which happily
accepts your $102.50 for the remaining six months of the year. To your surprise
and delight, at the end of the year your statement reads $105.06, not $105 as
you had expected. (Actually, the final balance should be $105.0625.) Where did
those extra six cents come from? For the first sixmonths of the year, interestwas
earned on the original principal of $100, but for the second six months, interest
was earned on $102.50, that is, you earned interest on your interest. This is the
basic concept behind compound interest. In the previous discussion, we would
say that the interest was compounded twice, or semiannually. (Using this con-
venƟon, simple interest aŌer one year is the same as compounding the interest
only once.) If moremoney can be earned by earning interest on interest already
earned, a natural quesƟon to ask is what happens if the interest is compounded
more oŌen, say 4 Ɵmes a year, which is every three months, or ‘quarterly.’ In
this case, the money is in the account for three months, or 1

4 of a year, at a Ɵme.
AŌer the first quarter, we have A = P(1+ rt) = $100

(
1+ 0.05 · 1

4
)
= $101.25.

We now invest the $101.25 for the next three months and find that at the end
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of the second quarter, we have A = $101.25
(
1+ 0.05 · 1

4
)
≈ $102.51. Con-

Ɵnuing in this manner, the balance at the end of the third quarter is $103.79,
and, at last, we obtain $105.08. The extra two cents hardly seems worth it, but
we see that we do in fact get more money the more oŌen we compound. In
order to develop a formula for this phenomenon, we need to do some abstract
calculaƟons. Suppose we wish to invest our principal P at an annual rate r and
compound the interest n Ɵmes per year. This means the money sits in the ac-
count 1

n
th of a year between compoundings. Let Ak denote the amount in the

account aŌer the kth compounding. Then A1 = P
(
1+ r

( 1
n

))
which simplifies

to A1 = P
(
1+ r

n

)
. AŌer the second compounding, we use A1 as our new princi-

pal and get A2 = A1
(
1+ r

n

)
=
[
P
(
1+ r

n

)] (
1+ r

n

)
= P

(
1+ r

n

)2. ConƟnuing
in this fashion, we get A3 = P

(
1+ r

n

)3, A4 = P
(
1+ r

n

)4, and so on, so that
Ak = P

(
1+ r

n

)k. Since we compound the interest n Ɵmes per year, aŌer t
years, we have nt compoundings. We have just derived the general formula for
compound interest below.

Key Idea 30 Compounded Interest

If an iniƟal principal P is invested at an annual rate r and the interest is
compounded n Ɵmes per year, the amount A in the account aŌer t years
is

A(t) = P
(
1+

r
n

)nt

If we take P = 100, r = 0.05, and n = 4, EquaƟon 30 becomes A(t) =

100
(
1+ 0.05

4
)4t which reduces to A(t) = 100(1.0125)4t. To check this new

formula against our previous calculaƟons, we find A
( 1
4
)
= 100(1.0125)4(

1
4 ) =

101.25, A
( 1
2
)
≈ $102.51, A

( 3
4
)
≈ $103.79, and A(1) ≈ $105.08.

Example 127 CompuƟng compound interest
Suppose $2000 is invested in an accountwhich offers 7.125% compoundedmonthly.

1. Express the amount A in the account as a funcƟon of the term of the in-
vestment t in years.

2. How much is in the account aŌer 5 years?

3. How long will it take for the iniƟal investment to double?

4. Find and interpret the average rate of change of the amount in the account
from the end of the fourth year to the end of the fiŌh year, and from
the end of the thirty-fourth year to the end of the thirty-fiŌh year. (See
DefiniƟon 32 in SecƟon 3.1.)

SÊ½çã®ÊÄ

1. SubsƟtuƟng P = 2000, r = 0.07125, and n = 12 (since interest is com-
poundedmonthly) into EquaƟon 30 yields A(t) = 2000

(
1+ 0.07125

12
)12t

=
2000(1.0059375)12t.

2. Since t represents the length of the investment in years, we subsƟtute
t = 5 into A(t) to find A(5) = 2000(1.0059375)12(5) ≈ 2852.92. AŌer 5
years, we have approximately $2852.92.

299



In fact, the rate of increase of the amount
in the account is exponenƟal as well. This
is the quality that really defines exponen-
Ɵal funcƟons. We’ll have more to say
about this once we reach Calculus.
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3. Our iniƟal investment is $2000, so to find the Ɵme it takes this to double,
we need to find twhenA(t) = 4000. We get 2000(1.0059375)12t = 4000,
or (1.0059375)12t = 2. Taking natural logs as in SecƟon 7.3, we get t =

ln(2)
12 ln(1.0059375) ≈ 9.75. Hence, it takes approximately 9 years 9 months for
the investment to double.

4. To find the average rate of change of A from the end of the fourth year
to the end of the fiŌh year, we compute A(5)−A(4)

5−4 ≈ 195.63. Similarly,
the average rate of change of A from the end of the thirty-fourth year
to the end of the thirty-fiŌh year is A(35)−A(34)

35−34 ≈ 1648.21. This means
that the value of the investment is increasing at a rate of approximately
$195.63 per year between the end of the fourth and fiŌh years, while
that rate jumps to $1648.21 per year between the end of the thirty-fourth
and thirty-fiŌh years. So, not only is it true that the longer you wait, the
more money you have, but also the longer you wait, the faster the money
increases.

We have observed that the more Ɵmes you compound the interest per year,
the more money you will earn in a year. Let’s push this noƟon to the limit. Con-
sider an investment of $1 invested at 100% interest for 1 year compounded n
Ɵmes a year. EquaƟon 30 tells us that the amount of money in the account aŌer
1 year is A =

(
1+ 1

n

)n. Below is a table of values relaƟng n and A.

n A
1 2
2 2.25
4 ≈ 2.4414

12 ≈ 2.6130
360 ≈ 2.7145

1000 ≈ 2.7169
10000 ≈ 2.7181

100000 ≈ 2.7182

As promised, the more compoundings per year, the more money there is in
the account, but we also observe that the increase in money is greatly diminish-
ing. We are witnessing a mathemaƟcal ‘tug of war’. While we are compounding
more Ɵmes per year, and hence geƫng interest on our interest more oŌen, the
amount of Ɵme between compoundings is geƫng smaller and smaller, so there
is less Ɵme to build up addiƟonal interest. With Calculus, we can show (or de-
fine, depending on your point of view) that as n → ∞, A =

(
1+ 1

n

)n → e,
where e is the natural base first presented in SecƟon 7.1. Taking the number
of compoundings per year to infinity results in what is called conƟnuously com-
pounded interest.

Theorem 47 An interesƟng definiƟon of e

If you invest $1 at 100% interest compounded conƟnuously, then you
will have $e at the end of one year.

Using this definiƟon of e and a liƩle Calculus, we can take EquaƟon 30 and
produce a formula for conƟnuously compounded interest.
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The average rate of change of a func-
Ɵon over an interval was first introduced
in SecƟon 3.1. Instantaneous rates of
change are the business of Calculus, as is
menƟoned on Page 119.

7.5 ApplicaƟons of ExponenƟal and Logarithmic FuncƟons

Key Idea 31 ConƟnuously Compounded Interest

If an iniƟal principal P is invested at an annual rate r and the interest is
compounded conƟnuously, the amount A in the account aŌer t years is

A(t) = Pert

If we take the scenario of Example 127 and compare monthly compounding
to conƟnuous compounding over 35 years, we find that monthly compounding
yields A(35) = 2000(1.0059375)12(35) which is about $24,035.28, whereas con-
Ɵnuously compounding givesA(35) = 2000e0.07125(35)which is about $24,213.18
- a difference of less than 1%.

EquaƟons 30 and 31 both use exponenƟal funcƟons to describe the growth
of an investment. Curiously enough, the same principles which govern com-
pound interest are also used to model short term growth of populaƟons. In
Biology, The Law of Uninhibited Growth states as its premise that the instanta-
neous rate at which a populaƟon increases at any Ɵme is directly proporƟonal
to the populaƟon at that Ɵme. In other words, the more organisms there are
at a given moment, the faster they reproduce. FormulaƟng the law as stated
results in a differenƟal equaƟon, which requires Calculus to solve. Its soluƟon is
stated below.

Key Idea 32 Uninhibited growth

If a populaƟon increases according to The Law of Uninhibited Growth,
the number of organisms N at Ɵme t is given by the formula

N(t) = N0ekt,

where N(0) = N0 (read ‘N nought’) is the iniƟal number of organisms
and k > 0 is the constant of proporƟonality which saƟsfies the equaƟon

(instantaneous rate of change of N(t) at Ɵme t) = k N(t)

It is worth taking some Ɵme to compare EquaƟons 31 and 32. In EquaƟon
31, we use P to denote the iniƟal investment; in EquaƟon 32, we use N0 to de-
note the iniƟal populaƟon. In EquaƟon 31, r denotes the annual interest rate,
and so it shouldn’t be too surprising that the k in EquaƟon 32 corresponds to
a growth rate as well. While EquaƟons 31 and 32 look enƟrely different, they
both represent the same mathemaƟcal concept.

Example 128 Modelling cell growth
In order to perform atherosclerosis research, epithelial cells are harvested from
discarded umbilical Ɵssue and grown in the laboratory. A technician observes
that a culture of twelve thousand cells grows to five million cells in one week.
Assuming that the cells follow The Law of Uninhibited Growth, find a formula
for the number of cells, N, in thousands, aŌer t days.

SÊ½çã®ÊÄ We begin with N(t) = N0ekt. Since N is to give the number
of cells in thousands, we have N0 = 12, so N(t) = 12ekt. In order to complete
the formula, we need to determine the growth rate k. We know that aŌer one
week, the number of cells has grown to five million. Since tmeasures days and
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the units of N are in thousands, this translates mathemaƟcally to N(7) = 5000.
We get the equaƟon 12e7k = 5000 which gives k = 1

7 ln
( 1250

3
)
. Hence, N(t) =

12e
t
7 ln( 1250

3 ). Of course, in pracƟce, we would approximate k to some desired
accuracy, say k ≈ 0.8618, which we can interpret as an 86.18% daily growth
rate for the cells.

Whereas EquaƟons 31 and 32 model the growth of quanƟƟes, we can use
equaƟons like them to describe the decline of quanƟƟes. One example we’ve
seen already is Example 111 in SecƟon 7.1. There, the value of a car declined
from its purchase price of $25,000 to nothing at all. Another real world phe-
nomenon which follows suit is radioacƟve decay. There are elements which are
unstable and emit energy spontaneously. In doing so, the amount of the el-
ement itself diminishes. The assumpƟon behind this model is that the rate of
decay of an element at a parƟcular Ɵme is directly proporƟonal to the amount of
the element present at that Ɵme. In other words, themore of the element there
is, the faster the element decays. This is precisely the same kind of hypothesis
which drives The Law of Uninhibited Growth, and as such, the equaƟon govern-
ing radioacƟve decay is haunƟngly similar to EquaƟon 32with the excepƟon that
the rate constant k is negaƟve.

Key Idea 33 RadioacƟve Decay

The amount of a radioacƟve element A at Ɵme t is given by the formula

A(t) = A0ekt,

where A(0) = A0 is the iniƟal amount of the element and k < 0 is the
constant of proporƟonality which saƟsfies the equaƟon

(instantaneous rate of change of A(t) at Ɵme t) = k A(t)

Example 129 RadioacƟve decay of iodine
Iodine-131 is a commonly used radioacƟve isotope used to help detect howwell
the thyroid is funcƟoning. Suppose the decay of Iodine-131 follows the model
given in EquaƟon 33, and that the half-life (the Ɵme it takes for half of the sub-
stance to decay) of Iodine-131 is approximately 8 days. If 5 grams of Iodine-131
is present iniƟally, find a funcƟon which gives the amount of Iodine-131, A, in
grams, t days later.

SÊ½çã®ÊÄ Sincewe startwith 5 grams iniƟally, EquaƟon33 givesA(t) =
5ekt. Since the half-life is 8 days, it takes 8 days for half of the Iodine-131 to de-
cay, leaving half of it behind. Hence, A(8) = 2.5 which means 5e8k = 2.5.
Solving, we get k = 1

8 ln
( 1
2
)
= − ln(2)

8 ≈ −0.08664, which we can interpret as a
loss of material at a rate of 8.664% daily. Hence, A(t) = 5e−

t ln(2)
8 ≈ 5e−0.08664t.

Wenow turn our aƩenƟon to somemoremathemaƟcally sophisƟcatedmod-
els. One such model is Newton’s Law of Cooling, which we first encountered in
Example 112 of SecƟon 7.1. In that example we had a cup of coffee cooling from
160◦F to room temperature 70◦F according to the formula T(t) = 70+90e−0.1t,
where t was measured in minutes. In this situaƟon, we know the physical limit
of the temperature of the coffee is room temperature, and the differenƟal equa-
Ɵonwhich gives rise to our formula for T(t) takes this into account. Whereas the
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The Second Law of Thermodynamics
states that heat can spontaneously flow
from a hoƩer object to a colder one, but
not the other way around. Thus, the cof-
fee could not conƟnue to release heat
into the air so as to cool below room tem-
perature.

7.5 ApplicaƟons of ExponenƟal and Logarithmic FuncƟons

radioacƟve decaymodel had a rate of decay at Ɵme t directly proporƟonal to the
amount of the elementwhich remained at Ɵme t, Newton’s Lawof Cooling states
that the rate of cooling of the coffee at a given Ɵme t is directly proporƟonal to
how much of a temperature gap exists between the coffee at Ɵme t and room
temperature, not the temperature of the coffee itself. In other words, the coffee
cools faster when it is first served, and as its temperature nears room tempera-
ture, the coffee cools ever more slowly. Of course, if we take an item from the
refrigerator and let it sit out in the kitchen, the object’s temperature will rise
to room temperature, and since the physics behind warming and cooling is the
same, we combine both cases in the equaƟon below.

Key Idea 34 Newton’s Law of Cooling (Warming)

The temperature T of an object at Ɵme t is given by the formula

T(t) = Ta + (T0 − Ta) e−kt,

where T(0) = T0 is the iniƟal temperature of the object, Ta is the ambient
temperature (that is, the temperature of the surroundings) and k > 0 is
the constant of proporƟonality which saƟsfies the equaƟon

(instantaneous rate of change of T(t) at Ɵme t) = k (T(t)− Ta)

If we re-examine the situaƟon in Example 112 with T0 = 160, Ta = 70, and
k = 0.1, we get, according to EquaƟon 34, T(t) = 70+ (160− 70)e−0.1t which
reduces to the original formula given. The rate constant k = 0.1 indicates the
coffee is cooling at a rate equal to 10% of the difference between the tempera-
ture of the coffee and its surroundings. Note in EquaƟon 34 that the constant k
is posiƟve for both the cooling and warming scenarios. What determines if the
funcƟon T(t) is increasing or decreasing is if T0 (the iniƟal temperature of the
object) is greater than Ta (the ambient temperature) or vice-versa, as we see in
our next example.

Example 130 Newton’s Law of warming
A 40◦F roast is cooked in a 350◦F oven. AŌer 2 hours, the temperature of the
roast is 125◦F.

1. Assuming the temperature of the roast follows Newton’s Law ofWarming,
find a formula for the temperature of the roast T as a funcƟon of its Ɵme
in the oven, t, in hours.

2. The roast is done when the internal temperature reaches 165◦F. When
will the roast be done?

SÊ½çã®ÊÄ

1. The iniƟal temperature of the roast is 40◦F, so T0 = 40. The environment
inwhichweare placing the roast is the 350◦F oven, so Ta = 350. Newton’s
Law of Warming tells us T(t) = 350 + (40 − 350)e−kt, or T(t) = 350 −
310e−kt. To determine k, we use the fact that aŌer 2 hours, the roast is
125◦F, which means T(2) = 125. This gives rise to the equaƟon 350 −
310e−2k = 125 which yields k = − 1

2 ln
( 45
62
)
≈ 0.1602. The temperature
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funcƟon is

T(t) = 350− 310e
t
2 ln( 45

62 ) ≈ 350− 310e−0.1602t.

2. To determine when the roast is done, we set T(t) = 165. This gives 350−
310e−0.1602t = 165 whose soluƟon is t = − 1

0.1602 ln
( 37
62
)
≈ 3.22. It takes

roughly 3 hours and 15 minutes to cook the roast completely.

If we had taken the Ɵme to graph y = T(t) in Example 130, we would
have found the horizontal asymptote to be y = 350, which corresponds to
the temperature of the oven. We can also arrive at this conclusion by apply-
ing a bit of ‘number sense’. As t → ∞, −0.1602t ≈ very big (−) so that
e−0.1602t ≈ very small (+). The larger the value of t, the smaller e−0.1602t be-
comes so that T(t) ≈ 350−very small (+), which indicates the graph of y = T(t)
is approaching its horizontal asymptote y = 350 from below. Physically, this
means the roast will eventually warm up to 350◦F (at which point it would be
more toast than roast). The funcƟon T is someƟmes called a limited growth
model, since the funcƟon T remains bounded as t → ∞. If we apply the princi-
ples behind Newton’s Law of Cooling to a biological example, it says the growth
rate of a populaƟon is directly proporƟonal to how much room the populaƟon
has to grow. In other words, themore room for expansion, the faster the growth
rate. The logisƟc growth model combines The Law of Uninhibited Growth with
limited growth and states that the rate of growth of a populaƟon varies jointly
with the populaƟon itself as well as the room the populaƟon has to grow.

Key Idea 35 LogisƟc Growth

If a populaƟon behaves according to the assumpƟons of logisƟc growth,
the number of organisms N at Ɵme t is given by the equaƟon

N(t) =
L

1+ Ce−kLt ,

where N(0) = N0 is the iniƟal populaƟon, L is the limiƟng populaƟon,
(that is, as t → ∞, N(t) → L) C is a measure of how much room there is
to grow given by

C =
L
N0

− 1.

and k > 0 is the constant of proporƟonality which saƟsfies the equaƟon

(instantaneous rate of change of N(t) at Ɵme t) = k N(t) (L− N(t))

The logisƟc funcƟon is used not only to model the growth of organisms, but
is also oŌen used to model the spread of disease and rumours.
Example 131 Modelling spread of rumours
The number of people N, in hundreds, at a local community college who have
heard the rumour ‘Carl is afraid of Virginia Woolf’ can be modelled using the
logisƟc equaƟon

N(t) =
84

1+ 2799e−t ,

where t ≥ 0 is the number of days aŌer April 1, 2009.
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Figure 7.36: y = 84
1+ 2799e−x

and y = 84

Figure 7.37: y = 84
1+ 2799e−x

and y = 42

Figure 7.38: y = 84
1+ 2799e−x

for 0 ≤ x ≤ 8

Figure 7.39: y = 84
1+ 2799e−x

for 8 ≤ x ≤ 16

7.5 ApplicaƟons of ExponenƟal and Logarithmic FuncƟons

1. Find and interpret N(0).

2. Find and interpret the end behaviour of N(t).

3. How long unƟl 4200 people have heard the rumour?

4. Check your answers to 2 and 3 using your computer or calculator.

SÊ½çã®ÊÄ

1. We find N(0) = 84
1+2799e0 = 84

2800 = 3
100 . Since N(t)measures the number

of people who have heard the rumour in hundreds, N(0) corresponds to
3 people. Since t = 0 corresponds to April 1, 2009, we may conclude that
on that day, 3 people have heard the rumour.(Or, more likely, three people
started the rumour. I’d wager Jeff, Jamie, and Jason started it. So much
for telling your best friends something in confidence!)

2. We could simply note that N(t) is wriƩen in the form of EquaƟon 35,
and idenƟfy L = 84. However, to see why the answer is 84, we pro-
ceed analyƟcally. Since the domain of N is restricted to t ≥ 0, the only
end behaviour of significance is t → ∞. As we’ve seen before, (see,
for example, Example 112) as t → ∞, we have 1997e−t → 0+ and so
N(t) ≈ 84

1+very small (+)
≈ 84. Hence, as t → ∞, N(t) → 84. This

means that as Ɵme goes by, the number of people who will have heard
the rumour approaches 8400.

3. To find how long it takes unƟl 4200 people have heard the rumour, we set
N(t) = 42. Solving 84

1+2799e−t = 42 gives t = ln(2799) ≈ 7.937. It takes
around 8 days unƟl 4200 people have heard the rumour.

4. We graph y = N(x) using the calculator and see in Figure 7.36 that the line
y = 84 is the horizontal asymptote of the graph, confirming our answer to
part 2, and the graph intersects the line y = 42 at x = ln(2799) ≈ 7.937
in Figure 7.37, which confirms our answer to part 3.

If we take the Ɵme to analyze the graph of y = N(x) above, we can see
graphically how logisƟc growth combines features of uninhibited and limited
growth. The curve seems to rise steeply, then at some point, begins to level off.
The point at which this happens is called an inflecƟon point or is someƟmes
called the ‘point of diminishing returns’. At this point, even though the funcƟon
is sƟll increasing, the rate at which it does so begins to decline. It turns out the
point of diminishing returns always occurs at half the limiƟng populaƟon. (In
our case, when y = 42.) While these concepts are more precisely quanƟfied
using Calculus, Figures 7.38 and 7.39 give two views of the graph of y = N(x),
one on the interval [0, 8], the other on [8, 15]. The former looks strikingly like
uninhibited growth; the laƩer like limited growth.
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The equaƟon for blood pH in Ex-
ample 133 is derived from the
Henderson-Hasselbalch EquaƟon.
See Exercise 43 in SecƟon 7.2. Has-
selbalch himself was studying carbon
dioxide dissolving in blood - a process
called metabolic acidosis.

Chapter 7 ExponenƟal and Logarithmic FuncƟons

7.5.2 ApplicaƟons of Logarithms
Just as many physical phenomena can be modelled by exponenƟal funcƟons,
the same is true of logarithmic funcƟons. In Exercises 75, 76 and 77 of SecƟon
7.1, we showed that logarithms are useful in measuring the intensiƟes of earth-
quakes (the Richter scale), sound (decibels) and acids and bases (pH). We now
present yet a different use of the a basic logarithm funcƟon, password strength.

Example 132 Password strengh
The informaƟon entropyH, in bits, of a randomly generated password consisƟng
of L characters is given by H = L log2(N), where N is the number of possible
symbols for each character in the password. In general, the higher the entropy,
the stronger the password.

1. If a 7 character case-sensiƟve (that is, upper and lower case leƩers are
treated as different characters) password is comprised of leƩers and num-
bers only, find the associated informaƟon entropy.

2. How many possible symbol opƟons per character is required to produce
a 7 character password with an informaƟon entropy of 50 bits?

SÊ½çã®ÊÄ

1. There are 26 leƩers in the alphabet, 52 if upper and lower case leƩers
are counted as different. There are 10 digits (0 through 9) for a total of
N = 62 symbols. Since the password is to be 7 characters long, L = 7.
Thus, H = 7 log2(62) =

7 ln(62)
ln(2) ≈ 41.68.

2. We have L = 7 and H = 50 and we need to find N. Solving the equa-
Ɵon 50 = 7 log2(N) gives N = 250/7 ≈ 141.323, so we would need 142
different symbols to choose from. (Since there are only 94 disƟnct ASCII
keyboard characters, to achieve this strength, the number of characters
in the password should be increased.)

Chemical systems known as buffer soluƟons have the ability to adjust to
small changes in acidity to maintain a range of pH values. Buffer soluƟons have
a wide variety of applicaƟons from maintaining a healthy fish tank to regulaƟng
the pH levels in blood. Our next example shows how the pH in a buffer soluƟon
is a liƩle more complicated than the pH we first encountered in Exercise 77 in
SecƟon 7.1.

Example 133 Buffer soluƟons
Blood is a buffer soluƟon. When carbon dioxide is absorbed into the blood-
stream it produces carbonic acid and lowers the pH. The body compensates by
producing bicarbonate, a weak base to parƟally neutralize the acid. The equa-
Ɵon which models blood pH in this situaƟon is pH = 6.1+ log

( 800
x

)
, where x is

the parƟal pressure of carbon dioxide in arterial blood, measured in torr. Find
the parƟal pressure of carbon dioxide in arterial blood if the pH is 7.4.

SÊ½çã®ÊÄ Weset pH = 7.4 and get 7.4 = 6.1+log
( 800

x

)
, or log

( 800
x

)
=

1.3. Solving, we find x = 800
101.3 ≈ 40.09. Hence, the parƟal pressure of carbon

dioxide in the blood is about 40 torr.
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Exercises 7.5
Problems
For each of the scenarios given in Exercises 1 – 6,

• Find the amount A in the account as a funcƟon of the
term of the investment t in years.

• Determine how much is in the account aŌer 5 years,
10 years, 30 years and 35 years. Round your answers
to the nearest cent.

• Determine how long will it take for the iniƟal invest-
ment to double. Round your answer to the nearest
year.

• Find and interpret the average rate of change of the
amount in the account from the end of the fourth year
to the end of the fiŌh year, and from the end of the
thirty-fourth year to the end of the thirty-fiŌh year.
Round your answer to two decimal places.

1. $500 is invested in an account which offers 0.75%, com-
pounded monthly.

2. $500 is invested in an account which offers 0.75%, com-
pounded conƟnuously.

3. $1000 is invested in an account which offers 1.25%, com-
pounded monthly.

4. $1000 is invested in an account which offers 1.25%, com-
pounded conƟnuously.

5. $5000 is invested in an account which offers 2.125%, com-
pounded monthly.

6. $5000 is invested in an account which offers 2.125%, com-
pounded conƟnuously.

7. Look back at your answers to Exercises 1 - 6. What can be
said about the difference between monthly compounding
and conƟnuously compounding the interest in those situa-
Ɵons? With the help of your classmates, discuss scenarios
where the difference between monthly and conƟnuously
compounded interest would be more dramaƟc. Try vary-
ing the interest rate, the term of the investment and the
principal. Use computaƟons to support your answer.

8.

9. How much money needs to be invested now to obtain
$5000 in 10 years if the interest rate in a CD is 2.25%, com-
poundedmonthly? Round your answer to the nearest cent.

10. On May, 31, 2009, the Annual Percentage Rate listed at
Jeff’s bank for regular savings accounts was 0.25% com-
pounded monthly. Use EquaƟon 30 to answer the follow-
ing.

(a) If P = 2000 what is A(8)?
(b) Solve the equaƟon A(t) = 4000 for t.

(c) What principal P should be invested so that the ac-
count balance is $2000 is three years?

11. Jeff’s bank also offers a 36-month CerƟficate of Deposit
(CD) with an APR of 2.25%.

(a) If P = 2000 what is A(8)?
(b) Solve the equaƟon A(t) = 4000 for t.
(c) What principal P should be invested so that the ac-

count balance is $2000 in three years?
(d) The Annual Percentage Yield is the simple interest

rate that returns the same amount of interest aŌer
one year as the compound interest does. With the
help of your classmates, compute the APY for this in-
vestment.

12. A finance company offers a promoƟon on $5000 loans.
The borrower does not have to make any payments for
the first three years, however interest will conƟnue to be
charged to the loan at 29.9% compounded conƟnuously.
What amount will be due at the end of the three year pe-
riod, assuming no payments are made? If the promoƟon is
extended an addiƟonal three years, and no payments are
made, what amount would be due?

13. Use EquaƟon 30 to show that the Ɵme it takes for an invest-
ment to double in value does not depend on the principal
P, but rather, depends only on the APR and the number of
compoundings per year. Let n = 12 and with the help of
your classmates compute the doubling Ɵme for a variety of
rates r. Then look up the Rule of 72 and compare your an-
swers to what that rule says. If you’re really interested (pun
intended!) in Financial MathemaƟcs, you could also com-
pare and contrast the Rule of 72with the Rule of 70 and the
Rule of 69.

In Exercises 14 – 18, we list some radioacƟve isotopes and
their associated half-lives. Assume that each decays accord-
ing to the formula A(t) = A0ekt where A0 is the iniƟal amount
of the material and k is the decay constant. For each isotope:

• Find the decay constant k. Round your answer to four
decimal places.

• Find a funcƟon which gives the amount of isotope A
which remains aŌer Ɵme t. (Keep the units of A and t
the same as the given data.)

• Determine how long it takes for 90% of the material
to decay. Round your answer to two decimal places.
(HINT: If 90% of the material decays, how much is
leŌ?)

14. Cobalt 60, used in food irradiaƟon, iniƟal amount 50 grams,
half-life of 5.27 years.

15. Phosphorus 32, used in agriculture, iniƟal amount 2 mil-
ligrams, half-life 14 days.

16. Chromium 51, used to track red blood cells, iniƟal amount
75 milligrams, half-life 27.7 days.
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17. Americium 241, used in smoke detectors, iniƟal amount
0.29 micrograms, half-life 432.7 years.

18. Uranium 235, used for nuclear power, iniƟal amount 1 kg
grams, half-life 704 million years.

19. With the help of your classmates, show that the Ɵme it
takes for 90% of each isotope listed in Exercises 14 - 18 to
decay does not depend on the iniƟal amount of the sub-
stance, but rather, on only the decay constant k. Find a for-
mula, in terms of k only, to determine how long it takes for
90% of a radioacƟve isotope to decay.

20. In Example 111 in SecƟon 7.1, the exponenƟal funcƟon
V(x) = 25

( 4
5

)x was used to model the value of a car
over Ɵme. Use the properƟes of logs and/or exponents to
rewrite the model in the form V(t) = 25ekt.

21. The Gross DomesƟc Product (GDP) of the US (in billions of
dollars) t years aŌer the year 2000 can be modelled by:

G(t) = 9743.77e0.0514t

(a) Find and interpret G(0).
(b) According to the model, what should have been

the GDP in 2007? In 2010? (According to the
US Department of Commerce, the 2007 GDP was
$14, 369.1 billion and the 2010 GDP was $14, 657.8
billion.)

22. The diameter D of a tumour, in millimetres, t days aŌer it is
detected is given by:

D(t) = 15e0.0277t

(a) What was the diameter of the tumour when it was
originally detected?

(b) How long unƟl the diameter of the tumour doubles?

23. Under opƟmal condiƟons, the growth of a certain strain
of E. Coli is modelled by the Law of Uninhibited Growth
N(t) = N0ekt where N0 is the iniƟal number of bacteria and
t is the elapsed Ɵme, measured in minutes. From numer-
ous experiments, it has been determined that the doubling
Ɵme of this organism is 20 minutes. Suppose 1000 bacteria
are present iniƟally.

(a) Find the growth constant k. Round your answer to
four decimal places.

(b) Find a funcƟon which gives the number of bacteria
N(t) aŌer tminutes.

(c) How long unƟl there are 9000 bacteria? Round your
answer to the nearest minute.

24. Yeast is oŌen used in biological experiments. A research
technician esƟmates that a sample of yeast suspension con-
tains 2.5 million organisms per cubic cenƟmetre (cc). Two
hours later, she esƟmates the populaƟon density to be 6
million organisms per cc. Let t be the Ɵme elapsed since
the first observaƟon, measured in hours. Assume that the
yeast growth follows the LawofUninhibitedGrowthN(t) =
N0ekt.

(a) Find the growth constant k. Round your answer to
four decimal places.

(b) Find a funcƟon which gives the number of yeast (in
millions) per cc N(t) aŌer t hours.

(c) What is the doubling Ɵme for this strain of yeast?

25. The Law of Uninhibited Growth also applies to situ-
aƟons where an animal is re-introduced into a suit-
able environment. Such a case is the reintroducƟon of
wolves to Yellowstone NaƟonal Park. According to the
NaƟonal Park Service, the wolf populaƟon in Yellowstone
NaƟonal Park was 52 in 1996 and 118 in 1999. Using these
data, find a funcƟon of the form N(t) = N0ekt which mod-
els the number of wolves t years aŌer 1996. (Use t = 0
to represent the year 1996. Also, round your value of k to
four decimal places.) According to the model, how many
wolves were in Yellowstone in 2002? (The recorded num-
ber is 272.)

26. During the early years of a community, it is not uncommon
for the populaƟon to grow according to the Law of Uninhib-
ited Growth. According to the Painesville Wikipedia entry,
in 1860, the Village of Painesville had a populaƟon of 2649.
In 1920, the populaƟon was 7272. Use these two data
points to fit a model of the form N(t) = N0ekt were N(t)
is the number of Painesville Residents t years aŌer 1860.
(Use t = 0 to represent the year 1860. Also, round the
value of k to four decimal places.) According to this model,
what was the populaƟon of Painesville in 2010? (The 2010
census gave the populaƟon as 19,563)What could be some
causes for such a vast discrepancy?

27. The populaƟon of Sasquatch in Bigfoot county is modelled
by

P(t) = 120
1+ 3.167e−0.05t

where P(t) is the populaƟon of Sasquatch t years aŌer
2010.

(a) Find and interpret P(0).

(b) Find the populaƟon of Sasquatch in Bigfoot county in
2013. Round your answer to the nearest Sasquatch.

(c) When will the populaƟon of Sasquatch in Bigfoot
county reach 60? Round your answer to the nearest
year.

(d) Find and interpret the end behaviour of the graph of
y = P(t). Check your answer using a graphing uƟlity.

28. The half-life of the radioacƟve isotope Carbon-14 is about
5730 years.

(a) Use EquaƟon 33 to express the amount of Carbon-14
leŌ from an iniƟal N milligrams as a funcƟon of Ɵme
t in years.

(b) What percentage of the original amount of Carbon-
14 is leŌ aŌer 20,000 years?
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(c) If an old wooden tool is found in a cave and the
amount of Carbon-14 present in it is esƟmated to be
only 42% of the original amount, approximately how
old is the tool?

(d) Radiocarbon daƟng is not as easy as these exercises
might lead you to believe. With the help of your class-
mates, research radiocarbon daƟng and discuss why
our model is somewhat over-simplified.

29. Carbon-14 cannot be used to date inorganic material such
as rocks, but there are many other methods of radiomet-
ric daƟng which esƟmate the age of rocks. One of them,
Rubidium-StronƟum daƟng, uses Rubidium-87 which de-
cays to StronƟum-87 with a half-life of 50 billion years. Use
EquaƟon 33 to express the amount of Rubidium-87 leŌ
from an iniƟal 2.3 micrograms as a funcƟon of Ɵme t in
billions of years. Research this and other radiometric tech-
niques and discuss themargins of error for variousmethods
with your classmates.

30. Use EquaƟon 33 to show that k = − ln(2)
h

where h is the
half-life of the radioacƟve isotope.

31. A pork roast4 was taken out of a hardwood smoker when
its internal temperature had reached 180◦F and it was al-
lowed to rest in a 75◦F house for 20 minutes aŌer which
its internal temperature had dropped to 170◦F. Assuming
that the temperature of the roast follows Newton’s Law of
Cooling (EquaƟon 34),

(a) Express the temperature T (in ◦F) as a funcƟon of
Ɵme t (in minutes).

(b) Find the Ɵme at which the roast would have dropped
to 140◦F had it not been carved and eaten.

32. In reference to Exercise 44 in SecƟon 6.3, if Fritzy the Fox’s
speed is the same as Chewbacca the Bunny’s speed, Fritzy’s
pursuit curve is given by

y(x) = 1
4
x2 − 1

4
ln(x)− 1

4
Use your calculator to graph this path for x > 0. Describe
the behaviour of y as x → 0+ and interpret this physically.

33. The current i measured in amps in a certain electronic cir-
cuit with a constant impressed voltage of 120 volts is given
by i(t) = 2− 2e−10t where t ≥ 0 is the number of seconds
aŌer the circuit is switched on. Determine the value of i as
t → ∞. (This is called the steady state current.)

34. If the voltage in the circuit in Exercise 33 above is switched
off aŌer 30 seconds, the current is given by the piecewise-
defined funcƟon

i(t) =

{
2− 2e−10t if 0 ≤ t < 30(

2− 2e−300) e−10t+300 if t ≥ 30

With the help of your calculator, graph y = i(t) and discuss
with your classmates the physical significance of the two
parts of the graph 0 ≤ t < 30 and t ≥ 30.

35. In Exercise 26 in SecƟon 3.3, we stated that the cable of a
suspension bridge formed a parabola but that a free hang-
ing cable did not. A free hanging cable forms a catenary
and its basic shape is given by y = 1

2

(
ex + e−x). Use your

calculator to graph this funcƟon. What are its domain and
range? What is its end behaviour? Is it inverƟble? How do
you think it is related to the funcƟon given in Exercise 48
in SecƟon 7.3 and the one given in the answer to Exercise
39 in SecƟon 7.4? When flipped upside down, the catenary
makes an arch. The Gateway Arch in St. Louis, Missouri has
the shape

y = 757.7− 127.7
2

(
e

x
127.7 + e−

x
127.7
)

where x and y are measured in feet and−315 ≤ x ≤ 315.
Find the highest point on the arch.

4This roast was enjoyed by Jeff and his family on June 10, 2009. This is real data, folks!
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P

Figure 8.3: A ray with iniƟal point P

Figure 8.4: Twoways tomeasure an angle

αβ

Figure 8.5: Labelling angles

The choice of ‘360’ is most oŌen at-
tributed to the Babylonians.

8: FÊçÄ��ã®ÊÄÝ Ê¥
TÙ®¦ÊÄÊÃ�ãÙù
8.1 Angles and their Measure

This secƟon begins our study of Trigonometry and to get started, we recall some
basic definiƟons from Geometry. A ray is usually described as a ‘half-line’ and
can be thought of as a line segment in which one of the two endpoints is pushed
off infinitely distant from the other, as pictured in Figure 8.3. The point from
which the ray originates is called the iniƟal point of the ray.

When two rays share a common iniƟal point they form an angle and the
common iniƟal point is called the vertex of the angle. Two examples of what
are commonly thought of as angles are given in Figure 8.1

P

Q

An angle with vertex P An angle with vertex Q

Figure 8.1: Typical angles

However, the two figures in Figure 8.2 also depict angles - albeit these are, in
some sense, extreme cases. In the first case, the two rays are directly opposite
each other forming what is known as a straight angle; in the second, the rays
are idenƟcal so the ‘angle’ is indisƟnguishable from the ray itself.

P

Q

A straight angle

Figure 8.2: Less typical angles

Themeasure of an angle is a number which indicates the amount of rotaƟon
that separates the rays of the angle. There is one immediate problem with this,
as pictured in Figure 8.4.

Which amount of rotaƟon arewe aƩempƟng to quanƟfy? Whatwe have just
discovered is that we have at least two angles described by this diagram. (The
phrase ‘at least’ will be jusƟfied in short order.) Clearly these two angles have
different measures because one appears to represent a larger rotaƟon than the
other, so we must label them differently. In this book, we use lower case Greek
leƩers such as α (alpha), β (beta), γ (gamma) and θ (theta) to label angles. So,
for instance, we have the labels in Figure 8.5.

One commonly used system to measure angles is degree measure. QuanƟ-
Ɵes measured in degrees are denoted by the familiar ‘◦’ symbol. One complete
revoluƟon as shown below is 360◦, and parts of a revoluƟon are measured pro-
porƟonately. Thus half of a revoluƟon (a straight angle) measures 1

2 (360
◦) =

180◦, a quarter of a revoluƟon (a right angle) measures 1
4 (360

◦) = 90◦ and so
on.

http://en.wikipedia.org/wiki/Degree_(angle)


α

β

Supplementary angles

γ

θ

Complementary angles

Figure 8.8: Supplementary and comple-
mentary angles

Initial Side

Ter
mi
na
l S
ide

A posiƟve angle, 45◦

Initial Side

Terminal Side

A negaƟve angle,−45◦

Figure 8.9: The sign of an angle

Figure 8.10: Angles can comprise more
than one revoluƟon

Chapter 8 FoundaƟons of Trigonometry

One revoluƟon↔ 360◦ 180◦ 90◦

Figure 8.6: Defining degree measure

Note that in Figure 8.6 above, we have used the small square ‘ ’ to denote
a right angle, as is commonplace in Geometry. Recall that if an angle mea-
sures strictly between 0◦ and 90◦ it is called an acute angle and if it measures
strictly between 90◦ and 180◦ it is called an obtuse angle. It is important to
note that, theoreƟcally, we can know the measure of any angle as long as we
know the proporƟon it represents of enƟre revoluƟon. For instance, the mea-
sure of an angle which represents a rotaƟon of 2

3 of a revoluƟon would measure
2
3 (360

◦) = 240◦, the measure of an angle which consƟtutes only 1
12 of a revo-

luƟon measures 1
12 (360

◦) = 30◦ and an angle which indicates no rotaƟon at all
is measured as 0◦: see Figure 8.7.

240◦ 30◦ 0◦

Figure 8.7: Measuring angles in degrees

Two acute angles are called complementary angles if their measures add to
90◦. Two angles, either a pair of right angles or one acute angle and one obtuse
angle, are called supplementary angles if their measures add to 180◦. In Figure
8.8, the angles α and β are supplementary angles while the pair γ and θ are
complementary angles.

In pracƟce, the disƟncƟonbetween the angle itself and itsmeasure is blurred
so that the sentence ‘α is an angle measuring 42◦’ is oŌen abbreviated as ‘α =
42◦.’

Up to this point, we have discussed only angles which measure between 0◦
and 360◦, inclusive. UlƟmately, we want to use the arsenal of Algebra which
we have stockpiled in Chapters 2 through 5 to not only solve geometric prob-
lems involving angles, but also to extend their applicability to other real-world
phenomena. A first step in this direcƟon is to extend our noƟon of ‘angle’ from
merely measuring an extent of rotaƟon to quanƟƟes which can be associated
with real numbers. To that end, we introduce the concept of an oriented angle.
As its name suggests, in an oriented angle, the direcƟon of the rotaƟon is im-
portant. We imagine the angle being swept out starƟng from an iniƟal side and
ending at a terminal side, as shown in Figure 8.9. When the rotaƟon is counter-
clockwise from iniƟal side to terminal side, we say that the angle is posiƟve;
when the rotaƟon is clockwise, we say that the angle is negaƟve.
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Figure 8.11: Two coterminal angles, α =
120◦ and β = −240◦, in standard posi-
Ɵon.
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Figure 8.12: α = 60◦ in standard posiƟon
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Figure 8.13: β = −225◦ in standard po-
siƟon
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Figure 8.14: γ = 540◦ in standard posi-
Ɵon

8.1 Angles and their Measure

At this point, we also extend our allowable rotaƟons to include angles which
encompass more than one revoluƟon. For example, to sketch an angle with
measure 450◦ we start with an iniƟal side, rotate counter-clockwise one com-
plete revoluƟon (to take care of the ‘first’ 360◦) then conƟnuewith an addiƟonal
90◦ counter-clockwise rotaƟon, as seen in Figure 8.10.

To further connect angles with the Algebra which has come before, we shall
oŌen overlay an angle diagram on the coordinate plane. An angle is said to
be in standard posiƟon if its vertex is the origin and its iniƟal side coincides
with the posiƟve x-axis. Angles in standard posiƟon are classified according to
where their terminal side lies. For instance, an angle in standard posiƟon whose
terminal side lies in Quadrant I is called a ‘Quadrant I angle’. If the terminal side
of an angle lies on one of the coordinate axes, it is called a quadrantal angle.
Two angles in standard posiƟon are called coterminal if they share the same
terminal side. (Note that by being in standard posiƟon they automaƟcally share
the same iniƟal side which is the posiƟve x-axis.) In Figure 8.11, α = 120◦ and
β = −240◦ are two coterminal Quadrant II angles drawn in standard posiƟon.
Note that α = β + 360◦, or equivalently, β = α − 360◦. We leave it as an
exercise to the reader to verify that coterminal angles always differ by amulƟple
of 360◦. (It is worth noƟng that all of the pathologies of AnalyƟc Trigonometry
result from this innocuous fact.) More precisely, ifα andβ are coterminal angles,
then β = α+ 360◦ · k where k is an integer.

Example 134 Ploƫng and classifying angles
Graph each of the (oriented) angles below in standard posiƟon and classify them
according towhere their terminal side lies. Find three coterminal angles, at least
one of which is posiƟve and one of which is negaƟve.

1. α = 60◦

2. β = −225◦
3. γ = 540◦

4. ϕ = −750◦

SÊ½çã®ÊÄ

1. To graph α = 60◦, we draw an angle with its iniƟal side on the posiƟve
x-axis and rotate counter-clockwise 60◦

360◦ = 1
6 of a revoluƟon. We see that

α is a Quadrant I angle. To find angles which are coterminal, we look for
angles θ of the form θ = α+360◦ ·k, for some integer k. When k = 1, we
get θ = 60◦+360◦ = 420◦. SubsƟtuƟng k = −1 gives θ = 60◦−360◦ =
−300◦. Finally, if we let k = 2, we get θ = 60◦+720◦ = 780◦: see Figure
8.12.

2. Since β = −225◦ is negaƟve, we start at the posiƟve x-axis and rotate
clockwise 225◦

360◦ = 5
8 of a revoluƟon. We see thatβ is aQuadrant II angle. To

find coterminal angles, we proceed as before and compute θ = −225◦ +
360◦ · k for integer values of k. We find 135◦, −585◦ and 495◦ are all
coterminal with−225◦: see Figure 8.13.

3. Since γ = 540◦ is posiƟve, we rotate counter-clockwise from the pos-
iƟve x-axis. One full revoluƟon accounts for 360◦, with 180◦, or 1

2 of a
revoluƟon remaining. Since the terminal side of γ lies on the negaƟve x-
axis, γ is a quadrantal angle. All angles coterminal with γ are of the form
θ = 540◦+360◦ ·k, where k is an integer. Working through the arithmeƟc,
we find three such angles: 180◦,−180◦ and 900◦: see Figure 8.14.

4. The Greek leƩer ϕ is pronounced ‘fee’ or ‘fie’ and since ϕ is negaƟve, we
begin our rotaƟon clockwise from the posiƟve x-axis. Two full revoluƟons
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Figure 8.15: ϕ = −750◦ in standard po-
siƟon
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Figure 8.16: The radian measure of θ is s
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β has radian measure 4

Figure 8.17: An angle of k radians sub-
tends an arc of length k · r

Chapter 8 FoundaƟons of Trigonometry

account for 720◦, with just 30◦ or 1
12 of a revoluƟon to go. We find that

ϕ is a Quadrant IV angle. To find coterminal angles, we compute θ =
−750◦ + 360◦ · k for a few integers k and obtain−390◦,−30◦ and 330◦:
see Figure 8.15.

Note that since there are infinitely many integers, any given angle has in-
finitely many coterminal angles, and the reader is encouraged to plot the few
sets of coterminal angles found in Example 134 to see this. We are now just one
step away from completely marrying angles with the real numbers and the rest
of Algebra. To that end, we recall the following definiƟon.

DefiniƟon 53 The number π

The real number π is defined to be the raƟo of a circle’s circumference to
its diameter. In symbols, given a circle of circumference C and diameter
d,

π =
C
d

While DefiniƟon 53 is quite possibly the ‘standard’ definiƟon of π, the au-
thors would be remiss if we didn’t menƟon that buried in this definiƟon is actu-
ally a theorem. As the reader is probably aware, the number π is amathemaƟcal
constant - that is, it doesn’t maƩer which circle is selected, the raƟo of its cir-
cumference to its diameter will have the same value as any other circle. While
this is indeed true, it is far from obvious. (If you think it is obvious, try to come
up with a rigorous proof of this fact!) Since the diameter of a circle is twice its
radius, we can quickly rearrange the equaƟon in DefiniƟon 53 to get a formula
more useful for our purposes, namely: 2π =

C
r

This tells us that for any circle, the raƟo of its circumference to its radius
is also always constant; in this case the constant is 2π. Suppose now we take
a porƟon of the circle, so instead of comparing the enƟre circumference C to
the radius, we compare some arc measuring s units in length to the radius, as
depicted in Figure 8.16. Let θ be the central angle subtended by this arc, that is,
an anglewhose vertex is the center of the circle andwhose determining rays pass
through the endpoints of the arc. Using proporƟonality arguments, it stands to
reason that the raƟo

s
r
should also be a constant among all circles, and it is this

raƟo which defines the radian measure of an angle.
To get a beƩer feel for radian measure, we note that an angle with radian

measure 1 means the corresponding arc length s equals the radius of the circle
r, hence s = r. When the radian measure is 2, we have s = 2r; when the radian
measure is 3, s = 3r, and so forth. Thus the radian measure of an angle θ tells
us how many ‘radius lengths’ we need to sweep out along the circle to subtend
the angle θ: see Figure 8.17.

Since one revoluƟon sweeps out the enƟre circumference 2πr, one revolu-
Ɵon has radian measure

2πr
r

= 2π. From this we can find the radian measure
of other central angles using proporƟons, just like we did with degrees. For in-
stance, half of a revoluƟon has radian measure 1

2 (2π) = π, a quarter revoluƟon
has radian measure 1

4 (2π) = π
2 , and so forth. Note that, by definiƟon, the ra-

dian measure of an angle is a length divided by another length so that these
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Figure 8.18: α = π
6 in standard posiƟon.
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Figure 8.19: β = − 4π
3 in standard posi-

Ɵon.
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Figure 8.20: γ = 9π
4 in standard posiƟon.
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Figure 8.21: ϕ = − 5π
2 in standard posi-

Ɵon.

8.1 Angles and their Measure

measurements are actually dimensionless and are considered ‘pure’ numbers.
For this reason, wedonot use any symbols to denote radianmeasure, butweuse
the word ‘radians’ to denote these dimensionless units as needed. For instance,
we say one revoluƟon measures ‘2π radians,’ half of a revoluƟon measures ‘π
radians,’ and so forth.

As with degree measure, the disƟncƟon between the angle itself and its
measure is oŌen blurred in pracƟce, so when we write ‘θ = π

2 ’, we mean θ
is an angle which measures π

2 radians. (The authors are well aware that we are
now idenƟfying radians with real numbers. We will jusƟfy this shortly.) We ex-
tend radianmeasure to oriented angles, just as we didwith degrees beforehand,
so that a posiƟve measure indicates counter-clockwise rotaƟon and a negaƟve
measure indicates clockwise rotaƟon. Much like before, two posiƟve angles α
and β are supplementary if α+β = π and complementary if α+β = π

2 . Finally,
we leave it to the reader to show that when using radian measure, two angles
α and β are coterminal if and only if β = α+ 2πk for some integer k.

Example 135 Ploƫng and classifying angles
Graph each of the (oriented) angles below in standard posiƟon and classify them
according towhere their terminal side lies. Find three coterminal angles, at least
one of which is posiƟve and one of which is negaƟve.

1. α =
π

6

2. β = −4π
3

3. γ =
9π
4

4. ϕ = −5π
2

SÊ½çã®ÊÄ

1. The angleα = π
6 is posiƟve, so we draw an angle with its iniƟal side on the

posiƟve x-axis and rotate counter-clockwise (π/6)
2π = 1

12 of a revoluƟon.
Thus α is a Quadrant I angle. Coterminal angles θ are of the form θ =
α+2π ·k, for some integer k. To make the arithmeƟc a bit easier, we note
that 2π = 12π

6 , thus when k = 1, we get θ = π
6 +

12π
6 = 13π

6 . SubsƟtuƟng
k = −1 gives θ = π

6 − 12π
6 = − 11π

6 and when we let k = 2, we get
θ = π

6 + 24π
6 = 25π

6 : see Figure 8.18.

2. Since β = − 4π
3 is negaƟve, we start at the posiƟve x-axis and rotate clock-

wise (4π/3)
2π = 2

3 of a revoluƟon. We find β to be a Quadrant II angle. To
find coterminal angles, we proceed as before using 2π = 6π

3 , and com-
pute θ = − 4π

3 + 6π
3 · k for integer values of k. We obtain 2π

3 ,−
10π
3 and 8π

3
as coterminal angles: see Figure 8.19.

3. Since γ = 9π
4 is posiƟve, we rotate counter-clockwise from the posiƟve

x-axis. One full revoluƟon accounts for 2π = 8π
4 of the radian measure

with π
4 or 1

8 of a revoluƟon remaining. We have γ as a Quadrant I angle.
All angles coterminal with γ are of the form θ = 9π

4 + 8π
4 · k, where k is

an integer. Working through the arithmeƟc, we find: π
4 ,−

7π
4 and 17π

4 : see
Figure 8.20.

4. To graph ϕ = − 5π
2 , we begin our rotaƟon clockwise from the posiƟve x-

axis. As 2π = 4π
2 , aŌer one full revoluƟon clockwise, we have π

2 or 1
4 of

a revoluƟon remaining. Since the terminal side of ϕ lies on the negaƟve
y-axis, ϕ is a quadrantal angle. To find coterminal angles, we compute
θ = − 5π

2 + 4π
2 · k for a few integers k and obtain − π

2 ,
3π
2 and 7π

2 : see
Figure 8.21.
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It is worth menƟoning that we could have ploƩed the angles in Example
135 by first converƟng them to degree measure and following the procedure
set forth in Example 134. While converƟng back and forth from degrees and ra-
dians is certainly a good skill to have, it is best that you learn to ‘think in radians’
as well as you can ‘think in degrees’. The authors would, however, be derelict in
our duƟes if we ignored the basic conversion between these systems altogether.
Since one revoluƟon counter-clockwisemeasures 360◦ and the same anglemea-
sures 2π radians, we can use the proporƟon 2π radians

360◦ , or its reduced equivalent,
π radians
180◦ , as the conversion factor between the two systems. For example, to con-

vert 60◦ to radians we find 60◦
(
π radians
180◦

)
= π

3 radians, or simply π
3 . To convert

from radian measure back to degrees, we mulƟply by the raƟo 180◦
π radian . For ex-

ample,− 5π
6 radians is equal to

(
− 5π

6 radians
) ( 180◦

π radians

)
= −150◦. Of parƟcular

interest is the fact that an angle which measures 1 in radian measure is equal to
180◦
π ≈ 57.2958◦.
We summarize these conversions below.

Key Idea 36 Degree - Radian Conversion

• To convert degree measure to radian measure, mulƟply by
π radians
180◦

• To convert radian measure to degree measure, mulƟply by
180◦

π radians

In light of Example 135 and EquaƟon 36, the reader may well wonder what
the allure of radian measure is. The numbers involved are, admiƩedly, much
more complicated than degree measure. The answer lies in how easily angles in
radian measure can be idenƟfied with real numbers. Consider the Unit Circle,
x2 + y2 = 1, as drawn below, the angle θ in standard posiƟon and the corre-
sponding arc measuring s units in length. By definiƟon, and the fact that the
Unit Circle has radius 1, the radian measure of θ is

s
r
=

s
1

= s so that, once
again blurring the disƟncƟon between an angle and its measure, we have θ = s.
In order to idenƟfy real numbers with oriented angles, we make good use of
this fact by essenƟally ‘wrapping’ the real number line around the Unit Circle
and associaƟng to each real number t an oriented arc on the Unit Circle with
iniƟal point (1, 0). This idenƟficaƟon between angles and real numbers will also
be essenƟal once we begin our study of trigonometric funcƟons in Calculus.

Viewing the verƟcal line x = 1 as another real number line demarcated like
the y-axis, given a real number t > 0, we ‘wrap’ the (verƟcal) interval [0, t]
around the Unit Circle in a counter-clockwise fashion. The resulƟng arc has
a length of t units and therefore the corresponding angle has radian measure
equal to t. If t < 0, we wrap the interval [t, 0] clockwise around the Unit Circle.
Since we have defined clockwise rotaƟon as having negaƟve radian measure,
the angle determined by this arc has radian measure equal to t. If t = 0, we
are at the point (1, 0) on the x-axis which corresponds to an angle with radian
measure 0. In this way, we idenƟfy each real number t with the corresponding
angle with radian measure t.
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On the unit circle, θ = s IdenƟfying t > 0 with an angle IdenƟfying t < 0 with an angle

Figure 8.22: IdenƟfying real numnbers with angles

Example 136 Angles corresponding to real numbers
Sketch the oriented arc on the Unit Circle corresponding to each of the following
real numbers.

1. t =
3π
4

2. t = −2π

3. t = −2

4. t = 117

SÊ½çã®ÊÄ

1. The arc associatedwith t = 3π
4 is the arc on the Unit Circle which subtends

the angle 3π
4 in radian measure. Since 3π

4 is 3
8 of a revoluƟon, we have

an arc which begins at the point (1, 0) proceeds counter-clockwise up to
midway through Quadrant II: see Figure 8.20.

2. Since one revoluƟon is 2π radians, and t = −2π is negaƟve, we graph the
arc which begins at (1, 0) and proceeds clockwise for one full revoluƟon:
see Figure 8.20.

3. Like t = −2π, t = −2 is negaƟve, so we begin our arc at (1, 0) and pro-
ceed clockwise around the unit circle. Since π ≈ 3.14 and π

2 ≈ 1.57,
we find that rotaƟng 2 radians clockwise from the point (1, 0) lands us in
Quadrant III. Tomore accurately place the endpoint, we successively halve
the angle measure unƟl we find 5π

8 ≈ 1.96 which tells us our arc extends
just a bit beyond the quarter mark into Quadrant III: see Figure 8.20.

4. Since 117 is posiƟve, the arc corresponding to t = 117 begins at (1, 0) and
proceeds counter-clockwise. As 117 is much greater than 2π, we wrap
around the Unit Circle several Ɵmes before finally reaching our endpoint.
We approximate 117

2π as 18.62 which tells us we complete 18 revoluƟons
counter-clockwise with 0.62, or just shy of 5

8 of a revoluƟon to spare. In
other words, the terminal side of the angle which measures 117 radians
in standard posiƟon is just short of being midway through Quadrant III:
see Figure 8.20.
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Chapter 8 FoundaƟons of Trigonometry

8.1.1 ApplicaƟons of Radian Measure: Circular MoƟon
Now that we have paired angles with real numbers via radian measure, a whole
world of applicaƟons awaits us. Our first excursion into this realm comes by way
of circular moƟon. Suppose an object is moving as pictured in Figure 8.27 along
a circular path of radius r from the point P to the point Q in an amount of Ɵme t.

Here s represents a displacement so that s > 0means the object is travelling
in a counter-clockwise direcƟon and s < 0 indicates movement in a clockwise
direcƟon. Note that with this convenƟon the formula we used to define radian
measure, namely θ =

s
r
, sƟll holds since a negaƟve value of s incurred from

a clockwise displacement matches the negaƟve we assign to θ for a clockwise
rotaƟon.

Borrowing terminology from Physics, if we imagine the circular moƟon of
our object taking place over a duraƟon of Ɵme t, we can define the quanƟty
θ

t
, called the average angular velocity of the object. It is denoted by ω and is

read ‘omega-bar’. The quanƟty ω is the average rate of change of the angle θ
with respect to Ɵme and thus has units radians

Ɵme . If the circular moƟon is uniform,
meaning that the rate at which the angle θ changes with Ɵme is constant, then
the average angular velocity ω is the same as the instantaneous angular velocity
ω. (If the rate is not constant, we can’t define ω without calculus.)

If the path of the object were ‘uncurled’ from a circle to form a line segment,
then we could discuss the average linear velocity of the object, given by v =

s
t
.

Note that since s = rθ, we obtain

v =
s
t
=

rθ
t
= r
(
θ

t

)
= rω.

One note of cauƟon is needed here: the true moƟon of our object is, of course,
not linear – it’s circular. Lest we draw the ire of any students with high school
Physics under their belts, we should point out that moƟon in the plane is best
described as a vector quanƟty (wewill not be discussing vectors in this text), and
the relaƟonship v = rω describes not the velocity of the object, but its speed.

Example 137 Finding speed of rotaƟon
Assuming that the surface of the Earth is a sphere, any point on the Earth can be
thought of as an object travelling on a circle which completes one revoluƟon in
(approximately) 24 hours. The path traced out by the point during this 24 hour
period is the LaƟtude of that point. Lakeland Community College is at 41.628◦
north laƟtude, and it can be shown that the radius of the earth at this LaƟtude is
approximately 2960miles. (Wewill discuss howwearrived at this approximaƟon
in Example 143.) Find the linear speed, inmiles per hour, of LakelandCommunity
College as the world turns.

SÊ½çã®ÊÄ To use the formula v = rω, we first need to compute the
angular velocity ω. The earth makes one revoluƟon in 24 hours, and one rev-
oluƟon is 2π radians, so ω = 2π radians

24 hours = π
12 hours , where, once again, we are

using the fact that radians are real numbers and are dimensionless. (For sim-
plicity’s sake, we are also assuming that we are viewing the rotaƟon of the earth
as counter-clockwise so ω > 0.) Hence, the linear velocity is

v = 2960miles · π

12 hours
≈ 775

miles
hour

It is worth noƟng that the quanƟty 1 revoluƟon
24 hours in Example 137 is called the

ordinary frequency of the moƟon and is usually denoted by the variable f. The
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ordinary frequency is a measure of how oŌen an object makes a complete cycle
of themoƟon. The fact that ω = 2πf suggests that ω is also a frequency. Indeed,
it is called the angular frequency of the moƟon. On a related note, the quanƟty
T =

1
f
is called the period of the moƟon and is the amount of Ɵme it takes for

the object to complete one cycle of the moƟon. In the scenario of Example 137,
the period of the moƟon is 24 hours, or one day.

The concepts of frequency and period help frame the equaƟon v = rω in a
new light. That is, if ω is fixed, points which are farther from the center of ro-
taƟon need to travel faster to maintain the same angular frequency since they
have farther to travel to make one revoluƟon in one period’s Ɵme. The distance
of the object to the center of rotaƟon is the radius of the circle, r, and is the
‘magnificaƟon factor’ which relates ω and v. While we have exhausƟvely dis-
cussed velociƟes associated with circular moƟon, we have yet to discuss a more
natural quesƟon: if an object is moving on a circular path of radius rwith a fixed
angular velocity (frequency) ω, what is the posiƟon of the object at Ɵme t? The
answer to this quesƟon is the very heart of Trigonometry and is answered in the
next secƟon.
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Exercises 8.1
Problems

In Exercises 1 – 20, graph the oriented angle in standard posi-
Ɵon. Classify each angle according to where its terminal side
lies and then give two coterminal angles, one of which is pos-
iƟve and the other negaƟve.

1. 330◦

2. −135◦

3. 120◦

4. 405◦

5. −270◦

6. 5π
6

7. −11π
3

8. 5π
4

9. 3π
4

10. −π

3

11. 7π
2

12. π

4

13. −π

2

14. 7π
6

15. −5π
3

16. 3π

17. −2π

18. −π

4

19. 15π
4

20. −13π
6

In Exercises 21 – 28, convert the angle from degree measure
into radian measure, giving the exact value in terms of π.

21. 0◦

22. 240◦

23. 135◦

24. −270◦

25. −315◦

26. 150◦

27. 45◦

28. −225◦

In Exercises 29 – 36, convert the angle from radian measure
into degree measure.

29. π

30. −2π
3

31. 7π
6

32. 11π
6

33. π

3

34. 5π
3

35. −π

6

36. π

2

In Exercises 37 – 41, sketch the oriented arc on the Unit Circle
which corresponds to the given real number.

37. t = 5π
6

38. t = −π

39. t = 6

40. t = −2

41. t = 12

42. A yo-yo which is 2.25 inches in diameter spins at a rate of
4500 revoluƟons per minute. How fast is the edge of the
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yo-yo spinning in miles per hour? Round your answer to
two decimal places.

43. Howmany revoluƟons per minute would the yo-yo in exer-
cise 42 have to complete if the edge of the yo-yo is to be
spinning at a rate of 42 miles per hour? Round your answer
to two decimal places.

44. In the yo-yo trick ‘Around theWorld,’ the performer throws
the yo-yo so it sweeps out a verƟcal circle whose radius is
the yo-yo string. If the yo-yo string is 28 inches long and the
yo-yo takes 3 seconds to complete one revoluƟon of the
circle, compute the speed of the yo-yo in miles per hour.
Round your answer to two decimal places.

45. A computer hard drive contains a circular disk with diame-
ter 2.5 inches and spins at a rate of 7200 RPM (revoluƟons
per minute). Find the linear speed of a point on the edge
of the disk in miles per hour.

46. A rock got stuck in the tread of my Ɵre and when I was driv-
ing 70miles per hour, the rock came loose and hit the inside
of the wheel well of the car. How fast, in miles per hour,
was the rock travelling when it came out of the tread? (The
Ɵre has a diameter of 23 inches.)

47. TheGiantWheel at Cedar Point is a circlewith diameter 128
feet which sits on an 8 foot tall plaƞorm making its overall
height is 136 feet. It completes two revoluƟons in 2 min-
utes and 7 seconds.1 Assuming the riders are at the edge
of the circle, how fast are they traveling in miles per hour?

48. Consider the circle of radius r pictured below with central
angle θ, measured in radians, and subtended arc of length
s. Prove that the area of the shaded sector is A = 1

2 r
2θ.

(Hint: Use the proporƟon A
area of the circle =

s
circumference of the circle .)

θ

s

r

r

In Exercises 49 – 54, use the result of Exercise 48 to compute
the areas of the circular sectors with the given central angles
and radii.

49. θ =
π

6
, r = 12

50. θ =
5π
4
, r = 100

51. θ = 330◦, r = 9.3

52. θ = π, r = 1

53. θ = 240◦, r = 5

54. θ = 1◦, r = 117

55. Imagine a rope Ɵed around the Earth at the equator. Show
that you need to add only 2π feet of length to the rope in
order to liŌ it one foot above the ground around the enƟre
equator. (You do NOT need to know the radius of the Earth
to show this.)

56. With the help of your classmates, look for a proof that π is
indeed a constant.

1Source: Cedar Point’s webpage.
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Figure 8.29: Defining cos(θ) and sin(θ)

The etymology of the name ‘sine’ is quite
colourful, and the interested reader is in-
vited to research it; the ‘co’ in ‘cosine’ is
explained in SecƟon 8.4.
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Figure 8.30: Finding cos(270◦) and
sin(270◦)
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θ = −π

Figure 8.31: Finding cos(−π) and
sin(−π)
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8.2 The Unit Circle: Sine and Cosine

In SecƟon 8.1.1, we introduced circular moƟon and derived a formula which
describes the linear velocity of an object moving on a circular path at a constant
angular velocity. One of the goals of this secƟon is describe the posiƟon of such
an object. To that end, consider an angle θ in standard posiƟon and let P denote
the pointwhere the terminal side of θ intersects theUnit Circle, as in Figure 8.29.
By associaƟng the point P with the angle θ, we are assigning a posiƟon on the
Unit Circle to the angle θ. The x-coordinate of P is called the cosine of θ, wriƩen
cos(θ), while the y-coordinate of P is called the sine of θ, wriƩen sin(θ). The
reader is encouraged to verify that these rules used to match an angle with its
cosine and sine do, in fact, saƟsfy the definiƟon of a funcƟon. That is, for each
angle θ, there is only one associated value of cos(θ) and only one associated
value of sin(θ).

Example 138 EvaluaƟng cos(θ) and sin(θ)
Find the cosine and sine of the following angles.

1. θ = 270◦

2. θ = −π

3. θ = π
4

4. θ = π
6

5. θ = π
3

SÊ½çã®ÊÄ

1. To find cos (270◦) and sin (270◦), we plot the angle θ = 270◦ in standard
posiƟon in Figure 8.30 and find the point on the terminal side of θ which
lies on the Unit Circle. Since 270◦ represents 3

4 of a counter-clockwise
revoluƟon, the terminal side of θ lies along the negaƟve y-axis. Hence,
the point we seek is (0,−1) so that cos (270◦) = 0 and sin (270◦) = −1.

2. The angle θ = −π represents one half of a clockwise revoluƟon so its
terminal side lies on the negaƟve x-axis. The point on the Unit Circle that
lies on the negaƟve x-axis is (−1, 0) which means cos(−π) = −1 and
sin(−π) = 0.

3. When we sketch θ = π
4 in standard posiƟon, we see in Figure 8.28 that its

terminal does not lie along any of the coordinate axes which makes our
job of finding the cosine and sine values a bit more difficult. Let P(x, y)
denote the point on the terminal side of θ which lies on the Unit Circle.
By definiƟon, x = cos

(
π
4
)
and y = sin

(
π
4
)
. If we drop a perpendicular

line segment from P to the x-axis, we obtain a 45◦−45◦−90◦ right triangle
whose legs have lengths x and y units. FromGeometry, we get y = x. (Can
you show this?) Since P(x, y) lies on the Unit Circle, we have x2 + y2 = 1.
SubsƟtuƟng y = x into this equaƟon yields 2x2 = 1, or x = ±

√
1
2 = ±

√
2
2 .

Since P(x, y) lies in the first quadrant, x > 0, so x = cos
(
π
4
)
=

√
2
2 and

with y = x we have y = sin
(
π
4
)
=

√
2
2 .
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4 in standard posiƟon 45◦ − 45◦ − 90◦ triangle

Figure 8.28: Finding cos
(
π
4

)
and sin

(
π
4

)

4. As before, the terminal side of θ = π
6 does not lie on any of the coordinate

axes, so we proceed using a triangle approach. Leƫng P(x, y) denote the
point on the terminal side of θ which lies on the Unit Circle, we drop a
perpendicular line segment from P to the x-axis to form a 30◦−60◦−90◦
right triangle: see Figure 8.32. AŌer a bit of Geometry (again, can you
show this?) we find y = 1

2 so sin
(
π
6
)
= 1

2 . Since P(x, y) lies on the Unit
Circle, we subsƟtute y = 1

2 into x2 + y2 = 1 to get x2 = 3
4 , or x = ±

√
3
2 .

Here, x > 0 so x = cos
(
π
6
)
=

√
3
2 .

x

y

1

1

P (x, y)

θ = π
6

θ = π
6 = 30◦

60◦

x

y

P (x, y)

θ = π
6 in standard posiƟon 30◦ − 60◦ − 90◦ triangle

Figure 8.32: Finding cos
(
π
6

)
and sin

(
π
6

)

5. Ploƫng θ = π
3 in standard posiƟon, wefind it is not a quadrantal angle and

set about using a triangle approach. Once again, we get a 30◦−60◦−90◦
right triangle and, aŌer the usual computaƟons, find x = cos

(
π
3
)
= 1

2 and
y = sin

(
π
3
)
=

√
3
2 .
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3 in standard posiƟon 30◦ − 60◦ − 90◦ triangle

Figure 8.33: Finding cos
(
π
3

)
and sin

(
π
3

)
In Example 138, it was quite easy to find the cosine and sine of the quad-

rantal angles, but for non-quadrantal angles, the task was much more involved.
In these laƩer cases, we made good use of the fact that the point P(x, y) =
(cos(θ), sin(θ)) lies on the Unit Circle, x2 + y2 = 1. If we subsƟtute x = cos(θ)
and y = sin(θ) into x2 + y2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An
unfortunate convenƟon, which the authors are compelled to perpetuate, is to
write (cos(θ))2 as cos2(θ) and (sin(θ))2 as sin2(θ). (This is unfortunate from a
‘funcƟon notaƟon’ perspecƟve, as you will see once you encounter the inverse
trigonometric funcƟons.) RewriƟng the idenƟty using this convenƟon results
in the following theorem, which is without a doubt one of the most important
results in Trigonometry.

Theorem 48 The Pythagorean IdenƟty

For any angle θ, cos2(θ) + sin2(θ) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from
which both the Distance Formula and the equaƟon for a circle are ulƟmately de-
rived. The word ‘IdenƟty’ reminds us that, regardless of the angle θ, the equa-
Ɵon in Theorem 48 is always true. If one of cos(θ) or sin(θ) is known, Theorem
48 can be used to determine the other, up to a (±) sign. If, in addiƟon, we know
where the terminal side of θ lies when in standard posiƟon, then we can remove
the ambiguity of the (±) and completely determine themissing value as the next
example illustrates.

Example 139 Using the Pythagorean IdenƟty
Using the given informaƟon about θ, find the indicated value.

1. If θ is a Quadrant II angle with sin(θ) = 3
5 , find cos(θ).

2. If π < θ < 3π
2 with cos(θ) = −

√
5
5 , find sin(θ).

3. If sin(θ) = 1, find cos(θ).
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Quadrant II angle
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Figure 8.37: Reference angle α for a
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Figure 8.38: Reference angle α for a
Quadrant IV angle
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1. When we subsƟtute sin(θ) = 3
5 into The Pythagorean IdenƟty, cos2(θ) +

sin2(θ) = 1, we obtain cos2(θ) + 9
25 = 1. Solving, we find cos(θ) = ± 4

5 .
Since θ is a Quadrant II angle, its terminal side, when ploƩed in standard
posiƟon, lies in Quadrant II. Since the x-coordinates are negaƟve in Quad-
rant II, cos(θ) is too. Hence, cos(θ) = − 4

5 .

2. SubsƟtuƟng cos(θ) = −
√
5
5 into cos2(θ) + sin2(θ) = 1 gives sin(θ) =

± 2√
5 = ± 2

√
5

5 . Since we are given that π < θ < 3π
2 , we know θ is a

Quadrant III angle. Hence both its sine and cosine are negaƟve and we
conclude sin(θ) = − 2

√
5

5 .

3. When we subsƟtute sin(θ) = 1 into cos2(θ) + sin2(θ) = 1, we find
cos(θ) = 0.

Another tool which helps immensely in determining cosines and sines of an-
gles is the symmetry inherent in the Unit Circle. Suppose, for instance, we wish
to know the cosine and sine of θ = 5π

6 . We plot θ in standard posiƟon be-
low and, as usual, let P(x, y) denote the point on the terminal side of θ which
lies on the Unit Circle. Note that the terminal side of θ lies π

6 radians short of
one half revoluƟon. In Example 138, we determined that cos

(
π
6
)
=

√
3
2 and

sin
(
π
6
)
= 1

2 . This means that the point on the terminal side of the angle π
6 ,

when ploƩed in standard posiƟon, is
(√

3
2 , 1

2

)
. From Figure 8.34, it is clear that

the point P(x, y) we seek can be obtained by reflecƟng that point about the y-
axis. Hence, cos

( 5π
6
)
= −

√
3
2 and sin

( 5π
6
)
= 1

2 .

x

y

1

1

P (x, y) θ = 5π
6

π
6

x

y

1

1

(√
3

2 , 1
2

)
P

(
−

√
3

2 , 1
2

)
π
6

π
6

θ = 5π
6

Figure 8.34: RefelcƟng P(x, y) across the y-axis to obtain a Quadrant I angle

In the above scenario, the angle π
6 is called the reference angle for the angle5π

6 . In general, for a non-quadrantal angle θ, the reference angle for θ (usually
denoted α) is the acute angle made between the terminal side of θ and the x-
axis. If θ is a Quadrant I or IV angle, α is the angle between the terminal side
of θ and the posiƟve x-axis; if θ is a Quadrant II or III angle, α is the angle be-
tween the terminal side of θ and the negaƟve x-axis. If we let P denote the point
(cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses
symmetry with respect to the x-axis, y-axis and origin, regardless of where the
terminal side of θ lies, there is a point Q symmetric with Pwhich determines θ’s
reference angle, α as seen below.

We have just outlined the proof of the following theorem.
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Figure 8.39: Finding cos
( 5π

4

)
and

sin
( 5π

4

)
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θ = 11π
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Figure 8.40: Finding cos
( 11π

6

)
and

sin
( 11π

6

)

x

y

1

1

θ = − 5π
4

π
4

Figure 8.41: Finding cos
(
− 5π

4

)
and

sin
(
− 5π

4

)

x
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1

1

θ = 7π
3

π
3

Figure 8.42: Finding cos
( 7π

3

)
and

sin
( 7π

3

)
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Theorem 49 Reference Angle Theorem

Suppose α is the reference angle for θ. Then cos(θ) = ± cos(α) and
sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant
in which the terminal side of θ lies.

In light of Theorem 49, it pays to know the cosine and sine values for certain
common angles. In the table below, we summarize the valueswhichwe consider
essenƟal and must be memorized.

Cosine and Sine Values of Common Angles
θ(degrees) θ(radians) cos(θ) sin(θ)

0◦ 0 1 0
30◦ π

6

√
3
2

1
2

45◦ π
4

√
2
2

√
2
2

60◦ π
3

1
2

√
3
2

90◦ π
2 0 1

Example 140 Using reference angles
Find the cosine and sine of the following angles.

1. θ = 5π
4

2. θ = 11π
6

3. θ = − 5π
4

4. θ = 7π
3

SÊ½çã®ÊÄ

1. We begin by ploƫng θ = 5π
4 in standard posiƟon and find its terminal side

overshoots the negaƟve x-axis to land in Quadrant III. Hence, we obtain
θ’s reference angle α by subtracƟng: α = θ − π = 5π

4 − π = π
4 . Since θ

is a Quadrant III angle, both cos(θ) < 0 and sin(θ) < 0. The Reference
Angle Theorem yields: cos

( 5π
4
)
= − cos

(
π
4
)
= −

√
2
2 and sin

( 5π
4
)
=

− sin
(
π
4
)
= −

√
2
2 .

2. The terminal side of θ = 11π
6 , when ploƩed in standard posiƟon, lies in

Quadrant IV, just shy of the posiƟve x-axis. To find θ’s reference angle α,
we subtract: α = 2π − θ = 2π − 11π

6 = π
6 . Since θ is a Quadrant IV

angle, cos(θ) > 0 and sin(θ) < 0, so the Reference Angle Theorem gives:
cos
( 11π

6
)
= cos

(
π
6
)
=

√
3
2 and sin

( 11π
6
)
= − sin

(
π
6
)
= − 1

2 .

3. To plot θ = − 5π
4 , we rotate clockwise an angle of 5π

4 from the posiƟve x-
axis. The terminal side of θ, therefore, lies in Quadrant II making an angle
of α = 5π

4 − π = π
4 radians with respect to the negaƟve x-axis. Since θ

is a Quadrant II angle, the Reference Angle Theorem gives: cos
(
− 5π

4
)
=

− cos
(
π
4
)
= −

√
2
2 and sin

(
− 5π

4
)
= sin

(
π
4
)
=

√
2
2 .

4. Since the angle θ = 7π
3 measuresmore than 2π = 6π

3 , we find the terminal
side of θ by rotaƟng one full revoluƟon followed by an addiƟonalα = 7π

3 −
2π = π

3 radians. Since θ and α are coterminal, cos
( 7π

3
)
= cos

(
π
3
)
= 1

2
and sin

( 7π
3
)
= sin

(
π
3
)
=

√
3
2 .
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The reader may have noƟced that when expressed in radian measure, the
reference angle for a non-quadrantal angle is easy to spot. Reduced fracƟon
mulƟples of π with a denominator of 6 have π

6 as a reference angle, those with
a denominator of 4 have π

4 as their reference angle, and those with a denomi-
nator of 3 have π

3 as their reference angle. (For once, we have something con-
venient about using radian measure in contrast to the abstract theoreƟcal non-
sense about using them as a ‘natural’ way to match oriented angles with real
numbers!) The Reference Angle Theorem in conjuncƟon with the table of co-
sine and sine values on Page 326 can be used to generate the following figure,
which the authors feel should be commiƩed to memory. (At the very least, one
should memorize the first quadrant and learn to make use of Theorem 49.)
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(√
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√
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2

)

(
1
2 ,

√
3
2

)
(
−

√
2
2 ,

√
2
2

)
(
−

√
3
2 ,

1
2

)

(
− 1

2 ,
√
3
2

)

(√
2
2 ,−

√
2
2

)
(√

3
2 ,−

1
2

)

(
1
2 ,−

√
3
2

)
(
−

√
2
2 ,−

√
2
2

)
(
−

√
3
2 ,−

1
2

)

(
− 1

2 ,−
√
3
2

)

0, 2π

π

2

π

3π

2

π

4

π

6

π

3

3π

4

5π

6

2π

3

5π

4

7π

6

4π

3

7π

4

11π

6

5π

3

Figure 8.43: Important Points on the Unit Circle
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Figure 8.46: Sketching α

Chapter 8 FoundaƟons of Trigonometry

The next example summarizes all of the important ideas discussed thus far
in the secƟon.

Example 141 Using reference angles
Suppose α is an acute angle with cos(α) = 5

13 .

1. Find sin(α) and use this to plot α in standard posiƟon.

2. Find the sine and cosine of the following angles:

(a) θ = π + α

(b) θ = 2π − α

(c) θ = 3π − α

(d) θ = π
2 + α

SÊ½çã®ÊÄ

1. Proceeding as in Example 139, we subsƟtute cos(α) = 5
13 into cos2(α) +

sin2(α) = 1 and find sin(α) = ± 12
13 . Since α is an acute (and therefore

Quadrant I) angle, sin(α) is posiƟve. Hence, sin(α) = 12
13 . To plot α in

standard posiƟon, we begin our rotaƟon on the posiƟve x-axis to the ray
which contains the point (cos(α), sin(α)) =

( 5
13 ,

12
13
)
: see Figure 8.46.

2. (a) To find the cosine and sine of θ = π + α, we first plot θ in standard
posiƟon. We can imagine the sum of the angles π+α as a sequence
of two rotaƟons: a rotaƟon of π radians followed by a rotaƟon of
α radians. (Since π + α = α + π, θ may be ploƩed by reversing
the order of rotaƟons given here. You should do this.) We see that
α is the reference angle for θ, so by The Reference Angle Theorem,
cos(θ) = ± cos(α) = ± 5

13 and sin(θ) = ± sin(α) = ± 12
13 . Since

the terminal side of θ falls in Quadrant III, both cos(θ) and sin(θ) are
negaƟve, hence, cos(θ) = − 5

13 and sin(θ) = − 12
13 .

x

y

1

1

θ

π

α
x

y

1

1

θ

α

Visualizing θ = π + α θ has reference angle α

Figure 8.44: Finding cos(θ) and sin(θ) in Example 141.2(a)

(b) RewriƟng θ = 2π−α as θ = 2π+(−α), we can plot θ by visualizing
one complete revoluƟon counter-clockwise followed by a clockwise
revoluƟon, or ‘backing up,’ of α radians. We see that α is θ’s refer-
ence angle, and since θ is a Quadrant IV angle, the Reference Angle
Theorem gives: cos(θ) = 5

13 and sin(θ) = − 12
13 .
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x

y

1

1

θ

2π
−α

x

y

1

1

θ

α

Visualizing θ = 2π − α θ has reference angle α

Figure 8.45: Finding cos(θ) and sin(θ) in Example 141.2(b)

(c) Taking a cue from the previous problem, we rewrite θ = 3π − α as
θ = 3π+(−α). The angle 3π represents one and a half revoluƟons
counter-clockwise, so that when we ‘back up’ α radians, we end up
in Quadrant II. Using the Reference Angle Theorem, we get cos(θ) =
− 5

13 and sin(θ) =
12
13 .

x

y

1

1

3π
−α

x

y

1

1

θ

α

Visualizing θ = 3π − α θ has reference angle α

Figure 8.47: Finding cos(θ) and sin(θ) in Example 141.2(c)

(d) To plot θ = π
2+α, we first rotate π

2 radians and follow upwithα radi-
ans. The reference angle here is not α, so The Reference Angle The-
orem is not immediately applicable. (It’s important that you seewhy
this is the case. Take a moment to think about this before reading
on.) Let Q(x, y) be the point on the terminal side of θ which lies on
the Unit Circle so that x = cos(θ) and y = sin(θ). Once we graph α
in standard posiƟon, we use the fact that equal angles subtend equal
chords to show that the doƩed lines in the figure below are equal.
Hence, x = cos(θ) = − 12

13 . Similarly, we find y = sin(θ) = 5
13 .
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x

y

1

1

θ

π
2

α

x

y

1

1
P
(

5
13 ,

12
13

)
Q (x, y) α

α

Visualizing θ = π
2 + α Using symmetry to determine Q(x, y)

Figure 8.48: Finding cos(θ) and sin(θ) in Example 141.2(a)

Our next example asks us to solve some very basic trigonometric equaƟons.

Example 142 Solving basic trigonometric equaƟons
Find all of the angles which saƟsfy the given equaƟon.

1. cos(θ) =
1
2

2. sin(θ) = −1
2

3. cos(θ) = 0.

SÊ½çã®ÊÄ Since there is no context in the problem to indicate whether
to use degrees or radians, wewill default to using radianmeasure in our answers
to each of these problems. This choice will be jusƟfied later in the text when we
study what is known as AnalyƟc Trigonometry. In those secƟons to come, radian
measure will be the only appropriate angle measure so it is worth the Ɵme to
become “fluent in radians” now.

1. If cos(θ) = 1
2 , then the terminal side of θ, when ploƩed in standard posi-

Ɵon, intersects the Unit Circle at x = 1
2 . This means θ is a Quadrant I or IV

angle with reference angle π
3 .

x

y

1
1
2

1

π
3

x

y

1

1
2

1

π
3

Figure 8.49: Angles with cos(θ) = 1
2
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Recall from SecƟon 8.1 that two angles
in radian measure are coterminal if and
only if they differ by an integer mulƟple
of 2π. Hence to describe all angles coter-
minal with a given angle, we add 2πk for
integers k = 0,±1,±2, ….

8.2 The Unit Circle: Sine and Cosine

One soluƟon in Quadrant I is θ = π
3 , and since all other Quadrant I so-

luƟons must be coterminal with π
3 , we find θ = π

3 + 2πk for integers
k. Proceeding similarly for the Quadrant IV case, we find the soluƟon to
cos(θ) = 1

2 here is
5π
3 , so our answer in this Quadrant is θ = 5π

3 + 2πk for
integers k.

2. If sin(θ) = − 1
2 , then when θ is ploƩed in standard posiƟon, its terminal

side intersects the Unit Circle at y = − 1
2 . From this, we determine θ is a

Quadrant III or Quadrant IV angle with reference angle π
6 .

x

y

1

− 1
2

1

π
6

x

y

1

− 1
2

1

π
6

Figure 8.50: Angles with sin(θ) = − 1
2

In Quadrant III, one soluƟon is 7π
6 , so we capture all Quadrant III soluƟons

by adding integer mulƟples of 2π: θ = 7π
6 + 2πk. In Quadrant IV, one

soluƟon is 11π
6 so all the soluƟons here are of the form θ = 11π

6 + 2πk for
integers k.

3. The angles with cos(θ) = 0 are quadrantal angles whose terminal sides,
when ploƩed in standard posiƟon, lie along the y-axis.

x

y

1

1

π
2

x

y

1

1

π
2

π
2

π

Figure 8.51: Angles with cos(θ) = 0

While, technically speaking, π
2 isn’t a reference angle we can nonetheless

use it to find our answers. If we follow the procedure set forth in the
previous examples, we find θ = π

2 + 2πk and θ = 3π
2 + 2πk for integers,

k. While this soluƟon is correct, it can be shortened to θ = π
2 + πk for

integers k. (Can you see why this works from the diagram?)
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One of the key items to take from Example 142 is that, in general, soluƟons
to trigonometric equaƟons consist of infinitely many answers. The reader is en-
couragedwrite out asmany of these answers as necessary to get a feel for them.
This is especially important when checking answers to the exercises. For exam-
ple, another Quadrant IV soluƟon to sin(θ) = − 1

2 is θ = − π
6 . Hence, the family

of Quadrant IV answers to number 2 above could just have easily been wriƩen
θ = − π

6 + 2πk for integers k. While on the surface, this family may look differ-
ent than the stated soluƟon of θ = 11π

6 + 2πk for integers k, we leave it to the
reader to show they represent the same list of angles.

8.2.1 Beyond the Unit Circle

We began the secƟon with a quest to describe the posiƟon of a parƟcle expe-
riencing circular moƟon. In defining the cosine and sine funcƟons, we assigned
to each angle a posiƟon on the Unit Circle. In this subsecƟon, we broaden our
scope to include circles of radius r centered at the origin. Consider for the mo-
ment the acute angle θ drawn below in standard posiƟon. Let Q(x, y) be the
point on the terminal side of θ which lies on the circle x2 + y2 = r2, and let
P(x′, y′) be the point on the terminal side of θ which lies on the Unit Circle. Now
consider dropping perpendiculars from P and Q to create two right triangles,
∆OPA and ∆OQB. These triangles are similar, (do you remember why?) thus
it follows that x

x′ = r
1 = r, so x = rx′ and, similarly, we find y = ry′. Since,

by definiƟon, x′ = cos(θ) and y′ = sin(θ), we get the coordinates of Q to be
x = r cos(θ) and y = r sin(θ). By reflecƟng these points through the x-axis,
y-axis and origin, we obtain the result for all non-quadrantal angles θ, and we
leave it to the reader to verify these formulas hold for the quadrantal angles.

x

y

1

1

r

r

Q (x, y)

P (x′, y′)

θ

θ

x

y

1

O B(x, 0)A(x′, 0)

P (x′, y′)

Q(x, y) = (r cos(θ), r sin(θ))

Figure 8.52: Determining coordinates of Q(x, y) in terms of cos(θ) and sin(θ)

Not only can we describe the coordinates of Q in terms of cos(θ) and sin(θ)
but since the radius of the circle is r =

√
x2 + y2, we can also express cos(θ)

and sin(θ) in terms of the coordinates of Q. These results are summarized in
the following theorem.
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4

Figure 8.53: The terminal side of θ con-
tains Q(4,−2)

x

y

3960

3960

Q (x, y)

41.628◦

Figure 8.54: A point on the Earth at
41.628◦N

8.2 The Unit Circle: Sine and Cosine

Theorem 50 Generalized sine and cosine

If Q(x, y) is the point on the terminal side of an angle θ, ploƩed in stan-
dard posiƟon, which lies on the circle x2 + y2 = r2 then x = r cos(θ) and
y = r sin(θ). Moreover,

cos(θ) =
x
r
=

x√
x2 + y2

and sin(θ) =
y
r
=

y√
x2 + y2

Note that in the case of the Unit Circle we have r =
√

x2 + y2 = 1, so
Theorem 50 reduces to our definiƟons of cos(θ) and sin(θ).

Example 143 Finding cos(θ) and sin(θ) beyond the unit circle

1. Suppose that the terminal side of an angle θ, when ploƩed in standard
posiƟon, contains the point Q(4,−2). Find sin(θ) and cos(θ).

2. In Example 137 in SecƟon 8.1, we approximated the radius of the earth at
41.628◦ north laƟtude to be 2960 miles. JusƟfy this approximaƟon if the
radius of the Earth at the Equator is approximately 3960 miles.

SÊ½çã®ÊÄ

1. Using Theorem 50 with x = 4 and y = −2, we find r =
√
(4)2 + (−2)2 =√

20 = 2
√
5 so that cos(θ) = x

r =
4

2
√
5 = 2

√
5

5 and sin(θ) = y
r = −2

2
√
5 =

−
√
5
5 : see Figure 8.53.

2. Assuming the Earth is a sphere, a cross-secƟon through the poles pro-
duces a circle of radius 3960 miles. Viewing the Equator as the x-axis, the
value we seek is the x-coordinate of the point Q(x, y) indicated in Figure
8.54

Using Theorem 50, we get x = 3960 cos (41.628◦). Using a calculator in
‘degree’ mode, we find 3960 cos (41.628◦) ≈ 2960. Hence, the radius of
the Earth at North LaƟtude 41.628◦ is approximately 2960 miles.

Theorem50 gives uswhatwe need to describe the posiƟon of an object trav-
eling in a circular path of radius rwith constant angular velocity ω. Suppose that
at Ɵme t, the object has swept out an angle measuring θ radians. If we assume
that the object is at the point (r, 0) when t = 0, the angle θ is in standard posi-
Ɵon. By definiƟon, ω = θ

t which we rewrite as θ = ωt. According to Theorem
50, the locaƟon of the object Q(x, y) on the circle is found using the equaƟons
x = r cos(θ) = r cos(ωt) and y = r sin(θ) = r sin(ωt). Hence, at Ɵme t, the
object is at the point (r cos(ωt), r sin(ωt)). We have just argued the following.
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Figure 8.56: RelaƟng triangular and circu-
lar trigonometry

Chapter 8 FoundaƟons of Trigonometry

Theorem 51 EquaƟons for circular moƟon

Suppose an object is travelling in a circular path of radius r centred at the
origin with constant angular velocity ω. If t = 0 corresponds to the point
(r, 0), then the x and y coordinates of the object are funcƟons of t and
are given by x = r cos(ωt) and y = r sin(ωt). Here, ω > 0 indicates a
counter-clockwise direcƟon and ω < 0 indicates a clockwise direcƟon.

x

y

1

1

r

r

Q (x, y) = (r cos(ωt), r sin(ωt))

θ = ωt

Figure 8.55: EquaƟons for circular moƟon

Example 144 MoƟon on the Earth’s surface
Suppose we are in the situaƟon of Example 137. Find the equaƟons of moƟon
of Lakeland Community College as the earth rotates.

SÊ½çã®ÊÄ From Example 137, we take r = 2960 miles and and ω =
π

12 hours . Hence, the equaƟons of moƟon are x = r cos(ωt) = 2960 cos
(

π
12 t
)
and

y = r sin(ωt) = 2960 sin
(

π
12 t
)
, where x and y are measured in miles and t is

measured in hours.

In addiƟon to circularmoƟon, Theorem 50 is also the key to developing what
is usually called ‘right triangle’ trigonometry. (You were probably exposed to
this in High School.) As we shall see in the secƟons to come, many applicaƟons
in trigonometry involve finding the measures of the angles in, and lengths of
the sides of, right triangles. Indeed, we made good use of some properƟes of
right triangles to find the exact values of the cosine and sine of many of the
angles in Example 138, so the following development shouldn’t be that much of
a surprise. Consider the generic right triangle below with corresponding acute
angle θ. The side with length a is called the side of the triangle adjacent to θ; the
side with length b is called the side of the triangle opposite θ; and the remaining
side of length c (the side opposite the right angle) is called the hypotenuse. We
now imagine drawing this triangle in Quadrant I so that the angle θ is in standard
posiƟon with the adjacent side to θ lying along the posiƟve x-axis.

According to the Pythagorean Theorem, a2 + b2 = c2, so that the point
P(a, b) lies on a circle of radius c. Theorem 50 tells us that cos(θ) = a

c and
sin(θ) = b

c , so we have determined the cosine and sine of θ in terms of the
lengths of the sides of the right triangle. Thus we have the following theorem.
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7

Figure 8.57: The triangle for Example 145
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b = 7
√
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3

c = 14
√
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3 60◦

Figure 8.58: The completed triangle for
Example 145
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1

θ = t

t

x
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1

1

P (cos(t), sin(t))

θ = t

Figure 8.59: Defining cos(t) and sin(t) as
funcƟons of a real variable

8.2 The Unit Circle: Sine and Cosine

Theorem 52 Sine and cosine for right triangles

Suppose θ is an acute angle residing in a right triangle. If the length of
the side adjacent to θ is a, the length of the side opposite θ is b, and the
length of the hypotenuse is c, then cos(θ) =

a
c
and sin(θ) =

b
c
.

Example 145 Using triangular trigonometry
Find the measure of the missing angle and the lengths of the missing sides of
the triangle in Figure 8.57.

SÊ½çã®ÊÄ The first and easiest task is to find the measure of the miss-
ing angle. Since the sum of angles of a triangle is 180◦, we know that the miss-
ing angle has measure 180◦ − 30◦ − 90◦ = 60◦. We now proceed to find
the lengths of the remaining two sides of the triangle. Let c denote the length
of the hypotenuse of the triangle. By Theorem 52, we have cos (30◦) = 7

c , or
c = 7

cos(30◦) . Since cos (30
◦) =

√
3
2 , we have, aŌer the usual fracƟon gymnasƟcs,

c = 14
√
3

3 . At this point, we have two ways to proceed to find the length of the
side opposite the 30◦ angle, which we’ll denote b. We know the length of the
adjacent side is 7 and the length of the hypotenuse is 14

√
3

3 , so we could use the

Pythagorean Theorem to find themissing side and solve (7)2+b2 =
(

14
√
3

3

)2
for

b. AlternaƟvely, we could use Theorem 52, namely that sin (30◦) = b
c . Choos-

ing the laƩer, we find b = c sin (30◦) = 14
√
3

3 · 1
2 = 7

√
3

3 . The triangle with all of
its data is recorded in Figure 8.58

We close this secƟonby noƟng thatwe can easily extend the funcƟons cosine
and sine to real numbers by idenƟfying a real number twith the angle θ = t radi-
ans. Using this idenƟficaƟon, we define cos(t) = cos(θ) and sin(t) = sin(θ). In
pracƟce this means expressions like cos(π) and sin(2) can be found by regard-
ing the inputs as angles in radian measure or real numbers; the choice is the
reader’s. If we trace the idenƟficaƟon of real numbers t with angles θ in radian
measure to its roots on page 317, we can spell out this correspondence more
precisely. For each real number t, we associate an oriented arc t units in length
with iniƟal point (1, 0) and endpoint P(cos(t), sin(t)).

In the same way we studied polynomial, raƟonal, exponenƟal, and loga-
rithmic funcƟons, we will study the trigonometric funcƟons f(t) = cos(t) and
g(t) = sin(t). The first order of business is to find the domains and ranges of
these funcƟons. Whether we think of idenƟfying the real number twith the an-
gle θ = t radians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and
sine funcƟons are defined for all real numbers t. In other words, the domain of
f(t) = cos(t) and of g(t) = sin(t) is (−∞,∞). Since cos(t) and sin(t) represent
x- and y-coordinates, respecƟvely, of points on the Unit Circle, they both take
on all of the values between −1 an 1, inclusive. In other words, the range of
f(t) = cos(t) and of g(t) = sin(t) is the interval [−1, 1]. To summarize:
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Theorem 53 Domain and Range of the Cosine and Sine FuncƟons

• The funcƟon f(t) = cos(t)

– has domain (−∞,∞)

– has range [−1, 1]

• The funcƟon g(t) = sin(t)

– has domain (−∞,∞)

– has range [−1, 1]

Suppose, as in the Exercises, we are asked to solve an equaƟon such as
sin(t) = − 1

2 . As we have already menƟoned, the disƟncƟon between t as a
real number and as an angle θ = t radians is oŌen blurred. Indeed, we solve
sin(t) = − 1

2 in the exact samemanner as we did in Example 142 number 2. Our
soluƟon is only cosmeƟcally different in that the variable used is t rather than
θ: t = 7π

6 + 2πk or t = 11π
6 + 2πk for integers, k. We will study the cosine and

sine funcƟons in greater detail in SecƟon 8.5. UnƟl then, keep in mind that any
properƟes of cosine and sine developed in the following secƟons which regard
them as funcƟons of angles in radian measure apply equally well if the inputs
are regarded as real numbers.
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Exercises 8.2
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 30, use the results developed throughout
the secƟon to find the requested value.

21. If sin(θ) = − 7
25

with θ in Quadrant IV, what is cos(θ)?

22. If cos(θ) = 4
9
with θ in Quadrant I, what is sin(θ)?

23. If sin(θ) = 5
13

with θ in Quadrant II, what is cos(θ)?

24. If cos(θ) = − 2
11

with θ in Quadrant III, what is sin(θ)?

25. If sin(θ) = −2
3
with θ in Quadrant III, what is cos(θ)?

26. If cos(θ) = 28
53

with θ in Quadrant IV, what is sin(θ)?

27. If sin(θ) = 2
√
5

5
and π

2
< θ < π, what is cos(θ)?

28. If cos(θ) =
√
10
10

and 2π < θ <
5π
2
, what is sin(θ)?

29. If sin(θ) = −0.42 and π < θ <
3π
2
, what is cos(θ)?

30. If cos(θ) = −0.98 and π

2
< θ < π, what is sin(θ)?

In Exercises 31 – 39, find all of the angles which saƟsfy the
given equaƟon.

31. sin(θ) = 1
2

32. cos(θ) = −
√
3
2

33. sin(θ) = 0

34. cos(θ) =
√
2
2

35. sin(θ) =
√
3
2

36. cos(θ) = −1

37. sin(θ) = −1

38. cos(θ) =
√
3
2

39. cos(θ) = −1.001
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In Exercises 40 – 48, solve the equaƟon for t. (See the com-
ments following Theorem 53.)

40. cos(t) = 0

41. sin(t) = −
√
2
2

42. cos(t) = 3

43. sin(t) = −1
2

44. cos(t) = 1
2

45. sin(t) = −2

46. cos(t) = 1

47. sin(t) = 1

48. cos(t) = −
√
2
2

In Exercises 49 – 54, use your calculator to approximate the
given value to three decimal places. Make sure your calcula-
tor is in the proper angle measurement mode!

49. sin(78.95◦)

50. cos(−2.01)

51. sin(392.994)

52. cos(207◦)

53. sin (π◦)

54. cos(e)

In Exercises 55 – 58, find the measurement of the missing an-
gle and the lengths of the missing sides. (See Example 145)

55. Find θ, b, and c.

30◦

1

b
c θ

56. Find θ, a, and c.

45◦

3

a

c

θ

57. Find α, a, and b.

33◦

8

b

a

α

58. Find β, a, and c.

30◦

1

b
c θ

In Exercises 59 – 64, assume that θ is an acute angle in a right
triangle and use Theorem 52 to find the requested side.

59. If θ = 12◦ and the side adjacent to θ has length 4, how long
is the hypotenuse?

60. If θ = 78.123◦ and the hypotenuse has length 5280, how
long is the side adjacent to θ?

61. If θ = 59◦ and the side opposite θ has length 117.42, how
long is the hypotenuse?

62. If θ = 5◦ and the hypotenuse has length 10, how long is
the side opposite θ?

63. If θ = 5◦ and the hypotenuse has length 10, how long is
the side adjacent to θ?

64. If θ = 37.5◦ and the side opposite θ has length 306, how
long is the side adjacent to θ?
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In Exercises 65 – 68, let θ be the angle in standard posiƟon
whose terminal side contains the given point then compute
cos(θ) and sin(θ).

65. P(−7, 24)

66. Q(3, 4)

67. R(5,−9)

68. T(−2,−11)

In Exercises 69 – 72, find the equaƟons ofmoƟon for the given
scenario. Assume that the center of the moƟon is the origin,
the moƟon is counter-clockwise and that t = 0 corresponds
to a posiƟon along the posiƟve x-axis. (See EquaƟon 51 and
Example 137.)

69. A point on the edge of the spinning yo-yo in Exercise 42
from SecƟon 8.1.
Recall: The diameter of the yo-yo is 2.25 inches and it spins
at 4500 revoluƟons per minute.

70. The yo-yo in exercise 44 from SecƟon 8.1.
Recall: The radius of the circle is 28 inches and it completes
one revoluƟon in 3 seconds.

71. A point on the edge of the hard drive in Exercise 45 from

SecƟon 8.1.
Recall: The diameter of the hard disk is 2.5 inches and it
spins at 7200 revoluƟons per minute.

72. A passenger on the Big Wheel in Exercise 47 from SecƟon
8.1.
Recall: The diameter is 128 feet and completes 2 revolu-
Ɵons in 2 minutes, 7 seconds.

73. A passenger on the Big Wheel in Exercise 47 from SecƟon
8.1.
Recall: The diameter is 128 feet and completes 2 revolu-
Ɵons in 2 minutes, 7 seconds.

74. Let α and β be the two acute angles of a right triangle.
(Thus α and β are complementary angles.) Show that
sin(α) = cos(β) and sin(β) = cos(α). The fact that co-
funcƟons of complementary angles are equal in this case is
not an accident and a more general result will be given in
SecƟon 8.4.

75. In the scenario of Theorem 51, we assumed that at t = 0,
the object was at the point (r, 0). If this is not the case,
we can adjust the equaƟons of moƟon by introducing a
‘Ɵme delay.’ If t0 > 0 is the first Ɵme the object passes
through the point (r, 0), show, with the help of your class-
mates, the equaƟons of moƟon are x = r cos(ω(t − t0))
and y = r sin(ω(t− t0)).
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In Theorem52wealso showed cosine and
sine to be funcƟons of an angle residing
in a right triangle so we could just as eas-
ily call them trigonometric funcƟons. In
later secƟons, you will find that we do in-
deed use the phrase ‘trigonometric func-
Ɵon’ interchangeably with the term ‘cir-
cular funcƟon’.

θ

x

y

1

O B(1, 0)A(x, 0)

P (x, y)

Q(1, y′) = (1, tan(θ))

Figure 8.60: Explaining the tangent and
secant funcƟons

Chapter 8 FoundaƟons of Trigonometry

8.3 The Six Circular FuncƟons and Fundamental Iden-
ƟƟes

In secƟon 8.2, we defined cos(θ) and sin(θ) for angles θ using the coordinate
values of points on the Unit Circle. As such, these funcƟons earn the moniker
circular funcƟons. It turns out that cosine and sine are just two of the six com-
monly used circular funcƟons which we define below.

DefiniƟon 54 The Circular FuncƟons

Suppose θ is an angle ploƩed in standard posiƟon and P(x, y) is the point
on the terminal side of θ which lies on the Unit Circle.

• The cosine of θ, denoted cos(θ), is defined by cos(θ) = x.

• The sine of θ, denoted sin(θ), is defined by sin(θ) = y.

• The secant of θ, denoted sec(θ), is defined by sec(θ) =
1
x
, pro-

vided x ̸= 0.

• The cosecant of θ, denoted csc(θ), is defined by csc(θ) =
1
y
, pro-

vided y ̸= 0.

• The tangent of θ, denoted tan(θ), is defined by tan(θ) =
y
x
, pro-

vided x ̸= 0.

• The cotangent of θ, denoted cot(θ), is defined by cot(θ) =
x
y
,

provided y ̸= 0.

While we leŌ the history of the name ‘sine’ as an interesƟng research project
in SecƟon 8.2, the names ‘tangent’ and ‘secant’ can be explained using the dia-
gram below. Consider the acute angle θ below in standard posiƟon. Let P(x, y)
denote, as usual, the point on the terminal side of θ which lies on the Unit Cir-
cle and let Q(1, y′) denote the point on the terminal side of θ which lies on the
verƟcal line x = 1, as in Figure 8.60.

Theword ‘tangent’ comes from the LaƟnmeaning ‘to touch,’ and for this rea-
son, the line x = 1 is called a tangent line to the Unit Circle since it intersects, or
‘touches’, the circle at only one point, namely (1, 0). Dropping perpendiculars
from P and Q creates a pair of similar triangles∆OPA and∆OQB. Thus y′

y = 1
x

which gives y′ = y
x = tan(θ), where this last equality comes from applying Defi-

niƟon 54. We have just shown that for acute angles θ, tan(θ) is the y-coordinate
of the point on the terminal side of θwhich lies on the line x = 1which is tangent
to the Unit Circle. Now the word ‘secant’ means ‘to cut’, so a secant line is any
line that ‘cuts through’ a circle at two points. (Compare this with the definiƟon
given in SecƟon 3.1.) The line containing the terminal side of θ is a secant line
since it intersects the Unit Circle in Quadrants I and III. With the point P lying on
the Unit Circle, the length of the hypotenuse of∆OPA is 1. If we let h denote the
length of the hypotenuse of∆OQB, we have from similar triangles that h

1 = 1
x ,

or h = 1
x = sec(θ). Hence for an acute angle θ, sec(θ) is the length of the line

segment which lies on the secant line determined by the terminal side of θ and
‘cuts off’ the tangent line x = 1. Not only do these observaƟons help explain the
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names of these funcƟons, they serve as the basis for a fundamental inequality
needed for Calculus which we’ll explore in the Exercises.

Of the six circular funcƟons, only cosine and sine are defined for all angles.
Since cos(θ) = x and sin(θ) = y in DefiniƟon 54, it is customary to rephrase the
remaining four circular funcƟons in terms of cosine and sine. The following the-
orem is a result of simply replacing x with cos(θ) and y with sin(θ) in DefiniƟon
54.

Theorem 54 Reciprocal and QuoƟent IdenƟƟes

• sec(θ) =
1

cos(θ)
, provided cos(θ) ̸= 0; if cos(θ) = 0, sec(θ) is

undefined.

• csc(θ) =
1

sin(θ)
, provided sin(θ) ̸= 0; if sin(θ) = 0, csc(θ) is

undefined.

• tan(θ) =
sin(θ)
cos(θ)

, provided cos(θ) ̸= 0; if cos(θ) = 0, tan(θ) is

undefined.

• cot(θ) =
cos(θ)
sin(θ)

, provided sin(θ) ̸= 0; if sin(θ) = 0, cot(θ) is

undefined.

Example 146 EvaluaƟng circular funcƟons
Find the indicated value, if it exists.

1. sec (60◦)

2. csc
( 7π

4
)

3. cot(3)

4. tan (θ), where θ is any angle coterminal with 3π
2 .

5. cos (θ), where csc(θ) = −
√
5 and θ is a Quadrant IV angle.

6. sin (θ), where tan(θ) = 3 and π < θ < 3π
2 .

SÊ½çã®ÊÄ

1. According to Theorem54, sec (60◦) = 1
cos(60◦) . Hence, sec (60

◦) = 1
(1/2) =

2.

2. Since sin
( 7π

4
)
= −

√
2
2 , csc

( 7π
4
)
= 1

sin( 7π
4 )

= 1
−
√
2/2 = − 2√

2 = −
√
2.

3. Since θ = 3 radians is not one of the ‘common angles’ from SecƟon 8.2,
we resort to the calculator for a decimal approximaƟon. Ensuring that the
calculator is in radian mode, we find cot(3) = cos(3)

sin(3) ≈ −7.015.

4. If θ is coterminal with 3π
2 , then cos(θ) = cos

( 3π
2
)
= 0 and sin(θ) =

sin
( 3π

2
)
= −1. AƩempƟng to compute tan(θ) = sin(θ)

cos(θ) results in
−1
0 , so

tan(θ) is undefined.
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As we shall see shortly, when solving
equaƟons involving secant and cosecant,
we usually convert back to cosines and
sines. However, when solving for tangent
or cotangent, we usually sƟck with what
we’re dealt.

Chapter 8 FoundaƟons of Trigonometry

5. We are given that csc(θ) = 1
sin(θ) = −

√
5 so sin(θ) = − 1√

5 = −
√
5
5 .

As we saw in SecƟon 8.2, we can use the Pythagorean IdenƟty, cos2(θ) +
sin2(θ) = 1, to find cos(θ)by knowing sin(θ). SubsƟtuƟng, we get cos2(θ)+(
−

√
5
5

)2
= 1, which gives cos2(θ) = 4

5 , or cos(θ) = ± 2
√
5

5 . Since θ is a

Quadrant IV angle, cos(θ) > 0, so cos(θ) = 2
√
5

5 .

6. If tan(θ) = 3, then sin(θ)
cos(θ) = 3. Be careful - this does NOT mean we

can take sin(θ) = 3 and cos(θ) = 1. Instead, from sin(θ)
cos(θ) = 3 we get:

sin(θ) = 3 cos(θ). To relate cos(θ) and sin(θ), we once again employ the
Pythagorean IdenƟty, cos2(θ)+sin2(θ) = 1. Solving sin(θ) = 3 cos(θ) for
cos(θ), we find cos(θ) = 1

3 sin(θ). SubsƟtuƟng this into the Pythagorean
IdenƟty, we find sin2(θ) +

( 1
3 sin(θ)

)2
= 1. Solving, we get sin2(θ) = 9

10
so sin(θ) = ± 3

√
10

10 . Since π < θ < 3π
2 , θ is a Quadrant III angle. This

means sin(θ) < 0, so our final answer is sin(θ) = − 3
√
10

10 .

While the Reciprocal and QuoƟent IdenƟƟes presented in Theorem 54 allow
us to always reduce problems involving secant, cosecant, tangent and cotangent
to problems involving cosine and sine, it is not always convenient to do so. It
is worth taking the Ɵme to memorize the tangent and cotangent values of the
common angles summarized below.

Tangent and Cotangent Values of Common Angles

θ(degrees) θ(radians) tan(θ) cot(θ)
0◦ 0 0 undefined
30◦ π

6

√
3
3

√
3

45◦ π
4 1 1

60◦ π
3

√
3

√
3
3

90◦ π
2 undefined 0

Coupling Theorem 54 with the Reference Angle Theorem, Theorem 49, we
get the following.

Theorem 55 Generalized Reference Angle Theorem

The values of the circular funcƟons of an angle, if they exist, are the
same, up to a sign, of the corresponding circular funcƟons of its refer-
ence angle. More specifically, if α is the reference angle for θ, then:
cos(θ) = ± cos(α), sin(θ) = ± sin(α), sec(θ) = ± sec(α), csc(θ) =
± csc(α), tan(θ) = ± tan(α) and cot(θ) = ± cot(α). The choice of the
(±) depends on the quadrant in which the terminal side of θ lies.

We put Theorem 55 to good use in the following example.
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x

y

1

1

π
3

x
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1

1

π
3

π
3

π

Figure 8.61: Solving tan(θ) =
√
3

x

y

1

1

π
4

x

y

1

1

π
4

π

π
4

Figure 8.62: Solving cot(θ) = −1

8.3 The Six Circular FuncƟons and Fundamental IdenƟƟes

Example 147 Solving basic trigonometric equaƟons
Find all angles which saƟsfy the given equaƟon.

1. sec(θ) = 2 2. tan(θ) =
√
3 3. cot(θ) = −1.

SÊ½çã®ÊÄ

1. To solve sec(θ) = 2, we convert to cosines and get 1
cos(θ) = 2 or cos(θ) =

1
2 . This is the exact same equaƟon we solved in Example 142, number 1,
so we know the answer is: θ = π

3 + 2πk or θ = 5π
3 + 2πk for integers k.

2. From the table of common values, we see tan
(
π
3
)
=

√
3. According to

Theorem55, we know the soluƟons to tan(θ) =
√
3must, therefore, have

a reference angle of π
3 . Our next task is to determine in which quadrants

the soluƟons to this equaƟon lie. Since tangent is defined as the raƟo y
x of

points (x, y) on the Unit Circle with x ̸= 0, tangent is posiƟve when x and
y have the same sign (i.e., when they are both posiƟve or both negaƟve.)
This happens in Quadrants I and III. In Quadrant I, we get the soluƟons:
θ = π

3 + 2πk for integers k, and for Quadrant III, we get θ = 4π
3 + 2πk

for integers k. While these descripƟons of the soluƟons are correct, they
can be combined into one list as θ = π

3 + πk for integers k. The laƩer
form of the soluƟon is best understood looking at the geometry of the
situaƟon in Figure 8.61. (See Example 142 number 3 in SecƟon 8.2 for
another example of this kind of simplificaƟon of the soluƟon.)

3. From the table of common values, we see that π
4 has a cotangent of 1,

whichmeans the soluƟons to cot(θ) = −1 have a reference angle of π
4 . To

find the quadrants inwhich our soluƟons lie, we note that cot(θ) = x
y for a

point (x, y) on theUnit Circle where y ̸= 0. If cot(θ) is negaƟve, then x and
y must have different signs (i.e., one posiƟve and one negaƟve.) Hence,
our soluƟons lie in Quadrants II and IV: see Figure 8.62. Our Quadrant II
soluƟon is θ = 3π

4 + 2πk, and for Quadrant IV, we get θ = 7π
4 + 2πk for

integers k. Can these lists be combined? Indeed they can - one such way
to capture all the soluƟons is: θ = 3π

4 + πk for integers k.

We have already seen the importance of idenƟƟes in trigonometry. Our
next task is to use use the Reciprocal and QuoƟent IdenƟƟes found in Theorem
54 coupled with the Pythagorean IdenƟty found in Theorem 48 to derive new
Pythagorean-like idenƟƟes for the remaining four circular funcƟons. Assuming
cos(θ) ̸= 0, we may start with cos2(θ) + sin2(θ) = 1 and divide both sides by
cos2(θ) to obtain 1+ sin2(θ)

cos2(θ) =
1

cos2(θ) . Using properƟes of exponents along with
the Reciprocal and QuoƟent IdenƟƟes, this reduces to 1 + tan2(θ) = sec2(θ).
If sin(θ) ̸= 0, we can divide both sides of the idenƟty cos2(θ) + sin2(θ) = 1 by
sin2(θ), apply Theorem 54 once again, and obtain cot2(θ) + 1 = csc2(θ). These
three Pythagorean IdenƟƟes are worth memorizing and they, along with some
of their other common forms, are summarized in the following theorem.
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Theorem 56 The Pythagorean IdenƟƟes

1. cos2(θ) + sin2(θ) = 1.
Common Alternate Forms:

• 1− sin2(θ) = cos2(θ)
• 1− cos2(θ) = sin2(θ)

2. 1+ tan2(θ) = sec2(θ), provided cos(θ) ̸= 0.
Common Alternate Forms:

• sec2(θ)− tan2(θ) = 1
• sec2(θ)− 1 = tan2(θ)

3. 1+ cot2(θ) = csc2(θ), provided sin(θ) ̸= 0.
Common Alternate Forms:

• csc2(θ)− cot2(θ) = 1
• csc2(θ)− 1 = cot2(θ)

Trigonometric idenƟƟes play an important role in not just Trigonometry, but
in Calculus as well. We’ll use them in this book to find the values of the circular
funcƟons of an angle and solve equaƟons and inequaliƟes. In Calculus, they are
needed to simplify otherwise complicated expressions. In the next example, we
make good use of the Theorems 54 and 56.

Example 148 Verifying trigonometric idenƟƟes
Verify the following idenƟƟes. Assume that all quanƟƟes are defined.

1.
1

csc(θ)
= sin(θ) 2. tan(θ) = sin(θ) sec(θ)

3. (sec(θ) − tan(θ))(sec(θ) +
tan(θ)) = 1

4.
sec(θ)

1− tan(θ)
=

1
cos(θ)− sin(θ)

5. 6 sec(θ) tan(θ) =
3

1− sin(θ)
−

3
1+ sin(θ)

6.
sin(θ)

1− cos(θ)
=

1+ cos(θ)
sin(θ)

SÊ½çã®ÊÄ In verifying idenƟƟes, we typically start with the more com-
plicated side of the equaƟon and use known idenƟƟes to transform it into the
other side of the equaƟon.

1. To verify 1
csc(θ) = sin(θ), we start with the leŌ side. Using csc(θ) = 1

sin(θ) ,
we get:

1
csc(θ)

=
1
1

sin(θ)
= sin(θ),

which is what we were trying to prove.
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2. StarƟngwith the right hand side of tan(θ) = sin(θ) sec(θ), weuse sec(θ) =
1

cos(θ) and find:

sin(θ) sec(θ) = sin(θ)
1

cos(θ)
=

sin(θ)
cos(θ)

= tan(θ),

where the last equality is courtesy of Theorem 54.

3. Expanding the leŌhand side of the equaƟon gives: (sec(θ)−tan(θ))(sec(θ)+
tan(θ)) = sec2(θ)−tan2(θ). According to Theorem56, sec2(θ)−tan2(θ) =
1. Puƫng it all together,

(sec(θ)− tan(θ))(sec(θ) + tan(θ)) = sec2(θ)− tan2(θ) = 1.

4. While both sides of our last idenƟty contain fracƟons, the leŌ side af-
fords us more opportuniƟes to use our idenƟƟes. (Or, to put to another
way, earn more parƟal credit if this were an exam quesƟon!) SubsƟtuƟng
sec(θ) = 1

cos(θ) and tan(θ) =
sin(θ)
cos(θ) , we get:

sec(θ)
1− tan(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

· cos(θ)
cos(θ)

=

(
1

cos(θ)

)
(cos(θ))(

1− sin(θ)
cos(θ)

)
(cos(θ))

=
1

(1)(cos(θ))−
(
sin(θ)
cos(θ)

)
(cos(θ))

=
1

cos(θ)− sin(θ)
,

which is exactly what we had set out to show.

5. The right hand side of the equaƟon seems to hold more promise. We get
common denominators and add:

3
1− sin(θ)

− 3
1+ sin(θ)

=
3(1+ sin(θ))

(1− sin(θ))(1+ sin(θ))
− 3(1− sin(θ))

(1+ sin(θ))(1− sin(θ))

=
3+ 3 sin(θ)
1− sin2(θ)

− 3− 3 sin(θ)
1− sin2(θ)

=
(3+ 3 sin(θ))− (3− 3 sin(θ))

1− sin2(θ)

=
6 sin(θ)

1− sin2(θ)

At this point, it is worth pausing to remind ourselves of our goal. We wish
to transform this expression into 6 sec(θ) tan(θ). Using a reciprocal and
quoƟent idenƟty, we find 6 sec(θ) tan(θ) = 6

(
1

cos(θ)

)(
sin(θ)
cos(θ)

)
. In other
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words, we need to get cosines in our denominator. Theorem 56 tells us
1− sin2(θ) = cos2(θ) so we get:

3
1− sin(θ)

− 3
1+ sin(θ)

=
6 sin(θ)

1− sin2(θ)
=

6 sin(θ)
cos2(θ)

= 6
(

1
cos(θ)

)(
sin(θ)
cos(θ)

)
= 6 sec(θ) tan(θ)

6. It is debatable which side of the idenƟty is more complicated. One thing
which stands out is that the denominator on the leŌ hand side is 1 −
cos(θ), while the numerator of the right hand side is 1 + cos(θ). This
suggests the strategy of starƟng with the leŌ hand side and mulƟplying
the numerator and denominator by the quanƟty 1+ cos(θ):

sin(θ)
1− cos(θ)

=
sin(θ)

(1− cos(θ))
· (1+ cos(θ))
(1+ cos(θ))

=
sin(θ)(1+ cos(θ))

(1− cos(θ))(1+ cos(θ))

=
sin(θ)(1+ cos(θ))

1− cos2(θ)
=

sin(θ)(1+ cos(θ))
sin2(θ)

= ���sin(θ)(1+ cos(θ))

���sin(θ) sin(θ)
=

1+ cos(θ)
sin(θ)

In Example 148.6 above, we see thatmulƟplying 1−cos(θ) by 1+cos(θ) pro-
duces a difference of squares that can be simplified to one term using Theorem
56. This is exactly the same kind of phenomenon that occurs when we mulƟply
expressions such as 1−

√
2 by 1+

√
2 or 3−4i by 3+4i. (Can you recall instances

from earlier chapters where we did such things?) For this reason, the quanƟƟes
(1 − cos(θ)) and (1 + cos(θ)) are called ‘Pythagorean Conjugates.’ Below is a
list of other common Pythagorean Conjugates.

Key Idea 37 Pythagorean Conjugates

• 1−cos(θ) and 1+cos(θ): (1−cos(θ))(1+cos(θ)) = 1−cos2(θ) =
sin2(θ)

• 1−sin(θ) and 1+sin(θ): (1−sin(θ))(1+sin(θ)) = 1−sin2(θ) =
cos2(θ)

• sec(θ)−1 and sec(θ)+1: (sec(θ)−1)(sec(θ)+1) = sec2(θ)−1 =
tan2(θ)

• sec(θ)− tan(θ) and sec(θ) + tan(θ): (sec(θ)− tan(θ))(sec(θ) +
tan(θ)) = sec2(θ)− tan2(θ) = 1

• csc(θ)−1 and csc(θ)+1: (csc(θ)−1)(csc(θ)+1) = csc2(θ)−1 =
cot2(θ)

• csc(θ) − cot(θ) and csc(θ) + cot(θ): (csc(θ) − cot(θ))(csc(θ) +
cot(θ)) = csc2(θ)− cot2(θ) = 1
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Verifying trigonometric idenƟƟes requires a healthy mix of tenacity and in-
spiraƟon. You will need to spend many hours struggling with them just to be-
come proficient in the basics. Like many things in life, there is no short-cut here
– there is no complete algorithm for verifying idenƟƟes. Nevertheless, a sum-
mary of some strategies which may be helpful (depending on the situaƟon) is
provided below and ample pracƟce is provided for you in the Exercises.

Key Idea 38 Strategies for Verifying IdenƟƟes

• Try working on the more complicated side of the idenƟty.

• Use the Reciprocal and QuoƟent IdenƟƟes in Theorem 54 to write
funcƟons on one side of the idenƟty in terms of the funcƟons on
the other side of the idenƟty. Simplify the resulƟng complex frac-
Ɵons.

• Add raƟonal expressions with unlike denominators by obtaining
common denominators.

• Use the Pythagorean IdenƟƟes in Theorem 56 to ‘exchange’ sines
and cosines, secants and tangents, cosecants and cotangents, and
simplify sums or differences of squares to one term.

• MulƟply numerator and denominator by Pythagorean Conjugates
in order to take advantage of the Pythagorean IdenƟƟes in Theo-
rem 56.

• If you find yourself stuck working with one side of the idenƟty, try
starƟng with the other side of the idenƟty and see if you can find
a way to bridge the two parts of your work.
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Wemay choose any values x and y so long
as x > 0, y < 0 and x

y = −4. For exam-
ple, we could choose x = 8 and y = −2.
The fact that all such points lie on the ter-
minal side of θ is a consequence of the
fact that the terminal side of θ is the por-
Ɵon of the line with slope − 1

4 which ex-
tends from the origin into Quadrant IV.

Chapter 8 FoundaƟons of Trigonometry

8.3.1 Beyond the Unit Circle

In SecƟon 8.2, we generalized the cosine and sine funcƟons from coordinates
on the Unit Circle to coordinates on circles of radius r. Using Theorem 50 in
conjuncƟon with Theorem 56, we generalize the remaining circular funcƟons in
kind.

Theorem 57 Generalized circular funcƟos

SupposeQ(x, y) is the point on the terminal side of an angle θ (ploƩed in
standard posiƟon) which lies on the circle of radius r, x2+y2 = r2. Then:

• sec(θ) =
r
x
=

√
x2 + y2

x
, provided x ̸= 0.

• csc(θ) =
r
y
=

√
x2 + y2

y
, provided y ̸= 0.

• tan(θ) =
y
x
, provided x ̸= 0.

• cot(θ) =
x
y
, provided y ̸= 0.

Example 149 EvaluaƟng circular funcƟons

1. Suppose the terminal side of θ, when ploƩed in standard posiƟon, con-
tains the point Q(3,−4). Find the values of the six circular funcƟons of
θ.

2. Suppose θ is a Quadrant IV angle with cot(θ) = −4. Find the values of
the five remaining circular funcƟons of θ.

SÊ½çã®ÊÄ

1. Since x = 3 and y = −4, r =
√

x2 + y2 =
√

(3)2 + (−4)2 =
√
25 = 5.

Theorem 57 tells us cos(θ) = 3
5 , sin(θ) = − 4

5 , sec(θ) =
5
3 , csc(θ) = − 5

4 ,
tan(θ) = − 4

3 and cot(θ) = − 3
4 .

2. In order to use Theorem 57, we need to find a point Q(x, y) which lies on
the terminal side of θ, when θ is ploƩed in standard posiƟon. We have
that cot(θ) = −4 = x

y , and since θ is a Quadrant IV angle, we also know
x > 0 and y < 0. Viewing −4 = 4

−1 , we may choose x = 4 and y = −1
so that r =

√
x2 + y2 =

√
(4)2 + (−1)2 =

√
17. Applying Theorem 57

once more, we find cos(θ) = 4√
17 = 4

√
17

17 , sin(θ) = − 1√
17 = −

√
17
17 ,

sec(θ) =
√
17
4 , csc(θ) = −

√
17 and tan(θ) = − 1

4 .
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Figure 8.63: A right-angled triangle

θ
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Figure 8.64: The angle of inclinaƟon from
the base line to the object is θ
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30 ft.
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Figure 8.65: Finding the height of the
Clocktower

45◦30◦

200 ft. x ft.
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Figure 8.66: Finding the height of a Cali-
fornia Redwood

8.3 The Six Circular FuncƟons and Fundamental IdenƟƟes

Wemay also specialize Theorem57 to the case of acute angles θwhich reside
in a right triangle, as visualized in Figure 8.63.

Theorem 58 Circular funcƟons defined by a right-angled triangle

Suppose θ is an acute angle residing in a right triangle. If the length of
the side adjacent to θ is a, the length of the side opposite θ is b, and the
length of the hypotenuse is c, then

tan(θ) =
b
a

sec(θ) =
c
a

csc(θ) =
c
b

cot(θ) =
a
b

The following example uses Theorem 58 as well as the concept of an ‘angle
of inclinaƟon.’ The angle of inclinaƟon (or angle of elevaƟon) of an object refers
to the angle whose iniƟal side is some kind of base-line (say, the ground), and
whose terminal side is the line-of-sight to an object above the base-line. This is
represented schemaƟcally in Figure 8.64.

Example 150 Using angle of inclinaƟon

1. The angle of inclinaƟon from a point on the ground 30 feet away to the top
of Lakeland’s Armington Clocktower is 60◦. Find the height of the Clock-
tower to the nearest foot.

2. In order to determine the height of a California Redwood tree, two sight-
ings from the ground, one 200 feet directly behind the other, are made.
If the angles of inclinaƟon were 45◦ and 30◦, respecƟvely, how tall is the
tree to the nearest foot?

SÊ½çã®ÊÄ

1. We can represent the problem situaƟon using a right triangle as shown
in Figure 8.65. If we let h denote the height of the tower, then Theorem
58 gives tan (60◦) = h

30 . From this we get h = 30 tan (60◦) = 30
√
3 ≈

51.96. Hence, the Clocktower is approximately 52 feet tall.

2. Sketching the problem situaƟon in Figure 8.66, we find ourselves with two
unknowns: the height h of the tree and the distance x from the base of
the tree to the first observaƟon point.

Using Theorem58,we get a pair of equaƟons: tan (45◦) = h
x and tan (30

◦) =
h

x+200 . Since tan (45
◦) = 1, the first equaƟon gives h

x = 1, or x = h. Sub-
sƟtuƟng this into the second equaƟon gives h

h+200 = tan (30◦) =
√
3
3 .

Clearing fracƟons, we get 3h = (h+ 200)
√
3. The result is a linear equa-

Ɵon for h, so we proceed to expand the right hand side and gather all the
terms involving h to one side.
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3h = (h+ 200)
√
3

3h = h
√
3+ 200

√
3

3h− h
√
3 = 200

√
3

(3−
√
3)h = 200

√
3

h =
200

√
3

3−
√
3
≈ 273.20

Hence, the tree is approximately 273 feet tall.

As we did in SecƟon 8.2.1, we may consider all six circular funcƟons as func-
Ɵons of real numbers. At this stage, there are three equivalent ways to define
the funcƟons sec(t), csc(t), tan(t) and cot(t) for real numbers t. First, we could
go through the formality of the wrapping funcƟon on page 317 and define these
funcƟons as the appropriate raƟos of x and y coordinates of points on the Unit
Circle; second, we could define them by associaƟng the real number t with the
angle θ = t radians so that the value of the trigonometric funcƟon of t coincides
with that of θ; lastly, we could simply define them using the Reciprocal and Quo-
Ɵent IdenƟƟes as combinaƟons of the funcƟons f(t) = cos(t) and g(t) = sin(t).
Presently, we adopt the last approach. We now set about determining the do-
mains and ranges of the remaining four circular funcƟons. Consider the func-
Ɵon F(t) = sec(t) defined as F(t) = sec(t) = 1

cos(t) . We know F is undefined
whenever cos(t) = 0. From Example 142 number 3, we know cos(t) = 0 when-
ever t = π

2 + πk for integers k. Hence, our domain for F(t) = sec(t), in set
builder notaƟon is {t : t ̸= π

2 + πk, for integers k}. To get a beƩer under-
standing what set of real numbers we’re dealing with, it pays to write out and
graph this set. Running through a few values of k, we find the domain to be
{t : t ̸= ± π

2 , ±
3π
2 , ±

5π
2 , . . .}. Graphing this set on the number line we get

− 5π
2

− 3π
2

−π
2

0 π
2

3π
2

5π
2

Using interval notaƟon to describe this set, we get

. . .∪
(
−5π

2
,−3π

2

)
∪
(
−3π

2
,−π

2

)
∪
(
−π

2
,
π

2

)
∪
(
π

2
,
3π
2

)
∪
(
3π
2
,
5π
2

)
∪. . .

This is cumbersome, to say the least! In order to write this in a more com-
pact way, we note that from the set-builder descripƟon of the domain, the kth
point excluded from the domain, which we’ll call xk, can be found by the formula
xk = π

2 +πk. Geƫng a common denominator and factoring out the π in the nu-
merator, we get xk = (2k+1)π

2 . The domain consists of the intervals determined
by successive points xk: (xk, xk+1) =

(
(2k+1)π

2 , (2k+3)π
2

)
. In order to capture all

of the intervals in the domain, k must run through all of the integers, that is,
k = 0,±1,±2, ….
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NoƟce we have used the variable ‘u’
as the ‘dummy variable’ to describe the
range elements. While there is nomathe-
maƟcal reason to do this (we are describ-
ing a set of real numbers, and, as such,
could use t again) we choose u to help
solidify the idea that these real numbers
are the outputs from the inputs, whichwe
have been calling t.
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The way we denote taking the union of infinitely many intervals like this is to
use what we call in this text extended interval notaƟon. The domain of F(t) =
sec(t) can now be wriƩen as

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)

The reader who has previously encountered summaƟon notaƟon should
find it useful to compare the it with our extended interval notaƟon. In the same
way the index k in the geometric series

∞∑
k=1

ark−1

can never equal the upper limit∞, but rather, ranges through all of the natural
numbers, the index k in the union

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)

can never actually be∞ or −∞, but rather, this conveys the idea that k ranges
through all of the integers. If you have never seen summaƟon notaƟon before,
don’t worry. You won’t need to work with it (or, for that maƩer the extended
interval notaƟon) in this class.

Now that we have painstakingly determined the domain of F(t) = sec(t),
it is Ɵme to discuss the range. Once again, we appeal to the definiƟon F(t) =
sec(t) = 1

cos(t) . The range of f(t) = cos(t) is [−1, 1], and since F(t) = sec(t) is
undefined when cos(t) = 0, we split our discussion into two cases: when 0 <
cos(t) ≤ 1 and when −1 ≤ cos(t) < 0. If 0 < cos(t) ≤ 1, then we can divide
the inequality cos(t) ≤ 1 by cos(t) to obtain sec(t) = 1

cos(t) ≥ 1. Moreover,
using the notaƟon introduced in SecƟon 5.2, we have that as cos(t) → 0+,
sec(t) = 1

cos(t) ≈ 1
very small (+) ≈ very big (+). In other words, as cos(t) →

0+, sec(t) → ∞. If, on the other hand, if −1 ≤ cos(t) < 0, then dividing
by cos(t) causes a reversal of the inequality so that sec(t) = 1

sec(t) ≤ −1. In
this case, as cos(t) → 0−, sec(t) = 1

cos(t) ≈ 1
very small (−) ≈ very big (−), so

that as cos(t) → 0−, we get sec(t) → −∞. Since f(t) = cos(t) admits all
of the values in [−1, 1], the funcƟon F(t) = sec(t) admits all of the values in
(−∞,−1] ∪ [1,∞). Using set-builder notaƟon, the range of F(t) = sec(t) can
be wriƩen as {u : u ≤ −1 or u ≥ 1}, or, more succinctly, (using Theorem 18
from SecƟon 3.4) as {u : |u| ≥ 1}. Similar arguments can be used to determine
the domains and ranges of the remaining three circular funcƟons: csc(t), tan(t)
and cot(t). The reader is encouraged to do so. (See the Exercises.) For now, we
gather these facts into the theorem below.
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Theorem 59 Domains and Ranges of the Circular FuncƟons

• The funcƟon f(t) = cos(t) • The funcƟon g(t) = sin(t)

– has domain (−∞,∞) – has domain (−∞,∞)

– has range [−1, 1] – has range [−1, 1]

• The funcƟon F(t) = sec(t) =
1

cos(t)

– has domain {t : t ̸= π
2 +πk, for integers k} =

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range {u : |u| ≥ 1} = (−∞,−1] ∪ [1,∞)

• The funcƟon G(t) = csc(t) =
1

sin(t)

– has domain {t : t ̸= πk, for integers k} =
∞∪

k=−∞
(kπ, (k+ 1)π)

– has range {u : |u| ≥ 1} = (−∞,−1] ∪ [1,∞)

• The funcƟon J(t) = tan(t) =
sin(t)
cos(t)

– has domain {t : t ̸= π
2 +πk, for integers k} =

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range (−∞,∞)

• The funcƟon K(t) = cot(t) =
cos(t)
sin(t)

– has domain {t : t ̸= πk, for integers k} =
∞∪

k=−∞
(kπ, (k+ 1)π)

– has range (−∞,∞)

We close this secƟonwith a few notes about solving equaƟonswhich involve
the circular funcƟons. First, the discussion on page 336 in SecƟon 8.2.1 concern-
ing solving equaƟons applies to all six circular funcƟons, not just f(t) = cos(t)
and g(t) = sin(t). In parƟcular, to solve the equaƟon cot(t) = −1 for real num-
bers t, we can use the same thought process we used in Example 147, number
3 to solve cot(θ) = −1 for angles θ in radian measure – we just need to remem-
ber to write our answers using the variable t as opposed to θ. Next, it is criƟcal
that you know the domains and ranges of the six circular funcƟons so that you
know which equaƟons have no soluƟons. For example, sec(t) = 1

2 has no so-
luƟon because 1

2 is not in the range of secant. Finally, you will need to review
the noƟons of reference angles and coterminal angles so that you can see why
csc(t) = −42 has an infinite set of soluƟons in Quadrant III and another infinite
set of soluƟons in Quadrant IV.
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Exercises 8.3
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 34, use the given the informaƟon to find the
exact values of the remaining circular funcƟons of θ.

21. sin(θ) = 3
5
with θ in Quadrant II

22. tan(θ) = 12
5

with θ in Quadrant III

23. csc(θ) = 25
24

with θ in Quadrant I

24. sec(θ) = 7 with θ in Quadrant IV

25. csc(θ) = −10
√
91

91
with θ in Quadrant III

26. cot(θ) = −23 with θ in Quadrant II

27. tan(θ) = −2 with θ in Quadrant IV.

28. sec(θ) = −4 with θ in Quadrant II.

29. cot(θ) =
√
5 with θ in Quadrant III.

30. cos(θ) = 1
3
with θ in Quadrant I.

31. cot(θ) = 2 with 0 < θ <
π

2
.

32. csc(θ) = 5 with π

2
< θ < π.

33. tan(θ) =
√
10 with π < θ <

3π
2
.

34. sec(θ) = 2
√
5 with 3π

2
< θ < 2π.

In Exercises 35 – 42, use your calculator to approximate the
given value to three decimal places. Make sure your calcula-
tor is in the proper angle measurement mode!

35. csc(78.95◦)

36. tan(−2.01)

37. cot(392.994)

38. sec(207◦)

39. csc(5.902)

40. tan(39.672◦)

41. cot(3◦)

42. sec(0.45)
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In Exercises 43 – 57, find all of the angles which saƟsfy the
equaƟon.

43. tan(θ) =
√
3

44. sec(θ) = 2

45. csc(θ) = −1

46. cot(θ) =
√
3
3

47. tan(θ) = 0

48. sec(θ) = 1

49. csc(θ) = 2

50. cot(θ) = 0

51. tan(θ) = −1

52. sec(θ) = 0

53. csc(θ) = −1
2

54. sec(θ) = −1

55. tan(θ) = −
√
3

56. csc(θ) = −2

57. cot(θ) = −1

In Exercises 58 – 65, solve the equaƟon for t. Give exact val-
ues.

58. cot(t) = 1

59. tan(t) =
√
3
3

60. sec(t) = −2
√
3

3

61. csc(t) = 0

62. cot(t) = −
√
3

63. tan(t) = −
√
3
3

64. sec(t) = 2
√
3

3

65. csc(t) = 2
√
3

3

In Exercises 66 – 69, use Theorem 58 to find the requested
quanƟƟes.

66. Find θ, a, and c.

θ

9

a
c 60◦

67. Find α, b, and c.

34◦
c

b

12

α

68. Find θ, a, and c.

47◦

6

a

c

θ

69. Find β, b, and c.

β

2.5

b

c
50◦

In Exercises 70 – 75, use Theorem 58 to answer the quesƟon.
Assume that θ is an angle in a right triangle.use Theorem 58
to find the requested quanƟƟes.

70. If θ = 30◦ and the side opposite θ has length 4, how long
is the side adjacent to θ?

71. If θ = 15◦ and the hypotenuse has length 10, how long is
the side opposite θ?
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72. If θ = 87◦ and the side adjacent to θ has length 2, how long
is the side opposite θ?

73. If θ = 38.2◦ and the side opposite θ has length 14, how
long is the hypotenuse?

74. If θ = 2.05◦ and the hypotenuse has length 3.98, how long
is the side adjacent to θ?

75. If θ = 42◦ and the side adjacent to θ has length 31, how
long is the side opposite θ?

76. A tree standing verƟcally on level ground casts a 120 foot
long shadow. The angle of elevaƟon from the end of the
shadow to the top of the tree is 21.4◦. Find the height of
the tree to the nearest foot. With the help of your class-
mates, research the term umbra versa and see what it has
to do with the shadow in this problem.

77. The broadcast tower for radio staƟon WSAZ (Home of “Al-
gebra in theMorningwith Carl and Jeff”) has two enormous
flashing red lights on it: one at the very top and one a few
feet below the top. From a point 5000 feet away from the
base of the tower on level ground the angle of elevaƟon
to the top light is 7.970◦ and to the second light is 7.125◦.
Find the distance between the lights to the nearest foot.

78. On page 349 we defined the angle of inclinaƟon (also
known as the angle of elevaƟon) and in this exercise we
introduce a related angle - the angle of depression (also
known as the angle of declinaƟon). The angle of depres-
sion of an object refers to the angle whose iniƟal side is a
horizontal line above the object and whose terminal side is
the line-of-sight to the object below the horizontal. This is
represented schemaƟcally below.

θ

horizontal
observer

object

The angle of depression from the horizontal to the object
is θ

(a) Show that if the horizontal is above and parallel to
level ground then the angle of depression (from ob-
server to object) and the angle of inclinaƟon (from
object to observer) will be congruent because they
are alternate interior angles.

(b) From a firetower 200 feet above level ground in the
Sasquatch NaƟonal Forest, a ranger spots a fire off in
the distance. The angle of depression to the fire is
2.5◦. How far away from the base of the tower is the
fire?

(c) The ranger in part 78b sees a Sasquatch running di-
rectly from the fire towards the firetower. The ranger
takes two sighƟngs. At the first sighƟng, the angle
of depression from the tower to the Sasquatch is 6◦.
The second sighƟng, taken just 10 seconds later, gives
the the angle of depression as 6.5◦. How far did the
Saquatch travel in those 10 seconds? Round your an-
swer to the nearest foot. How fast is it running in
miles per hour? Round your answer to the nearest
mile per hour. If the Sasquatch keeps up this pace,
how long will it take for the Sasquatch to reach the
firetower from his locaƟon at the second sighƟng?
Round your answer to the nearest minute.

79. When I stand 30 feet away from a tree at home, the angle
of elevaƟon to the top of the tree is 50◦ and the angle of
depression to the base of the tree is 10◦. What is the height
of the tree? Round your answer to the nearest foot.

80. From the observaƟon deck of the lighthouse at Sasquatch
Point 50 feet above the surface of Lake IppizuƟ, a lifeguard
spots a boat out on the lake sailing directly toward the light-
house. The first sighƟng had an angle of depression of
8.2◦ and the second sighƟng had an angle of depression of
25.9◦. How far had the boat travelled between the sight-
ings?

81. A guy wire 1000 feet long is aƩached to the top of a tower.
When pulled taut it makes a 43◦ angle with the ground.
How tall is the tower? How far away from the base of the
tower does the wire hit the ground?

In Exercises 82 – 128, verify the idenƟty. Assume that all
quanƟƟes are defined.

82. cos(θ) sec(θ) = 1

83. tan(θ) cos(θ) = sin(θ)

84. sin(θ) csc(θ) = 1

85. tan(θ) cot(θ) = 1

86. csc(θ) cos(θ) = cot(θ)

87. sin(θ)
cos2(θ)

= sec(θ) tan(θ)

88. cos(θ)
sin2(θ)

= csc(θ) cot(θ)

89. 1+ sin(θ)
cos(θ)

= sec(θ) + tan(θ)

90. 1− cos(θ)
sin(θ)

= csc(θ)− cot(θ)

91. cos(θ)
1− sin2(θ)

= sec(θ)
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92. sin(θ)
1− cos2(θ)

= csc(θ)

93. sec(θ)
1+ tan2(θ)

= cos(θ)

94. csc(θ)
1+ cot2(θ)

= sin(θ)

95. tan(θ)
sec2(θ)− 1

= cot(θ)

96. cot(θ)
csc2(θ)− 1

= tan(θ)

97. 4 cos2(θ) + 4 sin2(θ) = 4

98. 9− cos2(θ)− sin2(θ) = 8

99. tan3(θ) = tan(θ) sec2(θ)− tan(θ)

100. sin5(θ) =
(
1− cos2(θ)

)2 sin(θ)
101. sec10(θ) =

(
1+ tan2(θ)

)4 sec2(θ)
102. cos2(θ) tan3(θ) = tan(θ)− sin(θ) cos(θ)

103. sec4(θ)− sec2(θ) = tan2(θ) + tan4(θ)

104. cos(θ) + 1
cos(θ)− 1

=
1+ sec(θ)
1− sec(θ)

105. sin(θ) + 1
sin(θ)− 1

=
1+ csc(θ)
1− csc(θ)

106. 1− cot(θ)
1+ cot(θ)

=
tan(θ)− 1
tan(θ) + 1

107. 1− tan(θ)
1+ tan(θ)

=
cos(θ)− sin(θ)
cos(θ) + sin(θ)

108. tan(θ) + cot(θ) = sec(θ) csc(θ)

109. csc(θ)− sin(θ) = cot(θ) cos(θ)

110. cos(θ)− sec(θ) = − tan(θ) sin(θ)

111. cos(θ)(tan(θ) + cot(θ)) = csc(θ)

112. sin(θ)(tan(θ) + cot(θ)) = sec(θ)

113. 1
1− cos(θ)

+
1

1+ cos(θ)
= 2 csc2(θ)

114. 1
sec(θ) + 1

+
1

sec(θ)− 1
= 2 csc(θ) cot(θ)

115. 1
csc(θ) + 1

+
1

csc(θ)− 1
= 2 sec(θ) tan(θ)

116. 1
csc(θ)− cot(θ)

− 1
csc(θ) + cot(θ)

= 2 cot(θ)

117. cos(θ)
1− tan(θ)

+
sin(θ)

1− cot(θ)
= sin(θ) + cos(θ)

118. 1
sec(θ) + tan(θ)

= sec(θ)− tan(θ)

119. 1
sec(θ)− tan(θ)

= sec(θ) + tan(θ)

120. 1
csc(θ)− cot(θ)

= csc(θ) + cot(θ)

121. 1
csc(θ) + cot(θ)

= csc(θ)− cot(θ)

122. 1
1− sin(θ)

= sec2(θ) + sec(θ) tan(θ)

123. 1
1+ sin(θ)

= sec2(θ)− sec(θ) tan(θ)

124. 1
1− cos(θ)

= csc2(θ) + csc(θ) cot(θ)

125. 1
1+ cos(θ)

= csc2(θ)− csc(θ) cot(θ)

126. cos(θ)
1+ sin(θ)

=
1− sin(θ)
cos(θ)

127. csc(θ)− cot(θ) = sin(θ)
1+ cos(θ)

128. 1− sin(θ)
1+ sin(θ)

= (sec(θ)− tan(θ))2

In Exercises 129 – 132, verify the idenƟty. You may need to
consult SecƟons 3.2 and 7.2 for a review of the properƟes of
absolute value and logarithms before proceeding.

129. ln | sec(θ)| = − ln | cos(θ)|

130. − ln | csc(θ)| = ln | sin(θ)|

131. − ln | sec(θ)− tan(θ)| = ln | sec(θ) + tan(θ)|

132. − ln | csc(θ) + cot(θ)| = ln | csc(θ)− cot(θ)|

133. Verify the domains and ranges of the tangent, cosecant and
cotangent funcƟons as presented in Theorem 59.

134. As we did in Exercise 74 in SecƟon 8.2, let α and β be the
two acute angles of a right triangle. (Thus α and β are
complementary angles.) Show that sec(α) = csc(β) and
tan(α) = cot(β). The fact that co-funcƟons of comple-
mentary angles are equal in this case is not an accident and
a more general result will be given in SecƟon 8.4.
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135. We wish to establish the inequality cos(θ) <
sin(θ)
θ

< 1

for 0 < θ <
π

2
. Use the diagram from the beginning of the

secƟon, parƟally reproduced below, to answer the follow-
ing.

θ

x

y

1

O B(1, 0)

P

Q

(a) Show that triangle OPB has area 1
2
sin(θ).

(b) Show that the circular sector OPB with central angle

θ has area 1
2
θ.

(c) Show that triangle OQB has area 1
2
tan(θ).

(d) Comparing areas, show that sin(θ) < θ < tan(θ) for
0 < θ <

π

2
.

(e) Use the inequality sin(θ) < θ to show that sin(θ)
θ

<

1 for 0 < θ <
π

2
.

(f) Use the inequality θ < tan(θ) to show that cos(θ) <
sin(θ)
θ

for 0 < θ <
π

2
. Combine this with the previ-

ous part to complete the proof.

136. Show that cos(θ) < sin(θ)
θ

< 1 also holds for −π

2
< θ <

0.

137. Explain why the fact that tan(θ) = 3 = 3
1 does not mean

sin(θ) = 3 and cos(θ) = 1? (See the soluƟon to number 6
in Example 146.)
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As menƟoned at the end of SecƟon 8.2,
properƟes of the circular funcƟons when
thought of as funcƟons of angles in ra-
dian measure hold equally well if we view
these funcƟons as funcƟons of real num-
bers. Not surprisingly, the Even / Odd
properƟes of the circular funcƟons are so
named because they idenƟfy cosine and
secant as even funcƟons, while the re-
maining four circular funcƟons are odd.
(See SecƟon 2.5.)

x

y

1

1

θ

θ0

x

y

1

1

θ0

−θ0

P (cos(θ0), sin(θ0))

Q(cos(−θ0), sin(−θ0))

Figure 8.67: Establishing Theorem 60

Chapter 8 FoundaƟons of Trigonometry

8.4 Trigonometric IdenƟƟes
In SecƟon 8.3, we saw the uƟlity of the Pythagorean IdenƟƟes in Theorem 56
along with the QuoƟent and Reciprocal IdenƟƟes in Theorem 54. Not only did
these idenƟƟes help us compute the values of the circular funcƟons for angles,
they were also useful in simplifying expressions involving the circular funcƟons.
In this secƟon, we introduce several collecƟons of idenƟƟes which have uses in
this course and beyond. Our first set of idenƟƟes is the ‘Even / Odd’ idenƟƟes.

Theorem 60 Even / Odd IdenƟƟes

For all applicable angles θ,

• cos(−θ) = cos(θ)

• sin(−θ) = − sin(θ)

• tan(−θ) = − tan(θ)

• sec(−θ) = sec(θ)

• csc(−θ) = − csc(θ)

• cot(−θ) = − cot(θ)

In light of the QuoƟent and Reciprocal IdenƟƟes, Theorem 54, it suffices to
show cos(−θ) = cos(θ) and sin(−θ) = − sin(θ). The remaining four circular
funcƟons can be expressed in terms of cos(θ) and sin(θ) so the proofs of their
Even / Odd IdenƟƟes are leŌ as exercises. Consider an angle θ ploƩed in stan-
dard posiƟon. Let θ0 be the angle coterminal with θ with 0 ≤ θ0 < 2π. (We can
construct the angle θ0 by rotaƟng counter-clockwise from the posiƟve x-axis to
the terminal side of θ as pictured in Figure 8.67.) Since θ and θ0 are coterminal,
cos(θ) = cos(θ0) and sin(θ) = sin(θ0).

We now consider the angles −θ and −θ0. Since θ is coterminal with θ0,
there is some integer k so that θ = θ0 + 2π · k. Therefore,−θ = −θ0 − 2π · k =
−θ0 + 2π · (−k). Since k is an integer, so is (−k), which means−θ is coterminal
with −θ0. Hence, cos(−θ) = cos(−θ0) and sin(−θ) = sin(−θ0). Let P and
Q denote the points on the terminal sides of θ0 and −θ0, respecƟvely, which
lie on the Unit Circle. By definiƟon, the coordinates of P are (cos(θ0), sin(θ0))
and the coordinates of Q are (cos(−θ0), sin(−θ0)). Since θ0 and −θ0 sweep
out congruent central sectors of the Unit Circle, it follows that the points P and
Q are symmetric about the x-axis. Thus, cos(−θ0) = cos(θ0) and sin(−θ0) =
− sin(θ0). Since the cosines and sines of θ0 and −θ0 are the same as those for
θ and −θ, respecƟvely, we get cos(−θ) = cos(θ) and sin(−θ) = − sin(θ), as
required. The Even / Odd IdenƟƟes are readily demonstrated using any of the
‘common angles’ noted in SecƟon 8.2. Their true uƟlity, however, lies not in
computaƟon, but in simplifying expressions involving the circular funcƟons. In
fact, our next batch of idenƟƟes makes heavy use of the Even / Odd IdenƟƟes.

Theorem 61 Sum and Difference IdenƟƟes for Cosine

For all angles α and β,

• cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

• cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

We first prove the result for differences. As in the proof of the Even / Odd
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α0

β0

x

y

1O

P (cos(α0), sin(α0))

Q(cos(β0), sin(β0))α0 − β0

x

y

1

O

A(cos(α0 − β0), sin(α0 − β0))

B(1, 0)

α0 − β0

Figure 8.68: Establishing Theorem 61

In Figure 8.68, the triangles POQ and
AOB are congruent, which is even beƩer.
However, α0 − β0 could be 0 or it could
be π, neither of whichmakes a triangle. It
could also be larger than π, which makes
a triangle, just not the one we’ve drawn.
You should think about those three cases.

8.4 Trigonometric IdenƟƟes

IdenƟƟes, we can reduce the proof for general angles α and β to angles α0 and
β0, coterminal withα and β, respecƟvely, each ofwhichmeasure between 0 and
2π radians. Since α and α0 are coterminal, as are β and β0, it follows that α−β
is coterminal with α0 − β0. Consider the case in Figure 8.68 where α0 ≥ β0.

Since the angles POQ and AOB are congruent, the distance between P and
Q is equal to the distance between A and B. The distance formula, EquaƟon 6,
yields

√
(cos(α0)− cos(β0))

2 + (sin(α0)− sin(β0))
2

=
√
(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2

Squaring both sides, we expand the leŌ hand side of this equaƟon as

(cos(α0)− cos(β0))
2 + (sin(α0)− sin(β0))

2

= cos2(α0)− 2 cos(α0) cos(β0) + cos2(β0)

+ sin2(α0)− 2 sin(α0) sin(β0) + sin2(β0)

= cos2(α0) + sin2(α0) + cos2(β0) + sin2(β0)

− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

From the Pythagorean IdenƟƟes we have cos2(α0) + sin2(α0) = 1 and
cos2(β0) + sin2(β0) = 1, so

(cos(α0)− cos(β0))
2+(sin(α0)− sin(β0))

2

= 2− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

Turning our aƩenƟon to the right hand side of our equaƟon, we find

(cos(α0 − β0)− 1)2+(sin(α0 − β0)− 0)2

= cos2(α0 − β0)− 2 cos(α0 − β0) + 1+ sin2(α0 − β0)

= 1+ cos2(α0 − β0) + sin2(α0 − β0)− 2 cos(α0 − β0)

Once again, we simplify cos2(α0 − β0) + sin2(α0 − β0) = 1, so that

(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2 = 2− 2 cos(α0 − β0)

Puƫng it all together, we get 2 − 2 cos(α0) cos(β0) − 2 sin(α0) sin(β0) =
2 − 2 cos(α0 − β0), which simplifies to: cos(α0 − β0) = cos(α0) cos(β0) +
sin(α0) sin(β0). Sinceα andα0, β andβ0 andα−β andα0−β0 are all coterminal
pairs of angles, we have cos(α − β) = cos(α) cos(β) + sin(α) sin(β). For the
case where α0 ≤ β0, we can apply the above argument to the angle β0 − α0 to
obtain the idenƟty cos(β0−α0) = cos(β0) cos(α0)+ sin(β0) sin(α0). Applying
the Even IdenƟty of cosine, we get cos(β0−α0) = cos(−(α0−β0)) = cos(α0−
β0), and we get the idenƟty in this case, too.

To get the sum idenƟty for cosine, we use the difference formula along with
the Even/Odd IdenƟƟes

cos(α+ β) = cos(α− (−β)) = cos(α) cos(−β) + sin(α) sin(−β)

= cos(α) cos(β)− sin(α) sin(β)
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Chapter 8 FoundaƟons of Trigonometry

We put these newfound idenƟƟes to good use in the following example.

Example 151 Using Theorem 61

1. Find the exact value of cos (15◦).

2. Verify the idenƟty: cos
(
π
2 − θ

)
= sin(θ).

SÊ½çã®ÊÄ

1. In order to use Theorem 61 to find cos (15◦), we need to write 15◦ as a
sum or difference of angles whose cosines and sines we know. One way
to do so is to write 15◦ = 45◦ − 30◦.

cos (15◦) = cos (45◦ − 30◦)
= cos (45◦) cos (30◦) + sin (45◦) sin (30◦)

=

(√
2
2

)(√
3
2

)
+

(√
2
2

)(
1
2

)

=

√
6+

√
2

4
2. In a straighƞorward applicaƟon of Theorem 61, we find

cos
(π
2
− θ
)

= cos
(π
2

)
cos (θ) + sin

(π
2

)
sin (θ)

= (0) (cos(θ)) + (1) (sin(θ))
= sin(θ)

The idenƟty verified in Example 151, namely, cos
(
π
2 − θ

)
= sin(θ), is the

first of the celebrated ‘cofuncƟon’ idenƟƟes. These idenƟƟes were first hinted
at in Exercise 74 in SecƟon 8.2. From sin(θ) = cos

(
π
2 − θ

)
, we get:

sin
(π
2
− θ
)
= cos

(π
2
−
[π
2
− θ
])

= cos(θ),

which says, inwords, that the ‘co’sine of an angle is the sine of its ‘co’mplement.
Now that these idenƟƟes have been established for cosine and sine, the remain-
ing circular funcƟons follow suit. The remaining proofs are leŌ as exercises.

Theorem 62 CofuncƟon IdenƟƟes

For all applicable angles θ,

• cos
(π
2
− θ
)
= sin(θ)

• sin
(π
2
− θ
)
= cos(θ)

• sec
(π
2
− θ
)
= csc(θ)

• csc
(π
2
− θ
)
= sec(θ)

• tan
(π
2
− θ
)
= cot(θ)

• cot
(π
2
− θ
)
= tan(θ)

With the CofuncƟon IdenƟƟes in place, we are now in the posiƟon to derive
the sum and difference formulas for sine. To derive the sum formula for sine, we
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8.4 Trigonometric IdenƟƟes

convert to cosines using a cofuncƟon idenƟty, then expand using the difference
formula for cosine

sin(α+ β) = cos
(π
2
− (α+ β)

)
= cos

([π
2
− α

]
− β

)
= cos

(π
2
− α

)
cos(β) + sin

(π
2
− α

)
sin(β)

= sin(α) cos(β) + cos(α) sin(β)

We can derive the difference formula for sine by rewriƟng sin(α − β) as
sin(α+ (−β)) and using the sum formula and the Even / Odd IdenƟƟes. Again,
we leave the details to the reader.

Theorem 63 Sum and Difference IdenƟƟes for Sine

For all angles α and β,

• sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

• sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

Example 152 Using Theorem 63

1. Find the exact value of sin
( 19π

12
)

2. If α is a Quadrant II angle with sin(α) = 5
13 , and β is a Quadrant III angle

with tan(β) = 2, find sin(α− β).

3. Derive a formula for tan(α+ β) in terms of tan(α) and tan(β).

SÊ½çã®ÊÄ

1. As in Example 151, we need towrite the angle 19π
12 as a sumor difference of

common angles. The denominator of 12 suggests a combinaƟon of angles
with denominators 3 and 4. One such combinaƟon is 19π

12 = 4π
3 + π

4 .
Applying Theorem 63, we get

sin
(
19π
12

)
= sin

(
4π
3

+
π

4

)
= sin

(
4π
3

)
cos
(π
4

)
+ cos

(
4π
3

)
sin
(π
4

)
=

(
−
√
3
2

)(√
2
2

)
+

(
−1
2

)(√
2
2

)

=
−
√
6−

√
2

4

2. In order to find sin(α− β) using Theorem 63, we need to find cos(α) and
both cos(β) and sin(β). To find cos(α), we use the Pythagorean IdenƟty
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Note: As with any trigonometric iden-
Ɵty, this formula is limited to those cases
where all of the tangents are defined.

Chapter 8 FoundaƟons of Trigonometry

cos2(α)+ sin2(α) = 1. Since sin(α) = 5
13 , we have cos

2(α)+
( 5
13
)2

= 1,
or cos(α) = ± 12

13 . Since α is a Quadrant II angle, cos(α) = − 12
13 . We now

set about finding cos(β) and sin(β). We have several ways to proceed,
but the Pythagorean IdenƟty 1+ tan2(β) = sec2(β) is a quick way to get
sec(β), and hence, cos(β). With tan(β) = 2, we get 1+ 22 = sec2(β) so
that sec(β) = ±

√
5. Since β is a Quadrant III angle, we choose sec(β) =

−
√
5 so cos(β) = 1

sec(β) = 1
−
√
5 = −

√
5
5 . We now need to determine

sin(β). We could use The Pythagorean IdenƟty cos2(β) + sin2(β) = 1,
but we opt instead to use a quoƟent idenƟty. From tan(β) = sin(β)

cos(β) , we

have sin(β) = tan(β) cos(β) so we get sin(β) = (2)
(
−

√
5
5

)
= − 2

√
5

5 .
We now have all the pieces needed to find sin(α− β):

sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

=

(
5
13

)(
−
√
5
5

)
−
(
−12
13

)(
−2

√
5

5

)
= −29

√
5

65

3. We can start expanding tan(α+ β) using a quoƟent idenƟty and our sum
formulas

tan(α+ β) =
sin(α+ β)

cos(α+ β)

=
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

Since tan(α) = sin(α)
cos(α) and tan(β) =

sin(β)
cos(β) , it looks as though if we divide

both numerator and denominator by cos(α) cos(β)wewill have what we
want

tan(α+ β) =
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

·

1
cos(α) cos(β)

1
cos(α) cos(β)

=

sin(α) cos(β)
cos(α) cos(β)

+
cos(α) sin(β)
cos(α) cos(β)

cos(α) cos(β)
cos(α) cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=

sin(α)���cos(β)
cos(α)���cos(β)

+
���cos(α) sin(β)
���cos(α) cos(β)

���cos(α)���cos(β)
���cos(α)���cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=
tan(α) + tan(β)
1− tan(α) tan(β)

The formula developed in Exercise 152 for tan(α + β) can be used to find
a formula for tan(α − β) by rewriƟng the difference as a sum, tan(α + (−β)),
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8.4 Trigonometric IdenƟƟes

and the reader is encouraged to fill in the details. Below we summarize all of
the sum and difference formulas for cosine, sine and tangent.

Theorem 64 Sum and Difference IdenƟƟes

For all applicable angles α and β,

• cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

• sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• tan(α± β) =
tan(α)± tan(β)
1∓ tan(α) tan(β)

In the statement of Theorem 64, we have combined the cases for the sum
‘+’ and difference ‘−’ of angles into one formula. The convenƟon here is that if
you want the formula for the sum ‘+’ of two angles, you use the top sign in the
formula; for the difference, ‘−’, use the boƩom sign. For example,

tan(α− β) =
tan(α)− tan(β)
1+ tan(α) tan(β)

If we specialize the sum formulas in Theorem 64 to the case when α = β,
we obtain the following ‘Double Angle’ IdenƟƟes.

Theorem 65 Double Angle IdenƟƟes

For all applicable angles θ,

• cos(2θ) =


cos2(θ)− sin2(θ)

2 cos2(θ)− 1

1− 2 sin2(θ)

• sin(2θ) = 2 sin(θ) cos(θ)

• tan(2θ) =
2 tan(θ)

1− tan2(θ)

The three different forms for cos(2θ) can be explained by our ability to ‘ex-
change’ squares of cosine and sine via the Pythagorean IdenƟty cos2(θ)+sin2(θ) =
1 and we leave the details to the reader. It is interesƟng to note that to de-
termine the value of cos(2θ), only one piece of informaƟon is required: either
cos(θ) or sin(θ). To determine sin(2θ), however, it appears that we must know
both sin(θ) and cos(θ). In the next example, we show how we can find sin(2θ)
knowing just one piece of informaƟon, namely tan(θ).
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Chapter 8 FoundaƟons of Trigonometry

Example 153 Using Theorem 65

1. Suppose P(−3, 4) lies on the terminal side of θ when θ is ploƩed in stan-
dard posiƟon. Find cos(2θ) and sin(2θ) and determine the quadrant in
which the terminal side of the angle 2θ lies when it is ploƩed in standard
posiƟon.

2. If sin(θ) = x for− π
2 ≤ θ ≤ π

2 , find an expression for sin(2θ) in terms of x.

3. Verify the idenƟty: sin(2θ) =
2 tan(θ)

1+ tan2(θ)
.

4. Express cos(3θ) as a polynomial in terms of cos(θ).

SÊ½çã®ÊÄ

1. Using Theorem 50 from SecƟon 8.2 with x = −3 and y = 4, we find r =√
x2 + y2 = 5. Hence, cos(θ) = − 3

5 and sin(θ) = 4
5 . Applying Theorem

65, we get cos(2θ) = cos2(θ) − sin2(θ) =
(
− 3

5
)2 − ( 45)2 = − 7

25 , and
sin(2θ) = 2 sin(θ) cos(θ) = 2

( 4
5
) (

− 3
5
)
= − 24

25 . Since both cosine and
sine of 2θ are negaƟve, the terminal side of 2θ, when ploƩed in standard
posiƟon, lies in Quadrant III.

2. If your first reacƟon to ‘sin(θ) = x’ is ‘No it’s not, cos(θ) = x!’ then you
have indeed learned something, and we take comfort in that. However,
context is everything. Here, ‘x’ is just a variable - it does not necessarily
represent the x-coordinate of the point on The Unit Circle which lies on
the terminal side of θ, assuming θ is drawn in standard posiƟon. Here,
x represents the quanƟty sin(θ), and what we wish to know is how to
express sin(2θ) in terms of x. Since sin(2θ) = 2 sin(θ) cos(θ), we need to
write cos(θ) in terms of x to finish the problem. We subsƟtute x = sin(θ)
into the Pythagorean IdenƟty, cos2(θ) + sin2(θ) = 1, to get cos2(θ) +
x2 = 1, or cos(θ) = ±

√
1− x2. Since − π

2 ≤ θ ≤ π
2 , cos(θ) ≥ 0, and

thus cos(θ) =
√
1− x2. Our final answer is sin(2θ) = 2 sin(θ) cos(θ) =

2x
√
1− x2.

3. We startwith the right hand side of the idenƟty andnote that 1+tan2(θ) =
sec2(θ). From this point, we use the Reciprocal and QuoƟent IdenƟƟes to
rewrite tan(θ) and sec(θ) in terms of cos(θ) and sin(θ):

2 tan(θ)
1+ tan2(θ)

=
2 tan(θ)
sec2(θ)

=

2
(
sin(θ)
cos(θ)

)
1

cos2(θ)

= 2
(
sin(θ)
cos(θ)

)
cos2(θ)

= 2
(
sin(θ)
���cos(θ)

)
���cos(θ) cos(θ) = 2 sin(θ) cos(θ) = sin(2θ)

4. In Theorem 65, the formula cos(2θ) = 2 cos2(θ)−1 expresses cos(2θ) as
a polynomial in terms of cos(θ). We are now asked to find such an idenƟty
for cos(3θ). Using the sum formula for cosine, we begin with

cos(3θ) = cos(2θ + θ)

= cos(2θ) cos(θ)− sin(2θ) sin(θ)
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8.4 Trigonometric IdenƟƟes

Our ulƟmate goal is to express the right hand side in terms of cos(θ) only.
We subsƟtute cos(2θ) = 2 cos2(θ) − 1 and sin(2θ) = 2 sin(θ) cos(θ)
which yields

cos(3θ) = cos(2θ) cos(θ)− sin(2θ) sin(θ)
=

(
2 cos2(θ)− 1

)
cos(θ)− (2 sin(θ) cos(θ)) sin(θ)

= 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)

Finally, we exchange sin2(θ) for 1 − cos2(θ) courtesy of the Pythagorean
IdenƟty, and get

cos(3θ) = 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)
= 2 cos3(θ)− cos(θ)− 2

(
1− cos2(θ)

)
cos(θ)

= 2 cos3(θ)− cos(θ)− 2 cos(θ) + 2 cos3(θ)
= 4 cos3(θ)− 3 cos(θ)

and we are done.

In the last problem in Example 153, we saw how we could rewrite cos(3θ)
as sums of powers of cos(θ). In Calculus, we have occasion to do the reverse;
that is, reduce the power of cosine and sine. Solving the idenƟty cos(2θ) =
2 cos2(θ) − 1 for cos2(θ) and the idenƟty cos(2θ) = 1 − 2 sin2(θ) for sin2(θ)
results in the aptly-named ‘Power ReducƟon’ formulas below.

Theorem 66 Power ReducƟon Formulas

For all angles θ,

• cos2(θ) =
1+ cos(2θ)

2

• sin2(θ) =
1− cos(2θ)

2

Example 154 Using Theorem 66
Rewrite sin2(θ) cos2(θ) as a sum and difference of cosines to the first power.

SÊ½çã®ÊÄ We begin with a straighƞorward applicaƟon of Theorem 66

sin2(θ) cos2(θ) =

(
1− cos(2θ)

2

)(
1+ cos(2θ)

2

)
=

1
4
(
1− cos2(2θ)

)
=

1
4
− 1

4
cos2(2θ)

Next, we apply the power reducƟon formula to cos2(2θ) to finish the reduc-
Ɵon
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sin2(θ) cos2(θ) =
1
4
− 1

4
cos2(2θ)

=
1
4
− 1

4

(
1+ cos(2(2θ))

2

)
=

1
4
− 1

8
− 1

8
cos(4θ)

=
1
8
− 1

8
cos(4θ)

Another applicaƟon of the Power ReducƟon Formulas is the Half Angle For-
mulas. To start, we apply the Power ReducƟon Formula to cos2

(
θ
2
)

cos2
(
θ

2

)
=

1+ cos
(
2
(
θ
2
))

2
=

1+ cos(θ)
2

.

We can obtain a formula for cos
(
θ
2
)
by extracƟng square roots. In a similar

fashion, we may obtain a half angle formula for sine, and by using a quoƟent
formula, obtain a half angle formula for tangent. We summarize these formulas
below.

Theorem 67 Half Angle Formulas

For all applicable angles θ,

• cos
(
θ

2

)
= ±

√
1+ cos(θ)

2

• sin
(
θ

2

)
= ±

√
1− cos(θ)

2

• tan
(
θ

2

)
= ±

√
1− cos(θ)
1+ cos(θ)

where the choice of ± depends on the quadrant in which the terminal
side of

θ

2
lies.

Example 155 Using Theorem 67

1. Use a half angle formula to find the exact value of cos (15◦).

2. Suppose−π ≤ θ ≤ 0 with cos(θ) = − 3
5 . Find sin

(
θ
2
)
.

3. Use the idenƟty given in number 3 of Example 153 to derive the idenƟty

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)
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Note: Back in Example 151, we found
cos (15◦) by using the difference formula
for cosine. In that case, we determined
cos (15◦) =

√
6+

√
2

4 . The reader is en-
couraged to prove that these two expres-
sions are equal.

8.4 Trigonometric IdenƟƟes

SÊ½çã®ÊÄ

1. To use the half angle formula, we note that 15◦ = 30◦
2 and since 15◦ is a

Quadrant I angle, its cosine is posiƟve. Thus we have

cos (15◦) = +

√
1+ cos (30◦)

2
=

√
1+

√
3
2

2

=

√
1+

√
3
2

2
· 2
2
=

√
2+

√
3

4
=

√
2+

√
3

2

2. If −π ≤ θ ≤ 0, then − π
2 ≤ θ

2 ≤ 0, which means sin
(
θ
2
)
< 0. Theorem

67 gives

sin
(
θ

2

)
= −

√
1− cos (θ)

2
= −

√
1−

(
− 3

5
)

2

= −
√

1+ 3
5

2
· 5
5
= −

√
8
10

= −2
√
5

5

3. Instead of our usual approach to verifying idenƟƟes, namely starƟng with
one side of the equaƟon and trying to transform it into the other, we will
start with the idenƟty we proved in number 3 of Example 153 and ma-
nipulate it into the idenƟty we are asked to prove. The idenƟty we are
asked to start with is sin(2θ) = 2 tan(θ)

1+tan2(θ) . If we are to use this to derive
an idenƟty for tan

(
θ
2
)
, it seems reasonable to proceed by replacing each

occurrence of θ with θ
2

sin
(
2
(
θ
2
))

=
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

We now have the sin(θ) we need, but we somehow need to get a factor
of 1+ cos(θ) involved. To get cosines involved, recall that 1+ tan2

(
θ
2
)
=

sec2
(
θ
2
)
. We conƟnue to manipulate our given idenƟty by converƟng se-

cants to cosines and using a power reducƟon formula

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

sec2
(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)
cos2

(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)(1+ cos

(
2
(
θ
2
))

2

)
sin(θ) = tan

(
θ
2
)
(1+ cos(θ))

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)
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The idenƟƟes in Theorem 68 are also
known as the Prosthaphaeresis Formulas
and have a rich history. The authors rec-
ommend that you conduct some research
on them as your schedule allows.

Chapter 8 FoundaƟons of Trigonometry

Our next batch of idenƟƟes, the Product to Sum Formulas, are easily veri-
fied by expanding each of the right hand sides in accordance with Theorem 64
and as you should expect by now we leave the details as exercises. They are of
parƟcular use in Calculus, and we list them here for reference.

Theorem 68 Product to Sum Formulas

For all angles α and β,

• cos(α) cos(β) = 1
2 [cos(α− β) + cos(α+ β)]

• sin(α) sin(β) = 1
2 [cos(α− β)− cos(α+ β)]

• sin(α) cos(β) = 1
2 [sin(α− β) + sin(α+ β)]

Related to the Product to Sum Formulas are the Sum to Product Formulas,
which come in handy when aƩempƟng to solve equaƟons involving trigonomet-
ric funcƟons. These are easily verified using the Product to Sum Formulas, and
as such, their proofs are leŌ as exercises.

Theorem 69 Sum to Product Formulas

For all angles α and β,

• cos(α) + cos(β) = 2 cos
(
α+ β

2

)
cos
(
α− β

2

)

• cos(α)− cos(β) = −2 sin
(
α+ β

2

)
sin
(
α− β

2

)

• sin(α)± sin(β) = 2 sin
(
α± β

2

)
cos
(
α∓ β

2

)

Example 156 Using Theorems 68 and 69

1. Write cos(2θ) cos(6θ) as a sum.

2. Write sin(θ)− sin(3θ) as a product.

SÊ½çã®ÊÄ

1. IdenƟfying α = 2θ and β = 6θ, we find

cos(2θ) cos(6θ) = 1
2 [cos(2θ − 6θ) + cos(2θ + 6θ)]

= 1
2 cos(−4θ) + 1

2 cos(8θ)
= 1

2 cos(4θ) +
1
2 cos(8θ),

where the last equality is courtesy of the even idenƟty for cosine, cos(−4θ) =
cos(4θ).
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8.4 Trigonometric IdenƟƟes

2. IdenƟfying α = θ and β = 3θ yields

sin(θ)− sin(3θ) = 2 sin
(
θ − 3θ

2

)
cos
(
θ + 3θ

2

)
= 2 sin (−θ) cos (2θ)
= −2 sin (θ) cos (2θ) ,

where the last equality is courtesy of the odd idenƟty for sine, sin(−θ) =
− sin(θ).

This secƟon and the one before it present a rather large volume of trigono-
metric idenƟƟes, leading to a very common student quesƟon: “Do I have to
memorize all of these?” The answer, of course, is no. The indispensable idenƟ-
Ɵes are the Pythagorean idenƟƟes (Theorem 48), and the sum/difference iden-
ƟƟes (Theorems 61 and 63). They are themost common, and all other idenƟƟes
can be derived from them. That said, there are a number of topics in Calculus
(trig integraƟon comes to mind) where having other idenƟƟes like the power
reducƟon formulas in Theorem 66 at your fingerƟps will come in handy.

The reader is reminded that all of the idenƟƟes presented in this secƟon
which regard the circular funcƟons as funcƟons of angles (in radian measure)
apply equally well to the circular (trigonometric) funcƟons regarded as funcƟons
of real numbers. In Exercises 38 - 43 in SecƟon 8.5, we see how some of these
idenƟƟesmanifest themselves geometrically aswe study the graphs of the these
funcƟons. In the upcoming Exercises, however, you need to do all of your work
analyƟcally without graphs.
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Exercises 8.4
Problems
In Exercises 1 – 6, use the Even / Odd IdenƟƟes to verify the
idenƟty. Assume all quanƟƟes are defined.

1. sin(3π − 2θ) = − sin(2θ − 3π)

2. cos
(
−π

4
− 5t

)
= cos

(
5t+ π

4

)
3. tan(−t2 + 1) = − tan(t2 − 1)

4. csc(−θ − 5) = − csc(θ + 5)

5. sec(−6t) = sec(6t)

6. cot(9− 7θ) = − cot(7θ − 9)

In Exercises 7 – 21, use the Sum and Difference IdenƟƟes to
find the exact value. You may have need of the QuoƟent, Re-
ciprocal or Even / Odd IdenƟƟes as well.

7. cos(75◦)

8. sec(165◦)

9. sin(105◦)

10. csc(195◦)

11. cot(255◦)

12. tan(375◦)

13. cos
(
13π
12

)

14. sin
(
11π
12

)

15. tan
(
13π
12

)

16. cos
(
7π
12

)

17. tan
(
17π
12

)

18. sin
( π

12

)

19. cot
(
11π
12

)

20. csc
(
5π
12

)

21. sec
(
− π

12

)

22. If α is a Quadrant IV angle with cos(α) =

√
5
5

, and

sin(β) =
√
10
10

, where π

2
< β < π, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

23. If csc(α) = 3, where 0 < α <
π

2
, and β is a Quadrant II

angle with tan(β) = −7, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

24. If sin(α) = 3
5
, where 0 < α <

π

2
, and cos(β) = 12

13
where

3π
2

< β < 2π, find

(a) sin(α+ β)

(b) cos(α− β)

(c) tan(α− β)

25. If sec(α) = −5
3
, where π

2
< α < π, and tan(β) =

24
7
,

where π < β <
3π
2
, find

(a) csc(α− β)

(b) sec(α+ β)

(c) cot(α+ β)

In Exercises 26 – 38, verify the idenƟty.

26. cos(θ − π) = − cos(θ)

27. sin(π − θ) = sin(θ)

28. tan
(
θ +

π

2

)
= − cot(θ)

29. sin(α+ β) + sin(α− β) = 2 sin(α) cos(β)

30. sin(α+ β)− sin(α− β) = 2 cos(α) sin(β)

31. cos(α+ β) + cos(α− β) = 2 cos(α) cos(β)

32. cos(α+ β)− cos(α− β) = −2 sin(α) sin(β)

33. sin(α+ β)

sin(α− β)
=

1+ cot(α) tan(β)
1− cot(α) tan(β)

34. cos(α+ β)

cos(α− β)
=

1− tan(α) tan(β)
1+ tan(α) tan(β)
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35. tan(α+ β)

tan(α− β)
=

sin(α) cos(α) + sin(β) cos(β)
sin(α) cos(α)− sin(β) cos(β)

36. sin(t+ h)− sin(t)
h

= cos(t)
(
sin(h)

h

)
+

sin(t)
(
cos(h)− 1

h

)

37. cos(t+ h)− cos(t)
h

= cos(t)
(
cos(h)− 1

h

)
−

sin(t)
(
sin(h)

h

)

38. tan(t+ h)− tan(t)
h

=

(
tan(h)

h

)(
sec2(t)

1− tan(t) tan(h)

)
In Exercises 39 – 48, use the Half Angle Formulas to find the
exact value. You may have need of the QuoƟent, Reciprocal
or Even / Odd IdenƟƟes as well.

39. cos(75◦) (compare with Exercise 7)

40. sin(105◦) (compare with Exercise 9)

41. cos(67.5◦)

42. sin(157.5◦)

43. tan(112.5◦)

44. cos
(
7π
12

)
(compare with Exercise 16)

45. sin
( π

12

)
(compare with Exercise 18)

46. cos
(π
8

)

47. sin
(
5π
8

)

48. tan
(
7π
8

)
In Exercises 49 – 58, use the given informaƟon about θ to find
the exact values of

• sin(2θ)

• sin
(
θ

2

) • cos(2θ)

• cos
(
θ

2

) • tan(2θ)

• tan
(
θ

2

)

49. sin(θ) = − 7
25

where 3π
2

< θ < 2π

50. cos(θ) = 28
53

where 0 < θ <
π

2

51. tan(θ) = 12
5

where π < θ <
3π
2

52. csc(θ) = 4 where π

2
< θ < π

53. cos(θ) = 3
5
where 0 < θ <

π

2

54. sin(θ) = −4
5
where π < θ <

3π
2

55. cos(θ) = 12
13

where 3π
2

< θ < 2π

56. sin(θ) = 5
13

where π

2
< θ < π

57. sec(θ) =
√
5 where 3π

2
< θ < 2π

58. tan(θ) = −2 where π

2
< θ < π

In Exercises 59 – 73, verify the idenƟty. Assume all quanƟƟes
are defined.

59. (cos(θ) + sin(θ))2 = 1+ sin(2θ)

60. (cos(θ)− sin(θ))2 = 1− sin(2θ)

61. tan(2θ) = 1
1− tan(θ)

− 1
1+ tan(θ)

62. csc(2θ) = cot(θ) + tan(θ)
2

63. 8 sin4(θ) = cos(4θ)− 4 cos(2θ) + 3

64. 8 cos4(θ) = cos(4θ) + 4 cos(2θ) + 3

65. sin(3θ) = 3 sin(θ)− 4 sin3(θ)

66. sin(4θ) = 4 sin(θ) cos3(θ)− 4 sin3(θ) cos(θ)

67. 32 sin2(θ) cos4(θ) = 2+ cos(2θ)− 2 cos(4θ)− cos(6θ)

68. 32 sin4(θ) cos2(θ) = 2− cos(2θ)− 2 cos(4θ) + cos(6θ)

69. cos(4θ) = 8 cos4(θ)− 8 cos2(θ) + 1

70. cos(8θ) = 128 cos8(θ) − 256 cos6(θ) + 160 cos4(θ) −
32 cos2(θ) + 1 (HINT: Use the result to 69.)

71. sec(2θ) = cos(θ)
cos(θ) + sin(θ)

+
sin(θ)

cos(θ)− sin(θ)

72. 1
cos(θ)− sin(θ)

+
1

cos(θ) + sin(θ)
=

2 cos(θ)
cos(2θ)

73. 1
cos(θ)− sin(θ)

− 1
cos(θ) + sin(θ)

=
2 sin(θ)
cos(2θ)

In Exercises 74 – 79, write the given product as a sum. You
may need to use an Even/Odd IdenƟty.

74. cos(3θ) cos(5θ)
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75. sin(2θ) sin(7θ)

76. sin(9θ) cos(θ)

77. cos(2θ) cos(6θ)

78. sin(3θ) sin(2θ)

79. cos(θ) sin(3θ)

In Exercises 80 – 85, write the given sum as a product. You
may need to use an Even/Odd or CofuncƟon IdenƟty.

80. cos(3θ) + cos(5θ)

81. sin(2θ)− sin(7θ)

82. cos(5θ)− cos(6θ)

83. sin(9θ)− sin(−θ)

84. sin(θ) + cos(θ)

85. cos(θ)− sin(θ)

86. Suppose θ is a Quadrant I angle with sin(θ) = x. Verify the
following formulas

(a) cos(θ) =
√
1− x2

(b) sin(2θ) = 2x
√
1− x2

(c) cos(2θ) = 1− 2x2

87. Discuss with your classmates how each of the formulas, if
any, in Exercise 86 change if we change assume θ is a Quad-
rant II, III, or IV angle.

88. Suppose θ is a Quadrant I angle with tan(θ) = x. Verify the
following formulas

(a) cos(θ) = 1√
x2 + 1

(b) sin(θ) = x√
x2 + 1

(c) sin(2θ) = 2x
x2 + 1

(d) cos(2θ) = 1− x2

x2 + 1

89. Discuss with your classmates how each of the formulas, if
any, in Exercise 88 change if we change assume θ is a Quad-
rant II, III, or IV angle.

90. If sin(θ) =
x
2
for −π

2
< θ <

π

2
, find an expression for

cos(2θ) in terms of x.

91. If tan(θ) =
x
7
for −π

2
< θ <

π

2
, find an expression for

sin(2θ) in terms of x.

92. If sec(θ) =
x
4
for 0 < θ <

π

2
, find an expression for

ln | sec(θ) + tan(θ)| in terms of x.

93. Show that cos2(θ)−sin2(θ) = 2 cos2(θ)−1 = 1−2 sin2(θ)
for all θ.

94. Let θ be a Quadrant III angle with cos(θ) = −1
5
. Show

that this is not enough informaƟon to determine the sign of

sin
(
θ

2

)
by first assuming 3π < θ <

7π
2

and then assum-

ing π < θ <
3π
2

and compuƟng sin
(
θ

2

)
in both cases.

95. Without using your calculator, show that
√

2+
√
3

2
=

√
6+

√
2

4

96. In part 4 of Example 153, we wrote cos(3θ) as a polyno-
mial in terms of cos(θ). In Exercise 69, we had you verify an
idenƟty which expresses cos(4θ) as a polynomial in terms
of cos(θ). Can you find a polynomial in terms of cos(θ) for
cos(5θ)? cos(6θ)? Can you find a paƩern so that cos(nθ)
could be wriƩen as a polynomial in cosine for any natural
number n?

97. In Exercise 65, we has you verify an idenƟty which ex-
presses sin(3θ) as a polynomial in terms of sin(θ). Can you
do the same for sin(5θ)? What about for sin(4θ)? If not,
what goes wrong?

98. Verify the Even / Odd IdenƟƟes for tangent, secant, cose-
cant and cotangent.

99. Verify the CofuncƟon IdenƟƟes for tangent, secant, cose-
cant and cotangent.

100. Verify the Difference IdenƟƟes for sine and tangent.

101. Verify the Product to Sum IdenƟƟes.

102. Verify the Sum to Product IdenƟƟes.
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Technically, we should study the interval
[0, 2π), since whatever happens at t =
2π is the same as what happens at t = 0.
As we will see shortly, t = 2π gives us an
extra ‘check’ when we go to graph these
funcƟons. In some texts, the interval of
choice is [−π, π).

8.5 Graphs of the Trigonometric FuncƟons

8.5 Graphs of the Trigonometric FuncƟons

In this secƟon, we return to our discussion of the circular (trigonometric) func-
Ɵons as funcƟons of real numbers and pick up where we leŌ off in SecƟons 8.2.1
and 8.3.1. As usual, we begin our study with the funcƟons f(t) = cos(t) and
g(t) = sin(t).

8.5.1 Graphs of the Cosine and Sine FuncƟons

FromTheorem53 in SecƟon 8.2.1, we know that the domain of f(t) = cos(t) and
of g(t) = sin(t) is all real numbers, (−∞,∞), and the range of both funcƟons
is [−1, 1]. The Even / Odd IdenƟƟes in Theorem 60 tell us cos(−t) = cos(t)
for all real numbers t and sin(−t) = − sin(t) for all real numbers t. This means
f(t) = cos(t) is an even funcƟon, while g(t) = sin(t) is an odd funcƟon. (See
secƟon 2.5 for a review of these concepts.) Another important property of these
funcƟons is that for coterminal angles α and β, cos(α) = cos(β) and sin(α) =
sin(β). Said differently, cos(t+ 2πk) = cos(t) and sin(t+ 2πk) = sin(t) for all
real numbers t and any integer k. This last property is given a special name.

DefiniƟon 55 Periodic FuncƟon

A funcƟon f is said to be periodic if there is a real number c so that f(t+
c) = f(t) for all real numbers t in the domain of f. The smallest posiƟve
number p for which f(t + p) = f(t) for all real numbers t in the domain
of f, if it exists, is called the period of f.

We have already seen a family of periodic funcƟons in SecƟon 3.1: the con-
stant funcƟons. However, despite being periodic, a constant funcƟon has no
period. (We’ll leave that odd gem as an exercise for you.) Returning to the cir-
cular funcƟons, we see that by DefiniƟon 55, f(t) = cos(t) is periodic, since
cos(t + 2πk) = cos(t) for any integer k. To determine the period of f, we
need to find the smallest real number p so that f(t + p) = f(t) for all real
numbers t or, said differently, the smallest posiƟve real number p such that
cos(t+ p) = cos(t) for all real numbers t. We know that cos(t+ 2π) = cos(t)
for all real numbers t but the quesƟon remains if any smaller real number will
do the trick. Suppose p > 0 and cos(t + p) = cos(t) for all real numbers
t. Then, in parƟcular, cos(0 + p) = cos(0) so that cos(p) = 1. From this
we know p is a mulƟple of 2π and, since the smallest posiƟve mulƟple of 2π
is 2π itself, we have the result. Similarly, we can show g(t) = sin(t) is also
periodic with 2π as its period. (AlternaƟvely, we can use the CofuncƟon IdenƟ-
Ɵes in Theorem 62 to show that g(t) = sin(t) is periodic with period 2π since
g(t) = sin(t) = cos

(
π
2 − t

)
= f

(
π
2 − t

)
.) Having period 2π essenƟally means

that we can completely understand everything about the funcƟons f(t) = cos(t)
and g(t) = sin(t) by studying one interval of length 2π, say [0, 2π].

One last property of the funcƟons f(t) = cos(t) and g(t) = sin(t) is worth
poinƟng out: both of these funcƟons are conƟnuous and smooth. Recall from
SecƟon 4.1 that geometrically this means the graphs of the cosine and sine func-
Ɵons have no jumps, gaps, holes in the graph, asymptotes, corners or cusps. As
we shall see, the graphs of both f(t) = cos(t) and g(t) = sin(t)meander nicely
and don’t cause any trouble. We summarize these facts in the following theo-
rem.

373



x cos(x) (x, cos(x))
0 1 (0, 1)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 0

(
π
2 , 0
)

3π
4 −

√
2
2

(
3π
4 ,−

√
2
2

)
π −1 (π,−1)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 0

( 3π
2 , 0

)
7π
4

√
2
2

(
7π
4 ,

√
2
2

)
2π 1 (2π, 1)

Values of f(x) = cos(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = cos(x).

Figure 8.71: Graphing y = cos(x)

x sin(x) (x, sin(x))
0 0 (0, 0)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 1

(
π
2 , 1
)

3π
4

√
2
2

(
3π
4 ,

√
2
2

)
π 0 (π, 0)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2

(
7π
4 ,−

√
2
2

)
2π 0 (2π, 0)

Values of f(x) = sin(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = sin(x)

Figure 8.72: Graphing y = sin(x)
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Theorem 70 ProperƟes of the Cosine and Sine FuncƟons

• The funcƟon f(x) = cos(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is conƟnuous and
smooth

– is even
– has period 2π

• The funcƟon f(x) = sin(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is conƟnuous and
smooth

– is odd
– has period 2π

In this secƟon, we follow the convenƟon established in SecƟon 2.5 and use
x as the independent variable and y as the dependent variable. This allows us
to turn our aƩenƟon to graphing the cosine and sine funcƟons in the Cartesian
Plane. (CauƟon: the use of x and y in this context is not to be confused with the
x- and y-coordinates of points on the Unit Circle which define cosine and sine.
Using the term ‘trigonometric funcƟon’ as opposed to ‘circular funcƟon’ canhelp
with that, but one could then ask, “Hey, where’s the triangle?”) To graph y =
cos(x), we make a table as we did in SecƟon 2.5 using some of the ‘common
values’ of x in the interval [0, 2π]. This generates a porƟon of the cosine graph,
which we call the ‘fundamental cycle’ of y = cos(x).

A few things about the graph above are worth menƟoning. First, this graph
represents only part of the graph of y = cos(x). To get the enƟre graph, we
imagine ‘copying and pasƟng’ this graph end to end infinitely in both direcƟons
(leŌ and right) on the x-axis. Secondly, the verƟcal scale here has been greatly
exaggerated for clarity and aestheƟcs. Below is an accurate-to-scale graph of
y = cos(x) showing several cycles with the ‘fundamental cycle’ ploƩed thicker
than the others. The graph of y = cos(x) is usually described as ‘wavelike’ –
indeed, many of the applicaƟons involving the cosine and sine funcƟons feature
modelling wavelike phenomena.

x

y

Figure 8.69: An accurately scaled graph of y = cos(x).

We can plot the fundamental cycle of the graph of y = sin(x) similarly, with
similar results.

As with the graph of y = cos(x), we provide an accurately scaled graph of
y = sin(x) below with the fundamental cycle highlighted.

x

y

Figure 8.70: An accurately scaled graph of y = sin(x).

It is no accident that the graphs of y = cos(x) and y = sin(x) are so similar.
Using a cofuncƟon idenƟty along with the even property of cosine, we have

sin(x) = cos
(π
2
− x
)
= cos

(
−
(
x− π

2

))
= cos

(
x− π

2

)
374



a πx−π
2 = a x

0 πx−π
2 = 0 1

π
2

πx−π
2 = π

2 2

π πx−π
2 = π 3

3π
2

πx−π
2 = 3π

2 4

2π πx−π
2 = 2π 5

Figure 8.75: Reference points for f(x) in
Example 157

a π − 2x = a x

0 π − 2x = 0 π
2

π
2 π − 2x = π

2
π
4

π π − 2x = π 0
3π
2 π − 2x = 3π

2 − π
4

2π π − 2x = 2π − π
2

Figure 8.76: Reference points for g(x) in
Example 157

8.5 Graphs of the Trigonometric FuncƟons

Recalling SecƟon 2.6, we see from this formula that the graph of y = sin(x)
is the result of shiŌing the graph of y = cos(x) to the right π

2 units. A visual
inspecƟon confirms this.

Now that we know the basic shapes of the graphs of y = cos(x) and y =
sin(x), we can use Theorem 12 in SecƟon 2.6 to graphmore complicated curves.
To do so, we need to keep track of the movement of some key points on the
original graphs. We choose to track the values x = 0, π

2 , π,
3π
2 and 2π. These

‘quarter marks’ correspond to quadrantal angles, and as such, mark the loca-
Ɵon of the zeros and the local extrema of these funcƟons over exactly one pe-
riod. Before we begin our next example, we need to review the concept of
the ‘argument’ of a funcƟon as first introduced in SecƟon 2.3. For the funcƟon
f(x) = 1 − 5 cos(2x − π), the argument of f is x. We shall have occasion, how-
ever, to refer to the argument of the cosine, which in this case is 2x−π. Loosely
stated, the argument of a trigonometric funcƟon is the expression ‘inside’ the
funcƟon.

Example 157 Ploƫng cosine and sine funcƟons
Graph one cycle of the following funcƟons. State the period of each.

1. f(x) = 3 cos
(
πx−π

2
)
+ 1

2. g(x) = 1
2 sin(π − 2x) + 3

2

SÊ½çã®ÊÄ

1. We set the argument of the cosine, πx−π
2 , equal to each of the values: 0,

π
2 , π,

3π
2 , 2π and solve for x. We summarize the results in Figure 8.75.

Next, we subsƟtute each of these x values into f(x) = 3 cos
(
πx−π

2
)
+ 1 to

determine the corresponding y-values and connect the dots in a pleasing
wavelike fashion.

x f(x) (x, f(x))

1 4 (1, 4)
2 1 (2, 1)
3 −2 (3,−2)
4 1 (4, 1)
5 4 (5, 4)

x

y

1 2 3 4 5

−2

−1

1

2

3

4

Figure 8.73: Ploƫng one cycle of y = f(x) in Example 157

One cycle is graphed on [1, 5] so the period is the length of that interval
which is 4.

2. Proceeding as above, we set the argument of the sine, π − 2x, equal to
each of our quarter marks and solve for x in Figure 8.76.
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We have already seen how the Even/Odd
and CofuncƟon IdenƟƟes can be used to
rewrite g(x) = sin(x) as a transformed
version of f(x) = cos(x), so of course, the
reverse is true: f(x) = cos(x) can be writ-
ten as a transformed version of g(x) =
sin(x). The authors have seen some in-
stances where sinusoids are always con-
verted to cosine funcƟons while in other
disciplines, the sinusoids are always writ-
ten in terms of sine funcƟons.

amplitude

baseline

period

Figure 8.77: ProperƟes of sinusoids
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We nowfind the corresponding y-values on the graph by subsƟtuƟng each
of these x-values into g(x) = 1

2 sin(π − 2x) + 3
2 . Once again, we connect

the dots in a wavelike fashion.

x g(x) (x, g(x))
π
2

3
2

(
π
2 ,

3
2
)

π
4 2

(
π
4 , 2
)

0 3
2

(
0, 3

2
)

− π
4 1

(
− π

4 , 1
)

− π
2

3
2
(
− π

2 ,
3
2
)

x

y

−
π

2
−

π

4

π

4

π

2

1

2

Figure 8.74: Ploƫng one cycle of y = g(x) in Example 157

One cyclewas graphedon the interval
[
− π

2 ,
π
2
]
so the period is π

2−
(
− π

2
)
=

π.

The funcƟons in Example 157 are examples of sinusoids. Roughly speaking,
a sinusoid is the result of taking the basic graph of f(x) = cos(x) or g(x) = sin(x)
and performing any of the transformaƟons menƟoned in SecƟon 2.6. Sinusoids
can be characterized by four properƟes: period, amplitude, phase shiŌ and ver-
Ɵcal shiŌ. We have already discussed period, that is, how long it takes for the
sinusoid to complete one cycle. The standard period of both f(x) = cos(x) and
g(x) = sin(x) is 2π, but horizontal scalings will change the period of the result-
ing sinusoid. The amplitude of the sinusoid is a measure of how ‘tall’ the wave
is, as indicated in the figure below. The amplitude of the standard cosine and
sine funcƟons is 1, but verƟcal scalings can alter this: see Figure 8.77.

The phase shiŌ of the sinusoid is the horizontal shiŌ experienced by the
fundamental cycle. We have seen that a phase (horizontal) shiŌ of π

2 to the right
takes f(x) = cos(x) to g(x) = sin(x) since cos

(
x− π

2
)
= sin(x). As the reader

can verify, a phase shiŌ of π
2 to the leŌ takes g(x) = sin(x) to f(x) = cos(x). The

verƟcal shiŌ of a sinusoid is exactly the same as the verƟcal shiŌs in SecƟon 2.6.
In most contexts, the verƟcal shiŌ of a sinusoid is assumed to be 0, but we state
the more general case below. The following theorem, which is reminiscent of
Theorem 12 in SecƟon 2.6, shows how to find these four fundamental quanƟƟes
from the formula of the given sinusoid.

Theorem 71 Standard form of sinusoids

For ω > 0, the funcƟons

C(x) = A cos(ωx+ ϕ) + B and S(x) = A sin(ωx+ ϕ) + B

• have period
2π
ω

• have amplitude |A|

• have phase shiŌ−ϕ

ω

• have verƟcal shiŌ B
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8.5 Graphs of the Trigonometric FuncƟons

We note that in some scienƟfic and engineering circles, the quanƟty ϕmen-
Ɵoned in Theorem 71 is called the phase of the sinusoid. Since our interest in
this book is primarily with graphing sinusoids, we focus our aƩenƟon on the
horizontal shiŌ− ϕ

ω induced by ϕ.

The proof of Theorem 71 is a direct applicaƟon of Theorem 12 in SecƟon 2.6
and is leŌ to the reader. The parameter ω, which is sƟpulated to be posiƟve, is
called the (angular) frequency of the sinusoid and is the number of cycles the
sinusoid completes over a 2π interval. We can always ensure ω > 0 using the
Even/Odd IdenƟƟes. (Try using the formulas in Theorem 71 applied to C(x) =
cos(−x + π) to see why we need ω > 0.) We now test out Theorem 71 using
the funcƟons f and g featured in Example 157. First, we write f(x) in the form
prescribed in Theorem 71,

f(x) = 3 cos
(
πx− π

2

)
+ 1 = 3 cos

(π
2
x+

(
−π

2

))
+ 1,

so that A = 3, ω = π
2 , ϕ = − π

2 and B = 1. According to Theorem 71,
the period of f is 2π

ω = 2π
π/2 = 4, the amplitude is |A| = |3| = 3, the phase

shiŌ is − ϕ
ω = −−π/2

π/2 = 1 (indicaƟng a shiŌ to the right 1 unit) and the verƟcal
shiŌ is B = 1 (indicaƟng a shiŌ up 1 unit.) All of these match with our graph of
y = f(x). Moreover, if we start with the basic shape of the cosine graph, shiŌ
it 1 unit to the right, 1 unit up, stretch the amplitude to 3 and shrink the period
to 4, we will have reconstructed one period of the graph of y = f(x). In other
words, instead of tracking the five ‘quarter marks’ through the transformaƟons
to plot y = f(x), we can use five other pieces of informaƟon: the phase shiŌ,
verƟcal shiŌ, amplitude, period and basic shape of the cosine curve. Turning
our aƩenƟon now to the funcƟon g in Example 157, we first need to use the
odd property of the sine funcƟon to write it in the form required by Theorem
71.

g(x) =
1
2
sin(π − 2x) +

3
2
=

1
2
sin(−(2x− π)) +

3
2

= −1
2
sin(2x− π) +

3
2
= −1

2
sin(2x+ (−π)) +

3
2

We find A = − 1
2 , ω = 2, ϕ = −π and B = 3

2 . The period is then
2π
2 = π, the

amplitude is
∣∣− 1

2

∣∣ = 1
2 , the phase shiŌ is −−π

2 = π
2 (indicaƟng a shiŌ right π

2
units) and the verƟcal shiŌ is up 3

2 . Note that, in this case, all of the data match
our graph of y = g(x)with the excepƟon of the phase shiŌ. Instead of the graph
starƟng at x = π

2 , it ends there. Remember, however, that the graph presented
in Example 157 is only one porƟon of the graph of y = g(x). Indeed, another
complete cycle begins at x = π

2 , and this is the cycle Theorem 71 is detecƟng.
The reason for the discrepancy is that, in order to apply Theorem 71, we had to
rewrite the formula for g(x) using the odd property of the sine funcƟon. Note
that whether we graph y = g(x) using the ‘quarter marks’ approach or using
the Theorem 71, we get one complete cycle of the graph, which means we have
completely determined the sinusoid.
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Figure 8.79: One cycle of y = f(x) in Ex-
ample 158

Chapter 8 FoundaƟons of Trigonometry

Example 158 Fiƫng a sinusoid to given data
Figure 8.79 shows the graph of one complete cycle of a sinusoid y = f(x).

1. Find a cosine funcƟon whose graph matches the graph of y = f(x).

2. Find a sine funcƟon whose graph matches the graph of y = f(x).

SÊ½çã®ÊÄ

1. We fit the data to a funcƟon of the form C(x) = A cos(ωx+ ϕ) + B. Since
one cycle is graphed over the interval [−1, 5], its period is 5− (−1) = 6.
According to Theorem 71, 6 = 2π

ω , so that ω = π
3 . Next, we see that the

phase shiŌ is−1, so we have− ϕ
ω = −1, or ϕ = ω = π

3 . To find the ampli-
tude, note that the range of the sinusoid is

[
− 3

2 ,
5
2
]
. As a result, the am-

plitude A = 1
2
[ 5
2 −

(
− 3

2
)]

= 1
2 (4) = 2. Finally, to determine the verƟcal

shiŌ, we average the endpoints of the range to find B = 1
2
[ 5
2 +

(
− 3

2
)]

=
1
2 (1) =

1
2 . Our final answer is C(x) = 2 cos

(
π
3 x+

π
3
)
+ 1

2 .

2. Most of thework to fit the data to a funcƟon of the form S(x) = A sin(ωx+
ϕ) + B is done. The period, amplitude and verƟcal shiŌ are the same as
beforewith ω = π

3 , A = 2 and B = 1
2 . The trickier part is finding the phase

shiŌ. To that end, we imagine extending the graph of the given sinusoid
as in Figure 8.78 below so that we can idenƟfy a cycle beginning at

( 7
2 ,

1
2
)
.

Taking the phase shiŌ to be 7
2 , we get−

ϕ
ω = 7

2 , or ϕ = − 7
2ω = − 7

2
(
π
3
)
=

− 7π
6 . Hence, our answer is S(x) = 2 sin

(
π
3 x−

7π
6
)
+ 1

2 .

(
7
2
, 1
2

)

(
5, 5

2

)

(
13
2

, 1
2

)

(
8,− 3

2

)

(
19
2

, 5
2

)
x

y

−1 1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

Figure 8.78: Extending the graph of y = f(x)

Note that each of the answers given in Example 158 is one choice out of
many possible answers. For example, when fiƫng a sine funcƟon to the data,
we could have chosen to start at

( 1
2 ,

1
2
)
taking A = −2. In this case, the phase

shiŌ is 1
2 so ϕ = − π

6 for an answer of S(x) = −2 sin
(
π
3 x−

π
6
)
+ 1

2 . Alterna-
Ɵvely, we could have extended the graph of y = f(x) to the leŌ and considered
a sine funcƟon starƟng at

(
− 5

2 ,
1
2
)
, and so on. Each of these formulas determine

the same sinusoid curve and their formulas are all equivalent using idenƟƟes.
Speaking of idenƟƟes, if we use the sum idenƟty for cosine, we can expand the
formula to yield

C(x) = A cos(ωx+ ϕ) + B = A cos(ωx) cos(ϕ)− A sin(ωx) sin(ϕ) + B.
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Similarly, using the sum idenƟty for sine, we get

S(x) = A sin(ωx+ ϕ) + B = A sin(ωx) cos(ϕ) + A cos(ωx) sin(ϕ) + B.

Making these observaƟons allows us to recognize (and graph) funcƟons as sinu-
soids which, at first glance, don’t appear to fit the forms of either C(x) or S(x).

Example 159 ConverƟng a sinusoid to standard form
Consider the funcƟon f(x) = cos(2x)−

√
3 sin(2x). Find a formula for f(x):

1. in the form C(x) = A cos(ωx+ ϕ) + B for ω > 0

2. in the form S(x) = A sin(ωx+ ϕ) + B for ω > 0

SÊ½çã®ÊÄ

1. The key to this problem is to use the expanded forms of the sinusoid for-
mulas andmatchup corresponding coefficients. EquaƟng f(x) = cos(2x)−√
3 sin(2x) with the expanded form of C(x) = A cos(ωx+ ϕ) + B, we get

cos(2x)−
√
3 sin(2x) = A cos(ωx) cos(ϕ)− A sin(ωx) sin(ϕ) + B

It should be clear that we can take ω = 2 and B = 0 to get

cos(2x)−
√
3 sin(2x) = A cos(2x) cos(ϕ)− A sin(2x) sin(ϕ)

To determine A and ϕ, a bit more work is involved. We get started by
equaƟng the coefficients of the trigonometric funcƟons on either side of
the equaƟon. On the leŌ hand side, the coefficient of cos(2x) is 1, while
on the right hand side, it is A cos(ϕ). Since this equaƟon is to hold for
all real numbers, we must have that A cos(ϕ) = 1. Similarly, we find by
equaƟng the coefficients of sin(2x) that A sin(ϕ) =

√
3. What we have

here is a systemof nonlinear equaƟons! We can temporarily eliminate the
dependence on ϕ by using the Pythagorean IdenƟty. We know cos2(ϕ)+
sin2(ϕ) = 1, so mulƟplying this by A2 gives A2 cos2(ϕ)+A2 sin2(ϕ) = A2.
Since A cos(ϕ) = 1 and A sin(ϕ) =

√
3, we get A2 = 12 + (

√
3)2 = 4 or

A = ±2. Choosing A = 2, we have 2 cos(ϕ) = 1 and 2 sin(ϕ) =
√
3 or,

aŌer some rearrangement, cos(ϕ) = 1
2 and sin(ϕ) =

√
3
2 . One such angle

ϕ which saƟsfies this criteria is ϕ = π
3 . Hence, one way to write f(x) as a

sinusoid is f(x) = 2 cos
(
2x+ π

3
)
. We can easily check our answer using

the sum formula for cosine

f(x) = 2 cos
(
2x+ π

3
)

= 2
[
cos(2x) cos

(
π
3
)
− sin(2x) sin

(
π
3
)]

= 2
[
cos(2x)

( 1
2
)
− sin(2x)

(√
3
2

)]
= cos(2x)−

√
3 sin(2x)

2. Proceeding as before, we equate f(x) = cos(2x) −
√
3 sin(2x) with the

expanded form of S(x) = A sin(ωx+ ϕ) + B to get

cos(2x)−
√
3 sin(2x) = A sin(ωx) cos(ϕ) + A cos(ωx) sin(ϕ) + B

Once again, we may take ω = 2 and B = 0 so that

cos(2x)−
√
3 sin(2x) = A sin(2x) cos(ϕ) + A cos(2x) sin(ϕ)
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We equate (be careful here!) the coefficients of cos(2x) on either side and
get A sin(ϕ) = 1 and A cos(ϕ) = −

√
3. Using A2 cos2(ϕ) + A2 sin2(ϕ) =

A2 as before, we get A = ±2, and again we choose A = 2. This means
2 sin(ϕ) = 1, or sin(ϕ) = 1

2 , and 2 cos(ϕ) = −
√
3, whichmeans cos(ϕ) =

−
√
3
2 . One such angle which meets these criteria is ϕ = 5π

6 . Hence, we
have f(x) = 2 sin

(
2x+ 5π

6
)
. Checking our work analyƟcally, we have

f(x) = 2 sin
(
2x+ 5π

6
)

= 2
[
sin(2x) cos

( 5π
6
)
+ cos(2x) sin

( 5π
6
)]

= 2
[
sin(2x)

(
−

√
3
2

)
+ cos(2x)

( 1
2
)]

= cos(2x)−
√
3 sin(2x)

It is important to note that in order for the technique presented in Example
159 to fit a funcƟon into one of the forms in Theorem 71, the arguments of the
cosine and sine funcƟonmuchmatch. That is, while f(x) = cos(2x)−

√
3 sin(2x)

is a sinusoid, g(x) = cos(2x) −
√
3 sin(3x) is not.(This graph does, however,

exhibit sinusoid-like characterisƟcs! Check it out!) It is also worth menƟon-
ing that, had we chosen A = −2 instead of A = 2 as we worked through Ex-
ample 159, our final answers would have looked different. The reader is en-
couraged to rework Example 159 using A = −2 to see what these differences
are, and then for a challenging exercise, use idenƟƟes to show that the for-
mulas are all equivalent. The general equaƟons to fit a funcƟon of the form
f(x) = a cos(ωx) + b sin(ωx) + B into one of the forms in Theorem 71 are
explored in Exercise 35.

8.5.2 Graphs of the Secant and Cosecant FuncƟons

We now turn our aƩenƟon to graphing y = sec(x). Since sec(x) = 1
cos(x) , we

can use our table of values for the graph of y = cos(x) and take reciprocals.
We know from SecƟon 8.3.1 that the domain of F(x) = sec(x) excludes all odd
mulƟples of π

2 , and sure enough, we run into trouble at x =
π
2 and x = 3π

2 since
cos(x) = 0 at these values. Using the notaƟon introduced in SecƟon 5.2, we
have that as x → π

2
−, cos(x) → 0+, so sec(x) → ∞. (See SecƟon 8.3.1 for a

more detailed analysis.) Similarly, we find that as x → π
2
+, sec(x) → −∞; as

x → 3π
2
−, sec(x) → −∞; and as x → 3π

2
+, sec(x) → ∞. This means we have a

pair of verƟcal asymptotes to the graph of y = sec(x), x = π
2 and x = 3π

2 . Since
cos(x) is periodic with period 2π, it follows that sec(x) is also. Below we graph
a fundamental cycle of y = sec(x) along with a more complete graph obtained
by the usual ‘copying and pasƟng.’
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Note: in SecƟon 8.3.1, we argued the
range of F(x) = sec(x) is (−∞,−1] ∪
[1,∞). We can now see this graphically.

Note: provided that sec(α) and sec(β)
are defined, sec(α) = sec(β) if and only
if cos(α) = cos(β). Hence, sec(x) inher-
its its period from cos(x).

8.5 Graphs of the Trigonometric FuncƟons

x cos(x) sec(x) (x, sec(x))
0 1 1 (0, 1)
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 0 undefined

3π
4 −

√
2
2 −

√
2
( 3π

4 ,−
√
2
)

π −1 −1 (π,−1)
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 0 undefined
7π
4

√
2
2

√
2

( 7π
4 ,

√
2
)

2π 1 1 (2π, 1)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 8.80: The ‘fundamental cycle’ of y = sec(x).

x

y

Figure 8.81: The graph of y = sec x

As one would expect, to graph y = csc(x) we begin with y = sin(x) and
take reciprocals of the corresponding y-values. Here, we encounter issues at
x = 0, x = π and x = 2π. Proceeding with the usual analysis, we graph the
fundamental cycle of y = csc(x) below alongwith the doƩed graph of y = sin(x)
for reference. Since y = sin(x) and y = cos(x) are merely phase shiŌs of each
other, so too are y = csc(x) and y = sec(x).
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Note: Just like the raƟonal funcƟons in
Chapter 5 are conƟnuous and smooth on
their domains because polynomials are
conƟnuous and smooth everywhere, the
secant and cosecant funcƟons are conƟn-
uous and smooth on their domains since
the cosine and sine funcƟons are conƟn-
uous and smooth everywhere.
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x sin(x) csc(x) (x, csc(x))
0 0 undefined
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 1 1

(
π
2 , 1
)

3π
4

√
2
2

√
2

( 3π
4 ,

√
2
)

π 0 undefined
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 −1 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2 −

√
2
( 7π

4 ,−
√
2
)

2π 0 undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 8.82: The ‘fundamental cycle’ of y = csc(x).

Once again, our domain and range work in SecƟon 8.3.1 is verified geomet-
rically in the graph of y = G(x) = csc(x).

x

y

Figure 8.83: The graph of y = csc x

Note that, on the intervals between the verƟcal asymptotes, both F(x) =
sec(x) and G(x) = csc(x) are conƟnuous and smooth. In other words, they
are conƟnuous and smooth on their domains. The following theorem summa-
rizes the properƟes of the secant and cosecant funcƟons. Note that all of these
properƟes are direct results of them being reciprocals of the cosine and sine
funcƟons, respecƟvely.
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a 2x = a x

0 2x = 0 0
π
2 2x = π

2
π
4

π 2x = π π
2

3π
2 2x = 3π

2
3π
4

2π 2x = 2π π

Figure 8.85: Reference points for f(x) in
Example 160

8.5 Graphs of the Trigonometric FuncƟons

Theorem 72 ProperƟes of the Secant and Cosecant FuncƟons

• The funcƟon F(x) = sec(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is conƟnuous and smooth on its domain
– is even
– has period 2π

• The funcƟon G(x) = csc(x)

– has domain {x : x ̸= πk, k is an integer} =
∞∪

k=−∞
(kπ, (k+ 1)π)

– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period 2π

In the next example, we discuss graphing more general secant and cosecant
curves.

Example 160 Graphing secant and cosecant curves
Graph one cycle of the following funcƟons. State the period of each.

1. f(x) = 1− 2 sec(2x)

2. g(x) =
csc(π − πx)− 5

3

SÊ½çã®ÊÄ

1. To graph y = 1− 2 sec(2x), we follow the same procedure as in Example
157. First, we set the argument of secant, 2x, equal to the ‘quarter marks’
0, π

2 , π,
3π
2 and 2π and solve for x in Figure 8.85.

Next, we subsƟtute these x values into f(x). If f(x) exists, we have a point
on the graph; otherwise, we have found a verƟcal asymptote. In addiƟon
to these points and asymptotes, we have graphed the associated cosine
curve – in this case y = 1− 2 cos(2x) – doƩed in the picture below. Since
one cycle is graphed over the interval [0, π], the period is π − 0 = π.
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a π − πx = a x

0 π − πx = 0 1
π
2 π − πx = π

2
1
2

π π − πx = π 0
3π
2 π − πx = 3π

2 − 1
2

2π π − πx = 2π −1

Figure 8.87: Reference points for g(x) in
Example 160
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x f(x) (x, f(x))
0 −1 (0,−1)
π
4 undefined
π
2 3

(
π
2 , 3
)

3π
4 undefined
π −1 (π,−1)

x

y

π
4

π
2

3π
4

π−1

1

2

3

Figure 8.84: Ploƫng one cycle of y = f(x) in Example 160

2. Proceeding as before, we set the argument of cosecant ing(x) = csc(π−πx)−5
3

equal to the quarter marks and solve for x in Figure 8.87.
SubsƟtuƟng these x-values into g(x), we generate the graph below and
find the period to be 1 − (−1) = 2. The associated sine curve, y =
sin(π−πx)−5

3 , is doƩed in as a reference.

x g(x) (x, g(x))
1 undefined
1
2 − 4

3
( 1
2 ,−

4
3
)

0 undefined
− 1

2 −2
(
− 1

2 ,−2
)

−1 undefined

x

y

−1 − 1
2

1
2

1

−2

−1

Figure 8.86: Ploƫng one cycle of y = g(x) in Example 160

Before moving on, we note that it is possible to speak of the period, phase
shiŌ and verƟcal shiŌ of secant and cosecant graphs and use even/odd idenƟƟes
to put them in a form similar to the sinusoid forms menƟoned in Theorem 71.
Since these quanƟƟesmatch those of the corresponding cosine and sine curves,
we do not spell this out explicitly. Finally, since the ranges of secant and cosecant
are unbounded, there is no amplitude associated with these curves.

8.5.3 Graphs of the Tangent and Cotangent FuncƟons
Finally, we turn our aƩenƟon to the graphs of the tangent and cotangent func-
Ɵons. When construcƟng a table of values for the tangent funcƟon, we see that
J(x) = tan(x) is undefined at x = π

2 and x = 3π
2 , in accordance with our find-

ings in SecƟon 8.3.1. As x → π
2
−, sin(x) → 1− and cos(x) → 0+, so that

tan(x) = sin(x)
cos(x) → ∞ producing a verƟcal asymptote at x = π

2 . Using a similar
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analysis, we get that as x → π
2
+, tan(x) → −∞; as x → 3π

2
−, tan(x) → ∞; and

as x → 3π
2
+, tan(x) → −∞. Ploƫng this informaƟon and performing the usual

‘copy and paste’ produces Figures 8.88 and 8.89 below.

x tan(x) (x, tan(x))
0 0 (0, 0)
π
4 1

(
π
4 , 1
)

π
2 undefined

3π
4 −1

( 3π
4 ,−1

)
π 0 (π, 0)
5π
4 1

( 5π
4 , 1

)
3π
2 undefined
7π
4 −1

( 7π
4 ,−1

)
2π 0 (2π, 0)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 8.88: The graph of y = tan(x) over [0, 2π]

x

y

Figure 8.89: The graph of y = tan(x)

From the graph, it appears as if the tangent funcƟon is periodic with period
π. To prove that this is the case, we appeal to the sum formula for tangents. We
have:

tan(x+ π) =
tan(x) + tan(π)
1− tan(x) tan(π)

=
tan(x) + 0

1− (tan(x))(0)
= tan(x),

which tells us the period of tan(x) is at most π. To show that it is exactly
π, suppose p is a posiƟve real number so that tan(x + p) = tan(x) for all real
numbers x. For x = 0, we have tan(p) = tan(0 + p) = tan(0) = 0, which
means p is a mulƟple of π. The smallest posiƟve mulƟple of π is π itself, so we
have established the result. We take as our fundamental cycle for y = tan(x)
the interval

(
− π

2 ,
π
2
)
, and use as our ‘quarter marks’ x = − π

2 , −
π
4 , 0,

π
4 and π

2 .
From the graph, we see confirmaƟon of our domain and range work in SecƟon
8.3.1.

It should be no surprise that K(x) = cot(x) behaves similarly to J(x) =
tan(x). Ploƫng cot(x) over the interval [0, 2π] results in the graph in Figure
8.90 below.
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x cot(x) (x, cot(x))
0 undefined
π
4 1

(
π
4 , 1
)

π
2 0

(
π
2 , 0
)

3π
4 −1

( 3π
4 ,−1

)
π undefined
5π
4 1

( 5π
4 , 1

)
3π
2 0

( 3π
2 , 0

)
7π
4 −1

( 7π
4 ,−1

)
2π undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 8.90: The graph of y = cot(x) over [0, 2π]

From these data, it clearly appears as if the period of cot(x) is π, and we
leave it to the reader to prove this. (Certainly, mimicking the proof that the
periodof tan(x) is an opƟon; for another approach, consider transforming tan(x)
to cot(x) using idenƟƟes.) We take as one fundamental cycle the interval (0, π)
with quartermarks: x = 0, π

4 ,
π
2 ,

3π
4 and π. Amore complete graph of y = cot(x)

is below, along with the fundamental cycle highlighted as usual. Once again, we
see the domain and range of K(x) = cot(x) as read from the graphmatches with
what we found analyƟcally in SecƟon 8.3.1.

x

y

Figure 8.91: The graph of y = cot(x)

The properƟes of the tangent and cotangent funcƟons are summarized be-
low. As with Theorem 72, each of the results below can be traced back to prop-
erƟes of the cosine and sine funcƟons and the definiƟon of the tangent and
cotangent funcƟons as quoƟents thereof.
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a x
2 = a x

− π
2

x
2 = − π

2 −π

− π
4

x
2 = − π

4 − π
2

0 x
2 = 0 0

π
4

x
2 = π

4
π
2

π
2

x
2 = π

2 π

Figure 8.93: Reference points for f(x) in
Example 161

8.5 Graphs of the Trigonometric FuncƟons

Theorem 73 ProperƟes of the Tangent and Cotangent FuncƟons

• The funcƟon J(x) = tan(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range (−∞,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period π

• The funcƟon K(x) = cot(x)

– has domain {x : x ̸= πk, k is an integer} =
∞∪

k=−∞
(kπ, (k+ 1)π)

– has range (−∞,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period π

Example 161 Ploƫng tangent and cotangent curves
Graph one cycle of the following funcƟons. Find the period.

1. f(x) = 1− tan
( x
2
)
.

2. g(x) = 2 cot
(
π
2 x+ π

)
+ 1.

SÊ½çã®ÊÄ

1. We proceed as we have in all of the previous graphing examples by seƫng
the argument of tangent in f(x) = 1 − tan

( x
2
)
, namely x

2 , equal to each
of the ‘quarter marks’ − π

2 , −
π
4 , 0,

π
4 and π

2 , and solving for x: see Figure
8.93.

SubsƟtuƟng these x-values into f(x), we find points on the graph and the
verƟcal asymptotes.
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a π
2 x+ π = a x

0 π
2 x+ π = 0 −2

π
4

π
2 x+ π = π

4 − 3
2

π
2

π
2 x+ π = π

2 −1
3π
4

π
2 x+ π = 3π

4 − 1
2

π π
2 x+ π = π 0

Figure 8.95: Reference points for g(x) in
Example 161
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x f(x) (x, f(x))
−π undefined
− π

2 2
(
− π

2 , 2
)

0 1 (0, 1)
π
2 0

(
π
2 , 0
)

π undefined

x

y

−π −π
2

π
2

π

−2

−1

1

2

Figure 8.92: Ploƫng one cycle of y = f(x) in Example 161

We see that the period is π − (−π) = 2π.

2. The ‘quarter marks’ for the fundamental cycle of the cotangent curve are
0, π

4 ,
π
2 ,

3π
4 and π. To graph g(x) = 2 cot

(
π
2 x+ π

)
+1, we begin by seƫng

π
2 x+ π equal to each quarter mark and solving for x in Figure 8.95.
We now use these x-values to generate our graph.

x g(x) (x, g(x))
−2 undefined
− 3

2 3
(
− 3

2 , 3
)

−1 1 (−1, 1)
− 1

2 −1
(
− 1

2 ,−1
)

0 undefined

x

y

−2 −1

−1

1

2

3

Figure 8.94: Ploƫng one cycle of y = g(x) in Example 161

We find the period to be 0− (−2) = 2.

As with the secant and cosecant funcƟons, it is possible to extend the noƟon
of period, phase shiŌ and verƟcal shiŌ to the tangent and cotangent funcƟons
as we did for the cosine and sine funcƟons in Theorem 71. Since the number
of classical applicaƟons involving sinusoids far outnumber those involving tan-
gent and cotangent funcƟons, we omit this. The ambiƟous reader is invited to
formulate such a theorem, however.
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Exercises 8.5
Problems
In Exercises 1 – 12, graph one cycle of the given funcƟon.
State the period, amplitude, phase shiŌ and verƟcal shiŌ of
the funcƟon.

1. y = 3 sin(x)

2. y = sin(3x)

3. y = −2 cos(x)

4. y = cos
(
x− π

2

)
5. y = − sin

(
x+ π

3

)
6. y = sin(2x− π)

7. y = −1
3
cos
(
1
2
x+ π

3

)
8. y = cos(3x− 2π) + 4

9. y = sin
(
−x− π

4

)
− 2

10. y = 2
3
cos
(π
2
− 4x

)
+ 1

11. y = −3
2
cos
(
2x+ π

3

)
− 1

2

12. y = 4 sin(−2πx+ π)

In Exercises 13 – 24, graph one cycle of the given funcƟon.
State the period of the funcƟon.

13. y = tan
(
x− π

3

)

14. y = 2 tan
(
1
4
x
)
− 3

15. y = 1
3
tan(−2x− π) + 1

16. y = sec
(
x− π

2

)
17. y = − csc

(
x+ π

3

)

18. y = −1
3
sec
(
1
2
x+ π

3

)
19. y = csc(2x− π)

20. y = sec(3x− 2π) + 4

21. y = csc
(
−x− π

4

)
− 2

22. y = cot
(
x+ π

6

)

23. y = −11 cot
(
1
5
x
)

24. y = 1
3
cot
(
2x+ 3π

2

)
+ 1

In Exercises 25 – 34, use Example 159 as a guide to show
that the funcƟon is a sinusoid by rewriƟng it in the forms
C(x) = A cos(ωx + ϕ) + B and S(x) = A sin(ωx + ϕ) + B
for ω > 0 and 0 ≤ ϕ < 2π.

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1

26. f(x) = 3
√
3 sin(3x)− 3 cos(3x)

27. f(x) = − sin(x) + cos(x)− 2

28. f(x) = −1
2
sin(2x)−

√
3
2

cos(2x)

29. f(x) = 2
√
3 cos(x)− 2 sin(x)

30. f(x) = 3
2
cos(2x)− 3

√
3

2
sin(2x) + 6

31. f(x) = −1
2
cos(5x)−

√
3
2

sin(5x)

32. f(x) = −6
√
3 cos(3x)− 6 sin(3x)− 3

33. f(x) = 5
√
2

2
sin(x)− 5

√
2

2
cos(x)

34. f(x) = 3 sin
( x
6

)
− 3

√
3 cos

( x
6

)
35. you should have noƟced a relaƟonship between the phases

ϕ for the S(x) and C(x). Show that if f(x) = A sin(ωx+α)+

B, then f(x) = A cos(ωx+ β) + B where β = α− π

2
.

36. Let ϕ be an angle measured in radians and let P(a, b) be a
point on the terminal side of ϕwhen it is drawn in standard
posiƟon. Use Theorem 50 and the sum idenƟty for sine in
Theorem 63 to show that f(x) = a sin(ωx)+b cos(ωx)+B
(with ω > 0) can be rewriƩen as f(x) =

√
a2 + b2 sin(ωx+

ϕ) + B.

37. With the help of your classmates, express the domains of
the funcƟons in Examples 160 and 161 using extended in-
terval notaƟon.
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In Exercises 38 – 43, verify the idenƟty by graphing the right
and leŌ hand sides on a computer or calculator.

38. sin2(x) + cos2(x) = 1

39. sec2(x)− tan2(x) = 1

40. cos(x) = sin
(π
2
− x
)

41. tan(x+ π) = tan(x)

42. sin(2x) = 2 sin(x) cos(x)

43. tan
( x
2

)
=

sin(x)
1+ cos(x)

In Exercises 44 – 50, graph the funcƟon with the help of your
computer or calculator and discuss the given quesƟons with
your classmates.

44. f(x) = cos(3x) + sin(x). Is this funcƟon periodic? If so,
what is the period?

45. f(x) = sin(x)
x . What appears to be the horizontal asymptote

of the graph?

46. f(x) = x sin(x). Graph y = ±x on the same set of axes and
describe the behaviour of f.

47. f(x) = sin
( 1
x

)
. What’s happening as x → 0?

48. f(x) = x− tan(x). Graph y = x on the same set of axes and
describe the behaviour of f.

49. f(x) = e−0.1x (cos(2x) + sin(2x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

50. f(x) = e−0.1x (cos(2x) + 2 sin(x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

51. Show that a constant funcƟon f is periodic by showing that
f(x + 117) = f(x) for all real numbers x. Then show that
f has no period by showing that you cannot find a smallest
number p such that f(x + p) = f(x) for all real numbers
x. Said another way, show that f(x + p) = f(x) for all real
numbers x for ALL values of p > 0, so no smallest value
exists to saƟsfy the definiƟon of ‘period’.
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π
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f(x) = cos(x), 0 ≤ x ≤ π

x

y

π
2

π

−1 1

f−1(x) = arccos(x)

Figure 9.3: ReflecƟng y = cos(x) across
y = x yields y = arccos(x)

9: FçÙã«�Ù TÊÖ®�Ý ®Ä
TÙ®¦ÊÄÊÃ�ãÙù
9.1 Inverse Trigonometric FuncƟons

As the Ɵtle indicates, in this secƟon we concern ourselves with finding inverses
of the (circular) trigonometric funcƟons. Our immediate problem is that, owing
to their periodic nature, none of the six circular funcƟons is one-to-one. To rem-
edy this, we restrict the domains of the circular funcƟons in the same way we
restricted the domain of the quadraƟc funcƟon in Example 106 in SecƟon 6.2
to obtain a one-to-one funcƟon. We first consider f(x) = cos(x). Choosing the
interval [0, π] allows us to keep the range as [−1, 1] as well as the properƟes of
being smooth and conƟnuous.

x

y

Figure 9.1: RestricƟng the domain of f(x) = cos(x) to [0, π].

Recall from SecƟon 6.2 that the inverse of a funcƟon f is typically denoted
f−1. For this reason, some textbooks use the notaƟon f−1(x) = cos−1(x) for the
inverse of f(x) = cos(x). The obvious piƞall here is our convenƟon of wriƟng
(cos(x))2 as cos2(x), (cos(x))3 as cos3(x) and so on. It is far too easy to confuse
cos−1(x)with 1

cos(x) = sec(x) so wewill not use this notaƟon in our text. (But be
aware that many books do! As always, be sure to check the context!) Instead,
we use the notaƟon f−1(x) = arccos(x), read ‘arc-cosine of x’. To understand
the ‘arc’ in ‘arccosine’, recall that an inverse funcƟon, by definiƟon, reverses the
process of the original funcƟon. The funcƟon f(t) = cos(t) takes a real number
input t, associates it with the angle θ = t radians, and returns the value cos(θ).
Digging deeper, we have that cos(θ) = cos(t) is the x-coordinate of the terminal
point on the Unit Circle of an oriented arc of length |t| whose iniƟal point is
(1, 0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and
the outputs as x-coordinates on the Unit Circle. The funcƟon f−1, then, would
take x-coordinates on the Unit Circle and return oriented arcs, hence the ‘arc’ in
arccosine. Figure 9.3 shows the graphs of f(x) = cos(x) and f−1(x) = arccos(x),
where we obtain the laƩer from the former by reflecƟng it across the line y = x,
in accordance with Theorem 36.

We restrict g(x) = sin(x) in a similar manner, although the interval of choice
is
[
− π

2 ,
π
2
]
.

x

y

Figure 9.2: RestricƟng the domain of f(x) = sin(x) to
[
− π

2 ,
π
2

]
.

It should be no surprise that we call g−1(x) = arcsin(x), which is read ‘arc-
sine of x’.

We list some important facts about the arccosine and arcsine funcƟons in
the following theorem.
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2 ≤ x ≤ π
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y
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g−1(x) = arcsin(x)

Figure 9.4: ReflecƟng y = sin(x) across
y = x yields y = arcsin(x)
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Theorem 74 ProperƟes of the Arccosine and Arcsine FuncƟons

• ProperƟes of F(x) = arccos(x)

– Domain: [−1, 1]
– Range: [0, π]
– arccos(x) = t if and only if 0 ≤ t ≤ π and cos(t) = x
– cos(arccos(x)) = x provided−1 ≤ x ≤ 1
– arccos(cos(x)) = x provided 0 ≤ x ≤ π

• ProperƟes of G(x) = arcsin(x)

– Domain: [−1, 1]
– Range:

[
− π

2 ,
π
2
]

– arcsin(x) = t if and only if− π
2 ≤ t ≤ π

2 and sin(t) = x
– sin(arcsin(x)) = x provided−1 ≤ x ≤ 1
– arcsin(sin(x)) = x provided− π

2 ≤ x ≤ π
2

– addiƟonally, arcsine is odd

Everything in Theorem 74 is a direct consequence of the facts that f(x) =
cos(x) for 0 ≤ x ≤ π and F(x) = arccos(x) are inverses of each other as are
g(x) = sin(x) for − π

2 ≤ x ≤ π
2 and G(x) = arcsin(x). It’s about Ɵme for an

example.

Example 162 EvaluaƟng the arcsine and arccosine funcƟons

1. Find the exact values of the following.

(a) arccos
( 1
2
)

(b) arcsin
(√

2
2

)
(c) arccos

(
−

√
2
2

)
(d) arcsin

(
− 1

2
)

(e) arccos
(
cos
(
π
6
))

(f) arccos
(
cos
( 11π

6
))

(g) cos
(
arccos

(
− 3

5
))

(h) sin
(
arccos

(
− 3

5
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan (arccos (x)) (b) cos (2 arcsin(x))

SÊ½çã®ÊÄ

1. (a) To find arccos
( 1
2
)
, we need to find the real number t (or, equiva-

lently, an anglemeasuring t radians) which lies between 0 and πwith
cos(t) = 1

2 . We know t = π
3 meets these criteria, so arccos

( 1
2
)
= π

3 .

(b) The value of arcsin
(√

2
2

)
is a real number t between− π

2 and
π
2 with

sin(t) =
√
2
2 . The number we seek is t = π

4 . Hence, arcsin
(√

2
2

)
=

π
4 .
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An alternaƟve approach to finding tan(t)
is to use the idenƟty 1 + tan2(t) =
sec2(t). Since x = cos(t), sec(t) =

1
cos(t) = 1

x . The reader is invited to work
through this approach to see what, if any,
difficulƟes arise.

9.1 Inverse Trigonometric FuncƟons

(c) Thenumber t = arccos
(
−

√
2
2

)
lies in the interval [0, π]with cos(t) =

−
√
2
2 . Our answer is arccos

(
−

√
2
2

)
= 3π

4 .

(d) To find arcsin
(
− 1

2
)
, we seek the number t in the interval

[
− π

2 ,
π
2
]

with sin(t) = − 1
2 . The answer is t = − π

6 so that arcsin
(
− 1

2
)
= − π

6 .
(e) Since 0 ≤ π

6 ≤ π, one opƟon would be to simply invoke Theorem
74 to get arccos

(
cos
(
π
6
))

= π
6 . However, in order to make sure

we understandwhy this is the case, we choose to work the example
through using the definiƟon of arccosine. Working from the inside
out, arccos

(
cos
(
π
6
))

= arccos
(√

3
2

)
. Now, arccos

(√
3
2

)
is the real

number t with 0 ≤ t ≤ π and cos(t) =
√
3
2 . We find t = π

6 , so that
arccos

(
cos
(
π
6
))

= π
6 .

(f) Since 11π
6 does not fall between 0 and π, Theorem 74 does not ap-

ply. We are forced to work through from the inside out starƟng with
arccos

(
cos
( 11π

6
))

= arccos
(√

3
2

)
. From the previous problem, we

know arccos
(√

3
2

)
= π

6 . Hence, arccos
(
cos
( 11π

6
))

= π
6 .

(g) Oneway to simplify cos
(
arccos

(
− 3

5
))

is to use Theorem 74 directly.
Since − 3

5 is between −1 and 1, we have that cos
(
arccos

(
− 3

5
))

=
− 3

5 and we are done. However, as before, to really understand why
this cancellaƟon occurs, we let t = arccos

(
− 3

5
)
. Then, by definiƟon,

cos(t) = − 3
5 . Hence, cos

(
arccos

(
− 3

5
))

= cos(t) = − 3
5 , and we

are finished in (nearly) the same amount of Ɵme.
(h) As in the previous example, we let t = arccos

(
− 3

5
)
so that cos(t) =

− 3
5 for some t where 0 ≤ t ≤ π. Since cos(t) < 0, we can nar-

row this down a bit and conclude that π
2 < t < π, so that t cor-

responds to an angle in Quadrant II. In terms of t, then, we need
to find sin

(
arccos

(
− 3

5
))

= sin(t). Using the Pythagorean IdenƟty
cos2(t) + sin2(t) = 1, we get

(
− 3

5
)2

+ sin2(t) = 1 or sin(t) = ± 4
5 .

Since t corresponds to a Quadrants II angle, we choose sin(t) = 4
5 .

Hence, sin
(
arccos

(
− 3

5
))

= 4
5 .

2. (a) We begin this problem in the same manner we began the previous
two problems. To help us see the forest for the trees, we let t =
arccos(x), so our goal is to find a way to express tan (arccos (x)) =
tan(t) in terms of x. Since t = arccos(x), we know cos(t) = xwhere
0 ≤ t ≤ π, but since we are aŌer an expression for tan(t), we know
we need to throw out t = π

2 from consideraƟon. Hence, either
0 ≤ t < π

2 or π
2 < t ≤ π so that, geometrically, t corresponds

to an angle in Quadrant I or Quadrant II. One approach to finding
tan(t) is to use the quoƟent idenƟty tan(t) = sin(t)

cos(t) . SubsƟtuƟng
cos(t) = x into the Pythagorean IdenƟty cos2(t) + sin2(t) = 1 gives
x2+ sin2(t) = 1, from which we get sin(t) = ±

√
1− x2. Since t cor-

responds to angles in Quadrants I and II, sin(t) ≥ 0, so we choose
sin(t) =

√
1− x2. Thus,

tan(t) =
sin(t)
cos(t)

=

√
1− x2

x

To determine the values of x for which this equivalence is valid, we
consider our subsƟtuƟon t = arccos(x). Since the domain of arccos(x)
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f−1(x) = arctan(x)

Figure 9.5: ReflecƟng y = tan(x) across
y = x yields y = arctan(x)
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is [−1, 1], we knowwemust restrict−1 ≤ x ≤ 1. AddiƟonally, since
we had to discard t = π

2 , we need to discard x = cos
(
π
2
)
= 0.

Hence, tan (arccos (x)) =
√
1−x2
x is valid for x in [−1, 0) ∪ (0, 1].

(b) We proceed as in the previous problem by wriƟng t = arcsin(x) so
that t lies in the interval

[
− π

2 ,
π
2
]
with sin(t) = x. We aim to ex-

press cos (2 arcsin(x)) = cos(2t) in terms of x. Since cos(2t) is de-
fined everywhere, we get no addiƟonal restricƟons on t as we did in
the previous problem. We have three choices for rewriƟng cos(2t):
cos2(t) − sin2(t), 2 cos2(t) − 1 and 1 − 2 sin2(t). Since we know
x = sin(t), it is easiest to use the last form:

cos (2 arcsin(x)) = cos(2t) = 1− 2 sin2(t) = 1− 2x2

To find the restricƟons on x, we once again appeal to our subsƟtuƟon
t = arcsin(x). Since arcsin(x) is defined only for −1 ≤ x ≤ 1, the
equivalence cos (2 arcsin(x)) = 1− 2x2 is valid only on [−1, 1].

A few remarks about Example 162 are in order. Most of the common errors
encountered in dealing with the inverse circular funcƟons come from the need
to restrict the domains of the original funcƟons so that they are one-to-one. One
instance of this phenomenon is the fact that arccos

(
cos
( 11π

6
))

= π
6 as opposed

to 11π
6 . This is the exact same phenomenon discussed in SecƟon 6.2 when we

saw
√
(−2)2 = 2 as opposed to −2. AddiƟonally, even though the expression

we arrived at in part 2b above, namely 1 − 2x2, is defined for all real numbers,
the equivalence cos (2 arcsin(x)) = 1 − 2x2 is valid for only −1 ≤ x ≤ 1. This
is akin to the fact that while the expression x is defined for all real numbers, the
equivalence

(√
x
)2

= x is valid only for x ≥ 0. For this reason, it pays to be
careful when we determine the intervals where such equivalences are valid.

The next pair of funcƟons we wish to discuss are the inverses of tangent and
cotangent, which are named arctangent and arccotangent, respecƟvely. First,
we restrict f(x) = tan(x) to its fundamental cycle on

(
− π

2 ,
π
2
)
to obtain f−1(x) =

arctan(x). Among other things, note that the verƟcal asymptotes x = − π
2 and

x = π
2 of the graph of f(x) = tan(x) become the horizontal asymptotes y = − π

2
and y = π

2 of the graph of f−1(x) = arctan(x): see Figure 9.5.

Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, π) to obtain
g−1(x) = arccot(x). Once again, the verƟcal asymptotes x = 0 and x = π of
the graph of g(x) = cot(x) become the horizontal asymptotes y = 0 and y = π
of the graph of g−1(x) = arccot(x). We show these graphs in Figure 9.6; the
basic properƟes of the arctangent and arccotangent funcƟons are given in the
following theorem.
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Figure 9.6: ReflecƟng y = cot(x) across
y = x yields y = arccot(x)

9.1 Inverse Trigonometric FuncƟons

Theorem 75 ProperƟes of the Arctangent and Arccotangent Func-
Ɵons

• ProperƟes of F(x) = arctan(x)

– Domain: (−∞,∞)

– Range:
(
− π

2 ,
π
2
)

– as x → −∞, arctan(x) → − π
2
+; as x → ∞, arctan(x) → π

2
−

– arctan(x) = t if and only if− π
2 < t < π

2 and tan(t) = x
– arctan(x) = arccot

( 1
x

)
for x > 0

– tan (arctan(x)) = x for all real numbers x
– arctan(tan(x)) = x provided− π

2 < x < π
2

– addiƟonally, arctangent is odd

• ProperƟes of G(x) = arccot(x)

– Domain: (−∞,∞)

– Range: (0, π)
– as x → −∞, arccot(x) → π−; as x → ∞, arccot(x) → 0+

– arccot(x) = t if and only if 0 < t < π and cot(t) = x
– arccot(x) = arctan

( 1
x

)
for x > 0

– cot (arccot(x)) = x for all real numbers x
– arccot(cot(x)) = x provided 0 < x < π

Example 163 EvaluaƟng the arctangent and arccotangent funcƟons

1. Find the exact values of the following.

(a) arctan(
√
3) (b) arccot(−

√
3)

(c) cot(arccot(−5)) (d) sin
(
arctan

(
− 3

4
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(2 arctan(x)) (b) cos(arccot(2x))

SÊ½çã®ÊÄ

1. (a) We know arctan(
√
3) is the real number t between − π

2 and π
2 with

tan(t) =
√
3. We find t = π

3 , so arctan(
√
3) = π

3 .

(b) The real number t = arccot(−
√
3) lies in the interval (0, π) with

cot(t) = −
√
3. We get arccot(−

√
3) = 5π

6 .
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It’s always a good idea to make sure
the idenƟƟes used in these situaƟons are
valid for all values t under consideraƟon.
Check our work back in Example 162.
Were the idenƟƟes we used there valid
for all t under consideraƟon? A pedanƟc
point, to be sure, but what else do you ex-
pect from this book?

Chapter 9 Further Topics in Trigonometry

(c) We can apply Theorem 75 directly and obtain cot(arccot(−5)) =
−5. However, working it through provides us with yet another op-
portunity to understandwhy this is the case. Leƫng t = arccot(−5),
wehave that tbelongs to the interval (0, π) and cot(t) = −5. Hence,
cot(arccot(−5)) = cot(t) = −5.

(d) We start simplifying sin
(
arctan

(
− 3

4
))

by leƫng t = arctan
(
− 3

4
)
.

Then tan(t) = − 3
4 for some − π

2 < t < π
2 . Since tan(t) < 0, we

know, in fact, − π
2 < t < 0. One way to proceed is to use The

Pythagorean IdenƟty, 1 + cot2(t) = csc2(t), since this relates the
reciprocals of tan(t) and sin(t) and is valid for all t under considera-
Ɵon. From tan(t) = − 3

4 , we get cot(t) = − 4
3 . SubsƟtuƟng, we get

1 +
(
− 4

3
)2

= csc2(t) so that csc(t) = ± 5
3 . Since − π

2 < t < 0, we
choose csc(t) = − 5

3 , so sin(t) = − 3
5 . Hence, sin

(
arctan

(
− 3

4
))

=
− 3

5 .

2. (a) If we let t = arctan(x), then − π
2 < t < π

2 and tan(t) = x. We look
for a way to express tan(2 arctan(x)) = tan(2t) in terms of x. Before
we get started using idenƟƟes, we note that tan(2t) is undefined
when 2t = π

2 +πk for integers k. Dividing both sides of this equaƟon
by 2 tells us we need to exclude values of twhere t = π

4 +
π
2 k, where

k is an integer. The only members of this family which lie in
(
− π

2 ,
π
2
)

are t = ± π
4 , which means the values of t under consideraƟon are(

− π
2 ,−

π
4
)
∪
(
− π

4 ,
π
4
)
∪
(
π
4 ,

π
2
)
. Returning to arctan(2t), we note the

double angle idenƟty tan(2t) = 2 tan(t)
1−tan2(t) , is valid for all the values of

t under consideraƟon, hence we get

tan(2 arctan(x)) = tan(2t) =
2 tan(t)

1− tan2(t)
=

2x
1− x2

To findwhere this equivalence is valid we check backwith our subsƟ-
tuƟon t = arctan(x). Since the domain of arctan(x) is all real num-
bers, the only exclusions come from the values of t we discarded
earlier, t = ± π

4 . Since x = tan(t), this means we exclude x =
tan
(
± π

4
)
= ±1. Hence, the equivalence tan(2 arctan(x)) = 2x

1−x2
holds for all x in (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) To get started, we let t = arccot(2x) so that cot(t) = 2x where
0 < t < π. In terms of t, cos(arccot(2x)) = cos(t), and our goal is to
express the laƩer in terms of x. Since cos(t) is always defined, there
are no addiƟonal restricƟons on t, so we can begin using idenƟƟes
to relate cot(t) to cos(t). The idenƟty cot(t) = cos(t)

sin(t) is valid for t in
(0, π), so our strategy is to obtain sin(t) in terms of x, then write
cos(t) = cot(t) sin(t). The idenƟty 1 + cot2(t) = csc2(t) holds
for all t in (0, π) and relates cot(t) and csc(t) = 1

sin(t) . SubsƟtuƟng
cot(t) = 2x, we get 1 + (2x)2 = csc2(t), or csc(t) = ±

√
4x2 + 1.

Since t is between 0 and π, csc(t) > 0, so csc(t) =
√
4x2 + 1 which

gives sin(t) = 1√
4x2+1 . Hence,

cos(arccot(2x)) = cos(t) = cot(t) sin(t) =
2x√

4x2 + 1

Since arccot(2x) is defined for all real numbers x and we encoun-
tered no addiƟonal restricƟons on t, we have cos (arccot(2x)) =

2x√
4x2+1 for all real numbers x.
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9.1 Inverse Trigonometric FuncƟons

The last two funcƟons to invert are secant and cosecant. A porƟon of each of
their graphs, which were first discussed in SubsecƟon 8.5.2, are given in Figure
9.7 below with the fundamental cycles highlighted.

x

y

x

y

The graph y = sec(x) The graph y = csc(x)

Figure 9.7: The fundamental cycles of f(x) = sec(x) and g(x) = csc(x)

It is clear from the graph of secant that we cannot find one single conƟnu-
ous piece of its graph which covers its enƟre range of (−∞,−1] ∪ [1,∞) and
restricts the domain of the funcƟon so that it is one-to-one. The same is true for
cosecant. Thus in order to define the arcsecant and arccosecant funcƟons, we
must seƩle for a piecewise approach wherein we choose one piece to cover the
top of the range, namely [1,∞), and another piece to cover the boƩom, namely
(−∞,−1]. There are two generally acceptedwaysmake these choiceswhich re-
strict the domains of these funcƟons so that they are one-to-one. One approach
simplifies the Trigonometry associated with the inverse funcƟons, but compli-
cates the Calculus; the other makes the Calculus easier, but the Trigonometry
less so. We present both points of view.

9.1.1 Inverses of Secant and Cosecant: Trigonometry Friendly
Approach

In this subsecƟon, we restrict the secant and cosecant funcƟons to coincide with
the restricƟons on cosine and sine, respecƟvely. For f(x) = sec(x), we restrict
the domain to

[
0, π

2
)
∪
(
π
2 , π
]
(Figure 9.8) and we restrict g(x) = csc(x) to[

− π
2 , 0
)
∪
(
0, π

2
]
(Figure 9.9.

Note that for both arcsecant and arccosecant, the domain is (−∞,−1] ∪
[1,∞). Taking a page from SecƟon 3.2, we can rewrite this as {x : |x| ≥ 1}.
This is oŌen done in Calculus textbooks, so we include it here for completeness.
Using these definiƟons, we get the following properƟes of the arcsecant and
arccosecant funcƟons.
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x

y

π
2

π

−1

1

f(x) = sec(x) on
[
0, π

2

)
∪
(
π
2 , π
]

x

y

π
2

π

−1 1

f−1(x) = arcsec(x)

Figure 9.8: The “Trigonometry Friendly”
definiƟon of arcsec(x)

x

y

−π
2

π
2

−1

1

g(x) = csc(x) on
[
− π

2 , 0
)
∪
(
0, π

2

]

x

y

−π
2

π
2

−1 1

g−1(x) = arccsc(x)

Figure 9.9: The “Trigonometry Friendly”
definiƟon of arccsc(x)

Chapter 9 Further Topics in Trigonometry

Theorem76 ProperƟes of theArcsecant andArccosecant FuncƟons
(“Trigonometry Friendly” version)

• ProperƟes of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
(
π
2 , π
]

– as x → −∞, arcsec(x) → π
2
+; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π

2 < t ≤ π and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
provided |x| ≥ 1

– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π
2 < x ≤ π

• ProperƟes of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
− π

2 , 0
)
∪
(
0, π

2
]

– as x → −∞, arccsc(x) → 0−; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if − π
2 ≤ t < 0 or 0 < t ≤ π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
provided |x| ≥ 1

– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided− π

2 ≤ x < 0 or 0 < x ≤ π
2

– addiƟonally, arccosecant is odd

Example 164 EvaluaƟng the arcsecant and arccosecant funcƟons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

SÊ½çã®ÊÄ

1. (a) Using Theorem 76, we have arcsec(2) = arccos
( 1
2
)
= π

3 .
(b) Once again, Theorem 76 gives us arccsc(−2) = arcsin

(
− 1

2
)
= − π

6 .
(c) Since 5π

4 doesn’t fall between 0 and π
2 or

π
2 and π, we cannot use the

inverse property stated in Theorem 76. We can, nevertheless, begin
byworking ‘inside out’which yields arcsec

(
sec
( 5π

4
))

= arcsec(−
√
2) =

arccos
(
−

√
2
2

)
= 3π

4 .
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9.1 Inverse Trigonometric FuncƟons

(d) Oneway to begin to simplify cot (arccsc (−3)) is to let t = arccsc(−3).
Then, csc(t) = −3 and, since this is negaƟve, we have that t lies in
the interval

[
− π

2 , 0
)
. We are aŌer cot (arccsc (−3)) = cot(t), so we

use the Pythagorean IdenƟty 1 + cot2(t) = csc2(t). SubsƟtuƟng,
we have 1 + cot2(t) = (−3)2, or cot(t) = ±

√
8 = ±2

√
2. Since

− π
2 ≤ t < 0, cot(t) < 0, so we get cot (arccsc (−3)) = −2

√
2.

2. (a) We begin simplifying tan(arcsec(x)) by leƫng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
(
π
2 , π
]
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under consideraƟon, we have
no addiƟonal restricƟons on t. To relate sec(t) to tan(t), we use
the idenƟty 1 + tan2(t) = sec2(t). This is valid for all values of t
under consideraƟon, and when we subsƟtute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. If t belongs to

[
0, π

2
)

then tan(t) ≥ 0; if, on the the other hand, t belongs to
(
π
2 , π
]
then

tan(t) ≤ 0. As a result, we get a piecewise defined funcƟon for
tan(t)

tan(t) =

{ √
x2 − 1, if 0 ≤ t < π

2

−
√
x2 − 1, if π

2 < t ≤ π

Now we need to determine what these condiƟons on t mean for x.
Since x = sec(t), when 0 ≤ t < π

2 , x ≥ 1, and when π
2 < t ≤

π, x ≤ −1. Since we encountered no further restricƟons on t, the
equivalence below holds for all x in (−∞,−1] ∪ [1,∞).

tan(arcsec(x)) =

{ √
x2 − 1, if x ≥ 1

−
√
x2 − 1, if x ≤ −1

(b) To simplify cos(arccsc(4x)), we start by leƫng t = arccsc(4x). Then
csc(t) = 4x for t in

[
− π

2 , 0
)
∪
(
0, π

2
]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addiƟonal restricƟons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the idenƟty cos2(t) + sin2(t) = 1. SubsƟtuƟng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

Since t belongs to
[
− π

2 , 0
)
∪
(
0, π

2
]
, we know cos(t) ≥ 0, so we

choose cos(t) =
√
16−x2
4|x| . (The absolute values here are necessary,

since x could be negaƟve.) To find the values for which this equiva-
lence is valid, we look back at our original substuƟon, t = arccsc(4x).
Since the domain of arccsc(x) requires its argument x to saƟsfy |x| ≥
1, the domain of arccsc(4x) requires |4x| ≥ 1. Using Theorem18, we
rewrite this inequality and solve to get x ≤ − 1

4 or x ≥ 1
4 . Since we

hadnoaddiƟonal restricƟons on t, the equivalence cos(arccsc(4x)) =√
16x2−1
4|x| holds for all x in

(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)
.
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f−1(x) = arcsec(x)

Figure 9.10: The “Calculus Friendly” defi-
niƟon of arcsec(x)

x

y

π
2

π 3π
2

−1

1

g(x) = csc(x) on
(
0, π

2

]
∪
(
π, 3π

2

]
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π
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g−1(x) = arccsc(x)

Figure 9.11: The “Calculus Friendly defini-
Ɵon of arccsc(x)

Chapter 9 Further Topics in Trigonometry

9.1.2 Inverses of Secant and Cosecant: Calculus Friendly Ap-
proach

In this subsecƟon, we restrict f(x) = sec(x) to
[
0, π

2
)
∪
[
π, 3π

2
)
, and we restrict

g(x) = csc(x) to
(
0, π

2
]
∪
(
π, 3π

2
]
.

Using these definiƟons, we get the following result.

Theorem77 ProperƟes of theArcsecant andArccosecant FuncƟons
(“Calculus Friendly” version)

• ProperƟes of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
[
π, 3π

2
)

– as x → −∞, arcsec(x) → 3π
2
−; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π ≤ t < 3π

2 and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
for x ≥ 1 only (Compare this with

the similar result in Theorem 76.)
– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π ≤ x < 3π
2

• ProperƟes of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
(
0, π

2
]
∪
(
π, 3π

2
]

– as x → −∞, arccsc(x) → π+; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if 0 < t ≤ π
2 or π < t ≤ 3π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
for x ≥ 1 only (Compare this with the

similar result in Theorem 76.)
– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided 0 < x ≤ π

2 or π < x ≤ 3π
2

Our next example is a duplicate of Example 164. The interested reader is
invited to compare and contrast the soluƟon to each.

Example 165 EvaluaƟng the arcsecant and arccosecant funcƟons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.
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9.1 Inverse Trigonometric FuncƟons

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

SÊ½çã®ÊÄ

1. (a) Since 2 ≥ 1, we canuse Theorem77 to get arcsec(2) = arccos
( 1
2
)
=

π
3 .

(b) Unfortunately, −2 is not greater to or equal to 1, so we cannot ap-
ply Theorem 77 to arccsc(−2) and convert this into an arcsine prob-
lem. Instead, we appeal to the definiƟon. The real number t =
arccsc(−2) lies in

(
0, π

2
]
∪
(
π, 3π

2
]
and saƟsfies csc(t) = −2. The

t we’re aŌer is t = 7π
6 , so arccsc(−2) = 7π

6 .

(c) Since 5π
4 lies between π and 3π

2 , wemay apply Theorem77 directly to
simplify arcsec

(
sec
( 5π

4
))

= 5π
4 . We encourage the reader to work

this through using the definiƟon as we have done in the previous
examples to see how it goes.

(d) To help simplify cot (arccsc (−3)) we define t = arccsc (−3) so that
cot (arccsc (−3)) = cot(t). We know csc(t) = −3, and since this is
negaƟve, t lies in

(
π, 3π

2
]
. Using the idenƟty 1 + cot2(t) = csc2(t),

we find 1 + cot2(t) = (−3)2 so that cot(t) = ±
√
8 = ±2

√
2.

Since t is in the interval
(
π, 3π

2
]
, we know cot(t) > 0. Our answer is

cot (arccsc (−3)) = 2
√
2.

2. (a) We begin simplifying tan(arcsec(x)) by leƫng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
[
π, 3π

2
)
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under consideraƟon, we have
no addiƟonal restricƟons on t. To relate sec(t) to tan(t), we use
the idenƟty 1 + tan2(t) = sec2(t). This is valid for all values of t
under consideraƟon, and when we subsƟtute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. Since t lies in

[
0, π

2
)
∪[

π, 3π
2
)
, tan(t) ≥ 0, sowe choose tan(t) =

√
x2 − 1. Sincewe found

no addiƟonal restricƟons on t, the equivalence tan(arcsec(x)) =√
x2 − 1holds for all x in the domain of t = arcsec(x), namely (−∞,−1]∪

[1,∞).

(b) To simplify cos(arccsc(4x)), we start by leƫng t = arccsc(4x). Then
csc(t) = 4x for t in

(
0, π

2
]
∪
(
π, 3π

2
]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addiƟonal restricƟons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the idenƟty cos2(t) + sin2(t) = 1. SubsƟtuƟng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

If t lies in
(
0, π

2
]
, then cos(t) ≥ 0, and we choose cos(t) =

√
16x2−1
4|x| .

Otherwise, t belongs to
(
π, 3π

2
]
in which case cos(t) ≤ 0, so, we

choose cos(t) = −
√
16x2−1
4|x| This leads us to a (momentarily) piece-

wise defined funcƟon for cos(t)
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cos(t) =


√
16x2 − 1
4|x|

, if 0 ≤ t ≤ π
2

−
√
16x2 − 1
4|x|

, if π < t ≤ 3π
2

We now see what these restricƟons mean in terms of x. Since 4x =
csc(t), we get that for 0 ≤ t ≤ π

2 , 4x ≥ 1, or x ≥ 1
4 . In this case, we

can simplify |x| = x so

cos(t) =
√
16x2 − 1
4|x|

=

√
16x2 − 1
4x

Similarly, for π < t ≤ 3π
2 , we get 4x ≤ −1, or x ≤ − 1

4 . In this case,
|x| = −x, so we also get

cos(t) = −
√
16x2 − 1
4|x|

= −
√
16x2 − 1
4(−x)

=

√
16x2 − 1
4x

Hence, in all cases, cos(arccsc(4x)) =
√
16x2−1
4x , and this equivalence

is valid for all x in the domain of t = arccsc(4x), namely(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)

9.1.3 Calculators and the Inverse Circular FuncƟons.
In the secƟons to come, we will have need to approximate the values of the
inverse circular funcƟons. On most calculators, only the arcsine, arccosine and
arctangent funcƟons are available and they are usually labelled as sin−1, cos−1

and tan−1, respecƟvely. If we are asked to approximate these values, it is a
simple maƩer to punch up the appropriate decimal on the calculator. If we are
asked for an arccotangent, arcsecant or arccosecant, however, we oŌen need to
employ some ingenuity, as our next example illustrates.

Example 166 Inverse trig funcƟons not on the calculator

1. Use a calculator to approximate the following values to four decimal places.

(a) arccot(2)

(b) arcsec(5)

(c) arccot(−2)

(d) arccsc
(
−3
2

)

2. Find the domain and range of the following funcƟons. Check your answers
using a calculator or computer.

(a) f(x) =
π

2
− arccos

( x
5

)
(b) f(x) = 3 arctan (4x).

(c) f(x) = arccot
( x
2

)
+ π
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1

1

α

θ = arccot(−2) radians

Figure 9.12: EvaluaƟng arccot(−2)

x

y

1

1

π

β

θ = arccot(−2) radians

Figure 9.13: EvaluaƟng arccot(−2)

x

y

1

1

α

θ = arccsc
(
− 3

2

)
radians

Figure 9.14: EvaluaƟng arccsc
(
− 3

2

)

Figure 9.15: y = f(x) = π

2
− arccos

( x
5

)

9.1 Inverse Trigonometric FuncƟons

SÊ½çã®ÊÄ

1. (a) Since 2 > 0, we can use the property listed in Theorem 75 to rewrite
arccot(2) as arccot(2) = arctan

( 1
2
)
. In ‘radian’mode, wefind arccot(2) =

arctan
( 1
2
)
≈ 0.4636.

(b) Since 5 ≥ 1, we can use the property from either Theorem 76 or
Theorem 77 to write arcsec(5) = arccos

( 1
5
)
≈ 1.3694.

(c) Since the argument −2 is negaƟve, we cannot directly apply The-
orem 75 to help us find arccot(−2). Let t = arccot(−2). Then t
is a real number such that 0 < t < π and cot(t) = −2. More-
over, since cot(t) < 0, we know π

2 < t < π. Geometrically, this
means t corresponds to a Quadrant II angle θ = t radians. This al-
lows us to proceed using a ‘reference angle’ approach. Consider α,
the reference angle for θ, as pictured in Figure 9.12. By definiƟon, α
is an acute angle so 0 < α < π

2 , and the Reference Angle Theorem,
Theorem 49, tells us that cot(α) = 2. This means α = arccot(2)
radians. Since the argument of arccotangent is now a posiƟve 2,
we can use Theorem 75 to get α = arccot(2) = arctan

( 1
2
)
radi-

ans. Since θ = π − α = π − arctan
( 1
2
)
≈ 2.6779 radians, we get

arccot(−2) ≈ 2.6779.
Another way to aƩack the problem is to use arctan

(
− 1

2
)
. By def-

iniƟon, the real number t = arctan
(
− 1

2
)
saƟsfies tan(t) = − 1

2
with − π

2 < t < π
2 . Since tan(t) < 0, we know more specifically

that − π
2 < t < 0, so t corresponds to an angle β in Quadrant IV.

To find the value of arccot(−2), we once again visualize the angle
θ = arccot(−2) radians and note that it is a Quadrant II angle with
tan(θ) = − 1

2 . (See Figure 9.13.) Thismeans it is exactly π units away
from β, and we get θ = π+β = π+arctan

(
− 1

2
)
≈ 2.6779 radians.

Hence, as before, arccot(−2) ≈ 2.6779.

(d) If the range of arccosecant is taken to be
[
− π

2 , 0
)
∪
(
0, π

2
]
, we can

use Theorem 76 to get arccsc
(
− 3

2
)
= arcsin

(
− 2

3
)
≈ −0.7297. If,

on the other hand, the range of arccosecant is taken to be
(
0, π

2
]
∪(

π, 3π
2
]
, then we proceed as in the previous problem by leƫng t =

arccsc
(
− 3

2
)
. Then t is a real number with csc(t) = − 3

2 . Since
csc(t) < 0, we have that π < θ ≤ 3π

2 , so t corresponds to a Quad-
rant III angle, θ, as pictured in Figure 9.14. As above, we let α be
the reference angle for θ. Then 0 < α < π

2 and csc(α) = 3
2 , which

means α = arccsc
( 3
2
)
radians. Since the argument of arccosecant

is now posiƟve, we may use Theorem 77 to get α = arccsc
( 3
2
)
=

arcsin
( 2
3
)
radians. Since θ = π + α = π + arcsin

( 2
3
)
≈ 3.8713

radians, arccsc
(
− 3

2
)
≈ 3.8713.

2. (a) Since the domain of F(x) = arccos(x) is−1 ≤ x ≤ 1, we can find the
domain of f(x) = π

2 −arccos
( x
5
)
by seƫng the argument of the arc-

cosine, in this case x
5 , between−1 and 1. Solving−1 ≤ x

5 ≤ 1 gives
−5 ≤ x ≤ 5, so the domain is [−5, 5]. To determine the range of f,
we take a cue from SecƟon 2.6. Three ‘key’ points on the graph of
F(x) = arccos(x) are (−1, π),

(
0, π

2
)
and (1, 0) . Following the pro-

cedure outlined in Theorem 12, we track these points to
(
−5,− π

2
)
,

(0, 0) and
(
5, π

2
)
. Ploƫng these values tells us that the range of f

is
[
− π

2 ,
π
2
]
. (It also confirms our domain!) The graph in Figure 9.15

confirms our results.
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Figure 9.16: y = f(x) = 3 arctan(4x)

Figure 9.17: y = g(x) = arccot
(π
2

)
+ π

Note: as with a graphing calculator, the
GeoGebra soŌware does not have an arc-
cotangent funcƟon. To input a piecewise-
defined funcƟon in GeoGebra, we use
the syntax Function[<function>,
<start x value>, <end x value>.].

Chapter 9 Further Topics in Trigonometry

(b) To find the domain and range of f(x) = 3 arctan (4x), we note that
since the domain of F(x) = arctan(x) is all real numbers, the only
restricƟons, if any, on the domain of f(x) = 3 arctan (4x) come from
the argument of the arctangent, in this case, 4x. Since 4x is defined
for all real numbers, we have established that the domain of f is all
real numbers. To determine the range of f, we can, once again, ap-
peal to Theorem 12. Choosing our ‘key’ point to be (0, 0) and track-
ing the horizontal asymptotes y = − π

2 and y = π
2 , we find that

the graph of y = f(x) = 3 arctan (4x) differs from the graph of
y = F(x) = arctan(x) by a horizontal compression by a factor of
4 and a verƟcal stretch by a factor of 3. It is the laƩer which affects
the range, producing a range of

(
− 3π

2 ,
3π
2
)
. We confirm our findings

using GeoGebra in Figure 9.16.

(c) To find the domain of g(x) = arccot
( x
2
)
+ π, we proceed as above.

Since the domain of G(x) = arccot(x) is (−∞,∞), and x
2 is defined

for all x, we get that the domain of g is (−∞,∞) as well. As for
the range, we note that the range of G(x) = arccot(x), like that
of F(x) = arctan(x), is limited by a pair of horizontal asymptotes,
in this case y = 0 and y = π. Following Theorem 12, we graph
y = g(x) = arccot

( x
2
)
+ π starƟng with y = G(x) = arccot(x)

and first performing a horizontal expansion by a factor of 2 and fol-
lowing that with a verƟcal shiŌ upwards by π. This laƩer transfor-
maƟon is the one which affects the range, making it now (π, 2π).
To check this graphically, we encounter a bit of a problem, since on
many calculators, there is no shortcut buƩon corresponding to the
arccotangent funcƟon. Taking a cue from number 1c, we aƩempt
to rewrite g(x) = arccot

( x
2
)
+ π in terms of the arctangent func-

Ɵon. Using Theorem75, wehave that arccot
( x
2
)
= arctan

( 2
x

)
when

x
2 > 0, or, in this case, when x > 0. Hence, for x > 0, we have
g(x) = arctan

( 2
x

)
+ π. When x

2 < 0, we can use the same argu-
ment in number 1c that gave us arccot(−2) = π + arctan

(
− 1

2
)
to

give us arccot
( x
2
)
= π + arctan

( 2
x

)
. Hence, for x < 0, g(x) =

π + arctan
( 2
x

)
+ π = arctan

( 2
x

)
+ 2π. What about x = 0? We

know g(0) = arccot(0) + π = π, and neither of the formulas for
g involving arctangent will produce this result. Hence, in order to
graph y = g(x) on our computer or calculator, we need to write it
as a piecewise defined funcƟon:

g(x) = arccot
( x
2

)
+ π =


arctan

( 2
x

)
+ 2π, if x < 0

π, if x = 0

arctan
( 2
x

)
+ π, if x > 0

The result is shown in Figure 9.17.

The inverse trigonometric funcƟons are typically found in applicaƟonswhen-
ever the measure of an angle is required. One such scenario is presented in the
following example. (The authors would like to thank Dan SƟtz for this problem
and associated graphics.)
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12 feet

6 feet

θ

Figure 9.18: Angle of inclinaƟon θ for Ex-
ample 167

9.1 Inverse Trigonometric FuncƟons

Example 167 Angle of a pitched roof
The roof on the house below has a ‘6/12 pitch’. This means that when viewed
from the side, the roof line has a rise of 6 feet over a run of 12 feet. Find the
angle of inclinaƟon from the boƩom of the roof to the top of the roof. Express
your answer in decimal degrees, rounded to the nearest hundredth of a degree.

Front View Side View

SÊ½çã®ÊÄ If we divide the side view of the house down the middle,
we find that the roof line forms the hypotenuse of a right triangle with legs of
length 6 feet and 12 feet. Using Theorem 58, we find the angle of inclinaƟon,
labelled θ in Figure 9.18, saƟsfies tan(θ) = 6

12 = 1
2 . Since θ is an acute angle, we

can use the arctangent funcƟon and we find θ = arctan
( 1
2
)
radians ≈ 26.56◦.

9.1.4 Solving EquaƟons Using the Inverse Trigonometric Func-
Ɵons.

In SecƟons 8.2 and 8.3, we learned how to solve equaƟons like sin(θ) = 1
2 for

angles θ and tan(t) = −1 for real numbers t. In each case, we ulƟmately ap-
pealed to the Unit Circle and relied on the fact that the answers corresponded to
a set of ‘common angles’ listed on page 327. If, on the other hand, we had been
asked to find all angles with sin(θ) = 1

3 or solve tan(t) = −2 for real numbers
t, we would have been hard-pressed to do so. With the introducƟon of the in-
verse trigonometric funcƟons, however, we are now in a posiƟon to solve these
equaƟons. A good parallel to keep in mind is how the square root funcƟon can
be used to solve certain quadraƟc equaƟons. The equaƟon x2 = 4 is a lot like
sin(θ) = 1

2 in that it has friendly, ‘common value’ answers x = ±2. The equaƟon
x2 = 7, on the other hand, is a lot like sin(θ) = 1

3 . We know there are answers
(how do we know this again?), but we can’t express them using ‘friendly’ num-
bers. (This is all, of course, a maƩer of opinion. For the record, the authors find
±
√
7 just as ‘nice’ as±2.) To solve x2 = 7, wemake use of the square root func-

Ɵon and write x = ±
√
7. We can certainly approximate these answers using a

calculator, but as far as exact answers go, we leave them as x = ±
√
7. In the

same way, we will use the arcsine funcƟon to solve sin(θ) = 1
3 , as seen in the

following example.
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x

y

1

1

1
3

α = arcsin
(
1
3

)
radians

x

y

1

1

1
3

α

Figure 9.19: Solving sin(θ) = 1
3

x

y

1

1

β = arctan(−2) radians

x

y

1

1

π β

Figure 9.20: Solving tan(t) = −2

Chapter 9 Further Topics in Trigonometry

Example 168 Solving trigonometric equaƟons
Solve the following equaƟons.

1. Find all angles θ for which sin(θ) = 1
3 .

2. Find all real numbers t for which tan(t) = −2

3. Solve sec(x) = − 5
3 for x.

SÊ½çã®ÊÄ

1. If sin(θ) = 1
3 , then the terminal side of θ, when ploƩed in standard posi-

Ɵon, intersects the Unit Circle at y = 1
3 . Geometrically, we see that this

happens at two places: in Quadrant I and Quadrant II. If we let α denote
the acute soluƟon to the equaƟon, then all the soluƟons to this equaƟon
in Quadrant I are coterminal with α, and α serves as the reference angle
for all of the soluƟons to this equaƟon in Quadrant II.
Since 1

3 isn’t the sine of any of the ‘common angles’ discussed earlier, we
use the arcsine funcƟons to express our answers. The real number t =
arcsin

( 1
3
)
is defined so it saƟsfies 0 < t < π

2 with sin(t) =
1
3 . Hence, α =

arcsin
( 1
3
)
radians. Since the soluƟons in Quadrant I are all coterminal

with α, we get part of our soluƟon to be θ = α+2πk = arcsin
( 1
3
)
+2πk

for integers k. Turning our aƩenƟon to Quadrant II, we get one soluƟon
to be π − α. Hence, the Quadrant II soluƟons are θ = π − α + 2πk =
π − arcsin

( 1
3
)
+ 2πk, for integers k.

2. We may visualize the soluƟons to tan(t) = −2 as angles θ with tan(θ) =
−2. Since tangent is negaƟve only in Quadrants II and IV, we focus our
efforts there.
Since −2 isn’t the tangent of any of the ‘common angles’, we need to
use the arctangent funcƟon to express our answers. The real number
t = arctan(−2) saƟsfies tan(t) = −2 and − π

2 < t < 0. If we let
β = arctan(−2) radians, we see that all of the Quadrant IV soluƟons to
tan(θ) = −2 are coterminal with β. Moreover, the soluƟons from Quad-
rant II differ by exactly π units from the soluƟons in Quadrant IV, so all the
soluƟons to tan(θ) = −2 are of the form θ = β+ πk = arctan(−2)+ πk
for some integer k. Switching back to the variable t, we record our final
answer to tan(t) = −2 as t = arctan(−2) + πk for integers k.

3. The last equaƟon we are asked to solve, sec(x) = − 5
3 , poses two im-

mediate problems. First, we are not told whether or not x represents an
angle or a real number. We assume the laƩer, but note that we will use
angles and the Unit Circle to solve the equaƟon regardless. Second, as
we have menƟoned, there is no universally accepted range of the arcse-
cant funcƟon. For that reason, we adopt the advice given in SecƟon 8.3
and convert this to the cosine problem cos(x) = − 3

5 . AdopƟng an angle
approach, we consider the equaƟon cos(θ) = − 3

5 and note that our so-
luƟons lie in Quadrants II and III. Since − 3

5 isn’t the cosine of any of the
‘common angles’, we’ll need to express our soluƟons in terms of the ar-
ccosine funcƟon. The real number t = arccos

(
− 3

5
)
is defined so that

π
2 < t < π with cos(t) = − 3

5 . If we let β = arccos
(
− 3

5
)
radians, we

see that β is a Quadrant II angle. To obtain a Quadrant III angle soluƟon,
we may simply use −β = − arccos

(
− 3

5
)
. Since all angle soluƟons are

coterminal with β or−β, we get our soluƟons to cos(θ) = − 3
5 to be θ =
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x

y

1

1

β = arccos
(
− 3

5

)
radians

x

y

1

1

β = arccos
(
− 3

5

)
radians

−β = − arccos
(
− 3

5

)
radians

Figure 9.21: Solving sec(x) = − 5
3

9.1 Inverse Trigonometric FuncƟons

β+ 2πk = arccos
(
− 3

5
)
+ 2πk or θ = −β+ 2πk = − arccos

(
− 3

5
)
+ 2πk

for integers k. Switching back to the variable x, we record our final answer
to sec(x) = − 5

3 as x = arccos
(
− 3

5
)
+ 2πk or x = − arccos

(
− 3

5
)
+ 2πk

for integers k.

The reader is encouraged to check the answers found in Example 168 - both
analyƟcally and with the calculator (see SecƟon 9.1.3). With pracƟce, the in-
verse trigonometric funcƟons will become as familiar to you as the square root
funcƟon. Speaking of pracƟce …
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Exercises 9.1
Problems
In Exercises 1 – 40, find the exact value.

1. arcsin (−1)

2. arcsin
(
−
√
3
2

)

3. arcsin
(
−
√
2
2

)

4. arcsin
(
−1
2

)
5. arcsin (0)

6. arcsin
(
1
2

)

7. arcsin
(√

2
2

)

8. arcsin
(√

3
2

)
9. arcsin (1)

10. arccos (−1)

11. arccos
(
−
√
3
2

)

12. arccos
(
−
√
2
2

)

13. arccos
(
−1
2

)
14. arccos (0)

15. arccos
(
1
2

)

16. arccos
(√

2
2

)

17. arccos
(√

3
2

)
18. arccos (1)

19. arctan
(
−
√
3
)

20. arctan (−1)

21. arctan
(
−
√
3
3

)
22. arctan (0)

23. arctan
(√

3
3

)
24. arctan (1)

25. arctan
(√

3
)

26. arccot
(
−
√
3
)

27. arccot (−1)

28. arccot
(
−
√
3
3

)
29. arccot (0)

30. arccot
(√

3
3

)
31. arccot (1)

32. arccot
(√

3
)

33. arcsec (2)

34. arccsc (2)

35. arcsec
(√

2
)

36. arccsc
(√

2
)

37. arcsec
(
2
√
3

3

)

38. arccsc
(
2
√
3

3

)
39. arcsec (1)

40. arccsc (1)

In Exercises 41 – 48, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

41. arcsec (−2)

42. arcsec
(
−
√
2
)

43. arcsec
(
−2

√
3

3

)
44. arcsec (−1)
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45. arccsc (−2)

46. arccsc
(
−
√
2
)

47. arccsc
(
−2

√
3

3

)
48. arccsc (−1)

In Exercises 49 – 56, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

49. arcsec (−2)

50. arcsec
(
−
√
2
)

51. arcsec
(
−2

√
3

3

)
52. arcsec (−1)

53. arccsc (−2)

54. arccsc
(
−
√
2
)

55. arccsc
(
−2

√
3

3

)
56. arccsc (−1)

In Exercises 57 – 86, find the exact value or state that it is
undefined.

57. sin
(
arcsin

(
1
2

))

58. sin
(
arcsin

(
−
√
2
2

))

59. sin
(
arcsin

(
3
5

))
60. sin (arcsin (−0.42))

61. sin
(
arcsin

(
5
4

))

62. cos
(
arccos

(√
2
2

))

63. cos
(
arccos

(
−1
2

))

64. cos
(
arccos

(
5
13

))
65. cos (arccos (−0.998))

66. cos (arccos (π))

67. tan (arctan (−1))

68. tan
(
arctan

(√
3
))

69. tan
(
arctan

(
5
12

))
70. tan (arctan (0.965))

71. tan (arctan (3π))

72. cot (arccot (1))

73. cot
(
arccot

(
−
√
3
))

74. cot
(
arccot

(
− 7
24

))
75. cot (arccot (−0.001))

76. cot
(
arccot

(
17π
4

))
77. sec (arcsec (2))

78. sec (arcsec (−1))

79. sec
(
arcsec

(
1
2

))
80. sec (arcsec (0.75))

81. sec (arcsec (117π))

82. csc
(
arccsc

(√
2
))

83. csc
(
arccsc

(
−2

√
3

3

))

84. csc
(
arccsc

(√
2
2

))
85. csc (arccsc (1.0001))

86. csc
(
arccsc

(π
4

))
In Exercises 87 – 106, find the exact value or state that it is
undefined.

87. arcsin
(
sin
(π
6

))
88. arcsin

(
sin
(
−π

3

))

89. arcsin
(
sin
(
3π
4

))
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90. arcsin
(
sin
(
11π
6

))

91. arcsin
(
sin
(
4π
3

))

92. arccos
(
cos
(π
4

))
93. arccos

(
cos
(
2π
3

))

94. arccos
(
cos
(
3π
2

))

95. arccos
(
cos
(
−π

6

))
96. arccos

(
cos
(
5π
4

))

97. arctan
(
tan
(π
3

))
98. arctan

(
tan
(
−π

4

))
99. arctan (tan (π))

100. arctan
(
tan
(π
2

))
101. arctan

(
tan
(
2π
3

))

102. arccot
(
cot
(π
3

))
103. arccot

(
cot
(
−π

4

))
104. arccot (cot (π))

105. arccot
(
cot
(π
2

))
106. arccot

(
cot
(
2π
3

))
In Exercises 107 – 118, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

107. arcsec
(
sec
(π
4

))
108. arcsec

(
sec
(
4π
3

))

109. arcsec
(
sec
(
5π
6

))

110. arcsec
(
sec
(
−π

2

))

111. arcsec
(
sec
(
5π
3

))

112. arccsc
(
csc
(π
6

))

113. arccsc
(
csc
(
5π
4

))

114. arccsc
(
csc
(
2π
3

))

115. arccsc
(
csc
(
−π

2

))

116. arccsc
(
csc
(
11π
6

))

117. arcsec
(
sec
(
11π
12

))

118. arccsc
(
csc
(
9π
8

))
In Exercises 119 – 130, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

119. arcsec
(
sec
(π
4

))

120. arcsec
(
sec
(
4π
3

))

121. arcsec
(
sec
(
5π
6

))

122. arcsec
(
sec
(
−π

2

))

123. arcsec
(
sec
(
5π
3

))

124. arccsc
(
csc
(π
6

))

125. arccsc
(
csc
(
5π
4

))

126. arccsc
(
csc
(
2π
3

))

127. arccsc
(
csc
(
−π

2

))

128. arccsc
(
csc
(
11π
6

))

129. arcsec
(
sec
(
11π
12

))
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130. arccsc
(
csc
(
9π
8

))
In Exercises 131 – 154, find the exact value or state that it is
undefined.

131. sin
(
arccos

(
−1
2

))

132. sin
(
arccos

(
3
5

))
133. sin (arctan (−2))

134. sin
(
arccot

(√
5
))

135. sin (arccsc (−3))

136. cos
(
arcsin

(
− 5
13

))

137. cos
(
arctan

(√
7
))

138. cos (arccot (3))

139. cos (arcsec (5))

140. tan
(
arcsin

(
−2

√
5

5

))

141. tan
(
arccos

(
−1
2

))

142. tan
(
arcsec

(
5
3

))
143. tan (arccot (12))

144. cot
(
arcsin

(
12
13

))

145. cot
(
arccos

(√
3
2

))

146. cot
(
arccsc

(√
5
))

147. cot (arctan (0.25))

148. sec
(
arccos

(√
3
2

))

149. sec
(
arcsin

(
−12
13

))
150. sec (arctan (10))

151. sec
(
arccot

(
−
√
10
10

))

152. csc (arccot (9))

153. csc
(
arcsin

(
3
5

))

154. csc
(
arctan

(
−2
3

))
In Exercises 155 – 164, find the exact value or state that it is
undefined.

155. sin
(
arcsin

(
5
13

)
+

π

4

)
156. cos (arcsec(3) + arctan(2))

157. tan
(
arctan(3) + arccos

(
−3
5

))

158. sin
(
2 arcsin

(
−4
5

))

159. sin
(
2 arccsc

(
13
5

))
160. sin (2 arctan (2))

161. cos
(
2 arcsin

(
3
5

))

162. cos
(
2 arcsec

(
25
7

))

163. cos
(
2 arccot

(
−
√
5
))

164. sin
(
arctan(2)

2

)
In Exercises 165 – 184, rewrite the quanƟty as algebraic ex-
pressions of x and state the domain onwhich the equivalence
is valid.

165. sin (arccos (x))

166. cos (arctan (x))

167. tan (arcsin (x))

168. sec (arctan (x))

169. csc (arccos (x))

170. sin (2 arctan (x))

171. sin (2 arccos (x))

172. cos (2 arctan (x))

173. sin(arccos(2x))
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174. sin
(
arccos

( x
5

))
175. cos

(
arcsin

( x
2

))
176. cos (arctan (3x))

177. sin(2 arcsin(7x))

178. sin
(
2 arcsin

(
x
√
3

3

))
179. cos(2 arcsin(4x))

180. sec(arctan(2x)) tan(arctan(2x))

181. sin (arcsin(x) + arccos(x))

182. cos (arcsin(x) + arctan(x))

183. tan (2 arcsin(x))

184. sin
(
1
2
arctan(x)

)

185. If sin(θ) =
x
2
for −π

2
< θ <

π

2
, find an expression for

θ + sin(2θ) in terms of x.

186. If tan(θ) =
x
7
for −π

2
< θ <

π

2
, find an expression for

1
2
θ − 1

2
sin(2θ) in terms of x.

187. If sec(θ) =
x
4
for 0 < θ <

π

2
, find an expression for

4 tan(θ)− 4θ in terms of x.

In Exercises 188 – 207, solve the equaƟon using the tech-
niques discussed in Example 168 then approximate the solu-
Ɵons which lie in the interval [0, 2π) to four decimal places.

188. sin(x) = 7
11

189. cos(x) = −2
9

190. sin(x) = −0.569

191. cos(x) = 0.117

192. sin(x) = 0.008

193. cos(x) = 359
360

194. tan(x) = 117

195. cot(x) = −12

196. sec(x) = 3
2

197. csc(x) = −90
17

198. tan(x) = −
√
10

199. sin(x) = 3
8

200. cos(x) = − 7
16

201. tan(x) = 0.03

202. sin(x) = 0.3502

203. sin(x) = −0.721

204. cos(x) = 0.9824

205. cos(x) = −0.5637

206. cot(x) = 1
117

207. tan(x) = −0.6109

In Exercises 208 – 210, find the two acute angles in the right
triangle whose sides have the given lengths. Express your an-
swers using degree measure rounded to two decimal places.

208. 3, 4 and 5

209. 5, 12 and 13

210. 336, 527 and 625

211. A guy wire 1000 feet long is aƩached to the top of a tower.
When pulled taut it touches level ground 360 feet from the
base of the tower. What angle does the wire make with
the ground? Express your answer using degree measure
rounded to one decimal place.

212. At Cliffs of Insanity Point, The Great Sasquatch Canyon is
7117 feet deep. From that point, a fire is seen at a loca-
Ɵon known to be 10 miles away from the base of the sheer
canyon wall. What angle of depression is made by the line
of sight from the canyon edge to the fire? Express your an-
swer using degree measure rounded to one decimal place.

213. Shelving is being built at the UƟlity Muffin Research Library
which is to be 14 inches deep. An 18-inch rod will be at-
tached to the wall and the underside of the shelf at its edge
away from the wall, forming a right triangle under the shelf
to support it. What angle, to the nearest degree, will the
rod make with the wall?

214. A parasailor is being pulled by a boat on Lake IppizuƟ. The
cable is 300 feet long and the parasailor is 100 feet above
the surface of the water. What is the angle of elevaƟon
from the boat to the parasailor? Express your answer using
degree measure rounded to one decimal place.
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215. A tag-and-release program to study the Sasquatch popula-
Ɵon of the eponymous Sasquatch NaƟonal Park is begun.
From a 200 foot tall tower, a ranger spots a Sasquatch lum-
bering through the wilderness directly towards the tower.
Let θ denote the angle of depression from the top of the
tower to a point on the ground. If the range of the rifle with
a tranquillizer dart is 300 feet, find the smallest value of θ
for which the corresponding point on the ground is in range
of the rifle. Round your answer to the nearest hundredth
of a degree.

In Exercises 216 – 221, rewrite the given funcƟon as a sinu-
soid of the form S(x) = A sin(ωx+ ϕ) using Exercises 35 and
36 in SecƟon 8.5 for reference. Approximate the value of ϕ
(which is in radians, of course) to four decimal places.

216. f(x) = 5 sin(3x) + 12 cos(3x)

217. f(x) = 3 cos(2x) + 4 sin(2x)

218. f(x) = cos(x)− 3 sin(x)

219. f(x) = 7 sin(10x)− 24 cos(10x)

220. f(x) = − cos(x)− 2
√
2 sin(x)

221. f(x) = 2 sin(x)− cos(x)

In Exercises 222 – 233, find the domain of the given funcƟon.
Write your answers in interval notaƟon.

222. f(x) = arcsin(5x)

223. f(x) = arccos
(
3x− 1

2

)

224. f(x) = arcsin
(
2x2
)

225. f(x) = arccos
(

1
x2 − 4

)
226. f(x) = arctan(4x)

227. f(x) = arccot
(

2x
x2 − 9

)
228. f(x) = arctan(ln(2x− 1))

229. f(x) = arccot(
√
2x− 1)

230. f(x) = arcsec(12x)

231. f(x) = arccsc(x+ 5)

232. f(x) = arcsec
(
x3

8

)
233. f(x) = arccsc

(
e2x
)

234. Show that arcsec(x) = arccos
(
1
x

)
for |x| ≥ 1 as long as

we use
[
0, π

2

)
∪
(π
2
, π
]
as the range of f(x) = arcsec(x).

235. Show that arccsc(x) = arcsin
(
1
x

)
for |x| ≥ 1 as long as

we use
[
−π

2
, 0
)
∪
(
0, π

2

]
as the range of f(x) = arccsc(x).

236. Show that arcsin(x) + arccos(x) = π

2
for−1 ≤ x ≤ 1.

237. Discuss with your classmates why arcsin
(
1
2

)
̸= 30◦.

238. Use the following picture and series of exercises to show
that

arctan(1) + arctan(2) + arctan(3) = π

x

y

A(0, 1)

O(0, 0) B(1, 0) C(2, 0)

D(2, 3)

α
β γ

(a) Clearly△AOB and△BCD are right triangles because
the line throughO and A and the line through C andD
are perpendicular to the x-axis. Use the distance for-
mula to show that△BAD is also a right triangle (with
∠BADbeing the right angle) by showing that the sides
of the triangle saƟsfy the Pythagorean Theorem.

(b) Use△AOB to show that α = arctan(1)

(c) Use△BAD to show that β = arctan(2)

(d) Use△BCD to show that γ = arctan(3)

(e) Use the fact that O, B and C all lie on the x-axis to
conclude that α + β + γ = π. Thus arctan(1) +
arctan(2) + arctan(3) = π.
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Chapter 9 Further Topics in Trigonometry

9.2 Trigonometric EquaƟons and InequaliƟes

In SecƟons 8.2, 8.3 and most recently 9.1, we solved some basic equaƟons in-
volving the trigonometric funcƟons. Belowwe summarize the techniques we’ve
employed thus far. Note that we use the neutral leƩer ‘u’ as the argument of
each circular funcƟon for generality.

Key Idea 39 Strategies for Solving Basic EquaƟons Involving
Trigonometric FuncƟons

• To solve cos(u) = c or sin(u) = c for−1 ≤ c ≤ 1, first solve for u
in the interval [0, 2π) and add integer mulƟples of the period 2π.
If c < −1 or of c > 1, there are no real soluƟons.

• To solve sec(u) = c or csc(u) = c for c ≤ −1 or c ≥ 1, convert
to cosine or sine, respecƟvely, and solve as above. If−1 < c < 1,
there are no real soluƟons.

• To solve tan(u) = c for any real number c, first solve for u in the
interval

(
− π

2 ,
π
2
)
and add integer mulƟples of the period π.

• To solve cot(u) = c for c ̸= 0, convert to tangent and solve as
above. If c = 0, the soluƟon to cot(u) = 0 is u = π

2 + πk for
integers k.

Using the above guidelines, we can comfortably solve sin(x) = 1
2 and find

the soluƟon x = π
6 + 2πk or x = 5π

6 + 2πk for integers k. How do we solve
something like sin(3x) = 1

2? Since this equaƟon has the form sin(u) = 1
2 , we

know the soluƟons take the form u = π
6 + 2πk or u = 5π

6 + 2πk for integers k.
Since the argument of sine here is 3x, we have 3x = π

6 + 2πk or 3x = 5π
6 + 2πk

for integers k. To solve for x, we divide both sides of these equaƟons by 3, (Don’t
forget to divide the 2πk by 3 as well!) and obtain x = π

18 +
2π
3 k or x =

5π
18 +

2π
3 k

for integers k. This is the technique employed in the example below.
Example 169 Solving basic trigonometric equaƟons
Solve the following equaƟons and check your answers analyƟcally. List the so-
luƟons which lie in the interval [0, 2π) and verify them using a graphing uƟlity.

1. cos(2x) = −
√
3
2

2. csc
( 1
3x− π

)
=

√
2

3. cot (3x) = 0

4. sec2(x) = 4

5. tan
( x
2
)
= −3

6. sin(2x) = 0.87

SÊ½çã®ÊÄ

1. The soluƟons to cos(u) = −
√
3
2 are u = 5π

6 + 2πk or u = 7π
6 + 2πk

for integers k. Since the argument of cosine here is 2x, this means 2x =
5π
6 + 2πk or 2x = 7π

6 + 2πk for integers k. Solving for x gives x = 5π
12 + πk

or x = 7π
12 + πk for integers k. To check these answers analyƟcally, we

subsƟtute them into the original equaƟon. For any integer k we have
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Figure 9.22: Solving cos(2x) = −
√
3
2

Figure 9.23: Solving csc
( 1
3 x− π

)
=

√
2

9.2 Trigonometric EquaƟons and InequaliƟes

cos
(
2
[
5π
12

+ πk
])

= cos
(
5π
6

+ 2πk
)

= cos
(
5π
6

)
the period of cosine is 2π

= −
√
3
2

Similarly, we find cos
(
2
[ 7π
12 + πk

])
= cos

( 7π
6 + 2πk

)
= cos

( 7π
6
)

=

−
√
3
2 . To determine which of our soluƟons lie in [0, 2π), we subsƟtute

integer values for k. The soluƟons we keep come from the values of k = 0
and k = 1 and are x = 5π

12 ,
7π
12 ,

17π
12 and 19π

12 . Using GeoGebra, we graph
y = cos(2x) and y = −

√
3
2 and examine where these two graphs intersect

on [0, 2π). We see in Figure 9.22 that the x-coordinates of the intersecƟon
points correspond to the decimal representaƟons of our exact answers.

2. Since this equaƟon has the form csc(u) =
√
2, we rewrite this as sin(u) =√

2
2 and find u = π

4 + 2πk or u = 3π
4 + 2πk for integers k. Since the

argument of cosecant here is
( 1
3x− π

)
,

1
3
x− π =

π

4
+ 2πk or

1
3
x− π =

3π
4

+ 2πk

To solve 1
3x− π = π

4 + 2πk, we first add π to both sides

1
3
x =

π

4
+ 2πk+ π

A common error is to treat the ‘2πk’ and ‘π’ terms as ‘like’ terms and try to
combine them when they are not. (Do you see why?) We can, however,
combine the ‘π’ and ‘ π4 ’ terms to get

1
3
x =

5π
4

+ 2πk

We now finish by mulƟplying both sides by 3 to get

x = 3
(
5π
4

+ 2πk
)

=
15π
4

+ 6πk

Solving the other equaƟon, 1
3x− π = 3π

4 + 2πk produces x = 21π
4 + 6πk

for integers k. To check the first family of answers, we subsƟtute, combine
line terms, and simplify.

csc
(
1
3

[
15π
4

+ 6πk
]
− π

)
= csc

(
5π
4

+ 2πk− π

)
= csc

(π
4
+ 2πk

)
= csc

(π
4

)
the period of cosecant is 2π

=
√
2
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Figure 9.24: Solving cot(3x) = 0

Note: To confirm the soluƟon for Exam-
ple 169.3 graphically using GeoGebra, we
simply plot the cotangent funcƟon. How-
ever, we must be careful when using a
graphing calculator. On many calcula-
tors, there is no funcƟon buƩon for cotan-
gent. We choose to use the quoƟent

idenƟty cot(3x) =
cos(3x)
sin(3x)

. Graphing

y =
cos(3x)
sin(3x)

and y = 0 (the x-axis), we

see that the x-coordinates of the intersec-
Ɵon points approximately match our so-
luƟons. The calculator-using reader is en-
couraged to see what happens if we had
chosen the reciprocal idenƟty cot(3x) =

1
tan(3x)

instead. The graph on the cal-

culator appears idenƟcal, but what hap-
penswhen you try to find the intersecƟon
points?

Figure 9.25: Solving sec2(x) = 4

Chapter 9 Further Topics in Trigonometry

The family x = 21π
4 + 6πk checks similarly. Despite having infinitely many

soluƟons, we find that noneof them lie in [0, 2π). To verify this graphically,
plot y = csc

( 1
3x− π

)
and y =

√
2 in GeoGebra and find that do not

intersect at all over the interval [0, 2π): see Figure 9.23.

3. Since cot(3x) = 0 has the form cot(u) = 0, we know u = π
2 + πk, so, in

this case, 3x = π
2 + πk for integers k. Solving for x yields x = π

6 + π
3 k.

Checking our answers, we get

cot
(
3
[π
6
+

π

3
k
])

= cot
(π
2
+ πk

)
= cot

(π
2

)
the period of cotangent is π

= 0

As k runs through the integers, we obtain six answers, corresponding to
k = 0 through k = 5, which lie in [0, 2π): x = π

6 ,
π
2 ,

5π
6 ,

7π
6 , 3π

2 and 11π
6 :

see Figure 9.24.

4. The complicaƟon in solving an equaƟon like sec2(x) = 4 comes not from
the argument of secant, which is just x, but rather, the fact the secant is
being squared. To get this equaƟon to look like one of the forms listed
on page 414, we extract square roots to get sec(x) = ±2. ConverƟng to
cosines, we have cos(x) = ± 1

2 . For cos(x) =
1
2 , we get x = π

3 + 2πk or
x = 5π

3 +2πk for integers k. For cos(x) = − 1
2 , we get x =

2π
3 +2πk or x =

4π
3 +2πk for integers k. If we take a step back and think of these families of
soluƟons geometrically, we see we are finding the measures of all angles
with a reference angle of π

3 . As a result, these soluƟons can be combined
andwemaywrite our soluƟons as x = π

3 +πk and x = 2π
3 +πk for integers

k. To check the first family of soluƟons, we note that, depending on the
integer k, sec

(
π
3 + πk

)
doesn’t always equal sec

(
π
3
)
. However, it is true

that for all integers k, sec
(
π
3 + πk

)
= ± sec

(
π
3
)
= ±2. (Can you show

this?) As a result,

sec2
(π
3
+ πk

)
=
(
± sec

(π
3

))2
= (±2)2

= 4

The same holds for the family x = 2π
3 + πk. The soluƟons which lie in

[0, 2π) come from the values k = 0 and k = 1, namely x = π
3 ,

2π
3 ,

4π
3 and

5π
3 . To confirmgraphically, we simply plot f(x) = sec2(x) in GeoGebra: see
Figure 9.25. (Again, if you’re using a calculator, you’ll probably have to rely
on a reciprocal idenƟty.) The x-coordinates of the intersecƟon points of
y = 1

(cos(x))2 and y = 4 verify our answers.

5. The equaƟon tan
( x
2
)

= −3 has the form tan(u) = −3, whose solu-
Ɵon is u = arctan(−3) + πk. Hence, x

2 = arctan(−3) + πk, so x =
2 arctan(−3) + 2πk for integers k. To check, we note

tan
(
2 arctan(−3) + 2πk

2

)
= tan (arctan(−3) + πk)

= tan (arctan(−3)) the period of tangent is π
= −3 See Theorem 75
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Figure 9.26: Solving tan( x
2 ) = −3

9.2 Trigonometric EquaƟons and InequaliƟes

To determine which of our answers lie in the interval [0, 2π), we first need
to get an idea of the value of 2 arctan(−3). While we could easily find an
approximaƟon using a calculator, we proceed analyƟcally. Since −3 < 0,
it follows that − π

2 < arctan(−3) < 0. MulƟplying through by 2 gives
−π < 2 arctan(−3) < 0. We are now in a posiƟon to argue which of
the soluƟons x = 2 arctan(−3) + 2πk lie in [0, 2π). For k = 0, we get
x = 2 arctan(−3) < 0, so we discard this answer and all answers x =
2 arctan(−3) + 2πk where k < 0. Next, we turn our aƩenƟon to k =
1 and get x = 2 arctan(−3) + 2π. StarƟng with the inequality −π <
2 arctan(−3) < 0, we add 2π and get π < 2 arctan(−3)+ 2π < 2π. This
means x = 2 arctan(−3) + 2π lies in [0, 2π). Advancing k to 2 produces
x = 2 arctan(−3)+4π. Once again, we get from−π < 2 arctan(−3) < 0
that 3π < 2 arctan(−3) + 4π < 4π. Since this is outside the interval
[0, 2π), we discard x = 2 arctan(−3)+4π and all soluƟons of the form x =
2 arctan(−3) + 2πk for k > 2. Graphically, we see in Figure 9.26 that y =
tan
( x
2
)
and y = −3 intersect only once on [0, 2π) at x = 2 arctan(−3) +

2π ≈ 3.7851.

6. To solve sin(2x) = 0.87, we first note that it has the form sin(u) = 0.87,
which has the family of soluƟons u = arcsin(0.87) + 2πk or u = π −
arcsin(0.87) + 2πk for integers k. Since the argument of sine here is 2x,
we get 2x = arcsin(0.87) + 2πk or 2x = π − arcsin(0.87) + 2πk which
gives x = 1

2 arcsin(0.87)+ πk or x = π
2 −

1
2 arcsin(0.87)+ πk for integers

k. To check,

sin
(
2
[
1
2
arcsin(0.87) + πk

])
= sin (arcsin(0.87) + 2πk)

= sin (arcsin(0.87))
the period of sine is 2π

= 0.87 See Theorem 74

For the family x = π
2 − 1

2 arcsin(0.87) + πk , we get

sin
(
2
[
π

2
− 1

2
arcsin(0.87) + πk

])
= sin (π − arcsin(0.87) + 2πk)

= sin (π − arcsin(0.87))
the period of sine is 2π

= sin (arcsin(0.87))
sin(π − t) = sin(t)

= 0.87 See Theorem 74

To determine which of these soluƟons lie in [0, 2π), we first need to get
an idea of the value of x = 1

2 arcsin(0.87). Once again, we could use the
calculator, but we adopt an analyƟc route here.
By definiƟon, 0 < arcsin(0.87) < π

2 so that mulƟplying through by 1
2

gives us 0 < 1
2 arcsin(0.87) <

π
4 . StarƟng with the family of soluƟons x =

1
2 arcsin(0.87)+πk, we use the same kind of arguments as in our soluƟon
to number 5 above and find only the soluƟons corresponding to k = 0 and
k = 1 lie in [0, 2π): x = 1

2 arcsin(0.87) and x = 1
2 arcsin(0.87) + π. Next,

wemove to the family x = π
2−

1
2 arcsin(0.87)+πk for integers k. Here, we

need to get a beƩer esƟmate of π
2 − 1

2 arcsin(0.87). From the inequality

417



Figure 9.27: Solving sin(2x) = 0.87

Figure 9.28: Solving 3 sin3(x) = sin2(x)

Figure 9.29: Zooming in on the first two
soluƟons for Example 170.1

Chapter 9 Further Topics in Trigonometry

0 < 1
2 arcsin(0.87) < π

4 , we first mulƟply through by −1 and then add
π
2 to get π

2 > π
2 − 1

2 arcsin(0.87) >
π
4 , or

π
4 < π

2 − 1
2 arcsin(0.87) <

π
2 .

Proceeding with the usual arguments, we find the only soluƟons which lie
in [0, 2π) correspond to k = 0 and k = 1, namely x = π

2 − 1
2 arcsin(0.87)

and x = 3π
2 − 1

2 arcsin(0.87). All told, we have found four soluƟons to
sin(2x) = 0.87 in [0, 2π): x = 1

2 arcsin(0.87), x =
1
2 arcsin(0.87)+π, x =

π
2 − 1

2 arcsin(0.87) and x = 3π
2 − 1

2 arcsin(0.87). By graphing y = sin(2x)
and y = 0.87 in Figure 9.27, we confirm our results.

Each of the problems in Example 169 featured one trigonometric funcƟon.
If an equaƟon involves two different trigonometric funcƟons or if the equaƟon
contains the same trigonometric funcƟon but with different arguments, we will
need to use idenƟƟes and Algebra to reduce the equaƟon to the same form as
those given on page 414.

Example 170 Solving trigonometric equaƟons using idenƟƟes
Solve the following equaƟons and list the soluƟonswhich lie in the interval [0, 2π).
Verify your soluƟons on [0, 2π) graphically.

1. 3 sin3(x) = sin2(x)

2. sec2(x) = tan(x) + 3

3. cos(2x) = 3 cos(x)− 2

4. cos(3x) = 2− cos(x)

5. cos(3x) = cos(5x)

6. sin(2x) =
√
3 cos(x)

7. sin(x) cos
( x
2
)
+ cos(x) sin

( x
2
)
= 1

8. cos(x)−
√
3 sin(x) = 2

SÊ½çã®ÊÄ

1. We resist the temptaƟon to divide both sides of 3 sin3(x) = sin2(x) by
sin2(x) (What goes wrong if you do?) and instead gather all of the terms
to one side of the equaƟon and factor.

3 sin3(x) = sin2(x)
3 sin3(x)− sin2(x) = 0

sin2(x)(3 sin(x)− 1) = 0 Factor out sin2(x) from both terms.

We get sin2(x) = 0 or 3 sin(x)−1 = 0. Solving for sin(x), we find sin(x) =
0 or sin(x) = 1

3 . The soluƟon to the first equaƟon is x = πk, with x = 0
and x = π being the two soluƟonswhich lie in [0, 2π). To solve sin(x) = 1

3 ,
we use the arcsine funcƟon to get x = arcsin

( 1
3
)
+ 2πk or x = π −

arcsin
( 1
3
)
+2πk for integers k. We find the two soluƟons here which lie in

[0, 2π) to be x = arcsin
( 1
3
)
and x = π− arcsin

( 1
3
)
. To check graphically,

we plot y = 3(sin(x))3 and y = (sin(x))2 and find the x-coordinates of
the intersecƟon points of these two curves in Figure 9.28. Some extra
zooming is required near x = 0 and x = π to verify that these two curves
do in fact intersect four Ɵmes: see Figure 9.29. (Note that we are not
counƟng the point (2π, 0) in our soluƟon set since x = 2π is not in the
interval [0, 2π). In the forthcoming soluƟons, remember that while x =
2πmay be a soluƟon to the equaƟon, it isn’t counted among the soluƟons
in [0, 2π).)
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Figure 9.30: Solving sec2(x) = tan(x)+ 3

Figure 9.31: Solving cos(2x) = 3 cos(x)−
2

9.2 Trigonometric EquaƟons and InequaliƟes

2. Analysis of sec2(x) = tan(x)+3 reveals two different trigonometric func-
Ɵons, so an idenƟty is in order. Since sec2(x) = 1+ tan2(x), we get

sec2(x) = tan(x) + 3
1+ tan2(x) = tan(x) + 3 Since sec2(x) = 1+ tan2(x).

tan2(x)− tan(x)− 2 = 0
u2 − u− 2 = 0 Let u = tan(x).

(u+ 1)(u− 2) = 0

This gives u = −1 or u = 2. Since u = tan(x), we have tan(x) = −1
or tan(x) = 2. From tan(x) = −1, we get x = − π

4 + πk for inte-
gers k. To solve tan(x) = 2, we employ the arctangent funcƟon and get
x = arctan(2) + πk for integers k. From the first set of soluƟons, we get
x = 3π

4 and x = 7π
4 as our answerswhich lie in [0, 2π). Using the same sort

of argument we saw in Example 169, we get x = arctan(2) and x = π +
arctan(2) as answers from our second set of soluƟons which lie in [0, 2π).
We confirm our answers by ploƫng y = sec2(x) and y = tan(x) + 3 in
GeoGebra; see Figure 9.30. (Again, if you are using a graphing calcula-
tor rather than soŌware, you may need to use a reciprocal idenƟty and
rewrite the secant as a cosine and graph y = 1

(cos(x))2 and y = tan(x) + 3
to find the x-values of the points where they intersect.)

3. In the equaƟon cos(2x) = 3 cos(x) − 2, we have the same circular func-
Ɵon, namely cosine, on both sides but the arguments differ. Using the
idenƟty cos(2x) = 2 cos2(x) − 1, we obtain a ‘quadraƟc in disguise’ and
proceed as we have done in the past.

cos(2x) = 3 cos(x)− 2
2 cos2(x)− 1 = 3 cos(x)− 2 Since cos(2x) = 2 cos2(x)− 1.

2 cos2(x)− 3 cos(x) + 1 = 0
2u2 − 3u+ 1 = 0 Let u = cos(x).

(2u− 1)(u− 1) = 0

This gives u = 1
2 or u = 1. Since u = cos(x), we get cos(x) = 1

2 or
cos(x) = 1. Solving cos(x) = 1

2 , we get x = π
3 + 2πk or x = 5π

3 + 2πk
for integers k. From cos(x) = 1, we get x = 2πk for integers k. The
answers which lie in [0, 2π) are x = 0, π

3 , and
5π
3 . Graphing y = cos(2x)

and y = 3 cos(x)− 2 in Figure 9.31, we find, aŌer a liƩle extra effort, that
the curves intersect in three places on [0, 2π), and the x-coordinates of
these points confirm our results.

4. To solve cos(3x) = 2 − cos(x), we use the same technique as in the pre-
vious problem. From Example 153, number 4, we know that cos(3x) =
4 cos3(x) − 3 cos(x). This transforms the equaƟon into a polynomial in
terms of cos(x).
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Figure 9.32: Solving cos(3x) = 2−cos(x)

Figure 9.33: Solving cos(3x) = cos(5x)

Figure 9.34: Solving sin(2x)−
√
3 cos(x)

Figure 9.35: Solving sin(x) cos( x
2 ) +

cos(x) sin( x
2 ) = 1

Chapter 9 Further Topics in Trigonometry

cos(3x) = 2− cos(x)
4 cos3(x)− 3 cos(x) = 2− cos(x)

2 cos3(x)− 2 cos(x)− 2 = 0
4u3 − 2u− 2 = 0 Let u = cos(x).

To solve 4u3 − 2u− 2 = 0, we need the techniques in Chapter 4 to factor
4u3 − 2u − 2 into (u − 1)

(
4u2 + 4u+ 2

)
. We get either u − 1 = 0 or

4u2 + 2u+ 2 = 0, and since the discriminant of the laƩer is negaƟve, the
only real soluƟon to 4u3 − 2u − 2 = 0 is u = 1. Since u = cos(x), we
get cos(x) = 1, so x = 2πk for integers k. The only soluƟon which lies in
[0, 2π) is x = 0. Graphing y = cos(3x) and y = 2−cos(x) on the same set
of axes over [0, 2π) shows that the graphs intersect at (0, 1), as required:
see Figure 9.32.

5. While we could approach cos(3x) = cos(5x) in the same manner as we
did the previous two problems, we choose instead to showcase the uƟl-
ity of the Sum to Product IdenƟƟes. From cos(3x) = cos(5x), we get
cos(5x) − cos(3x) = 0, and it is the presence of 0 on the right hand side
that indicates a switch to a product would be a good move. (As always,
experience is the greatest teacher here!) Using Theorem 69, we have
that cos(5x)− cos(3x) = −2 sin

( 5x+3x
2
)
sin
( 5x−3x

2
)
= −2 sin(4x) sin(x).

Hence, the equaƟon cos(5x) = cos(3x) is equivalent to−2 sin(4x) sin(x) =
0. From this, we get sin(4x) = 0 or sin(x) = 0. Solving sin(4x) = 0 gives
x = π

4 k for integers k, and the soluƟon to sin(x) = 0 is x = πk for integers
k. The second set of soluƟons is contained in the first set of soluƟons,
(when in doubt, write it out!) so our final soluƟon to cos(5x) = cos(3x) is
x = π

4 k for integers k. There are eight of these answerswhich lie in [0, 2π):
x = 0, π

4 ,
π
2 ,

3π
4 , π,

5π
4 ,

3π
2 and 7π

4 . Our plot of the graphs of y = cos(3x)
and y = cos(5x) in Figure 9.33 bears this out.

6. In examining the equaƟon sin(2x) =
√
3 cos(x), not only do we have dif-

ferent circular funcƟons involved, namely sine and cosine, we also have
different arguments to contend with, namely 2x and x. Using the idenƟty
sin(2x) = 2 sin(x) cos(x) makes all of the arguments the same and we
proceed as we would solving any nonlinear equaƟon – gather all of the
nonzero terms on one side of the equaƟon and factor.

sin(2x) =
√
3 cos(x)

2 sin(x) cos(x) =
√
3 cos(x) (sin(2x) = 2 sin(x) cos(x))

2 sin(x) cos(x)−
√
3 cos(x) = 0

cos(x)(2 sin(x)−
√
3) = 0

from which we get cos(x) = 0 or sin(x) =
√
3
2 . From cos(x) = 0, we

obtain x = π
2 + πk for integers k. From sin(x) =

√
3
2 , we get x = π

3 + 2πk
or x = 2π

3 +2πk for integers k. The answers which lie in [0, 2π) are x = π
2 ,

3π
2 ,

π
3 and 2π

3 . We graph y = sin(2x) and y =
√
3 cos(x) in Figure 9.34 to

verify our answers.
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Figure 9.36: Solving cos(x)−
√
3 sin(x) =

2

See page 148, Example 67, page 206,
page 252, Example 120 and Example 124
for discussion of the use of sign diagrams
in solving inequaliƟes.

0

(−)

π
6

0 (+)

5π
6

0 (−)

2π

Figure 9.37: Solving 2 sin(x) ≤ 1

9.2 Trigonometric EquaƟons and InequaliƟes

7. Unlike the previous problem, there seems to be noquickway to get the cir-
cular funcƟons or their arguments tomatch in the equaƟon sin(x) cos

( x
2
)
+

cos(x) sin
( x
2
)
= 1. If we stare at it long enough, however, we realize that

the leŌ hand side is the expanded formof the sum formula for sin
(
x+ x

2
)
.

Hence, our original equaƟon is equivalent to sin
( 3
2x
)
= 1. Solving, we

find x = π
3 + 4π

3 k for integers k. Two of these soluƟons lie in [0, 2π):
x = π

3 and x = 5π
3 . Graphing y = sin(x) cos

( x
2
)
+ cos(x) sin

( x
2
)
and

y = 1 in Figure 9.35 validates our soluƟons.

8. With the absence of double angles or squares, there doesn’t seem to be
muchwe can do. However, since the arguments of the cosine and sine are
the same, we can rewrite the leŌ hand side of this equaƟon as a sinusoid.
(We are essenƟally ‘undoing’ the sum / difference formula for cosine or
sine, depending on which form we use, so this problem is actually closely
related to the previous one!) To fit f(x) = cos(x)−

√
3 sin(x) to the form

A sin(ωt+ϕ)+B, we use what we learned in Example 159 and find A = 2,
B = 0, ω = 1 and ϕ = 5π

6 . Hence, we can rewrite the equaƟon cos(x) −√
3 sin(x) = 2 as 2 sin

(
x+ 5π

6
)
= 2, or sin

(
x+ 5π

6
)
= 1. Solving the

laƩer, we get x = − π
3 + 2πk for integers k. Only one of these soluƟons,

x = 5π
3 , which corresponds to k = 1, lies in [0, 2π). Geometrically, we see

in Figure 9.36 that y = cos(x) −
√
3 sin(x) and y = 2 intersect just once,

supporƟng our answer.

Unfortunately there is no systemaƟc approach to solving trigonometric equa-
Ɵons. When it comes to solving equaƟons involving the trigonometric funcƟons,
it helps to just try something.

Next, we focus on solving inequaliƟes involving the trigonometric funcƟons.
Since these funcƟons are conƟnuous on their domains, we may use the sign
diagram technique we’ve used in the past to solve the inequaliƟes.
Example 171 Solving trigonometric inequaliƟes
Solve the following inequaliƟes on [0, 2π). Express your answers using interval
notaƟon and verify your answers graphically.

1. 2 sin(x) ≤ 1 2. sin(2x) > cos(x) 3. tan(x) ≥ 3

SÊ½çã®ÊÄ

1. We begin solving 2 sin(x) ≤ 1 by collecƟng all of the terms on one side
of the equaƟon and zero on the other to get 2 sin(x) − 1 ≤ 0. Next, we
let f(x) = 2 sin(x) − 1 and note that our original inequality is equivalent
to solving f(x) ≤ 0. We now look to see where, if ever, f is undefined
and where f(x) = 0. Since the domain of f is all real numbers, we can
immediately set about finding the zeros of f. Solving f(x) = 0, we have
2 sin(x) − 1 = 0 or sin(x) = 1

2 . The soluƟons here are x = π
6 + 2πk

and x = 5π
6 + 2πk for integers k. Since we are restricƟng our aƩenƟon

to [0, 2π), only x = π
6 and x = 5π

6 are of concern to us. Next, we choose
test values in [0, 2π) other than the zeros and determine if f is posiƟve or
negaƟve there. For x = 0 we have f(0) = −1, for x = π

2 we get f
(
π
2
)
= 1

and for x = πweget f(π) = −1. Since our original inequality is equivalent
to f(x) ≤ 0, we are looking for where the funcƟon is negaƟve (−) or 0,
and we get the intervals

[
0, π

6
]
∪
[ 5π

6 , 2π
)
. We can confirm our answer

graphically by seeing where the graph of y = 2 sin(x) crosses or is below
the graph of y = 1: see Figure 9.37.
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0

(−)

π
6

0 (+)

π
2

0 (−)

5π
6

0 (+)

3π
2

0 (−)

2π

Figure 9.38: Solving sin(2x) > cos(x)

0

(−)

arctan(3)

0 (+)

π
2

‽ (−)

(arctan(3) + π)

0 (+)

3π
2

‽ (−)

2π

Figure 9.39: Solving tan(x) ≥ 3
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2. We first rewrite sin(2x) > cos(x) as sin(2x) − cos(x) > 0 and let f(x) =
sin(2x)−cos(x). Our original inequality is thus equivalent to f(x) > 0. The
domain of f is all real numbers, so we can advance to finding the zeros of
f. Seƫng f(x) = 0 yields sin(2x) − cos(x) = 0, which, by way of the
double angle idenƟty for sine, becomes 2 sin(x) cos(x) − cos(x) = 0 or
cos(x)(2 sin(x)−1) = 0. From cos(x) = 0, we get x = π

2 +πk for integers
k of which only x = π

2 and x = 3π
2 lie in [0, 2π). For 2 sin(x) − 1 = 0, we

get sin(x) = 1
2 which gives x = π

6 + 2πk or x = 5π
6 + 2πk for integers

k. Of those, only x = π
6 and x = 5π

6 lie in [0, 2π). Next, we choose our
test values. For x = 0 we find f(0) = −1; when x = π

4 we get f
(
π
4
)
=

1 −
√
2
2 = 2−

√
2

2 ; for x = 3π
4 we get f

( 3π
4
)
= −1 +

√
2
2 =

√
2−2
2 ; when

x = πwehave f(π) = 1, and lastly, for x = 7π
4 we get f

( 7π
4
)
= −1−

√
2
2 =

−2−
√
2

2 . We see f(x) > 0 on
(
π
6 ,

π
2
)
∪
( 5π

6 ,
3π
2
)
, so this is our answer. We

can use GeoGebra to check that the graph of y = sin(2x) is indeed above
the graph of y = cos(x) on those intervals; see Figure 9.38.

3. Proceeding as in the last two problems, we rewrite tan(x) ≥ 3 as tan(x)−
3 ≥ 0 and let f(x) = tan(x)− 3. We note that on [0, 2π), f is undefined at
x = π

2 and 3π
2 , so those values will need the usual disclaimer on the sign

diagram. (See page 206 for a discussion of the non-standard character
known as the interrobang.) Moving along to zeros, solving f(x) = tan(x)−
3 = 0 requires the arctangent funcƟon. We find x = arctan(3) + πk for
integers k and of these, only x = arctan(3) and x = arctan(3) + π lie in
[0, 2π). Since 3 > 0, we know 0 < arctan(3) < π

2 which allows us to
posiƟon these zeros correctly on the sign diagram. To choose test values,
we beginwith x = 0 andfind f(0) = −3. Finding a convenient test value in
the interval

(
arctan(3), π

2
)
is a bitmore challenging. Keep inmind that the

arctangent funcƟon is increasing and is bounded above by π
2 . This means

that the number x = arctan(117) is guaranteed to lie between arctan(3)
and π

2 . (We could have chosen any value arctan(t) where t > 3.) We
see that f(arctan(117)) = tan(arctan(117)) − 3 = 114. For our next
test value, we take x = π and find f(π) = −3. To find our next test
value, we note that since arctan(3) < arctan(117) < π

2 , it follows (by
adding π through the inequality) that arctan(3)+π < arctan(117)+π <
3π
2 . EvaluaƟng f at x = arctan(117) + π yields f(arctan(117) + π) =
tan(arctan(117)+π)−3 = tan(arctan(117))−3 = 114. We choose our
last test value to be x = 7π

4 and find f
( 7π

4
)
= −4. Since wewant f(x) ≥ 0,

we see that our answer is
[
arctan(3), π

2
)
∪
[
arctan(3) + π, 3π

2
)
. Using the

graphs of y = tan(x) and y = 3, we see in Figure 9.39 when the graph of
the former is above (or meets) the graph of the laƩer.

Our next example puts solving equaƟons and inequaliƟes to good use – find-
ing domains of funcƟons.

Example 172 Determining domains of funcƟons
Express the domain of the following funcƟons using extended interval notaƟon.
(See page 351 for details about this notaƟon.)

1. f(x) = csc
(
2x+ π

3
)

2. f(x) =
sin(x)

2 cos(x)− 1

3. f(x) =
√
1− cot(x)
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1. To find the domain of f(x) = csc
(
2x+ π

3
)
, we rewrite f in terms of sine as

f(x) =
1

sin
(
2x+ π

3
) . Since the sine funcƟon is defined everywhere, our

only concern comes fromzeros in the denominator. Solving sin
(
2x+ π

3
)
=

0, we get x = − π
6 +

π
2 k for integers k. In set-builder notaƟon, our domain

is
{
x : x ̸= − π

6 + π
2 k for integers k

}
. To help visualize the domain, we fol-

low the old mantra ‘When in doubt, write it out!’ We get{
x : x ̸= −π

6
,
2π
6
,−4π

6
,
5π
6
,−7π

6
,
8π
6
, . . .

}
,

where we have kept the denominators 6 throughout to help see the pat-
tern. Graphing the situaƟon on a number line, we have

− 7π
6

− 4π
6

−π
6

2π
6

5π
6

8π
6

Proceeding as we did on page 351 in SecƟon 8.3.1, we let xk denote the
kth number excluded from the domain and we have xk = − π

6 + π
2 k =

(3k−1)π
6 for integers k. The intervals which comprise the domain are of

the form (xk, xk+1) =
(

(3k−1)π
6 , (3k+2)π

6

)
as k runs through the integers.

Using extended interval notaƟon, we have that the domain is
∞∪

k=−∞

(
(3k− 1)π

6
,
(3k+ 2)π

6

)
Wecan check our answer by subsƟtuƟng in values of k to see that itmatches
our diagram.

2. Since the domains of sin(x) and cos(x) are all real numbers, the only con-
cern when finding the domain of f(x) = sin(x)

2 cos(x)−1 is division by zero so we
set the denominator equal to zero and solve. From2 cos(x)−1 = 0we get
cos(x) = 1

2 so that x =
π
3 + 2πk or x = 5π

3 + 2πk for integers k. Using set-
builder notaƟon, the domain is

{
x : x ̸= π

3 + 2πk and x ̸= 5π
3 + 2πk for integers k

}
,

or
{
x : x ̸= ± π

3 ,±
5π
3 ,±

7π
3 ,±

11π
3 , . . .

}
, so we have

− 11π
3

− 7π
3

− 5π
3

−π
3

π
3

5π
3

7π
3

11π
3

Unlike the previous example, we have two different families of points to
consider, and we present two ways of dealing with this kind of situaƟon.
One way is to generalize what we did in the previous example and use the
formulas we found in our domain work to describe the intervals. To that
end, we let ak = π

3 + 2πk = (6k+1)π
3 and bk = 5π

3 + 2πk = (6k+5)π
3 for

integers k. The goal now is to write the domain in terms of the a’s an b’s.
We find a0 = π

3 , a1 = 7π
3 , a−1 = − 5π

3 , a2 = 13π
3 , a−2 = − 11π

3 , b0 = 5π
3 ,

b1 = 11π
3 , b−1 = − π

3 , b2 = 17π
3 and b−2 = − 7π

3 . Hence, in terms of the
a’s and b’s, our domain is

. . . (a−2, b−2)∪(b−2, a−1)∪(a−1, b−1)∪(b−1, a0)∪(a0, b0)∪(b0, a1)∪(a1, b1)∪. . .
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If we group these intervals in pairs, (a−2, b−2)∪ (b−2, a−1), (a−1, b−1)∪
(b−1, a0), (a0, b0)∪ (b0, a1) and so forth, we see a paƩern emerge of the
form (ak, bk)∪ (bk, ak+1) for integers k so that our domain can be wriƩen
as

∞∪
k=−∞

(ak, bk) ∪ (bk, ak+1) =

∞∪
k=−∞

(
(6k+ 1)π

3
,
(6k+ 5)π

3

)
∪
(
(6k+ 5)π

3
,
(6k+ 7)π

3

)

A second approach to the problem exploits the periodic nature of f. Since
cos(x) and sin(x) have period 2π, it’s not too difficult to show the funcƟon
f repeats itself every 2π units. (This doesn’t necessarily mean the period
of f is 2π. The tangent funcƟon is comprised of cos(x) and sin(x), but
its period is half theirs. The reader is invited to invesƟgate the period of
f.) This means if we can find a formula for the domain on an interval of
length 2π, we can express the enƟre domain by translaƟng our answer
leŌ and right on the x-axis by adding integer mulƟples of 2π. One such
interval that arises from our domain work is

[
π
3 ,

7π
3
]
. The porƟon of the

domain here is
(
π
3 ,

5π
3
)
∪
( 5π

3 ,
7π
3
)
. Adding integer mulƟples of 2π, we

get the family of intervals
(
π
3 + 2πk, 5π

3 + 2πk
)
∪
( 5π

3 + 2πk, 7π
3 + 2πk

)
for integers k. We leave it to the reader to show that geƫng common
denominators leads to our previous answer.

3. To find the domain of f(x) =
√
1− cot(x), we first note that, due to the

presence of the cot(x) term, x ̸= πk for integers k. Next, we recall that
for the square root to be defined, we need 1 − cot(x) ≥ 0. Unlike the
inequaliƟes we solved in Example 171, we are not restricted here to a
given interval. Our strategy is to solve this inequality over (0, π) (the same
interval which generates a fundamental cycle of cotangent) and then add
integer mulƟples of the period, in this case, π. We let g(x) = 1 − cot(x)
and set about making a sign diagram for g over the interval (0, π) to find
where g(x) ≥ 0. We note that g is undefined for x = πk for integers k,
in parƟcular, at the endpoints of our interval x = 0 and x = π. Next, we
look for the zeros of g. Solving g(x) = 0, we get cot(x) = 1 or x = π

4 +πk
for integers k and only one of these, x = π

4 , lies in (0, π). Choosing the
test values x = π

6 and x = π
2 , we get g

(
π
6
)
= 1−

√
3, and g

(
π
2
)
= 1.

0

‽ (−)

π
4

0 (+)

π

‽

We find g(x) ≥ 0 on
[
π
4 , π
)
. AddingmulƟples of the period we get our so-

luƟon to consist of the intervals
[
π
4 + πk, π + πk

)
=
[
(4k+1)π

4 , (k+ 1)π
)
.

Using extended interval notaƟon, we express our final answer as

∞∪
k=−∞

[
(4k+ 1)π

4
, (k+ 1)π

)
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Figure 9.40: Solving arcsin(2x) = π
3

Figure 9.41: Solving 4 arccos(x)−3π = 0

9.2 Trigonometric EquaƟons and InequaliƟes

We close this secƟon with an example which demonstrates how to solve
equaƟons and inequaliƟes involving the inverse trigonometric funcƟons.

Example 173 Using inverse trigonometric funcƟons
Solve the following equaƟons and inequaliƟes analyƟcally. Check your answers
using a graphing uƟlity.

1. arcsin(2x) = π
3

2. 4 arccos(x)− 3π = 0

3. 3 arcsec(2x− 1) + π = 2π

4. 4 arctan2(x) − 3π arctan(x) −
π2 = 0

5. π2 − 4 arccos2(x) < 0

6. 4 arccot(3x) > π

SÊ½çã®ÊÄ

1. To solve arcsin(2x) = π
3 , we first note that

π
3 is in the range of the arcsine

funcƟon (so a soluƟon exists!) Next, we exploit the inverse property of
sine and arcsine from Theorem 74.

arcsin(2x) =
π

3
sin (arcsin(2x)) = sin

(π
3

)
2x =

√
3
2

Since sin(arcsin(u)) = u

x =
√
3
4

Graphing y = arcsin(2x) and the horizontal line y = π
3 in Figure 9.40, we

see they intersect at
√
3
4 ≈ 0.4430.

2. Our first step in solving 4 arccos(x) − 3π = 0 is to isolate the arccosine.
Doing so, we get arccos(x) = 3π

4 . Since
3π
4 is in the range of arccosine, we

may apply Theorem 74.

arccos(x) =
3π
4

cos (arccos(x)) = cos
(
3π
4

)
x = −

√
2
2

Since cos(arccos(u)) = u

Figure 9.41 confirms y = 4 arccos(x) − 3π crosses y = 0 (the x-axis) at
−

√
2
2 ≈ −0.7071.

3. From 3 arcsec(2x− 1) + π = 2π, we get arcsec(2x− 1) = π
3 . As we saw

in SecƟon 9.1, there are two possible ranges for the arcsecant funcƟon.
Fortunately, both ranges contain π

3 . Applying Theorem 76 / 77, we get

arcsec(2x− 1) =
π

3
sec(arcsec(2x− 1)) = sec

(π
3

)
2x− 1 = 2 Since sec(arcsec(u)) = u

x =
3
2
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Figure 9.42: Solving 3 arcsec(2x − 1) +
π = 2π

Figure 9.43: Solving 4 arctan2(x) −
3π arctan(x)− π2 = 0

−1

(−) 0

0 1

(+)

Figure 9.44: Solving π2−4 arccos2(x) < 0
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To check graphically, we need to graph y = 3 arcsec(2x − 1) + π. To do
so, we make use of the idenƟty arcsec(u) = arccos

( 1
u

)
from Theorems

76 and 77. Sincewe are checking for soluƟonswhere arcsecant is posiƟve,
we know u = 2x − 1 ≥ 1, and so the idenƟty applies in both cases. We
see in Figure 9.42 that the graph of y = 3 arccos

(
1

2x−1

)
+ π and the

horizontal line y = 2π intersect at 3
2 = 1.5.

4. With the presence of both arctan2(x) (= (arctan(x))2) and arctan(x), we
subsƟtute u = arctan(x). The equaƟon 4 arctan2(x) − 3π arctan(x) −
π2 = 0 becomes 4u2 − 3πu − π2 = 0. Factoring, (it’s not as bad as it
looks... don’t let the π throw you!) we get (4u + π)(u − π) = 0, so
u = arctan(x) = − π

4 or u = arctan(x) = π. Since − π
4 is in the range

of arctangent, but π is not, we only get soluƟons from the first equaƟon.
Using Theorem 75, we get

arctan(x) = −π

4
tan(arctan(x)) = tan

(
−π

4

)
x = −1 Since tan(arctan(u)) = u.

Ploƫng in GeoGebra verifies our result: see Figure 9.43.

5. Since the inverse trigonometric funcƟons are conƟnuous on their domains,
we can solve inequaliƟes featuring these funcƟons using sign diagrams.
Since all of the nonzero terms of π2 − 4 arccos2(x) < 0 are on one side
of the inequality, we let f(x) = π2 − 4 arccos2(x) and note the domain
of f is limited by the arccos(x) to [−1, 1]. Next, we find the zeros of f by
seƫng f(x) = π2 − 4 arccos2(x) = 0. We get arccos(x) = ± π

2 , and since
the range of arccosine is [0, π], we focus our aƩenƟon on arccos(x) = π

2 .
Using Theorem 74, we get x = cos

(
π
2
)
= 0 as our only zero. Hence, we

have two test intervals, [−1, 0) and (0, 1]. Choosing test values x = ±1,
we get f(−1) = −3π2 < 0 and f(1) = π2 > 0. Since we are looking for
where f(x) = π2 − 4 arccos2(x) < 0, our answer is [−1, 0). The plot from
GeoGebra in Figure 9.44 confirms that for these values of x, the graph of
y = π2 − 4 arccos2(x) is below y = 0 (the x-axis.)

6. To begin, we rewrite 4 arccot(3x) > π as 4 arccot(3x) − π > 0. We let
f(x) = 4 arccot(3x) − π, and note the domain of f is all real numbers,
(−∞,∞). To find the zeros of f, we set f(x) = 4 arccot(3x)− π = 0 and
solve. We get arccot(3x) = π

4 , and since
π
4 is in the range of arccotangent,

we may apply Theorem 75 and solve

arccot(3x) =
π

4
cot(arccot(3x)) = cot

(π
4

)
3x = 1 Since cot(arccot(u)) = u.

x =
1
3

Next, we make a sign diagram for f. Since the domain of f is all real num-
bers, and there is only one zero of f, x = 1

3 , we have two test intervals,(
−∞, 1

3
)
and

( 1
3 ,∞

)
. Ideally, we wish to find test values x in these in-

tervals so that arccot(4x) corresponds to one of our oŌ-used ‘common’
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Figure 9.45: Solving 4 arccot(3x) > π

9.2 Trigonometric EquaƟons and InequaliƟes

angles. AŌer a bit of computaƟon, (set 3x equal to the cotangents of the
‘common angles’ and choose accordingly) we choose x = 0 for x < 1

3 and
for x > 1

3 , we choose x =
√
3
3 . We find f(0) = π > 0 and f

(√
3
3

)
= − π

3 <

0. Since we are looking for where f(x) = 4 arccot(3x)−π > 0, we get our
answer

(
−∞, 1

3
)
. To check graphically, we use the technique in number

2c of Example 166 in SecƟon 9.1 to graph y = 4 arccot(3x) and we see it
is above the horizontal line y = π on

(
−∞, 1

3
)
=
(
−∞, 0.3

)
: see Figure

9.45.

427



Exercises 9.2
Problems
In Exercises 1 – 18, find all of the exact soluƟons of the equa-
Ɵon and then list those soluƟons which are in the interval
[0, 2π).

1. sin (5x) = 0

2. cos (3x) = 1
2

3. sin (−2x) =
√
3
2

4. tan (6x) = 1

5. csc (4x) = −1

6. sec (3x) =
√
2

7. cot (2x) = −
√
3
3

8. cos (9x) = 9

9. sin
( x
3

)
=

√
2
2

10. cos
(
x+ 5π

6

)
= 0

11. sin
(
2x− π

3

)
= −1

2

12. 2 cos
(
x+ 7π

4

)
=

√
3

13. csc(x) = 0

14. tan (2x− π) = 1

15. tan2 (x) = 3

16. sec2 (x) = 4
3

17. cos2 (x) = 1
2

18. sin2 (x) = 3
4

In Exercises 19 – 42, solve the equaƟon, giving the exact so-
luƟons which lie in [0, 2π).

19. sin (x) = cos (x)

20. sin (2x) = sin (x)

21. sin (2x) = cos (x)

22. cos (2x) = sin (x)

23. cos (2x) = cos (x)

24. cos(2x) = 2− 5 cos(x)

25. 3 cos(2x) + cos(x) + 2 = 0

26. cos(2x) = 5 sin(x)− 2

27. 3 cos(2x) = sin(x) + 2

28. 2 sec2(x) = 3− tan(x)

29. tan2(x) = 1− sec(x)

30. cot2(x) = 3 csc(x)− 3

31. sec(x) = 2 csc(x)

32. cos(x) csc(x) cot(x) = 6− cot2(x)

33. sin(2x) = tan(x)

34. cot4(x) = 4 csc2(x)− 7

35. cos(2x) + csc2(x) = 0

36. tan3 (x) = 3 tan (x)

37. tan2 (x) = 3
2
sec (x)

38. cos3 (x) = − cos (x)

39. tan(2x)− 2 cos(x) = 0

40. csc3(x) + csc2(x) = 4 csc(x) + 4

41. 2 tan(x) = 1− tan2(x)

42. tan (x) = sec (x)

In Exercises 43 – 58, solve the equaƟon, giving the exact so-
luƟons which lie in [0, 2π).

43. sin(6x) cos(x) = − cos(6x) sin(x)

44. sin(3x) cos(x) = cos(3x) sin(x)

45. cos(2x) cos(x) + sin(2x) sin(x) = 1

46. cos(5x) cos(3x)− sin(5x) sin(3x) =
√
3
2

47. sin(x) + cos(x) = 1
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48. sin(x) +
√
3 cos(x) = 1

49.
√
2 cos(x)−

√
2 sin(x) = 1

50.
√
3 sin(2x) + cos(2x) = 1

51. cos(2x)−
√
3 sin(2x) =

√
2

52. 3
√
3 sin(3x)− 3 cos(3x) = 3

√
3

53. cos(3x) = cos(5x)

54. cos(4x) = cos(2x)

55. sin(5x) = sin(3x)

56. cos(5x) = − cos(2x)

57. sin(6x) + sin(x) = 0

58. tan(x) = cos(x)

In Exercises 59 – 68, solve the equaƟon.

59. arccos(2x) = π

60. π − 2 arcsin(x) = 2π

61. 4 arctan(3x− 1)− π = 0

62. 6 arccot(2x)− 5π = 0

63. 4 arcsec
( x
2

)
= π

64. 12 arccsc
( x
3

)
= 2π

65. 9 arcsin2(x)− π2 = 0

66. 9 arccos2(x)− π2 = 0

67. 8 arccot2(x) + 3π2 = 10π arccot(x)

68. 6 arctan(x)2 = π arctan(x) + π2

In Exercises 69 – 80, solve the inequality. Express the ex-
act answer in interval notaƟon, restricƟng your aƩenƟon to
0 ≤ x ≤ 2π.

69. sin (x) ≤ 0

70. tan (x) ≥
√
3

71. sec2 (x) ≤ 4

72. cos2 (x) > 1
2

73. cos (2x) ≤ 0

74. sin
(
x+ π

3

)
>

1
2

75. cot2 (x) ≥ 1
3

76. 2 cos(x) ≥ 1

77. sin(5x) ≥ 5

78. cos(3x) ≤ 1

79. sec(x) ≤
√
2

80. cot(x) ≤ 4

In Exercises 81 – 86, solve the inequality. Express the ex-
act answer in interval notaƟon, restricƟng your aƩenƟon to
−π ≤ x ≤ π.

81. cos (x) >
√
3
2

82. sin(x) > 1
3

83. sec (x) ≤ 2

84. sin2 (x) < 3
4

85. cot (x) ≥ −1

86. cos(x) ≥ sin(x)

In Exercises 87 – 92, solve the inequality. Express the ex-
act answer in interval notaƟon, restricƟng your aƩenƟon to
−2π ≤ x ≤ 2π.

87. csc (x) > 1

88. cos(x) ≤ 5
3

89. cot(x) ≥ 5

90. tan2 (x) ≥ 1

91. sin(2x) ≥ sin(x)

92. cos(2x) ≤ sin(x)

In Exercises 93 – 98, solve the given inequality.

93. arcsin(2x) > 0

94. 3 arccos(x) ≤ π

95. 6 arccot(7x) ≥ π

96. π > 2 arctan(x)

97. 2 arcsin(x)2 > π arcsin(x)
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98. 12 arccos(x)2 + 2π2 > 11π arccos(x)

In Exercises 99 – 107, solve the given inequality.

99. f(x) = 1
cos(x)− 1

100. f(x) = cos(x)
sin(x) + 1

101. f(x) =
√

tan2(x)− 1

102. f(x) =
√

2− sec(x)

103. f(x) = csc(2x)

104. f(x) = sin(x)
2+ cos(x)

105. f(x) = 3 csc(x) + 4 sec(x)

106. f(x) = ln (| cos(x)|)

107. f(x) = arcsin(tan(x))

108. With the help of your classmates, determine the number of
soluƟons to sin(x) = 1

2 in [0, 2π). Then find the number of
soluƟons to sin(2x) = 1

2 , sin(3x) = 1
2 and sin(4x) = 1

2 in
[0, 2π). A paƩern should emerge. Explain how this paƩern
would help you solve equaƟons like sin(11x) = 1

2 . Now
consider sin

( x
2

)
= 1

2 , sin
( 3x

2

)
= 1

2 and sin
( 5x

2

)
= 1

2 . What

do you find? Replace 1
2
with −1 and repeat the whole ex-

ploraƟon.
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Figure 9.47: The Giant Wheel

9.3 ApplicaƟons of Sinusoids

9.3 ApplicaƟons of Sinusoids
In the same way exponenƟal funcƟons can be used to model a wide variety of
phenomena in nature, (see SecƟon 7.5) the cosine and sine funcƟons can be
used to model their fair share of natural behaviours. In secƟon 8.5, we intro-
duced the concept of a sinusoid as a funcƟon which can be wriƩen either in
the form C(x) = A cos(ωx + ϕ) + B for ω > 0 or equivalently, in the form
S(x) = A sin(ωx + ϕ) + B for ω > 0. At the Ɵme, we remained undecided as
to which form we preferred, but the Ɵme for such indecision is over. For clarity
of exposiƟon we focus on the sine funcƟon in this secƟon and switch to the in-
dependent variable t, since the applicaƟons in this secƟon are Ɵme-dependent.
(Sine haters can use the co-funcƟon idenƟty cos

(
π
2 − θ

)
= sin(θ) to turn all of

the sines into cosines.) We reintroduce and summarize all of the important facts
and definiƟons about this form of the sinusoid below.

Key Idea 40 ProperƟes of the Sinusoid S(t) = A sin(ωt+ ϕ) + B

• The amplitude is |A|

• The angular frequency is ω and the ordinary frequency is f =
ω

2π

• The period is T =
1
f
=

2π
ω

• The phase is ϕ and the phase shiŌ is−ϕ

ω

• The verƟcal shiŌ or baseline is B

Along with knowing these formulas, it is helpful to remember what these
quanƟƟes mean in context. The amplitude measures the maximum displace-
ment of the sine wave from its baseline (determined by the verƟcal shiŌ), the
period is the length of Ɵme it takes to complete one cycle of the sinusoid, the an-
gular frequency tells how many cycles are completed over an interval of length
2π, and the ordinary frequency measures how many cycles occur per unit of
Ɵme. The phase indicates what angle ϕ corresponds to t = 0, and the phase
shiŌ represents howmuch of a ‘head start’ the sinusoid has over the un-shiŌed
sine funcƟon. The figure below is repeated from SecƟon 8.5.

In SecƟon 8.1.1, we introduced the concept of circular moƟon and in SecƟon
8.2.1, we developed formulas for circular moƟon. Our first foray into sinusoidal
moƟon puts these noƟons to good use.

Example 174 Height on the Giant Wheel
Recall from Exercise 47 in SecƟon 8.1 that The Giant Wheel at Cedar Point is
a circle with diameter 128 feet which sits on an 8 foot tall plaƞorm making its
overall height 136 feet. It completes two revoluƟons in 2minutes and 7 seconds.
Assuming that the riders are at the edge of the circle, find a sinusoid which de-
scribes the height of the passengers above the ground t seconds aŌer they pass
the point on the wheel closest to the ground.

SÊ½çã®ÊÄ We sketch the problem situaƟon in Figure 9.47 and assume
a counter-clockwise rotaƟon. (Otherwise, we could just observe the moƟon of
the wheel from the other side.)
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t

y

127
2

8

72

136

Figure 9.48: The graph y = h(t) =
64 sin

( 4π
127 t−

π
2

)
+ 72

The formula w = mg is a consequence
of Newton’s Second Law of MoƟon F =
ma where F is force, m is mass and a is
acceleraƟon. In our present seƫng, the
force involved is weight which is caused
by the acceleraƟon due to gravity.

Chapter 9 Further Topics in Trigonometry

We know from the equaƟons given on page 334 in SecƟon 8.2.1 that the
y-coordinate for counter-clockwise moƟon on a circle of radius r centred at the
origin with constant angular velocity (frequency) ω is given by y = r sin(ωt).
Here, t = 0 corresponds to the point (r, 0) so that θ, the angle measuring the
amount of rotaƟon, is in standard posiƟon. In our case, the diameter of the
wheel is 128 feet, so the radius is r = 64 feet. Since the wheel completes
two revoluƟons in 2 minutes and 7 seconds (which is 127 seconds) the period
T = 1

2 (127) = 127
2 seconds. Hence, the angular frequency is ω = 2π

T = 4π
127

radians per second. Puƫng these two pieces of informaƟon together, we have
that y = 64 sin

( 4π
127 t
)
describes the y-coordinate on the Giant Wheel aŌer t

seconds, assuming it is centred at (0, 0) with t = 0 corresponding to the point
Q. In order to find an expression for h, we take the point O in the figure as the
origin. Since the base of the GiantWheel ride is 8 feet above the ground and the
Giant Wheel itself has a radius of 64 feet, its center is 72 feet above the ground.
To account for this verƟcal shiŌ upward, (we are readjusƟng our ‘baseline’ from
y = 0 to y = 72) we add 72 to our formula for y to obtain the new formula
h = y + 72 = 64 sin

( 4π
127 t
)
+ 72. Next, we need to adjust things so that t = 0

corresponds to the point P instead of the pointQ. This is where the phase comes
into play. Geometrically, we need to shiŌ the angle θ in the figure back π

2 radi-
ans. From SecƟon 8.2.1, we know θ = ωt = 4π

127 t, so we (temporarily) write the
height in terms of θ as h = 64 sin (θ) + 72. SubtracƟng π

2 from θ gives the final
answer h(t) = 64 sin

(
θ − π

2
)
+ 72 = 64 sin

( 4π
127 t−

π
2
)
+ 72. We can check the

reasonableness of our answer by graphing y = h(t) over the interval
[
0, 127

2
]
in

Figure 9.48.

A few remarks about Example 174 are in order. First, note that the amplitude
of 64 in our answer corresponds to the radius of the Giant Wheel. This means
that passengers on the Giant Wheel never stray more than 64 feet verƟcally
from the center of the Wheel, which makes sense. Second, the phase shiŌ of
our answer works out to be π/2

4π/127 = 127
8 = 15.875. This represents the ‘Ɵme

delay’ (in seconds)we introduce by starƟng themoƟon at the point P as opposed
to the pointQ. Said differently, passengerswhich ‘start’ at P take 15.875 seconds
to ‘catch up’ to the point Q.

9.3.1 Harmonic MoƟon
One of the major applicaƟons of sinusoids in Science and Engineering is the
study of harmonic moƟon. The equaƟons for harmonic moƟon can be used to
describe a wide range of phenomena, from the moƟon of an object on a spring,
to the response of an electronic circuit. In this subsecƟon, we restrict our aƩen-
Ɵon tomodelling a simple spring system. Before we jump into theMathemaƟcs,
there are somePhysics terms and conceptsweneed to discuss. In Physics, ‘mass’
is defined as ameasure of an object’s resistance to straight-line moƟon whereas
‘weight’ is the amount of force (pull) gravity exerts on an object. An object’s
mass cannot change, (assuming the object isn’t subjected to relaƟvisƟc speeds
…) while its weight could change. An object which weighs 6 pounds on the sur-
face of the Earth would weigh 1 pound on the surface of the Moon, but its mass
is the same in both places. In the English system of units, ‘pounds’ (lbs.) is a
measure of force (weight), and the corresponding unit of mass is the ‘slug’. In
the SI system, the unit of force is ‘Newtons’ (N) and the associated unit of mass
is the ‘kilogram’ (kg). We convert between mass and weight using the formula
w = mg. Here, w is the weight of the object,m is the mass and g is the acceler-
aƟon due to gravity. In the English system, g = 32 feet

second2 , and in the SI system,
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Note that 1 pound= 1 slug foot
second2 and 1 New-

ton= 1 kg meter
second2 .

To keep units compaƟble, if we are using
the English system, we use feet (Ō.) to
measure displacement. If we are in the SI
system, we measure displacement in me-
tres (m). Time is always measured in sec-
onds (s). (This text is based on an orig-
inal source from the USA. One of these
days we’ll get around to updaƟng all the
archaic units to metric.)

The sign convenƟons here are carried
over from Physics. If not for the spring,
the object would fall towards the ground,
which is the ‘natural’ or ‘posiƟve’ direc-
Ɵon. Since the spring force acts in direct
opposiƟon to gravity, any movement up-
wards is considered ‘negaƟve’.

9.3 ApplicaƟons of Sinusoids

g = 9.8 meters
second2 . Hence, on Earth a mass of 1 slug weighs 32 lbs. and a mass of

1 kg weighs 9.8 N. Suppose we aƩach an object with mass m to a spring as de-
picted below. The weight of the object will stretch the spring. The system is said
to be in ‘equilibrium’ when the weight of the object is perfectly balanced with
the restoraƟve force of the spring. How far the spring stretches to reach equi-
librium depends on the spring’s ‘spring constant’. Usually denoted by the leƩer
k, the spring constant relates the force F applied to the spring to the amount d
the spring stretches in accordance with Hooke’s Law F = kd. (Look familiar? We
saw Hooke’s Law in SecƟon 5.3.1.) If the object is released above or below the
equilibrium posiƟon, or if the object is released with an upward or downward
velocity, the object will bounce up and down on the end of the spring unƟl some
external force stops it. If we let x(t) denote the object’s displacement from the
equilibrium posiƟon at Ɵme t, then x(t) = 0 means the object is at the equilib-
rium posiƟon, x(t) < 0 means the object is above the equilibrium posiƟon, and
x(t) > 0 means the object is below the equilibrium posiƟon. The funcƟon x(t)
is called the ‘equaƟon of moƟon’ of the object.

x(t) = 0 at the x(t) < 0 above the x(t) > 0 below the
equilibrium posiƟon equilibrium posiƟon equilibrium posiƟon

Figure 9.49: A mass on a spring undergoing (approximate) simple harmonic moƟon

If we ignore all other influences on the system except gravity and the spring
force, then Physics tells us that gravity and the spring force will baƩle each other
forever and the object will oscillate indefinitely. In this case, we describe the
moƟon as ‘free’ (meaning there is no external force causing the moƟon) and
‘undamped’ (meaning we ignore fricƟon caused by surrounding medium, which
in our case is air). The following theorem, which comes from DifferenƟal Equa-
Ɵons, gives x(t) as a funcƟon of the mass m of the object, the spring constant
k, the iniƟal displacement x0 of the object and iniƟal velocity v0 of the object.
As with x(t), x0 = 0 means the object is released from the equilibrium posiƟon,
x0 < 0 means the object is released above the equilibrium posiƟon and x0 > 0
means the object is released below the equilibrium posiƟon. As far as the iniƟal
velocity v0 is concerned, v0 = 0 means the object is released ‘from rest,’ v0 < 0
means the object is heading upwards and v0 > 0 means the object is heading
downwards.
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Chapter 9 Further Topics in Trigonometry

Theorem 78 EquaƟon for Free Undamped Harmonic MoƟon

Suppose an object of mass m is suspended from a spring with spring
constant k. If the iniƟal displacement from the equilibrium posiƟon is x0
and the iniƟal velocity of the object is v0, then the displacement x from
the equilibrium posiƟon at Ɵme t is given by x(t) = A sin(ωt+ϕ)where

• ω =

√
k
m

and A =

√
x20 +

(v0
ω

)2
• A sin(ϕ) = x0 and Aω cos(ϕ) = v0.

It is a great exercise in ‘dimensional analysis’ to verify that the formulas given
in Theorem 78work out so that ω has units 1

s and A has units Ō. orm, depending
on which system we choose.

Example 175 Harmonic moƟon of a mass on a spring
Suppose an object weighing 64 pounds stretches a spring 8 feet.

1. If the object is aƩached to the spring and released 3 feet below the equi-
librium posiƟon from rest, find the equaƟon of moƟon of the object, x(t).
When does the object first pass through the equilibrium posiƟon? Is the
object heading upwards or downwards at this instant?

2. If the object is aƩached to the spring and released 3 feet below the equi-
librium posiƟon with an upward velocity of 8 feet per second, find the
equaƟon of moƟon of the object, x(t). What is the longest distance the
object travels above the equilibrium posiƟon? When does this first hap-
pen? Confirm your result using a graphing uƟlity.

SÊ½çã®ÊÄ In order to use the formulas in Theorem 78, we first need to
determine the spring constant k and the mass of the object m. To find k, we
use Hooke’s Law F = kd. We know the object weighs 64 lbs. and stretches the
spring 8 Ō.. Using F = 64 and d = 8, we get 64 = k · 8, or k = 8 lbs.

Ō. . To find m,
we use w = mg with w = 64 lbs. and g = 32Ō.

s2 . We get m = 2 slugs. We can
now proceed to apply Theorem 78.

1. With k = 8 andm = 2, we get ω =
√

k
m =

√
8
2 = 2. We are told that the

object is released 3 feet below the equilibrium posiƟon ‘from rest.’ This
means x0 = 3 and v0 = 0. Therefore, A =

√
x20 +

( v0
ω

)2
=

√
32 + 02 = 3.

To determine the phase ϕ, we have A sin(ϕ) = x0, which in this case
gives 3 sin(ϕ) = 3 so sin(ϕ) = 1. Only ϕ = π

2 and angles coterminal
to it saƟsfy this condiƟon, so we pick the phase to be ϕ = π

2 . (For con-
firmaƟon, we note that Aω cos(ϕ) = v0, which in this case reduces to
6 cos(ϕ) = 0.) Hence, the equaƟon of moƟon is x(t) = 3 sin

(
2t+ π

2
)
. To

find when the object passes through the equilibrium posiƟon we solve
x(t) = 3 sin

(
2t+ π

2
)

= 0. Going through the usual analysis we find
t = − π

4 + π
2 k for integers k. Since we are interested in the first Ɵme

the object passes through the equilibrium posiƟon, we look for the small-
est posiƟve t value which in this case is t = π

4 ≈ 0.78 seconds aŌer the
start of the moƟon. Common sense suggests that if we release the object
below the equilibrium posiƟon, the object should be travelling upwards
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Figure 9.50: y = x(t) = 3 sin(2t + π
2 ) in

Example 175.1

Figure 9.51: The graph y = 5 sin(2x+[π−
arcsin( 35 )]) in Example 175.2

(a) y = 10e−x/5 sin(x+ π
3 )

(b) y = 10e−x/5 sin(x+ π
3 ), y = ±10e−x/5

Figure 9.52: Graphing x(t) in Example
176.1

9.3 ApplicaƟons of Sinusoids

when it first passes through it. To check this answer, we graph one cycle of
x(t). Since our applied domain in this situaƟon is t ≥ 0, and the period of
x(t) is T = 2π

ω = 2π
2 = π, we graph x(t) over the interval [0, π]. Remem-

bering that x(t) > 0 means the object is below the equilibrium posiƟon
and x(t) < 0 means the object is above the equilibrium posiƟon, the fact
our graph in Figure 9.50 is crossing through the t-axis from posiƟve x to
negaƟve x at t = π

4 confirms our answer.

2. The only difference between this problem and the previous problem is
that we now release the object with an upward velocity of 8 Ō

s . We sƟll
have ω = 2 and x0 = 3, but nowwe have v0 = −8, the negaƟve indicaƟng
the velocity is directed upwards. Here, we get

A =

√
x20 +

(v0
ω

)2
=
√
32 + (−4)2 = 5.

From A sin(ϕ) = x0, we get 5 sin(ϕ) = 3 which gives sin(ϕ) = 3
5 . From

Aω cos(ϕ) = v0, we get 10 cos(ϕ) = −8, or cos(ϕ) = − 4
5 . This means

that ϕ is a Quadrant II angle which we can describe in terms of either arc-
sine or arccosine. Since x(t) is expressed in terms of sine, we choose to
express ϕ = π− arcsin

( 3
5
)
. Hence, x(t) = 5 sin

(
2t+

[
π − arcsin

( 3
5
)])

.
Since the amplitude of x(t) is 5, the object will travel at most 5 feet above
the equilibrium posiƟon. To find when this happens, we solve the equa-
Ɵon x(t) = 5 sin

(
2t+

[
π − arcsin

( 3
5
)])

= −5, the negaƟve once again
signifying that the object is above the equilibrium posiƟon. Going through
the usual machinaƟons, we get

t =
1
2
arcsin

(
3
5

)
+

π

4
+ πk

for all integers k. The smallest of these values occurs when k = 0, that is,
t = 1

2 arcsin
( 3
5
)
+ π

4 ≈ 1.107 seconds aŌer the start of the moƟon. To
check our answer using the computer, we graph

y = 5 sin
(
2x+

[
π − arcsin

(
3
5

)])
using GeoGebra and confirm the coordinates of the first relaƟveminimum
to be approximately (1.107,−5): see Figure 9.51.

It is possible, though beyond the scope of this course, tomodel the effects of
fricƟon and other external forces acƟng on the system. (Take a good DifferenƟal
EquaƟons class to see this!) While we may not have the Physics and Calculus
background to derive equaƟons of moƟon for these scenarios, we can certainly
analyze them. We examine three cases in the following example.

Example 176 Damping, forcing, and resonance

1. Write x(t) = 5e−t/5 cos(t)+5e−t/5√3 sin(t) in the form x(t) = A(t) sin(ωt+
ϕ). Graph x(t) using a graphing uƟlity.

2. Write x(t) = (t + 3)
√
2 cos(2t) + (t + 3)

√
2 sin(2t) in the form x(t) =

A(t) sin(ωt+ ϕ). Graph x(t) using a graphing uƟlity.

3. Find the period of x(t) = 5 sin(6t)−5 sin (8t). Graph x(t) using a graphing
uƟlity.
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(a) y = 2(x+ 3) sin(2x+ π
4

(b) y = 2(x+ 3) sin(2x+ π
4 , y = ±2(x+ 3)

Figure 9.53: Graphing x(t) in Example
176.2

(a) y = 5 sin(6x)− 5 sin(8x) over [0, π]

(b) y = 5 sin(6x)− 5 sin(8x) and
y = ±10 sin(x) over [0, 2π]

Figure 9.54: Graphing x(t) in Example
176.2

Chapter 9 Further Topics in Trigonometry

SÊ½çã®ÊÄ

1. We start rewriƟng x(t) = 5e−t/5 cos(t) + 5e−t/5√3 sin(t) by factoring
out 5e−t/5 fromboth terms to get x(t) = 5e−t/5 (cos(t) +√

3 sin(t)
)
. We

convert what’s leŌ in parentheses to the required form using the formulas
introduced in Exercise 36 fromSecƟon8.5. Wefind

(
cos(t) +

√
3 sin(t)

)
=

2 sin
(
t+ π

3
)
so that x(t) = 10e−t/5 sin

(
t+ π

3
)
. Graphing this on the cal-

culator as y = 10e−x/5 sin
(
x+ π

3
)
reveals some interesƟng behaviour:

see Figure 9.52(a). The sinusoidal nature conƟnues indefinitely, but it is
being aƩenuated. In the sinusoid A sin(ωx + ϕ), the coefficient A of the
sine funcƟon is the amplitude. In the case of y = 10e−x/5 sin

(
x+ π

3
)
, we

can think of the funcƟon A(x) = 10e−x/5 as the amplitude. As x → ∞,
10e−x/5 → 0 which means the amplitude conƟnues to shrink towards
zero. Indeed, ifwe graph y = ±10e−x/5 alongwith y = 10e−x/5 sin

(
x+ π

3
)

in Figure 9.52(b), we see this aƩenuaƟon taking place. This equaƟon cor-
responds to the moƟon of an object on a spring where there is a slight
force which acts to ‘damp’, or slow the moƟon. An example of this kind
of force would be the fricƟon of the object against the air. In this model,
the object oscillates forever, but with smaller and smaller amplitude.

2. Proceeding as in the first example, we factor out (t + 3)
√
2 from each

term in the funcƟon x(t) = (t + 3)
√
2 cos(2t) + (t + 3)

√
2 sin(2t) to

get x(t) = (t + 3)
√
2(cos(2t) + sin(2t)). We find (cos(2t) + sin(2t)) =√

2 sin
(
2t+ π

4
)
, so x(t) = 2(t + 3) sin

(
2t+ π

4
)
. Graphing this on the

calculator as y = 2(x + 3) sin
(
2x+ π

4
)
, we find the sinusoid’s amplitude

growing. Since our amplitude funcƟon here is A(x) = 2(x+ 3) = 2x+ 6,
which conƟnues to grow without bound as x → ∞, this is hardly sur-
prising. The phenomenon illustrated here is ‘forced’ moƟon. That is, we
imagine that the enƟre apparatus on which the spring is aƩached is os-
cillaƟng as well. In this case, we are witnessing a ‘resonance’ effect – the
frequency of the external oscillaƟon matches the frequency of the mo-
Ɵon of the object on the spring. (The reader is invited to invesƟgate the
destrucƟve implicaƟons of resonance.)

3. Last, but not least, we come to x(t) = 5 sin(6t) − 5 sin(8t). To find the
period of this funcƟon, we need to determine the length of the smallest
interval on which both f(t) = 5 sin(6t) and g(t) = 5 sin(8t) complete a
whole number of cycles. To do this, we take the raƟo of their frequen-
cies and reduce to lowest terms: 6

8 = 3
4 . This tells us that for every

3 cycles f makes, g makes 4. In other words, the period of x(t) is three
Ɵmes the period of f(t) (which is four Ɵmes the period of g(t)), or π. We
graph y = 5 sin(6x)− 5 sin(8x) over [0, π] on the calculator to check this.
This equaƟon of moƟon also results from ‘forced’ moƟon, but here the
frequency of the external oscillaƟon is different than that of the object
on the spring. Since the sinusoids here have different frequencies, they
are ‘out of sync’ and do not amplify each other as in the previous exam-
ple. Taking things a step further, we can use a sum to product idenƟty
to rewrite x(t) = 5 sin(6t) − 5 sin(8t) as x(t) = −10 sin(t) cos(7t). The
lower frequency factor in this expression,−10 sin(t), plays an interesƟng
role in the graph of x(t). Below we graph y = 5 sin(6x) − 5 sin(8x) and
y = ±10 sin(x) over [0, 2π]. This is an example of the ‘beat’ phenomena,
and the curious reader is invited to explore this concept as well. (A good
place to start is this arƟcle on beats.)
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Exercises 9.3
Problems
1. The sounds we hear aremade up ofmechanical waves. The

note ‘A’ above the note ‘middle C’ is a sound wave with or-
dinary frequency f = 440 Hertz = 440 cycles

second . Find a sinu-
soid which models this note, assuming that the amplitude
is 1 and the phase shiŌ is 0.

2. The voltage V in an alternaƟng current source has ampli-
tude 220

√
2 and ordinary frequency f = 60 Hertz. Find a

sinusoid which models this voltage. Assume that the phase
is 0.

3. The London Eye is a popular tourist aƩracƟon in London,
England and is one of the largest FerrisWheels in theworld.
It has a diameter of 135 meters and makes one revoluƟon
(counter-clockwise) every 30 minutes. It is constructed so
that the lowest part of the Eye reaches ground level, en-
abling passengers to simply walk on to, and off of, the ride.
Find a sinsuoid which models the height h of the passenger
above the ground in meters tminutes aŌer they board the
Eye at ground level.

4. On page 334 in SecƟon 8.2.1, we found the x-coordinate of
counter-clockwise moƟon on a circle of radius r with angu-
lar frequency ω to be x = r cos(ωt), where t = 0 corre-
sponds to the point (r, 0). Suppose we are in the situaƟon
of Exercise 3 above. Find a sinsusoid which models the hor-
izontal displacement x of the passenger from the center of
the Eye in meters tminutes aŌer they board the Eye. Here
we take x(t) > 0 to mean the passenger is to the right of
the center, while x(t) < 0 means the passenger is to the
leŌ of the center.

5. In Exercise 44 in SecƟon 8.1, we introduced the yo-yo trick
‘Around the World’ in which a yo-yo is thrown so it sweeps
out a verƟcal circle. As in that exercise, suppose the yo-yo
string is 28 inches and it completes one revoluƟon in 3 sec-
onds. If the closest the yo-yo ever gets to the ground is 2
inches, find a sinsuoid which models the height h of the yo-
yo above the ground in inches t seconds aŌer it leaves its
lowest point.

6. Suppose an object weighing 10 pounds is suspended from
the ceiling by a spring which stretches 2 feet to its equilib-
rium posiƟon when the object is aƩached.

(a) Find the spring constant k in lbs.
Ō. and the mass of the

object in slugs.
(b) Find the equaƟon of moƟon of the object if it is re-

leased from 1 foot below the equilibrium posiƟon
from rest. When is the first Ɵme the object passes

through the equilibrium posiƟon? In which direcƟon
is it heading?

(c) Find the equaƟon of moƟon of the object if it is re-
leased from 6 inches above the equilibrium posiƟon
with a downward velocity of 2 feet per second. Find
when the object passes through the equilibrium po-
siƟon heading downwards for the third Ɵme.

7. Consider the pendulum below. Ignoring air resistance, the
angular displacement of the pendulum from the verƟcal
posiƟon, θ, can be modelled as a sinusoid.1

θ

The amplitude of the sinusoid is the same as the iniƟal an-
gular displacement, θ0, of the pendulum and the period of
the moƟon is given by

T = 2π
√

l
g

where l is the length of the pendulum and g is the acceler-
aƟon due to gravity.

(a) Find a sinusoid which gives the angular displacement
θ as a funcƟon of Ɵme, t. Arrange things so θ(0) =
θ0.

(b) In Exercise 40 secƟon 6.3, you found the length of
the pendulum needed in Jeff’s anƟque Seth-Thomas
clock to ensure the period of the pendulum is 1

2 of
a second. Assuming the iniƟal displacement of the
pendulum is 15◦, find a sinusoid which models the
displacement of the pendulum θ as a funcƟon of
Ɵme, t, in seconds.

8. With the help of your classmates, research the phenomena
menƟoned in Example 176, namely resonance and beats.

9. With the help of your classmates, research
Amplitude ModulaƟon and Frequency ModulaƟon.

10. What other things in theworldmight be roughly sinusoidal?
Look to see what models you can find for them and share
your results with your class.

1Provided θ is kept ‘small.’ Carl remembers the ‘Rule of Thumb’ as being 20◦ or less. Check with your friendly neighborhood physicist to make
sure.
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b = 4

a

α

β

c
=
7

Figure 9.55: The triangle in Example 177

Chapter 9 Further Topics in Trigonometry

9.4 Law of Sines

Trigonometry literallymeans ‘measuring triangles’ andwith Chapter 8 under our
belts, we are more than prepared to do just that. The main goal of this secƟon
and the next is to develop theorems which allow us to ‘solve’ triangles – that is,
find the length of each side of a triangle and the measure of each of its angles.
In SecƟons 8.2, 8.3 and 9.1, we’ve had some experience solving right triangles.
The following example reviews what we know.

Example 177 Right triangle trigonometry
Given a right triangle with a hypotenuse of length 7 units and one leg of length
4 units, find the length of the remaining side and the measures of the remain-
ing angles. Express the angles in decimal degrees, rounded to the nearest hun-
dredth of a degree.

SÊ½çã®ÊÄ For definiƟveness, we label the triangle in Figure 9.55.

To find the length of the missing side a, we use the Pythagorean Theorem to
get a2 + 42 = 72 which then yields a =

√
33 units. Now that all three sides of

the triangle are known, there are several ways we can find α using the inverse
trigonometric funcƟons. To decrease the chances of propagaƟng error, however,
we sƟck to using the data given to us in the problem. In this case, the lengths
4 and 7 were given, so we want to relate these to α. According to Theorem 52,
cos(α) = 4

7 . Since α is an acute angle, α = arccos
( 4
7
)
radians. ConverƟng to

degrees, we find α ≈ 55.15◦. Now that we have the measure of angle α, we
could find the measure of angle β using the fact that α and β are complements
so α+ β = 90◦. Once again, we opt to use the data given to us in the problem.
According to Theorem 52, we have that sin(β) = 4

7 so β = arcsin
( 4
7
)
radians

and we have β ≈ 34.85◦.

A few remarks about Example 177 are in order. First, we adhere to the con-
venƟon that a lower case Greek leƩer denotes an angle (as well as the measure
of said angle) and the corresponding lower case English leƩer represents the
side (as well as the length of said side) opposite that angle. Thus, a is the side
opposite α, b is the side opposite β and c is the side opposite γ. Taken together,
the pairs (α, a), (β, b) and (γ, c) are called angle-side opposite pairs. Second,
as menƟoned earlier, we will strive to solve for quanƟƟes using the original data
given in the problem whenever possible. While this is not always the easiest
or fastest way to proceed, it minimizes the chances of propagated error. Third,
since many of the applicaƟons which require solving triangles ‘in the wild’ rely
on degree measure, we shall adopt this convenƟon for the Ɵme being. (Don’t
worry! Radians will be back before you know it!) The Pythagorean Theorem
along with Theorems 52 and 58 allow us to easily handle any given right triangle
problem, but what if the triangle isn’t a right triangle? In certain cases, we can
use the Law of Sines to help.
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9.4 Law of Sines

Theorem 79 The Law of Sines

Given a triangle with angle-side opposite pairs (α, a), (β, b) and (γ, c),
the following raƟos hold

sin(α)
a

=
sin(β)

b
=

sin(γ)
c

or, equivalently,

a
sin(α)

=
b

sin(β)
=

c
sin(γ)

The proof of the Law of Sines can be broken into three cases. For our first
case, consider the triangle △ABC in Figure 9.56 below, all of whose angles are
acute, with angle-side opposite pairs (α, a), (β, b) and (γ, c). If we drop an
alƟtude from vertex B, we divide the triangle into two right triangles: △ABQ and
△BCQ. If we call the length of the alƟtude h (for height), we get from Theorem
52 that sin(α) = h

c and sin(γ) = h
a so that h = c sin(α) = a sin(γ). AŌer some

rearrangement of the last equaƟon, we get sin(α)
a = sin(γ)

c . If we drop an alƟtude
from vertex A, we can proceed as above using the triangles △ABQ and △ACQ
to get sin(β)

b = sin(γ)
c , compleƟng the proof for this case.

a

b

c

α

β

γ

A C

B

ac

α γ

A C

B

Q

h

b

c
β

γ

A C

B

Q

h′

Figure 9.56: △ABC for the first case of the proof of Theorem 79

For our next case consider the triangle △ABC in Figure 9.57 below with
obtuse angle α. Extending an alƟtude from vertex A gives two right triangles,
as in the previous case: △ABQ and △ACQ. Proceeding as before, we get h =

b sin(γ) and h = c sin(β) so that sin(β)
b = sin(γ)

c .

a

b

c α

γ

β

A

B

C

a

b

c

γ

β

A

B

C

Q

h

Figure 9.57: △ABC for the second case of the proof of Theorem 79

Dropping an alƟtude from vertex B also generates two right triangles,△ABQ
and △BCQ. We know that sin(α′) = h′

c so that h′ = c sin(α′). Since α′ =
180◦ − α, sin(α′) = sin(α), so in fact, we have h′ = c sin(α). Proceeding to
△BCQ, we get sin(γ) = h′

a so h′ = a sin(γ). Puƫng this together with the
previous equaƟon, we get sin(γ)

c = sin(α)
a , and we are finished with this case.

The remaining case is when △ABC is a right triangle. In this case, the Law
of Sines reduces to the formulas given in Theorem 52 and is leŌ to the reader.
(Refer to Figure 9.58.)
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a = 7

b ≈ 5.72

c ≈ 2.09 α = 120◦

γ = 15◦

β = 45◦

Figure 9.59: Triangle for Example 178
number 1

a ≈ 5.77

b ≈ 2.90

c = 5.25

α = 85◦ γ = 65◦

β = 30◦

Figure 9.60: Triangle for Example 178
number 2

Chapter 9 Further Topics in Trigonometry

a

b

c

αα′ γ

β

A

B

CQ

h′

Figure 9.58: △ABC for the third case of the proof of Theorem 79

In order to use the Law of Sines to solve a triangle, we need at least one
angle-side opposite pair. The next example showcases some of the power, and
the piƞalls, of the Law of Sines.

Example 178 Using the Law of Sines
Solve the following triangles. Give exact answers and decimal approximaƟons
(rounded to hundredths) and sketch the triangle.

1. α = 120◦, a = 7 units, β =
45◦

2. α = 85◦, β = 30◦, c = 5.25
units

3. α = 30◦, a = 1 units, c = 4
units

4. α = 30◦, a = 2 units, c = 4
units

5. α = 30◦, a = 3 units, c = 4
units

6. α = 30◦, a = 4 units, c = 4
units

SÊ½çã®ÊÄ

1. Knowing an angle-side opposite pair, namely α and a, we may proceed
in using the Law of Sines. Since β = 45◦, we use b

sin(45◦) = 7
sin(120◦) so

b = 7 sin(45◦)
sin(120◦) = 7

√
6

3 ≈ 5.72 units. Now that we have two angle-side
pairs, it is Ɵme to find the third. To find γ, we use the fact that the sum
of the measures of the angles in a triangle is 180◦. Hence, γ = 180◦ −
120◦ − 45◦ = 15◦. To find c, we have no choice but to used the derived
value γ = 15◦, yet we can minimize the propagaƟon of error here by
using the given angle-side opposite pair (α, a). The Law of Sines gives us

c
sin(15◦) = 7

sin(120◦) so that c = 7 sin(15◦)
sin(120◦) ≈ 2.09 units. The exact value

of sin(15◦) could be found using the difference idenƟty for sine or a half-
angle formula, but that becomes unnecessarily messy for the discussion
at hand. Thus “exact” here means 7 sin(15◦)

sin(120◦) .

2. In this example, we are not immediately given an angle-side opposite pair,
but as we have the measures of α and β, we can solve for γ since γ =
180◦ − 85◦ − 30◦ = 65◦. As in the previous example, we are forced
to use a derived value in our computaƟons since the only angle-side pair
available is (γ, c). The Law of Sines gives a

sin(85◦) = 5.25
sin(65◦) . AŌer the

usual rearrangement, we get a = 5.25 sin(85◦)
sin(65◦) ≈ 5.77 units. To find b

we use the angle-side pair (γ, c) which yields b
sin(30◦) = 5.25

sin(65◦) hence
b = 5.25 sin(30◦)

sin(65◦) ≈ 2.90 units.

3. Since we are given (α, a) and c, we use the Law of Sines to find the mea-
sure of γ. We start with sin(γ)

4 = sin(30◦)
1 and get sin(γ) = 4 sin (30◦) = 2.

Since the range of the sine funcƟon is [−1, 1], there is no real numberwith
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a = 1c = 4

α = 30◦

Figure 9.62: Triangle for Example 178
number 3

a = 2c = 4

b ≈ 3.46

α = 30◦

β = 60◦

Figure 9.63: Triangle for Example 178
number 4

9.4 Law of Sines

sin(γ) = 2. Geometrically, we see that side a is just too short to make a
triangle. The next three examples keep the same values for the measure
of α and the length of c while varying the length of a. We will discuss this
case in more detail aŌer we see what happens in those examples.

4. In this case, we have the measure of α = 30◦, a = 2 and c = 4. Using the
Law of Sines, we get sin(γ)

4 = sin(30◦)
2 so sin(γ) = 2 sin (30◦) = 1. Now

γ is an angle in a triangle which also contains α = 30◦. This means that
γ must measure between 0◦ and 150◦ in order to fit inside the triangle
with α. The only angle that saƟsfies this requirement and has sin(γ) = 1
is γ = 90◦. In other words, we have a right triangle. We find the measure
of β to be β = 180◦ − 30◦ − 90◦ = 60◦ and then determine b using the
Law of Sines. We find b = 2 sin(60◦)

sin(30◦) = 2
√
3 ≈ 3.46 units. In this case, the

side a is precisely long enough to form a unique right triangle.

5. Proceeding as we have in the previous two examples, we use the Law
of Sines to find γ. In this case, we have sin(γ)

4 = sin(30◦)
3 or sin(γ) =

4 sin(30◦)
3 = 2

3 . Since γ lies in a triangle with α = 30◦, we must have
that 0◦ < γ < 150◦. There are two angles γ that fall in this range and
have sin(γ) = 2

3 : γ = arcsin
( 2
3
)
radians≈ 41.81◦ and γ = π−arcsin

( 2
3
)

radians ≈ 138.19◦. At this point, we pause to see if it makes sense that
we actually have two viable cases to consider. As we have discussed, both
candidates for γ are ‘compaƟble’ with the given angle-side pair (α, a) =
(30◦, 3) in that both choices for γ can fit in a triangle with α and both
have a sine of 2

3 . The only other given piece of informaƟon is that c = 4
units. Since c > a, it must be true that γ, which is opposite c, has greater
measure than α which is opposite a. In both cases, γ > α, so both can-
didates for γ are compaƟble with this last piece of given informaƟon as
well. Thus have two triangles on our hands. In the case γ = arcsin

( 2
3
)

radians ≈ 41.81◦, we find β ≈ 180◦ − 30◦ − 41.81◦ = 108.19◦. (To
find an exact expression for β, we convert everything back to radians:
α = 30◦ = π

6 radians, γ = arcsin
( 2
3
)
radians and 180◦ = π radians.

Hence, β = π − π
6 − arcsin

( 2
3
)
= 5π

6 − arcsin
( 2
3
)
radians ≈ 108.19◦.)

Using the Law of Sines with the angle-side opposite pair (α, a) and β, we
find b ≈ 3 sin(108.19◦)

sin(30◦) ≈ 5.70 units. In the case γ = π − arcsin
( 2
3
)
radi-

ans≈ 138.19◦, we repeat the exact same steps and find β ≈ 11.81◦ and
b ≈ 1.23 units. (An exact answer for β in this case is β = arcsin

( 2
3
)
− π

6
radians≈ 11.81◦.) Both triangles are drawn in Figure 9.61 below.

a = 3c = 4

α = 30◦

β ≈ 108.19◦

γ ≈ 41.81◦

b ≈ 5.70

a = 3

c = 4

α = 30◦

β ≈ 11.81◦

γ ≈ 138.19◦

b ≈ 1.23

Figure 9.61: Triangle for Example 178 number 5

6. For this last problem, we repeat the usual Law of Sines rouƟne to find that
sin(γ)

4 = sin(30◦)
4 so that sin(γ) = 1

2 . Since γ must inhabit a triangle with
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a = 4c = 4

α = 30◦

β = 120◦

γ = 30◦

b ≈ 6.93

Figure 9.65: Triangle for Example 178
number 6

Chapter 9 Further Topics in Trigonometry

α = 30◦, we must have 0◦ < γ < 150◦. Since the measure of γ must be
strictly less than 150◦, there is just one angle which saƟsfies both required
condiƟons, namely γ = 30◦. So β = 180◦−30◦−30◦ = 120◦ and, using
the Law of Sines one last Ɵme, b = 4 sin(120◦)

sin(30◦) = 4
√
3 ≈ 6.93 units.

Some remarks about Example 178 are in order. We first note that if we are
given the measures of two of the angles in a triangle, say α and β, the measure
of the third angle γ is uniquely determined using the equaƟon γ = 180◦−α−β.
Knowing themeasures of all three angles of a triangle completely determines its
shape. If in addiƟon we are given the length of one of the sides of the triangle,
we can then use the Law of Sines to find the lengths of the remaining two sides
to determine the size of the triangle. Such is the case in numbers 1 and 2 above.
In number 1, the given side is adjacent to just one of the angles – this is called
the ‘Angle-Angle-Side’ (AAS) case. In number 2, the given side is adjacent to
both angles which means we are in the so-called ‘Angle-Side-Angle’ (ASA) case.
If, on the other hand, we are given the measure of just one of the angles in the
triangle along with the length of two sides, only one of which is adjacent to the
given angle, we are in the ‘Angle-Side-Side’ (ASS) case.(In more reputable books,
this is called the ‘Side-Side-Angle’ or SSA case.) In number 3, the length of the
one given side a was too short to even form a triangle; in number 4, the length
of a was just long enough to form a right triangle; in 5, a was long enough, but
not too long, so that two triangles were possible; and in number 6, side a was
long enough to form a triangle but too long to swing back and form two. These
four cases exemplify all of the possibiliƟes in the Angle-Side-Side case which are
summarized in the following theorem.

Theorem 80 Possible Angle-Side-Side cases

Suppose (α, a) and (γ, c) are intended to be angle-side pairs in a triangle
where α, a and c are given. Let h = c sin(α)

• If a < h, then no triangle exists which saƟsfies the given criteria.

• If a = h, then γ = 90◦ so exactly one (right) triangle exists which
saƟsfies the criteria.

• If h < a < c, then two disƟnct triangles exist which saƟsfy the
given criteria.

• If a ≥ c, then γ is acute and exactly one triangle exists which sat-
isfies the given criteria

Theorem 80 is proved on a case-by-case basis. If a < h, then a < c sin(α).
If a triangle were to exist, the Law of Sines would have sin(γ)

c = sin(α)
a so that

sin(γ) = c sin(α)
a > a

a = 1, which is impossible. In Figure 9.64 below, we see
geometrically why this is the case.
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45◦30◦
γ

β

P Q

5 miles

d ≈ 9.66 miles

Shoreline

Sasquatch Island

45◦

β

d ≈ 9.66 miles

x miles

y miles

Q C

Sasquatch Island

Figure 9.67: Diagrams for Example 179

9.4 Law of Sines

c

α

a

h = c sin(α)

c

α

a = h = c sin(α)

a < h, no triangle a = h, γ = 90◦

Figure 9.64: IllustraƟng the first two cases in Theorem 80

Simply put, if a < h the side a is too short to connect to form a triangle.
This means if a ≥ h, we are always guaranteed to have at least one triangle, and
the remaining parts of the theorem tell us what kind and how many triangles
to expect in each case. If a = h, then a = c sin(α) and the Law of Sines gives
sin(α)

a = sin(γ)
c so that sin(γ) = c sin(α)

a = a
a = 1. Here, γ = 90◦ as required.

Moving along, now suppose h < a < c. As before, the Law of Sines gives
sin(γ) = c sin(α)

a . (Remember, we have already argued that a triangle exists
in this case!) Since h < a, c sin(α) < a or c sin(α)

a < 1 which means there
are two soluƟons to sin(γ) = c sin(α)

a : an acute angle which we’ll call γ0, and
its supplement, 180◦ − γ0. We need to argue that each of these angles ‘fit’
into a triangle with α. Since (α, a) and (γ0, c) are angle-side opposite pairs, the
assumpƟon c > a in this case gives us γ0 > α. Since γ0 is acute, we must have
thatα is acute as well. Thismeans one triangle can contain bothα and γ0, giving
us one of the triangles promised in the theorem. If wemanipulate the inequality
γ0 > α a bit, we have 180◦ − γ0 < 180◦ − α which gives (180◦ − γ0) + α <
180◦. This proves a triangle can contain both of the angles α and (180◦ − γ0),
giving us the second triangle predicted in the theorem. To prove the last case
in the theorem, we assume a ≥ c. Then α ≥ γ, which forces γ to be an acute
angle. Hence, we get only one triangle in this case, compleƟng the proof.

aac

h

α γ0γ0

h
ac

α γ

h < a < c, two triangles a ≥ c, one triangle

Figure 9.66: IllustraƟng the last two cases in Theorem 80

One last comment before we use the Law of Sines to solve an applicaƟon
problem. In the Angle-Side-Side case, if you are given an obtuse angle to begin
with then it is impossible to have the two triangle case. Think about this before
reading further.

Example 179 Applying the Law of Sines
Sasquatch Island lies off the coast of IppizuƟ Lake. Two sighƟngs, taken 5 miles
apart, aremade to the island. The angle between the shore and the island at the
first observaƟon point is 30◦ and at the second point the angle is 45◦. Assuming
a straight coastline, find the distance from the second observaƟon point to the
island. What point on the shore is closest to the island? How far is the island
from this point?

SÊ½çã®ÊÄ We sketch the problem in Figure 9.67 with the first obser-
vaƟon point labelled as P and the second as Q. In order to use the Law of Sines
to find the distance d from Q to the island, we first need to find the measure of
β which is the angle opposite the side of length 5 miles. To that end, we note
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that the angles γ and 45◦ are supplemental, so that γ = 180◦ − 45◦ = 135◦.
We can now find β = 180◦ − 30◦ − γ = 180◦ − 30◦ − 135◦ = 15◦. By the
Law of Sines, we have d

sin(30◦) =
5

sin(15◦) which gives d = 5 sin(30◦)
sin(15◦) ≈ 9.66 miles.

Next, to find the point on the coast closest to the island, which we’ve labelled as
C, we need to find the perpendicular distance from the island to the coast. (Do
you see why C must lie to the right of Q?) Let x denote the distance from the
second observaƟon point Q to the point C and let y denote the distance from C
to the island. Using Theorem 52, we get sin (45◦) = y

d . AŌer some rearranging,
we find y = d sin (45◦) ≈ 9.66

(√
2
2

)
≈ 6.83miles. Hence, the island is approx-

imately 6.83miles from the coast. To find the distance fromQ to C, we note that
β = 180◦ − 90◦ − 45◦ = 45◦ so by symmetry,(or by Theorem 52 again …) we
get x = y ≈ 6.83 miles. Hence, the point on the shore closest to the island is
approximately 6.83 miles down the coast from the second observaƟon point.

We close this secƟon with a new formula to compute the area enclosed by
a triangle. Its proof uses the same cases and diagrams as the proof of the Law
of Sines and is leŌ as an exercise.

Theorem 81 Formula for area of a triangle

Suppose (α, a), (β, b) and (γ, c) are the angle-side opposite pairs of a
triangle. Then the area A enclosed by the triangle is given by

A =
1
2
bc sin(α) =

1
2
ac sin(β) =

1
2
ab sin(γ)

Example 180 Using Theorem 81
Find the area of the triangle in Example 178.1.

SÊ½çã®ÊÄ From our work in Example 178 number 1, we have all three
angles and all three sides to work with. However, to minimize propagated error,
we choose A = 1

2ac sin(β) from Theorem 81 because it uses the most pieces of
given informaƟon. We are given a = 7 and β = 45◦, and we calculated c =
7 sin(15◦)
sin(120◦) . Using these values, we find A = 1

2 (7)
(

7 sin(15◦)
sin(120◦)

)
sin (45◦) =≈ 5.18

square units. The reader is encouraged to check this answer against the results
obtained using the other formulas in Theorem 81.
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Exercises 9.4
Problems

In Exercises 1 – 20, solve for the remaining side(s) and an-
gle(s) if possible. As in the text, (α, a), (β, b) and (γ, c) are
angle-side opposite pairs.

1. α = 13◦, β = 17◦, a = 5

2. α = 73.2◦, β = 54.1◦, a = 117

3. α = 95◦, β = 85◦, a = 33.33

4. α = 95◦, β = 62◦, a = 33.33

5. α = 117◦, a = 35, b = 42

6. α = 117◦, a = 45, b = 42

7. α = 68.7◦, a = 88, b = 92

8. α = 42◦, a = 17, b = 23.5

9. α = 68.7◦, a = 70, b = 90

10. α = 30◦, a = 7, b = 14

11. α = 42◦, a = 39, b = 23.5

12. γ = 53◦, α = 53◦, c = 28.01

13. α = 6◦, a = 57, b = 100

14. γ = 74.6◦, c = 3, a = 3.05

15. β = 102◦, b = 16.75, c = 13

16. β = 102◦, b = 16.75, c = 18

17. β = 102◦, γ = 35◦, b = 16.75

18. β = 29.13◦, γ = 83.95◦, b = 314.15

19. γ = 120◦, β = 61◦, c = 4

20. α = 50◦, a = 25, b = 12.5

21. Find the area of the triangles given in Exercises 1, 12 and
20 above.

(Another Classic ApplicaƟon: Grade of a Road) The grade of a
road is much like the pitch of a roof (See Example 167) in that
it expresses the raƟo of rise/run. In the case of a road, this ra-
Ɵo is always posiƟve because it is measured going uphill and
it is usually given as a percentage. For example, a road which
rises 7 feet for every 100 feet of (horizontal) forward progress
is said to have a 7% grade. However, if we want to apply any
Trigonometry to a story problem involving roads going uphill
or downhill, we need to view the grade as an angle with re-
spect to the horizontal. In Exercises 22 – 24, we first have you
change road grades into angles and then use the Law of Sines
in an applicaƟon.

22. Using a right triangle with a horizontal leg of length 100 and
verƟcal leg with length 7, show that a 7% grade means that
the road (hypotenuse)makes about a 4◦ anglewith the hor-
izontal. (It will not be exactly 4◦, but it’s preƩy close.)

23. What grade is given by a 9.65◦ angle made by the road and
the horizontal?2

24. Along a long, straight stretch of mountain road with a 7%
grade, you see a tall tree standing perfectly plumb along-
side the road.3 From a point 500 feet downhill from the
tree, the angle of inclinaƟon from the road to the top of
the tree is 6◦. Use the Law of Sines to find the height of the
tree. (Hint: First show that the tree makes a 94◦ angle with
the road.)

25. Skippy and Sally decide to hunt UFOs. One night, they po-
siƟon themselves 2 miles apart on an abandoned stretch
of desert runway. An hour into their invesƟgaƟon, Skippy
spies a UFO hovering over a spot on the runway directly
between him and Sally. He records the angle of inclinaƟon
from the ground to the craŌ to be 75◦ and radios Sally im-
mediately to find the angle of inclinaƟon from her posiƟon
to the craŌ is 50◦. How high off the ground is the UFO at
this point? Round your answer to the nearest foot. (Recall:
1 mile is 5280 feet.)

26. The angle of depression from an observer in an apartment
complex to a gargoyle on the building next door is 55◦.
From a point five stories below the original observer, the
angle of inclinaƟon to the gargoyle is 20◦. Find the distance
from each observer to the gargoyle and the distance from
the gargoyle to the apartment complex. Round your an-
swers to the nearest foot. (Use the rule of thumb that one
story of a building is 9 feet.)

27. Prove that the Law of Sines holds when△ABC is a right tri-
angle.

2I have friends who live in Pacifica, CA and their road is actually this steep. It’s not a nice road to drive.
3The word ‘plumb’ here means that the tree is perpendicular to the horizontal.
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(Another Classic ApplicaƟon: Bearings) In Exercises 28 – 34,
we introduce and work with the navigaƟon tool known as
bearings. Simply put, a bearing is the direcƟon you are head-
ing according to a compass. The classic nomenclature for
bearings, however, is not given as an angle in standard po-
siƟon, so we must first understand the notaƟon. A bearing
is given as an acute angle of rotaƟon (to the east or to the
west) away from the north-south (up and down) line of a
compass rose. For example, N40◦E (read “40◦ east of north”)
is a bearing which is rotated clockwise 40◦ from due north.
If we imagine standing at the origin in the Cartesian Plane,
this bearing would have us heading into Quadrant I along the
terminal side of θ = 50◦. Similarly, S50◦Wwould point into
Quadrant III along the terminal side of θ = 220◦ because
we started out poinƟng due south (along θ = 270◦) and ro-
tated clockwise 50◦ back to 220◦. Counter-clockwise rota-
Ɵons would be found in the bearings N60◦W (which is on the
terminal side of θ = 150◦) and S27◦E (which lies along the
terminal side of θ = 297◦). These four bearings are drawn in
the plane below.

N

E

S

W

N40◦E

40◦
N60◦W

60◦

S50◦W

50◦

S27◦E

27◦

The cardinal direcƟons north, south, east and west are usu-
ally not given as bearings in the fashion described above, but
rather, one just refers to them as ‘due north’, ‘due south’, ‘due
east’ and ‘due west’, respecƟvely, and it is assumed that you
know which quadrantal angle goes with each cardinal direc-
Ɵon. (Hint: Look at the diagram above.)

28. Find the angle θ in standard posiƟon with 0◦ ≤ θ < 360◦
which corresponds to each of the bearings given below.

(a) due west
(b) S83◦E
(c) N5.5◦E
(d) due south
(e) N31.25◦W
(f) S72◦41′12′′W
(g) N45◦E
(h) S45◦W

29. The Colonel spots a campfire at a of bearing N42◦E from his
current posiƟon. Sarge, who is posiƟoned 3000 feet due

east of the Colonel, reckons the bearing to the fire to be
N20◦W from his current posiƟon. Determine the distance
from the campfire to each man, rounded to the nearest
foot.

30. A hiker starts walking due west from Sasquatch Point and
gets to the Chupacabra Trailhead before she realizes that
she hasn’t reset her pedometer. From the Chupacabra
Trailhead she hikes for 5 miles along a bearing of N53◦W
which brings her to the Muffin Ridge Observatory. From
there, she knows a bearing of S65◦E will take her straight
back to Sasquatch Point. How far will she have to walk to
get from the Muffin Ridge Observatory to Sasquach Point?
What is the distance between Sasquatch Point and the Chu-
pacabra Trailhead?

31. The captain of the SS Bigfoot sees a signal flare at a bearing
of N15◦E from her current locaƟon. From his posiƟon, the
captain of the HMS Sasquatch finds the signal flare to be
at a bearing of N75◦W. If the SS Bigfoot is 5 miles from the
HMS Sasquatch and the bearing from the SS Bigfoot to the
HMS Sasquatch is N50◦E, find the distances from the flare
to each vessel, rounded to the nearest tenth of a mile.

32. Carl spies a potenƟal Sasquatch nest at a bearing of N10◦E
and radios Jeff, who is at a bearing of N50◦E from Carl’s
posiƟon. From Jeff’s posiƟon, the nest is at a bearing of
S70◦W. If Jeff and Carl are 500 feet apart, how far is Jeff
from the Sasquatch nest? Round your answer to the near-
est foot.

33. A hiker determines the bearing to a lodge from her current
posiƟon is S40◦W. She proceeds to hike 2miles at a bearing
of S20◦E at which point she determines the bearing to the
lodge is S75◦W. How far is she from the lodge at this point?
Round your answer to the nearest hundredth of a mile.

34. A watchtower spots a ship off shore at a bearing of N70◦E.
A second tower, which is 50 miles from the first at a bear-
ing of S80◦E from the first tower, determines the bearing to
the ship to be N25◦W. How far is the boat from the second
tower? Round your answer to the nearest tenth of a mile.

35. Discuss with your classmates why knowing only the three
angles of a triangle is not enough to determine any of the
sides.

36. Given α = 30◦ and b = 10, choose four different values
for a so that

(a) the informaƟon yields no triangle

(b) the informaƟon yields exactly one right triangle

(c) the informaƟon yields two disƟnct triangles

(d) the informaƟon yields exactly one obtuse triangle

Explain why you cannot choose a in such a way as to have
α = 30◦, b = 10 and your choice of a yield only one trian-
gle where that unique triangle has three acute angles.
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9.5 Law of Cosines

9.5 Law of Cosines
In SecƟon 9.4, we developed the Law of Sines (Theorem 79) to enable us to solve
triangles in the ‘Angle-Angle-Side’ (AAS), the ‘Angle-Side-Angle’ (ASA) and the
ambiguous ‘Angle-Side-Side’ (ASS) cases. In this secƟon, we develop the Law of
Cosines which handles solving triangles in the ‘Side-Angle-Side’ (SAS) and ‘Side-
Side-Side’ (SSS) cases. (Here, ‘Side-Angle-Side’ means that we are given two
sides and the ‘included’ angle - that is, the given angle is adjacent to both of the
given sides.) We state and prove the theorem below.

Theorem 82 Law of Cosines

Given a trianglewith angle-side opposite pairs (α, a), (β, b) and (γ, c), the following equa-
Ɵons hold

a2 = b2 + c2 − 2bc cos(α) b2 = a2 + c2 − 2ac cos(β) c2 = a2 + b2 − 2ab cos(γ)

or, solving for the cosine in each equaƟon, we have

cos(α) =
b2 + c2 − a2

2bc
cos(β) =

a2 + c2 − b2

2ac
cos(γ) =

a2 + b2 − c2

2ab

To prove the theorem, we consider a generic trianglewith the vertex of angle
α at the origin with side b posiƟoned along the posiƟve x-axis as in Figure 9.68.

a

b

c

α

A = (0, 0) C = (b, 0)

B = (c cos(α), c sin(α))

Figure 9.68: Generic triangle for the proof of Theorem 82

From this set-up, we immediately find that the coordinates of A and C are
A(0, 0) and C(b, 0). From Theorem 50, we know that since the point B(x, y) lies
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on a circle of radius c, the coordinates of B are B(x, y) = B(c cos(α), c sin(α)).
(This would be true even if αwere an obtuse or right angle so although we have
drawn the case when α is acute, the following computaƟons hold for any angle
α drawn in standard posiƟon where 0 < α < 180◦.) We note that the distance
between the points B and C is none other than the length of side a. Using the
distance formula, EquaƟon 6, we get

a =
√
(c cos(α)− b)2 + (c sin(α)− 0)2

a2 =
(√

(c cos(α)− b)2 + c2 sin2(α)
)2

a2 = (c cos(α)− b)2 + c2 sin2(α)
a2 = c2 cos2(α)− 2bc cos(α) + b2 + c2 sin2(α)
a2 = c2

(
cos2(α) + sin2(α)

)
+ b2 − 2bc cos(α)

a2 = c2(1) + b2 − 2bc cos(α) Since cos2(α) + sin2(α) = 1
a2 = c2 + b2 − 2bc cos(α)

The remaining formulas given in Theorem 82 can be shown by simply re-
orienƟng the triangle to place a different vertex at the origin. We leave these
details to the reader. What’s important about a and α in the above proof is that
(α, a) is an angle-side opposite pair and b and c are the sides adjacent to α –
the same can be said of any other angle-side opposite pair in the triangle. No-
Ɵce that the proof of the Law of Cosines relies on the distance formula which
has its roots in the Pythagorean Theorem. That being said, the Law of Cosines
can be thought of as a generalizaƟon of the Pythagorean Theorem. If we have a
triangle in which γ = 90◦, then cos(γ) = cos (90◦) = 0 so we get the familiar
relaƟonship c2 = a2 + b2. What this means is that in the larger mathemaƟ-
cal sense, the Law of Cosines and the Pythagorean Theorem amount to preƩy
much the same thing. (This shouldn’t come as too much of a shock. All of the
theorems in Trigonometry can ulƟmately be traced back to the definiƟon of the
circular funcƟons along with the distance formula and hence, the Pythagorean
Theorem.)

Example 181 Using the Law of Cosines
Solve the following triangles. Give exact answers and decimal approximaƟons
(rounded to hundredths) and sketch the triangle.

1. β = 50◦, a = 7 units, c = 2 units

2. a = 4 units, b = 7 units, c = 5 units

SÊ½çã®ÊÄ

1. We are given the lengths of two sides, a = 7 and c = 2, and the measure
of the included angle, β = 50◦. With no angle-side opposite pair to use,
we apply the Law of Cosines. We get b2 = 72 + 22 − 2(7)(2) cos (50◦)
which yields b =

√
53− 28 cos (50◦) ≈ 5.92 units. In order to determine

the measures of the remaining angles α and γ, we are forced to used the
derived value for b. There are twoways to proceed at this point. We could
use the Law of Cosines again, or, since we have the angle-side opposite
pair (β, b)we could use the Law of Sines. The advantage to using the Law
of Cosines over the Law of Sines in cases like this is that unlike the sine
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funcƟon, the cosine funcƟon disƟnguishes between acute and obtuse an-
gles. The cosine of an acute is posiƟve, whereas the cosine of an obtuse
angle is negaƟve. Since the sine of both acute and obtuse angles are pos-
iƟve, the sine of an angle alone is not enough to determine if the angle in
quesƟon is acute or obtuse. Since both authors of the textbook prefer the
Law of Cosines, we proceedwith this method first. When using the Law of
Cosines, it’s always best to find themeasure of the largest unknown angle
first, since this will give us the obtuse angle of the triangle if there is one.
Since the largest angle is opposite the longest side, we choose to find α
first. To that end, we use the formula cos(α) = b2+c2−a2

2bc and subsƟtute
a = 7, b =

√
53− 28 cos (50◦) and c = 2. We get (aŌer simplifying)

cos(α) =
2− 7 cos (50◦)√
53− 28 cos (50◦)

Sinceα is an angle in a triangle, we know the radianmeasure ofαmust lie
between 0 and π radians. This matches the range of the arccosine func-
Ɵon, so we have

α = arccos

(
2− 7 cos (50◦)√
53− 28 cos (50◦)

)
radians ≈ 114.99◦

At this point, we could find γ using γ = 180◦−α−β ≈ 180◦−114.99◦−
50◦ = 15.01◦, that is if we trust our approximaƟon for α. To minimize
propagaƟon of error, however, we could use the Law of Cosines again, in
this case using cos(γ) = a2+b2−c2

2ab . Plugging ina = 7, b =
√
53− 28 cos (50◦)

and c = 2, we get γ = arccos
(

7−2 cos(50◦)√
53−28 cos(50◦)

)
radians ≈ 15.01◦. We

sketch the triangle in Figure 9.69 below.

a = 7

b ≈ 5.92

c = 2 α ≈ 114.99◦

γ ≈ 15.01◦

β = 50◦

Figure 9.69: Triangle for Example 181.1

As we menƟoned earlier, once we’ve determined b it is possible to use
the Law of Sines to find the remaining angles. Here, however, we must
proceed with cauƟon as we are in the ambiguous (ASS) case. It is advis-
able to first find the smallest of the unknown angles, since we are guar-
anteed it will be acute. (There can only be one obtuse angle in the trian-
gle, and if there is one, it must be the largest.) In this case, we would
find γ since the side opposite γ is smaller than the side opposite the
other unknown angle, α. Using the angle-side opposite pair (β, b), we
get sin(γ)

2 = sin(50◦)√
53−28 cos(50◦)

. The usual calculaƟons produces γ ≈ 15.01◦

and α = 180◦ − β − γ ≈ 180◦ − 50◦ − 15.01◦ = 114.99◦.

2. Since all three sides and no angles are given, we are forced to use the Law
of Cosines. Following our discussion in the previous problem, we find β

first, since it is opposite the longest side, b. We get cos(β) = a2+c2−b2
2ac =
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1000 feet

60◦

P

Figure 9.71: The pond in Example 182
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− 1
5 , so we get β = arccos

(
− 1

5
)
radians ≈ 101.54◦. As in the previous

problem, now that we have obtained an angle-side opposite pair (β, b),
we could proceed using the Law of Sines. The Law of Cosines, however,
offers us a rare opportunity to find the remaining angles using only the
data given to us in the statement of the problem. Using this, we get γ =
arccos

( 5
7
)
radians≈ 44.42◦ and α = arccos

( 29
35
)
radians≈ 34.05◦.

a = 4c = 5

α ≈ 34.05◦

β ≈ 101.54◦

γ ≈ 44.42◦

b = 7

Figure 9.70: Triangle for Example 181.2

We note that, depending on how many decimal places are carried through
successive calculaƟons, and depending on which approach is used to solve the
problem, the approximate answers you obtain may differ slightly from those the
authors obtain in the Examples and the Exercises. A great example of this is num-
ber 2 in Example 181, where the approximate valueswe record for themeasures
of the angles sum to 180.01◦, which is geometrically impossible. Next, we have
an applicaƟon of the Law of Cosines.

Example 182 Applying the Law of Cosines
A researcher wishes to determine the width of a vernal pond as drawn in Figure
9.71. From a point P, he finds the distance to the eastern-most point of the pond
to be 950 feet, while the distance to the western-most point of the pond from P
is 1000 feet. If the angle between the two lines of sight is 60◦, find the width of
the pond.

SÊ½çã®ÊÄ We are given the lengths of two sides and the measure of
an included angle, so we may apply the Law of Cosines to find the length of the
missing side opposite the given angle. Calling this length w (for width), we get
w2 = 9502 + 10002 − 2(950)(1000) cos (60◦) = 952500 from which we get
w =

√
952500 ≈ 976 feet.

In SecƟon 9.4, we used the proof of the Law of Sines to develop Theorem 81
as an alternate formula for the area enclosed by a triangle. In this secƟon, we
use the Law of Cosines to derive another such formula - Heron’s Formula.

Theorem 83 Heron’s Formula

Suppose a, b and c denote the lengths of the three sides of a triangle.
Let s be the semiperimeter of the triangle, that is, let s = 1

2 (a+ b+ c).
Then the area A enclosed by the triangle is given by

A =
√

s(s− a)(s− b)(s− c)

We prove Theorem 83 using Theorem 81. Using the convenƟon that the
angle γ is opposite the side c, we have A = 1

2ab sin(γ) from Theorem 81. In
order to simplify computaƟons, we start by manipulaƟng the expression for A2.
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9.5 Law of Cosines

A2 =

(
1
2
ab sin(γ)

)2

=
1
4
a2b2 sin2(γ)

=
a2b2

4
(
1− cos2(γ)

)
Since sin2(γ) = 1− cos2(γ).

The Law of Cosines tells us cos(γ) = a2+b2−c2
2ab , so subsƟtuƟng this into our

equaƟon for A2 gives

A2 =
a2b2

4
(
1− cos2(γ)

)
=

a2b2

4

[
1−

(
a2 + b2 − c2

2ab

)2
]

=
a2b2

4

[
1−

(
a2 + b2 − c2

)2
4a2b2

]

=
a2b2

4

[
4a2b2 −

(
a2 + b2 − c2

)2
4a2b2

]

=
4a2b2 −

(
a2 + b2 − c2

)2
16

=
(2ab)2 −

(
a2 + b2 − c2

)2
16

=

(
2ab−

[
a2 + b2 − c2

]) (
2ab+

[
a2 + b2 − c2

])
16

difference of squares.

=

(
c2 − a2 + 2ab− b2

) (
a2 + 2ab+ b2 − c2

)
16

=

(
c2 −

[
a2 − 2ab+ b2

]) ([
a2 + 2ab+ b2

]
− c2

)
16

=

(
c2 − (a− b)2

) (
(a+ b)2 − c2

)
16

perfect square trinomials.

=
(c− (a− b))(c+ (a− b))((a+ b)− c)((a+ b) + c)

16
difference of squares.

=
(b+ c− a)(a+ c− b)(a+ b− c)(a+ b+ c)

16

=
(b+ c− a)

2
· (a+ c− b)

2
· (a+ b− c)

2
· (a+ b+ c)

2
At this stage, we recognize the last factor as the semiperimeter,

s =
1
2
(a+ b+ c) =

a+ b+ c
2

.

To complete the proof, we note that

(s− a) =
a+ b+ c

2
− a =

a+ b+ c− 2a
2

=
b+ c− a

2
.
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Similarly, we find (s− b) =
a+ c− b

2
and (s− c) =

a+ b− c
2

. Hence, we get

A2 =
(b+ c− a)

2
· (a+ c− b)

2
· (a+ b− c)

2
· (a+ b+ c)

2
= (s− a)(s− b)(s− c)s

so that A =
√

s(s− a)(s− b)(s− c) as required.

We close with an example of Heron’s Formula.

Example 183 Using Heron’s Fomrula
Find the area enclosed of the triangle in Example 181 number 2.

SÊ½çã®ÊÄ We are given a = 4, b = 7 and c = 5. Using these values,
we find s = 1

2 (4+7+5) = 8, (s−a) = 8−4 = 4, (s−b) = 8−7 = 1 and (s−
c) = 8−5 = 3. Using Heron’s Formula, we get A =

√
s(s− a)(s− b)(s− c) =√

(8)(4)(1)(3) =
√
96 = 4

√
6 ≈ 9.80 square units.
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Exercises 9.5
Problems
In Exercises 1 – 10, use the Law of Cosines to find the remain-
ing side(s) and angle(s) if possible.

1. a = 7, b = 12, γ = 59.3◦

2. α = 104◦, b = 25, c = 37

3. a = 153, β = 8.2◦, c = 153

4. a = 3, b = 4, γ = 90◦

5. α = 120◦, b = 3, c = 4

6. a = 7, b = 10, c = 13

7. a = 1, b = 2, c = 5

8. a = 300, b = 302, c = 48

9. a = 5, b = 5, c = 5

10. a = 5, b = 12, ; c = 13

In Exercises 11 – 16, solve for the remaining side(s) and an-
gle(s), if possible, using any appropriate technique.

11. a = 18, α = 63◦, b = 20

12. a = 37, b = 45, c = 26

13. a = 16, α = 63◦, b = 20

14. a = 22, α = 63◦, b = 20

15. α = 42◦, b = 117, c = 88

16. β = 7◦, γ = 170◦, c = 98.6

17. Find the area of the triangles given in Exercises 6, 8 and 10
above.

18. The hour hand on my anƟque Seth Thomas schoolhouse
clock in 4 inches long and the minute hand is 5.5 inches
long. Find the distance between the ends of the hands
when the clock reads four o’clock. Round your answer to
the nearest hundredth of an inch.

19. A geologist wants to measure the diameter of a crater.
From her camp, it is 4 miles to the northern-most point of
the crater and 2 miles to the southern-most point. If the
angle between the two lines of sight is 117◦, what is the
diameter of the crater? Round your answer to the nearest
hundredth of a mile.

20. From the Pedimaxus InternaƟonal Airport a tour helicopter
can fly to Cliffs of Insanity Point by following a bearing of
N8.2◦E for 192miles and it can fly to Bigfoot Falls by follow-
ing a bearing of S68.5◦E for 207 miles.4 Find the distance
between Cliffs of Insanity Point and Bigfoot Falls. Round
your answer to the nearest mile.

21. Cliffs of Insanity Point and Bigfoot Falls from Exericse 20
above both lie on a straight stretch of the Great Sasquatch
Canyon. What bearing would the tour helicopter need to
follow to go directly from Bigfoot Falls to Cliffs of Insanity
Point? Round your angle to the nearest tenth of a degree.

22. A naturalist sets off on a hike from a lodge on a bearing of
S80◦W. AŌer 1.5 miles, she changes her bearing to S17◦W
and conƟnues hiking for 3miles. Find her distance from the
lodge at this point. Round your answer to the nearest hun-
dredth of a mile. What bearing should she follow to return
to the lodge? Round your angle to the nearest degree.

23. The HMS Sasquatch leaves port on a bearing of N23◦E and
travels for 5 miles. It then changes course and follows a
heading of S41◦E for 2miles. How far is it fromport? Round
your answer to the nearest hundredth of a mile. What is its
bearing to port? Round your angle to the nearest degree.

24. The SS Bigfoot leaves a harbor bound for Nessie Island
which is 300 miles away at a bearing of N32◦E. A storm
moves in and aŌer 100 miles, the captain of the Bigfoot
finds he has driŌed off course. If his bearing to the har-
bor is now S70◦W, how far is the SS Bigfoot from Nessie
Island? Round your answer to the nearest hundredth of a
mile. What course should the captain set to head to the
island? Round your angle to the nearest tenth of a degree.

25. From a point 300 feet above level ground in a firetower, a
ranger spots two fires in the YeƟ NaƟonal Forest. The angle
of depression5 made by the line of sight from the ranger
to the first fire is 2.5◦ and the angle of depression made
by line of sight from the ranger to the second fire is 1.3◦.
The angle formed by the two lines of sight is 117◦. Find
the distance between the two fires. Round your answer to
the nearest foot. (Hint: In order to use the 117◦ angle be-
tween the lines of sight, youwill first need to use right angle
Trigonometry to find the lengths of the lines of sight. This
will give you a Side-Angle-Side case in which to apply the
Law of Cosines.)

firetower

fire

fire
117◦

26. If you apply the Law of Cosines to the ambiguous Angle-
Side-Side (ASS) case, the result is a quadraƟc equaƟon

4Please refer to Page 446 in SecƟon 9.4 for an introducƟon to bearings.
5See Exercise 78 in SecƟon 8.3 for the definiƟon of this angle.
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whose variable is that of the missing side. If the equaƟon
has no posiƟve real zeros then the informaƟon given does
not yield a triangle. If the equaƟon has only one posiƟve
real zero then exactly one triangle is formed and if the equa-
Ɵon has two disƟnct posiƟve real zeros then two disƟnct
triangles are formed. Apply the Law of Cosines to Exercises

11, 13 and 14 above in order to demonstrate this result.

27. Discuss with your classmates why Heron’s Formula yields
an area in square units even though four lengths are being
mulƟplied together.
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9.6 Polar Coordinates

9.6 Polar Coordinates
In SecƟon 1.3, we introduced the Cartesian coordinates of a point in the plane
as a means of assigning ordered pairs of numbers to points in the plane. We
defined the Cartesian coordinate plane using two number lines – one horizon-
tal and one verƟcal – which intersect at right angles at a point we called the
‘origin’. To plot a point, say P(−3, 4), we start at the origin, travel horizontally
to the leŌ 3 units, then up 4 units. AlternaƟvely, we could start at the origin,
travel up 4 units, then to the leŌ 3 units and arrive at the same locaƟon. For
the most part, the ‘moƟons’ of the Cartesian system (over and up) describe a
rectangle, and most points can be thought of as the corner diagonally across
the rectangle from the origin.(Excluding, of course, the points in which one or
both coordinates are 0.) For this reason, the Cartesian coordinates of a point
are oŌen called ‘rectangular’ coordinates. In this secƟon, we introduce a new
system for assigning coordinates to points in the plane – polar coordinates. We
start with an origin point, called the pole, and a ray called the polar axis. We
then locate a point P using two coordinates, (r, θ), where r represents a directed
distance from the pole (we will explain more about this momentarily) and θ is
a measure of rotaƟon from the polar axis. Roughly speaking, the polar coordi-
nates (r, θ) of a point measure ‘how far out’ the point is from the pole (that’s r),
and ‘how far to rotate’ from the polar axis, (that’s θ).

x

y

P (−3, 4)

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

3

2

r

r
θ

Pole
Polar Axis

P (r, θ)

Figure 9.72: Rectangular vs. Polar Coordinates

For example, if we wished to plot the point Pwith polar coordinates
(
4, 5π

6
)
,

we’d start at the pole, move out along the polar axis 4 units, then rotate 5π
6

radians counter-clockwise, as shown in Figure 9.73.

Pole

r = 4

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

Figure 9.73: LocaƟng a point using polar coordinates

We may also visualize this process by thinking of the rotaƟon first.(As with
anything in MathemaƟcs, the more ways you have to look at something, the
beƩer. The authors encourage the reader to take Ɵme to think about both ap-
proaches to ploƫng points given in polar coordinates.) To plot P

(
4, 5π

6
)
this
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way, we rotate 5π
6 counter-clockwise from the polar axis, then move outwards

from the pole 4 units, as shown in Figure 9.74. EssenƟally we are locaƟng a point
on the terminal side of 5π

6 which is 4 units away from the pole.

Pole

θ = 5π
6

Pole

θ = 5π
6

Pole

P
(
4, 5π

6

)

Figure 9.74: Performing the rotaƟon first

If r < 0, we begin by moving in the opposite direcƟon on the polar axis from
the pole. For example, to plot Q

(
−3.5, π

4
)
we have the steps shown in Figure

9.75.

Pole

r = −3.5

Poleθ = π
4

Pole

Q
(
−3.5, π

4

)

Figure 9.75: Using polar coordinates when r < 0

If we interpret the angle first, we rotate π
4 radians, then move back through

the pole 3.5 units. Here we are locaƟng a point 3.5 units away from the pole on
the terminal side of 5π

4 , not
π
4 .

Pole

θ = π
4

Pole

θ = π
4

Pole

Q
(
−3.5, π

4

)

Figure 9.76: Performing the rotaƟon first to plot the point in Figure 9.75

As you may have guessed, θ < 0 means the rotaƟon away from the polar
axis is clockwise instead of counter-clockwise. Hence, to plot R

(
3.5,− 3π

4
)
we

have the following.

Pole

r = 3.5

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)

Figure 9.77: θ = − 3π
4 < 0 produces a clockwise rotaƟon

From an ‘angles first’ approach, we rotate− 3π
4 thenmove out 3.5 units from

the pole. We see that R is the point on the terminal side of θ = − 3π
4 which is

3.5 units from the pole.
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Pole

θ = − 3π
4

Pole

θ = − 3π
4

Pole

R
(
3.5,− 3π

4

)

Figure 9.78: RotaƟng first with θ < 0

The points Q and R above are, in fact, the same point despite the fact that
their polar coordinate representaƟons are different. Unlike Cartesian coordi-
nates where (a, b) and (c, d) represent the same point if and only if a = c and
b = d, a point can be represented by infinitely many polar coordinate pairs. We
explore this noƟon more in the following example.
Example 184 Ploƫng points in polar coordinates
For each point in polar coordinates given below plot the point and then give two
addiƟonal expressions for the point, one of which has r > 0 and the other with
r < 0.

1. P (2, 240◦)

2. P
(
−4, 7π

6
) 3. P

(
117,− 5π

2
)

4. P
(
−3,− π

4
)

SÊ½çã®ÊÄ

1. Whether we move 2 units along the polar axis and then rotate 240◦ or
rotate 240◦ then move out 2 units from the pole, we plot P (2, 240◦) in
Figure 9.79 below.

Pole

θ = 240◦

Pole

P (2, 240◦)

Figure 9.79: Ploƫng P(2, 240◦)

We now set about finding alternate descripƟons (r, θ) for the point P.
Since P is 2 units from the pole, r = ±2. Next, we choose angles θ for
each of the r values. The given representaƟon for P is (2, 240◦) so the
angle θ we choose for the r = 2 case must be coterminal with 240◦. (Can
you see why?) One such angle is θ = −120◦ so one answer for this case
is (2,−120◦). For the case r = −2, we visualize our rotaƟon starƟng 2
units to the leŌ of the pole. From this posiƟon, we need only to rotate
θ = 60◦ to arrive at locaƟon coterminal with 240◦. Hence, our answer
here is (−2, 60◦). We check our answers by ploƫng them in Figure 9.80.

P (2,−120◦)

Pole

θ = −120◦

P (−2, 60◦)

Pole
θ = 60◦

Figure 9.80: Alternate polar reprentaƟons of P(2, 240◦)
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2. We plot
(
−4, 7π

6
)
by first moving 4 units to the leŌ of the pole and then

rotaƟng 7π
6 radians. Since r = −4 < 0, we find our point lies 4 units from

the pole on the terminal side of π
6 .

Pole

θ = 7π
6

Pole

P
(
−4, 7π

6

)

Figure 9.81: Ploƫng P(−4, 7π
6 )

To find alternate descripƟons for P, we note that the distance from P to the
pole is 4 units, so any representaƟon (r, θ) for Pmust have r = ±4. As we
noted above, P lies on the terminal side of π

6 , so this, coupled with r = 4,
gives us

(
4, π

6
)
as one of our answers. To find a different representaƟon for

Pwith r = −4, we may choose any angle coterminal with the angle in the
original representaƟon of P

(
−4, 7π

6
)
. We pick− 5π

6 and get
(
−4,− 5π

6
)
as

our second answer.

θ = π
6

P
(
4, π

6

)

Pole

θ = − 5π
6

P
(
−4,− 5π

6

)

Pole

Figure 9.82: Alternate polar representaƟons of P(−4, 7π
6 )

3. To plot P
(
117,− 5π

2
)
, we move along the polar axis 117 units from the

pole and rotate clockwise 5π
2 radians as illustrated in Figure 9.83 below.

Pole

θ = − 5π
2

Pole

P
(
117,− 5π

2

)

Figure 9.83: Ploƫng P(117,− 5π
2 )

Since P is 117 units from the pole, any representaƟon (r, θ) for P saƟsfies
r = ±117. For the r = 117 case, we can take θ to be any angle coterminal
with − 5π

2 . In this case, we choose θ = 3π
2 , and get

(
117, 3π

2
)
as one an-

swer. For the r = −117 case, we visualize moving leŌ 117 units from the
pole and then rotaƟng through an angle θ to reach P. We find that θ = π

2
saƟsfies this requirement, so our second answer is

(
−117, π

2
)
.
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Pole

θ = 3π
2

P
(
117, 3π

2

)

Pole

θ = π
2

P
(
−117, π

2

)

Figure 9.84: Alternate polar representaƟons of P(117,− 5π
2 )

4. We move three units to the leŌ of the pole and follow up with a clock-
wise rotaƟon of π

4 radians to plot P
(
−3,− π

4
)
. We see that P lies on the

terminal side of 3π
4 .

Pole

θ = −π
4

Pole

P
(
−3,−π

4

)

Figure 9.85: Ploƫng P(−3,− π
4 )

Since P lies on the terminal side of 3π
4 , one alternaƟve representaƟon for

P is
(
3, 3π

4
)
. To find a different representaƟon for P with r = −3, we may

choose any angle coterminal with − π
4 . We choose θ = 7π

4 for our final
answer

(
−3, 7π

4
)
.

Pole

P
(
3, 3π

4

)
θ = 3π

4

Pole

P
(
−3, 7π

4

)
θ = 7π

4

Figure 9.86: Alternate polar representaƟons of P(−3,− π
4 )

Now that we have had some pracƟce with ploƫng points in polar coordi-
nates, it should come as no surprise that any given point expressed in polar co-
ordinates has infinitely many other representaƟons in polar coordinates. The
following result characterizes when two sets of polar coordinates determine the
same point in the plane. It could be considered as a definiƟon or a theorem, de-
pending on your point of view. We state it as a property of the polar coordinate
system.

459



Chapter 9 Further Topics in Trigonometry

Key Idea 41 Equivalent RepresentaƟons of Points in Polar Coordi-
nates

Suppose (r, θ) and
(
r′, θ′

)
are polar coordinates where r ̸= 0, r′ ̸= 0 and

the angles are measured in radians. Then (r, θ) and
(
r′, θ′

)
determine

the same point P if and only if one of the following is true:

• r′ = r and θ′ = θ + 2πk for some integer k

• r′ = −r and θ′ = θ + (2k+ 1)π for some integer k

All polar coordinates of the form (0, θ) represent the pole regardless of
the value of θ.

The key to understanding this result, and indeed the whole polar coordinate
system, is to keep in mind that

(r, θ) means (directed distance from pole, angle of rotaƟon).

If r = 0, then nomaƩer howmuch rotaƟon is performed, the point never leaves
the pole. Thus (0, θ) is the pole for all values of θ. Now let’s assume that neither r
nor r′ is zero. If (r, θ) and

(
r′, θ′

)
determine the same point P then the (non-zero)

distance from P to the pole in each case must be the same. Since this distance is
controlled by the first coordinate, we have that either r′ = r or r′ = −r. If r′ = r,
then when ploƫng (r, θ) and

(
r′, θ′

)
, the angles θ and θ′ have the same iniƟal

side. Hence, if (r, θ) and
(
r′, θ′

)
determine the same point, wemust have that θ′

is coterminal with θ. We know that this means θ′ = θ+ 2πk for some integer k,
as required. If, on the other hand, r′ = −r, then when ploƫng (r, θ) and

(
r′, θ′

)
,

the iniƟal side of θ′ is rotated π radians away from the iniƟal side of θ. In this
case, θ′must be coterminalwith π+θ. Hence, θ′ = π+θ+2πkwhichwe rewrite
as θ′ = θ+(2k+ 1)π for some integer k. Conversely, if r′ = r and θ′ = θ+ 2πk
for some integer k, then the points P (r, θ) and P′

(
r′, θ′

)
lie the same (directed)

distance from the pole on the terminal sides of coterminal angles, and hence are
the same point. Now suppose r′ = −r and θ′ = θ+ (2k+ 1)π for some integer
k. To plot P, we first move a directed distance r from the pole; to plot P′, our
first step is to move the same distance from the pole as P, but in the opposite
direcƟon. At this intermediate stage, we have two points equidistant from the
pole rotated exactly π radians apart. Since θ′ = θ+(2k+ 1)π = (θ + π)+ 2πk
for some integer k, we see that θ′ is coterminal to (θ + π) and it is this extra π
radians of rotaƟon which aligns the points P and P′.

Next, wemarry the polar coordinate systemwith the Cartesian (rectangular)
coordinate system. To do so, we idenƟfy the pole and polar axis in the polar
system to the origin and posiƟve x-axis, respecƟvely, in the rectangular system.
We get the following result.
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x

y

P

θ = 5π
3

Figure 9.87: P has rectangular coordi-
nates (2,−2

√
3) and polar coordinates

(4, 5π
3 )

x

y

Q

θ = 5π
4

Figure 9.88: Q has rectangular coordi-
nates (−3,−3) and polar coordinates
(3
√
2, 5π

4 )

9.6 Polar Coordinates

Theorem 84 Conversion Between Rectangular and Polar Coordi-
nates

Suppose P is represented in rectangular coordinates as (x, y) and in polar
coordinates as (r, θ). Then

• x = r cos(θ) and y = r sin(θ)

• x2 + y2 = r2 and tan(θ) =
y
x
(provided x ̸= 0)

In the case r > 0, Theorem 84 is an immediate consequence of Theorem
50 along with the quoƟent idenƟty tan(θ) = sin(θ)

cos(θ) . If r < 0, then we know an
alternate representaƟon for (r, θ) is (−r, θ + π). Since cos(θ + π) = − cos(θ)
and sin(θ + π) = − sin(θ), applying the theorem to (−r, θ + π) gives x =
(−r) cos(θ + π) = (−r)(− cos(θ)) = r cos(θ) and y = (−r) sin(θ + π) =
(−r)(− sin(θ)) = r sin(θ). Moreover, x2 + y2 = (−r)2 = r2, and y

x = tan(θ +
π) = tan(θ), so the theorem is true in this case, too. The remaining case is
r = 0, in which case (r, θ) = (0, θ) is the pole. Since the pole is idenƟfied with
the origin (0, 0) in rectangular coordinates, the theorem in this case amounts to
checking ‘0 = 0.’ The following example puts Theorem 84 to good use.

Example 185 ConverƟng from rectangular to polar coordinates
Convert each point in rectangular coordinates given below into polar coordi-
nates with r ≥ 0 and 0 ≤ θ < 2π. Use exact values if possible and round any
approximate values to two decimal places. Check your answer by converƟng
them back to rectangular coordinates.

1. P
(
2,−2

√
3
)

2. Q(−3,−3)

3. R(0,−3)

4. S(−3, 4)

SÊ½çã®ÊÄ

1. Even though we are not explicitly told to do so, we can avoid many com-
monmistakes by taking the Ɵme to plot the points beforewe do any calcu-
laƟons. Ploƫng P

(
2,−2

√
3
)
shows that it lies in Quadrant IV. With x = 2

and y = −2
√
3, we get r2 = x2 + y2 = (2)2 +

(
−2

√
3
)2

= 4+ 12 = 16
so r = ±4. Since we are asked for r ≥ 0, we choose r = 4. To find θ, we
have that tan(θ) = y

x = −2
√
3

2 = −
√
3. This tells us θ has a reference

angle of π
3 , and since P lies in Quadrant IV, we know θ is a Quadrant IV

angle. We are asked to have 0 ≤ θ < 2π, so we choose θ = 5π
3 . Hence,

our answer is
(
4, 5π

3
)
. To check, we convert (r, θ) =

(
4, 5π

3
)
back to rect-

angular coordinates and we find x = r cos(θ) = 4 cos
( 5π

3
)
= 4

( 1
2
)
= 2

and y = r sin(θ) = 4 sin
( 5π

3
)
= 4

(
−

√
3
2

)
= −2

√
3, as required.

2. The point Q(−3,−3) lies in Quadrant III. Using x = y = −3, we get
r2 = (−3)2 + (−3)2 = 18 so r = ±

√
18 = ±3

√
2. Since we are asked

for r ≥ 0, we choose r = 3
√
2. We find tan(θ) = −3

−3 = 1, which means θ
has a reference angle of π

4 . SinceQ lies in Quadrant III, we choose θ = 5π
4 ,

which saƟsfies the requirement that 0 ≤ θ < 2π. Our final answer is
(r, θ) =

(
3
√
2, 5π

4
)
. To check, we find x = r cos(θ) = (3

√
2) cos

( 5π
4
)
=
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x

y

R

θ = 3π
2

Figure 9.89: R has rectangular coor-
dinates (0,−3) and polar coordinates
(−3, 3π

2 )

x

y

S

θ = π − arctan
(
4
3

)

Figure 9.90: S has rectangular coor-
dinates (−3, 4) and polar coordinates
(5, π − arctan( 43 ))
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(3
√
2)
(
−

√
2
2

)
= −3 and y = r sin(θ) = (3

√
2) sin

( 5π
4
)
= (3

√
2)
(
−

√
2
2

)
=

−3, so we are done.

3. ThepointR(0,−3) lies along the negaƟve y-axis. Whilewe could go through
the usual computaƟons to find the polar form of R (since x = 0, we would
have to determine θ geometrically), in this case we can find the polar co-
ordinates of R using the definiƟon. Since the pole is idenƟfied with the
origin, we can easily tell the point R is 3 units from the pole, which means
in the polar representaƟon (r, θ) of R we know r = ±3. Since we re-
quire r ≥ 0, we choose r = 3. Concerning θ, the angle θ = 3π

2 saƟsfies
0 ≤ θ < 2πwith its terminal side along the negaƟve y-axis, so our answer
is
(
3, 3π

2
)
. To check, we note x = r cos(θ) = 3 cos

( 3π
2
)
= (3)(0) = 0 and

y = r sin(θ) = 3 sin
( 3π

2
)
= 3(−1) = −3.

4. The point S(−3, 4) lies in Quadrant II. With x = −3 and y = 4, we get
r2 = (−3)2 + (4)2 = 25 so r = ±5. As usual, we choose r = 5 ≥ 0
and proceed to determine θ. We have tan(θ) = y

x = 4
−3 = − 4

3 , and
since this isn’t the tangent of one the common angles, we resort to us-
ing the arctangent funcƟon. Since θ lies in Quadrant II and must saƟsfy
0 ≤ θ < 2π, we choose θ = π − arctan

( 4
3
)
radians. Hence, our answer

is (r, θ) =
(
5, π − arctan

( 4
3
))

≈ (5, 2.21). To check our answers re-
quires a bit of tenacity since we need to simplify expressions of the form:
cos
(
π − arctan

( 4
3
))

and sin
(
π − arctan

( 4
3
))
. These are good review

exercises and are hence leŌ to the reader. Wefind cos
(
π − arctan

( 4
3
))

=

− 3
5 and sin

(
π − arctan

( 4
3
))

= 4
5 , so that x = r cos(θ) = (5)

(
− 3

5
)
= −3

and y = r sin(θ) = (5)
( 4
5
)
= 4 which confirms our answer.

Now that we’ve had pracƟce converƟng representaƟons of points between
the rectangular and polar coordinate systems, we now set about converƟng
equaƟons from one system to another. Just as we’ve used equaƟons in x and
y to represent relaƟons in rectangular coordinates, equaƟons in the variables r
and θ represent relaƟons in polar coordinates. We convert equaƟons between
the two systems using Theorem 84 as the next examples illustrate.

Example 186 ConverƟng equaƟons from rectangular to polar
Convert each equaƟon in rectangular coordinates into an equaƟon in polar co-
ordinates.

1. (x−3)2+y2 = 9 2. y = −x 3. y = x2

SÊ½çã®ÊÄ One strategy to convert an equaƟon from rectangular to
polar coordinates is to replace every occurrence of x with r cos(θ) and every
occurrence of ywith r sin(θ) and use idenƟƟes to simplify. This is the technique
we employ below.

1. We start by subsƟtuƟng x = r cos(θ) and y = sin(θ) into (x−3)2+y2 = 9
and simplifying. With no real direcƟon in which to proceed, we follow our
mathemaƟcal insƟncts and see where they take us. (Experience is the
mother of all insƟnct, and necessity is the mother of invenƟon. Study this
example and see what techniques are employed, then try your best to
work through as many of the exercises as you can.)
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In Example 186.1, note thatwhenwe sub-
sƟtute θ = π

2 into r = 6 cos(θ), we re-
cover the point r = 0, so we aren’t losing
anything by disregarding r = 0.

9.6 Polar Coordinates

(r cos(θ)− 3)2 + (r sin(θ))2 = 9
r2 cos2(θ)− 6r cos(θ) + 9+ r2 sin2(θ) = 9

r2
(
cos2(θ) + sin2(θ)

)
− 6r cos(θ) = 0

r2 − 6r cos(θ) = 0 (cos2(θ) + sin2(θ) = 1)
r(r− 6 cos(θ)) = 0 Factor

Thus, we get r = 0 or r = 6 cos(θ). We know that the equaƟon (x−3)2+
y2 = 9 describes a circle, and since r = 0 describes just a point (namely
the pole/origin), we choose r = 6 cos(θ) for our final answer.

2. SubsƟtuƟng x = r cos(θ) and y = r sin(θ) into y = −x gives r sin(θ) =
−r cos(θ). Rearranging, we get r cos(θ) + r sin(θ) = 0 or r(cos(θ) +
sin(θ)) = 0. This gives r = 0 or cos(θ) + sin(θ) = 0. Solving the lat-
ter equaƟon for θ, we get θ = − π

4 + πk for integers k. As we did in the
previous example, we take a step back and think geometrically. We know
y = −x describes a line through the origin. As before, r = 0 describes the
origin, but nothing else. Consider the equaƟon θ = − π

4 . In this equaƟon,
the variable r is free, meaning it can assume any and all values including
r = 0. If we imagine ploƫng points (r,− π

4 ) for all conceivable values of r
(posiƟve, negaƟve and zero), we are essenƟally drawing the line contain-
ing the terminal side of θ = − π

4 which is none other than y = −x. Hence,
we can take as our final answer θ = − π

4 here. (We could take it to be any
of θ = − π

4 + πk for integers k, but it’s nice to keep things simple.)

3. We subsƟtute x = r cos(θ) and y = r sin(θ) into y = x2 and get r sin(θ) =
(r cos(θ))2, or r2 cos2(θ) − r sin(θ) = 0. Factoring, we get r(r cos2(θ) −
sin(θ)) = 0 so that either r = 0 or r cos2(θ) = sin(θ). We can solve the
laƩer equaƟon for r by dividing both sides of the equaƟon by cos2(θ), but
as a general rule, we never divide through by a quanƟty that may be 0. In
this parƟcular case, we are safe since if cos2(θ) = 0, then cos(θ) = 0, and
for the equaƟon r cos2(θ) = sin(θ) to hold, then sin(θ)would also have to
be 0. Since there are no angles with both cos(θ) = 0 and sin(θ) = 0, we
are not losing any informaƟon by dividing both sides of r cos2(θ) = sin(θ)
by cos2(θ). Doing so, we get r = sin(θ)

cos2(θ) , or r = sec(θ) tan(θ). As before,
the r = 0 case is recovered in the soluƟon r = sec(θ) tan(θ) (let θ = 0),
so we state the laƩer as our final answer.

Example 187 ConverƟng equaƟons from polar to rectangular
Convert each equaƟon in polar coordinates into an equaƟon in rectangular co-
ordinates.

1. r = −3 2. θ = 4π
3 3. r = 1− cos(θ)

SÊ½çã®ÊÄ As a general rule, converƟng equaƟons from polar to rect-
angular coordinates isn’t as straight forward as the reverse process. We could
solve r2 = x2+y2 for r to get r = ±

√
x2 + y2 and solving tan(θ) = y

x requires the
arctangent funcƟon to get θ = arctan

( y
x

)
+ πk for integers k. Neither of these

expressions for r and θ are especially user-friendly, so we opt for a second strat-
egy – rearrange the given polar equaƟon so that the expressions r2 = x2 + y2,
r cos(θ) = x, r sin(θ) = y and/or tan(θ) = y

x present themselves.
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When we say that two representaƟons
of a point are ‘equivalent’, we mean
that they represent the same point in
the plane. As ordered pairs, (3, 0) and
(−3, π) are different, but when inter-
preted as polar coordinates, they corre-
spond to the same point in the plane.
The same applies to equaƟons defining
relaƟons in the plane using polar coor-
dinates. MathemaƟcally speaking, rela-
Ɵons are sets of ordered pairs, so the
equaƟons r2 = 9 and r = −3 repre-
sent different relaƟons, since they corre-
spond to different sets of ordered pairs.
However, since polar coordinates were
defined geometrically to describe the lo-
caƟon of points in the plane, we concern
ourselves only with ensuring that the sets
of points in the plane generated by two
equaƟons are the same. This was not an
issue, by the way, when we first defined
relaƟons as sets of points in the plane in
SecƟon 2.1. Back then, a point in the
plane was idenƟfied with a unique or-
dered pair given by its Cartesian coordi-
nates.
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1. StarƟng with r = −3, we can square both sides to get r2 = (−3)2 or
r2 = 9. Wemay now subsƟtute r2 = x2+y2 to get the equaƟon x2+y2 =
9. As we have seen, (Exercise 26 in SecƟon 6.3, for instance) squaring
an equaƟon does not, in general, produce an equivalent equaƟon. The
concern here is that the equaƟon r2 = 9might be saƟsfied bymore points
than r = −3. On the surface, this appears to be the case since r2 = 9 is
equivalent to r = ±3, not just r = −3. However, any point with polar
coordinates (3, θ) can be represented as (−3, θ + π), which means any
point (r, θ) whose polar coordinates saƟsfy the relaƟon r = ±3 has an
equivalent representaƟon which saƟsfies r = −3.

2. We take the tangent of both sides the equaƟon θ = 4π
3 to get tan(θ) =

tan
( 4π

3
)
=

√
3. Since tan(θ) = y

x , we get
y
x =

√
3 or y = x

√
3. Of course,

we pause a moment to wonder if, geometrically, the equaƟons θ = 4π
3

and y = x
√
3 generate the same set of points. (In addiƟon to taking the

tangent of both sides of an equaƟon (There are infinitely many soluƟons
to tan(θ) =

√
3, and θ = 4π

3 is only one of them!), we also went from
y
x =

√
3, in which x cannot be 0, to y = x

√
3 in which we assume x can be

0.) The same argument presented in number 2 applies equally well here
so we are done.

3. Once again, we need to manipulate r = 1− cos(θ) a bit before using the
conversion formulas given in Theorem 84. We could square both sides of
this equaƟon like we did in part 1 above to obtain an r2 on the leŌ hand
side, but that does nothing helpful for the right hand side. Instead, we
mulƟply both sides by r to obtain r2 = r−r cos(θ). We now have an r2 and
an r cos(θ) in the equaƟon, which we can easily handle, but we also have
another r to deal with. RewriƟng the equaƟon as r = r2 + r cos(θ) and
squaring both sides yields r2 =

(
r2 + r cos(θ)

)2. SubsƟtuƟng r2 = x2+ y2

and r cos(θ) = x gives x2 + y2 =
(
x2 + y2 + x

)2. Once again, we have
performed some algebraic manoeuvres whichmay have altered the set of
points described by the original equaƟon. First, we mulƟplied both sides
by r. This means that now r = 0 is a viable soluƟon to the equaƟon. In
the original equaƟon, r = 1 − cos(θ), we see that θ = 0 gives r = 0, so
the mulƟplicaƟon by r doesn’t introduce any new points. The squaring of
both sides of this equaƟon is also a reason to pause. Are there points with
coordinates (r, θ) which saƟsfy r2 =

(
r2 + r cos(θ)

)2 but do not saƟsfy
r = r2 + r cos(θ)? Suppose

(
r′, θ′

)
saƟsfies r2 =

(
r2 + r cos(θ)

)2. Then
r′ = ±

(
(r′)2 + r′ cos(θ′)

)
. If we have that r′ = (r′)2 + r′ cos(θ′), we are

done. What if r′ = −
(
(r′)2 + r′ cos(θ′)

)
= −(r′)2− r′ cos(θ′)? We claim

that the coordinates (−r′, θ′ + π), which determine the same point as
(r′, θ′), saƟsfy r = r2 + r cos(θ). If r = −r′ and θ = θ′ + π, then we have

r2 + r cos(θ) = (−r′)2 + (−r′) cos(θ′ + π)

= (r′)2 − r′(− cos(θ′)) Since cos(θ′ + π) = − cos(θ′)
= (r′)2 + r′ cos(θ′)
= −r′ Since r′ = −(r′)2 − r′ cos(θ′)
= r.

Thus, the point (−r′, θ′ + π) saƟsfies r = r2 + r cos(θ), which means that
any point (r, θ) which saƟsfies r2 =

(
r2 + r cos(θ)

)2 has a representaƟon
which saƟsfies r = r2 + r cos(θ), and we are done.
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9.6 Polar Coordinates

In pracƟce, much of the pedanƟc verificaƟon of the equivalence of equa-
Ɵons in Examples 186 and 187 is leŌ unsaid. Indeed, in most textbooks, squar-
ing equaƟons like r = −3 to arrive at r2 = 9 happens without a second thought.
Your instructorwill ulƟmately decide howmuch, if any, jusƟficaƟon iswarranted.
If you take anything away from these examples, it should be that relaƟvely nice
things in rectangular coordinates, such as y = x2, can turn ugly in polar coor-
dinates, and vice-versa. If nothing else, number 3 above shows the price we
pay if we insist on always converƟng to back to the more familiar rectangular
coordinate system.
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Exercises 9.6
Problems
In Exercises 1 – 16, plot the point given in polar coordinates
and then give three different expressions for the point such
that (a) r < 0 and 0 ≤ θ ≤ 2π, (b) r > 0 and θ ≤ 0 (c) r > 0
and θ ≥ 2π

1.
(
2, π

3

)

2.
(
5, 7π

4

)

3.
(
1
3
,
3π
2

)

4.
(
5
2
,
5π
6

)

5.
(
12,−7π

6

)

6.
(
3,−5π

4

)

7.
(
2
√
2,−π

)
8.
(
7
2
,−13π

6

)
9. (−20, 3π)

10.
(
−4, 5π

4

)

11.
(
−1, 2π

3

)

12.
(
−3, π

2

)

13.
(
−3,−11π

6

)

14.
(
−2.5,−π

4

)

15.
(
−
√
5,−4π

3

)
16. (−π,−π)

In Exercises 17 – 36, convert the point from polar coordinates
into rectangular coordinates.

17.
(
5, 7π

4

)

18.
(
2, π

3

)
19.

(
11,−7π

6

)
20. (−20, 3π)

21.
(
3
5
,
π

2

)

22.
(
−4, 5π

6

)

23.
(
9, 7π

2

)

24.
(
−5,−9π

4

)

25.
(
42, 13π

6

)
26. (−117, 117π)

27. (6, arctan(2))

28. (10, arctan(3))

29.
(
−3, arctan

(
4
3

))

30.
(
5, arctan

(
−4
3

))

31.
(
2, π − arctan

(
1
2

))

32.
(
−1
2
, π − arctan (5)

)

33.
(
−1, π + arctan

(
3
4

))

34.
(
2
3
, π + arctan

(
2
√
2
))

35. (π, arctan(π))

36.
(
13, arctan

(
12
5

))
In Exercises 37 – 56, convert the point from rectangular coor-
dinates into polar coordinates with r ≥ 0 and 0 ≤ θ < 2π.

37. (0, 5)

38. (3,
√
3)
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39. (7,−7)

40. (−3,−
√
3)

41. (−3, 0)

42.
(
−
√
2,
√
2
)

43.
(
−4,−4

√
3
)

44.
(√

3
4

,−1
4

)

45.
(
− 3
10

,−3
√
3

10

)

46.
(
−
√
5,−

√
5
)

47. (6, 8)

48. (
√
5, 2

√
5)

49. (−8, 1)

50. (−2
√
10, 6

√
10)

51. (−5,−12)

52.
(
−
√
5

15
,−2

√
5

15

)
53. (24,−7)

54. (12,−9)

55.
(√

2
4

,

√
6
4

)

56.
(
−
√
65
5

,
2
√
65
5

)
In Exercises 57 – 76, convert the equaƟon from rectangular
coordinates into polar coordinates. Solve for r in all but #60
through #63. In Exercises 60 - 63, you need to solve for θ.

57. x = 6

58. x = −3

59. y = 7

60. y = 0

61. y = −x

62. y = x
√
3

63. y = 2x

64. x2 + y2 = 25

65. x2 + y2 = 117

66. y = 4x− 19

67. x = 3y+ 1

68. y = −3x2

69. 4x = y2

70. x2 + y2 − 2y = 0

71. x2 − 4x+ y2 = 0

72. x2 + y2 = x

73. y2 = 7y− x2

74. (x+ 2)2 + y2 = 4

75. x2 + (y− 3)2 = 9

76. 4x2 + 4
(
y− 1

2

)2

= 1

In Exercises 77 – 96, convert the equaƟon from polar coordi-
nates into rectangular coordinates.

77. r = 7

78. r = −3

79. r =
√
2

80. θ =
π

4

81. θ =
2π
3

82. θ = π

83. θ =
3π
2

84. r = 4 cos(θ)

85. 5r = cos(θ)

86. r = 3 sin(θ)

87. r = −2 sin(θ)

88. r = 7 sec(θ)

89. 12r = csc(θ)

90. r = −2 sec(θ)
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91. r = −
√
5 csc(θ)

92. r = 2 sec(θ) tan(θ)

93. r = − csc(θ) cot(θ)

94. r2 = sin(2θ)

95. r = 1− 2 cos(θ)

96. r = 1+ sin(θ)

97. Convert the origin (0, 0) into polar coordinates in four dif-
ferent ways.

98. With the help of your classmates, use the Law of Cosines to
develop a formula for the distance between two points in
polar coordinates.
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Saying that Re(z) and Im(z) are ‘well-
defined’ means that no maƩer how we
express z, the number Re(z) is always the
same, and the number Im(z) is always the
same. In other words, Re and Im are func-
Ɵons of complex numbers.

9.7 The Polar Form of Complex Numbers

9.7 The Polar Form of Complex Numbers
In this secƟon, we return to our study of complex numbers which were first in-
troduced in SecƟon 4.4. Recall that a complex number is a number of the form
z = a+biwhere a and b are real numbers and i is the imaginary unit defined by
i =

√
−1. The number a is called the real part of z, denoted Re(z), while the real

number b is called the imaginary part of z, denoted Im(z). From Intermediate
Algebra, we know that if z = a+bi = c+diwhere a, b, c and d are real numbers,
then a = c and b = d, which means Re(z) and Im(z) are well-defined. To start
off this secƟon, we associate each complex number z = a + bi with the point
(a, b) on the coordinate plane. In this case, the x-axis is relabeled as the real
axis, which corresponds to the real number line as usual, and the y-axis is rela-
beled as the imaginary axis, which is demarcated in increments of the imaginary
unit i. The plane determined by these two axes is called the complex plane.

Real Axis

Imaginary Axis

(−4, 2)←→ z = −4 + 2i

(0,−3)←→ z = −3i

(3, 0)←→ z = 3

0−4−3−2−1 1 2 3 4

−4i

−3i

−2i

−i

i

2i

3i

4i

Figure 9.91: The complex plane

Since the ordered pair (a, b) gives the rectangular coordinates associated
with the complex number z = a + bi, the expression z = a + bi is called the
rectangular form of z. Of course, we could just as easily associate zwith a pair of
polar coordinates (r, θ). Although it is not as straighƞorward as the definiƟons
of Re(z) and Im(z), we can sƟll give r and θ special names in relaƟon to z.

DefiniƟon 56 The Modulus and Argument of Complex Numbers

Let z = a+ bi be a complex number with a = Re(z) and b = Im(z). Let
(r, θ) be a polar representaƟon of the point with rectangular coordinates
(a, b) where r ≥ 0.

• Themodulus of z, denoted |z|, is defined by |z| = r.

• The angle θ is an argument of z. The set of all arguments of z is
denoted arg(z).

• If z ̸= 0 and −π < θ ≤ π, then θ is the principal argument of z,
wriƩen θ = Arg(z).

Some remarks about DefiniƟon 56 are in order. We know from SecƟon 9.6
that every point in the plane has infinitely many polar coordinate representa-
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Ɵons (r, θ) which means it’s worth our Ɵme to make sure the quanƟƟes ‘modu-
lus’, ‘argument’ and ‘principal argument’ are well-defined. Concerning themod-
ulus, if z = 0 then the point associated with z is the origin. In this case, the only
r-value which can be used here is r = 0. Hence for z = 0, |z| = 0 is well-defined.
If z ̸= 0, then the point associatedwith z is not the origin, and there are two pos-
sibiliƟes for r: one posiƟve and one negaƟve. However, we sƟpulated r ≥ 0 in
our definiƟon so this pins down the value of |z| to one and only one number.
Thus the modulus is well-defined in this case, too. (In case you’re wondering,
the use of the absolute value notaƟon |z| for modulus will be explained shortly.)
Even with the requirement r ≥ 0, there are infinitely many angles θ which can
be used in a polar representaƟon of a point (r, θ). If z ̸= 0 then the point in
quesƟon is not the origin, so all of these angles θ are coterminal. Since cotermi-
nal angles are exactly 2π radians apart, we are guaranteed that only one of them
lies in the interval (−π, π], and this angle is what we call the principal argument
of z, Arg(z). In fact, the set arg(z) of all arguments of z can be described us-
ing set-builder notaƟon as arg(z) = {Arg(z) + 2πk | k is an integer}. Note that
since arg(z) is a set, we will write ‘θ ∈ arg(z)’ to mean ‘θ is in the set of argu-
ments of z’. If z = 0 then the point in quesƟon is the origin, which we know can
be represented in polar coordinates as (0, θ) for any angle θ. In this case, we
have arg(0) = (−∞,∞) and since there is no one value of θ which lies (−π, π],
we leave Arg(0) undefined. It is Ɵme for an example.

Example 188 Components of a complex number
For each of the following complex numbers find Re(z), Im(z), |z|, arg(z) and
Arg(z). Plot z in the complex plane.

1. z =
√
3− i

2. z = −2+ 4i

3. z = 3i

4. z = −117

SÊ½çã®ÊÄ

1. For z =
√
3 − i =

√
3 + (−1)i, we have Re(z) =

√
3 and Im(z) =

−1. To find |z|, arg(z) and Arg(z), we need to find a polar representa-
Ɵon (r, θ) with r ≥ 0 for the point P(

√
3,−1) associated with z. We

know r2 = (
√
3)2 + (−1)2 = 4, so r = ±2. Since we require r ≥ 0,

we choose r = 2, so |z| = 2. Next, we find a corresponding angle θ.
Since r > 0 and P lies in Quadrant IV, θ is a Quadrant IV angle. We
know tan(θ) = −1√

3 = −
√
3
3 , so θ = − π

6 + 2πk for integers k. Hence,
arg(z) =

{
− π

6 + 2πk | k is an integer
}
. Of these values, only θ = − π

6
saƟsfies the requirement that−π < θ ≤ π, hence Arg(z) = − π

6 .

2. The complex number z = −2 + 4i has Re(z) = −2, Im(z) = 4, and is
associated with the point P(−2, 4). Our next task is to find a polar repre-
sentaƟon (r, θ) for Pwhere r ≥ 0. Running through the usual calculaƟons
gives r = 2

√
5, so |z| = 2

√
5. To find θ, we get tan(θ) = −2, and since

r > 0 and P lies in Quadrant II, we know θ is a Quadrant II angle. We find
θ = π+ arctan(−2) + 2πk, or, more succinctly θ = π− arctan(2) + 2πk
for integers k. Hence arg(z) = {π − arctan(2) + 2πk | k is an integer}.
Only θ = π − arctan(2) saƟsfies the requirement −π < θ ≤ π, so
Arg(z) = π − arctan(2).

3. We rewrite z = 3i as z = 0+3i to find Re(z) = 0 and Im(z) = 3. The point
in the planewhich corresponds to z is (0, 3) andwhilewe could go through
the usual calculaƟons to find the required polar form of this point, we can
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almost ‘see’ the answer. The point (0, 3) lies 3 units away from the origin
on the posiƟve y-axis. Hence, r = |z| = 3 and θ = π

2 + 2πk for integers k.
We get arg(z) =

{
π
2 + 2πk | k is an integer

}
and Arg(z) = π

2 .

4. As in the previous problem, we write z = −117 = −117+ 0i so Re(z) =
−117 and Im(z) = 0. The number z = −117 corresponds to the point
(−117, 0), and this is another instance where we can determine the polar
form ‘by eye’. The point (−117, 0) is 117 units away from the origin along
the negaƟve x-axis. Hence, r = |z| = 117 and θ = π + 2π = (2k+ 1)πk
for integers k. We have arg(z) = {(2k+ 1)π | k is an integer}. Only one
of these values, θ = π, just barely lies in the interval (−π, π]whichmeans
and Arg(z) = π. We plot z along with the other numbers in this example
in Figure 9.92 below.

Real Axis

Imaginary Axis

z =
√
3− i

z = −2 + 4i

z = 3i

z = −117

−117 −2−1 1 2 3 4−i

i

2i

3i

4i

Figure 9.92: Plots of the four complex numbers in Example 188

Now that we’ve had some pracƟce compuƟng the modulus and argument
of some complex numbers, it is Ɵme to explore their properƟes. We have the
following theorem.

Theorem 85 ProperƟes of the Modulus

Let z and w be complex numbers.

• |z| is the distance from z to 0 in the complex plane

• |z| ≥ 0 and |z| = 0 if and only if z = 0

• |z| =
√
Re(z)2 + Im(z)2

• Product Rule: |zw| = |z||w|

• Power Rule: |zn| = |z|n for all natural numbers, n

• QuoƟent Rule:
∣∣∣ zw ∣∣∣ = |z|

|w|
, provided w ̸= 0

To prove the first three properƟes in Theorem 85, suppose z = a+biwhere
a and b are real numbers. To determine |z|, we find a polar representaƟon (r, θ)
with r ≥ 0 for the point (a, b). From SecƟon 9.6, we know r2 = a2 + b2 so that
r = ±

√
a2 + b2. Since we require r ≥ 0, then it must be that r =

√
a2 + b2,

which means |z| =
√
a2 + b2. Using the distance formula, we find the distance

from (0, 0) to (a, b) is also
√
a2 + b2, establishing the first property. For the
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Since the absolute value |x| of a real num-
ber x can be viewed as the distance from
x to 0 on the number line, the first prop-
erty in Theorem 85 jusƟfies the notaƟon
|z| for modulus. We leave it to the reader
to show that if z is real, then the definiƟon
of modulus coincides with absolute value
so the notaƟon |z| is unambiguous.

In case you were not convinced by the ar-
gument for the second property in Theo-
rem 85, we can work through the under-
lying Algebra to see this is true. We know
|z| = 0 if and only if

√
a2 + b2 = 0 if and

only if a2 + b2 = 0, which is true if and
only if a = b = 0. The laƩer happens if
and only if z = a+ bi = 0. There.

Chapter 9 Further Topics in Trigonometry

second property, note that since |z| is a distance, |z| ≥ 0. Furthermore, |z| = 0
if and only if the distance from z to 0 is 0, and the laƩer happens if and only if
z = 0, which is what we were asked to show. For the third property, we note
that since a = Re(z) and b = Im(z), z =

√
a2 + b2 =

√
Re(z)2 + Im(z)2.

To prove the product rule, suppose z = a + bi and w = c + di for real
numbers a, b, c and d. Then zw = (a + bi)(c + di). AŌer the usual arithmeƟc
we get zw = (ac−bd)+ (ad+bc)i. (See Example 12 in SecƟon 1.4 for a review
of complex number arithmeƟc.) Therefore,

|zw| =
√
(ac− bd)2 + (ad+ bc)2

=
√

a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2 Expand

=
√

a2c2 + a2d2 + b2c2 + b2d2 Rearrange terms

=
√

a2 (c2 + d2) + b2 (c2 + d2) Factor

=
√
(a2 + b2) (c2 + d2) Factor

=
√

a2 + b2
√

c2 + d2 Product Rule for Radicals
= |z||w| DefiniƟon of |z| and |w|

Hence |zw| = |z||w| as required.

Now that the Product Rule has been established, we use it and the Principle
of MathemaƟcal InducƟon to prove the power rule. Let P(n) be the statement
|zn| = |z|n. Then P(1) is true since

∣∣z1∣∣ = |z| = |z|1. Next, assume P(k) is true.
That is, assume

∣∣zk∣∣ = |z|k for some k ≥ 1. Our job is to show that P(k + 1) is
true, namely

∣∣zk+1
∣∣ = |z|k+1. As is customary with inducƟon proofs, we first try

to reduce the problem in such a way as to use the InducƟon Hypothesis.

∣∣zk+1∣∣ = ∣∣zkz∣∣ ProperƟes of Exponents

=
∣∣zk∣∣ |z| Product Rule

= |z|k|z| InducƟon Hypothesis

= |z|k+1 ProperƟes of Exponents

Hence, P(k + 1) is true, which means |zn| = |z|n is true for all natural numbers
n.

Like the Power Rule, the QuoƟent Rule can also be established with the help
of the Product Rule. We assume w ̸= 0 (so |w| ̸= 0) and we get

∣∣∣ zw ∣∣∣ =
∣∣∣∣(z)( 1

w

)∣∣∣∣
[3pt] = |z|

∣∣∣∣ 1w
∣∣∣∣ Product Rule.

Hence, the proof really boils down to showing
∣∣ 1
w

∣∣ = 1
|w| . This is leŌ as an

exercise.

Next, we characterize the argument of a complex number in terms of its real
and imaginary parts.
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9.7 The Polar Form of Complex Numbers

Theorem 86 ProperƟes of the Argument

Let z be a complex number.

• If Re(z) ̸= 0 and θ ∈ arg(z), then tan(θ) = Im(z)
Re(z) .

• If Re(z) = 0 and Im(z) > 0, then arg(z) ={
π
2 + 2πk | k is an integer

}
.

• If Re(z) = 0 and Im(z) < 0, then arg(z) ={
− π

2 + 2πk | k is an integer
}
.

• If Re(z) = Im(z) = 0, then z = 0 and arg(z) = (−∞,∞).

To prove Theorem 86, suppose z = a + bi for real numbers a and b. By
definiƟon, a = Re(z) and b = Im(z), so the point associated with z is (a, b) =
(Re(z), Im(z)). From SecƟon 9.6, we know that if (r, θ) is a polar representaƟon
for (Re(z), Im(z)), then tan(θ) = Im(z)

Re(z) , provided Re(z) ̸= 0. If Re(z) = 0 and
Im(z) > 0, then z lies on the posiƟve imaginary axis. Since we take r > 0,
we have that θ is coterminal with π

2 , and the result follows. If Re(z) = 0 and
Im(z) < 0, then z lies on the negaƟve imaginary axis, and a similar argument
shows θ is coterminal with − π

2 . The last property in the theorem was already
discussed in the remarks following DefiniƟon 56.

Our next goal is to completely marry the Geometry and the Algebra of the
complex numbers. To that end, consider Figure 9.93 below.

Real Axis

Imaginary Axis

(a, b)←→ z = a+ bi←→ (r, θ)

0

θ ∈ arg(z)

a

bi

|z| =
√ a

2 +
b2

=
r

Figure 9.93: Polar coordinates, (r, θ) associated with z = a+ bi with r ≥ 0.

We know from Theorem 84 that a = r cos(θ) and b = r sin(θ). Making
these subsƟtuƟons for a and b gives z = a + bi = r cos(θ) + r sin(θ)i =
r [cos(θ) + i sin(θ)]. The expression ‘cos(θ) + i sin(θ)’ is abbreviated cis(θ) so
we can write z = r cis(θ). Since r = |z| and θ ∈ arg(z), we get
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DefiniƟon 57 A Polar Form of a Complex Number

Suppose z is a complex number and θ ∈ arg(z). The expression:

|z| cis(θ) = |z| [cos(θ) + i sin(θ)]

is called a polar form for z.

Since there are infinitely many choices for θ ∈ arg(z), there infinitely many
polar forms for z, so we used the indefinite arƟcle ‘a’ in DefiniƟon 57. It is Ɵme
for an example.

Example 189 ConverƟng between rectangular and polar form

1. Find the rectangular form of the following complex numbers. Find Re(z)
and Im(z).

(a) z = 4 cis
( 2π

3
)

(b) z = 2 cis
(
− 3π

4
) (c) z = 3 cis(0)

(d) z = cis
(
π
2
)

2. Use the results from Example 188 to find a polar form of the following
complex numbers.

(a) z =
√
3− i

(b) z = −2+ 4i
(c) z = 3i
(d) z = −117

SÊ½çã®ÊÄ

1. The key to this problem is to write out cis(θ) as cos(θ) + i sin(θ).

(a) By definiƟon, z = 4 cis
( 2π

3
)
= 4

[
cos
( 2π

3
)
+ i sin

( 2π
3
)]
. AŌer some

simplifying, we get z = −2+2i
√
3, so that Re(z) = −2 and Im(z) =

2
√
3.

(b) Expanding, we get z = 2 cis
(
− 3π

4
)
= 2

[
cos
(
− 3π

4
)
+ i sin

(
− 3π

4
)]
.

From this, we find z = −
√
2− i

√
2, so Re(z) = −

√
2 = Im(z).

(c) We get z = 3 cis(0) = 3 [cos(0) + i sin(0)] = 3. WriƟng 3 = 3+ 0i,
we get Re(z) = 3 and Im(z) = 0, which makes sense seeing as 3 is a
real number.

(d) Lastly, we have z = cis
(
π
2
)
= cos

(
π
2
)
+ i sin

(
π
2
)
= i. Since i = 0+

1i, we get Re(z) = 0 and Im(z) = 1. Since i is called the ‘imaginary
unit,’ these answers make perfect sense.

2. To write a polar form of a complex number z, we need two pieces of infor-
maƟon: the modulus |z| and an argument (not necessarily the principal
argument) of z. We shamelessly mine our soluƟon to Example 188 to find
what we need.

(a) For z =
√
3 − i, |z| = 2 and θ = − π

6 , so z = 2 cis
(
− π

6
)
. We can

check our answer by converƟng it back to rectangular form to see
that it simplifies to z =

√
3− i.
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While the notaƟon cis(θ) = cos(θ) +
i sin(θ) is not uncommon, it is not the
most popular. In light of Theorem 87, one
can make sense of the polar form using
Euler’s formula

eiθ = cos(θ) + i sin(θ).

The appearance of the exponenƟal func-
Ɵon in this context might seem strange,
but note that the three properƟes in The-
orem 87 can then be understood in terms
of laws of exponents. If z = reiα and
w = seiβ , we have

zw = (rs)
(
eiαeiβ

)
= (rs)ei(α+β),

zn = rn(eiα)n = rneinα,

and so on. For more details, see Exercise
82.

9.7 The Polar Form of Complex Numbers

(b) For z = −2 + 4i, |z| = 2
√
5 and θ = π − arctan(2). Hence, z =

2
√
5 cis(π − arctan(2)). It is a good exercise to actually show that

this polar form reduces to z = −2+ 4i.
(c) For z = 3i, |z| = 3 and θ = π

2 . In this case, z = 3 cis
(
π
2
)
. This can be

checked geometrically. Head out 3 units from 0 along the posiƟve
real axis. RotaƟng π

2 radians counter-clockwise lands you exactly 3
units above 0 on the imaginary axis at z = 3i.

(d) Last but not least, for z = −117, |z| = 117 and θ = π. We get
z = 117 cis(π). As with the previous problem, our answer is easily
checked geometrically.

The following theorem summarizes the advantages of working with complex
numbers in polar form.

Theorem 87 Products, Powers and QuoƟents Complex Numbers in
Polar Form

Suppose z and w are complex numbers with polar forms z = |z| cis(α)
and w = |w| cis(β). Then

• Product Rule: zw = |z||w| cis(α+ β)

• Power Rule (DeMoivre’s Theorem) : zn = |z|n cis(nθ) for every
natural number n

• QuoƟent Rule:
z
w

=
|z|
|w|

cis(α− β), provided |w| ̸= 0

The proof of Theorem 87 requires a healthymix of definiƟon, arithmeƟc and
idenƟƟes. We first start with the product rule.

zw = [|z| cis(α)] [|w| cis(β)]

= |z||w| [cos(α) + i sin(α)] [cos(β) + i sin(β)]

We now focus on the quanƟty in brackets on the right hand side of the equa-
Ɵon.

[cos(α) + i sin(α)] [cos(β) + i sin(β)]
= cos(α) cos(β) + i cos(α) sin(β)

+ i sin(α) cos(β) + i2 sin(α) sin(β)
= cos(α) cos(β) + i2 sin(α) sin(β) Rearranging terms

+ i sin(α) cos(β) + i cos(α) sin(β)
= (cos(α) cos(β)− sin(α) sin(β)) Since i2 = −1
+ i (sin(α) cos(β) + cos(α) sin(β)) Factor out i
= cos(α+ β) + i sin(α+ β) Sum idenƟƟes
= cis(α+ β) DefiniƟon of ‘cis’
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Puƫng this together with our earlier work, we get zw = |z||w| cis(α + β),
as required.

Moving right along, we next take aim at the Power Rule, beƩer known as
DeMoivre’s Theorem. (Compare this proof with the proof of the Power Rule in
Theorem 85.) We proceed by inducƟon on n. Let P(n) be the sentence zn =
|z|n cis(nθ). Then P(1) is true, since z1 = z = |z| cis(θ) = |z|1 cis(1 · θ). We now
assume P(k) is true, that is, we assume zk = |z|k cis(kθ) for some k ≥ 1. Our
goal is to show that P(k+1) is true, or that zk+1 = |z|k+1 cis((k+1)θ). We have

zk+1 = zkz ProperƟes of Exponents
=
(
|z|k cis(kθ)

)
(|z| cis(θ)) InducƟon Hypothesis

=
(
|z|k|z|

)
cis(kθ + θ) Product Rule

= |z|k+1 cis((k+ 1)θ)

Hence, assuming P(k) is true, we have that P(k+1) is true, so by the Principle
of MathemaƟcal InducƟon, zn = |z|n cis(nθ) for all natural numbers n.

The last property in Theorem 87 to prove is the quoƟent rule. Assuming
|w| ̸= 0 we have

z
w

=
|z| cis(α)
|w| cis(β)

[3pt] =
(

|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β)

Next, we mulƟply both the numerator and denominator of the right hand
side by (cos(β)− i sin(β))which is the complex conjugate of (cos(β)+ i sin(β))
to get

z
w

=

(
|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β)

· cos(β)− i sin(β)
cos(β)− i sin(β)

If we let the numerator be N = [cos(α) + i sin(α)] [cos(β)− i sin(β)] and
simplify we get

N = [cos(α) + i sin(α)] [cos(β)− i sin(β)]
= cos(α) cos(β)− i cos(α) sin(β)

+ i sin(α) cos(β)− i2 sin(α) sin(β) Expand
= [cos(α) cos(β) + sin(α) sin(β)]

+ i [sin(α) cos(β)− cos(α) sin(β)] Rearrange and Factor
= cos(α− β) + i sin(α− β) Difference IdenƟƟes
= cis(α− β) DefiniƟon of ‘cis’

If we call the denominator D then we get

D = [cos(β) + i sin(β)] [cos(β)− i sin(β)]
= cos2(β)− i cos(β) sin(β)

+ i cos(β) sin(β)− i2 sin2(β) Expand
= cos2(β)− i2 sin2(β) Simplify
= cos2(β) + sin2(β) Again, i2 = −1
= 1 Pythagorean IdenƟty
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Puƫng it all together, we get

z
w

=

(
|z|
|w|

)
cos(α) + i sin(α)
cos(β) + i sin(β)

· cos(β)− i sin(β)
cos(β)− i sin(β)

=

(
|z|
|w|

)
cis(α− β)

1

=
|z|
|w|

cis(α− β)

and we are done. The next example makes good use of Theorem 87.

Example 190 Complex arithmeƟc using the polar form
Let z = 2

√
3+ 2i and w = −1+ i

√
3. Use Theorem 87 to find the following.

1. zw 2. w5 3.
z
w

Write your final answers in rectangular form.

SÊ½çã®ÊÄ In order to use Theorem 87, we need to write z and w in
polar form. For z = 2

√
3 + 2i, we find |z| =

√
(2
√
3)2 + (2)2 =

√
16 = 4.

If θ ∈ arg(z), we know tan(θ) = Im(z)
Re(z) = 2

2
√
3 =

√
3
3 . Since z lies in Quadrant

I, we have θ = π
6 + 2πk for integers k. Hence, z = 4 cis

(
π
6
)
. For w = −1 +

i
√
3, we have |w| =

√
(−1)2 + (

√
3)2 = 2. For an argument θ of w, we have

tan(θ) =
√
3

−1 = −
√
3. Since w lies in Quadrant II, θ = 2π

3 + 2πk for integers k
and w = 2 cis

( 2π
3
)
. We can now proceed.

1. We get zw =
(
4 cis

(
π
6
)) (

2 cis
( 2π

3
))

= 8 cis
(
π
6 + 2π

3
)
= 8 cis

( 5π
6
)
=

8
[
cos
( 5π

6
)
+ i sin

( 5π
6
)]
. AŌer simplifying, we get zw = −4

√
3+ 4i.

2. We use DeMoivre’s Theorem which yields

w5 =

[
2 cis

(
2π
3

)]5
= 25 cis

(
5 · 2π

3

)
= 32 cis

(
10π
3

)
.

Since 10π
3 is coterminal with 4π

3 , we get

w5 = 32
[
cos
(
4π
3

)
+ i sin

(
4π
3

)]
= −16− 16i

√
3.

3. Last, but not least, we have
z
w

=
4 cis( π

6 )
2 cis( 2π

3 )
= 4

2 cis
(
π
6 − 2π

3
)
= 2 cis

(
− π

2
)
.

Since− π
2 is a quadrantal angle, we can ‘see’ the rectangular form bymov-

ing out 2 units along the posiƟve real axis, then rotaƟng π
2 radians clock-

wise to arrive at the point 2 units below 0 on the imaginary axis. The long
and short of it is that z

w = −2i.

Some remarks are in order. First, the reader may not be sold on using the
polar form of complex numbers tomulƟply complex numbers – especially if they
aren’t given in polar form to begin with. Indeed, a lot of work was needed to
convert the numbers z and w in Example 190 into polar form, compute their
product, and convert back to rectangular form – certainly more work than is
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required to mulƟply out zw = (2
√
3 + 2i)(−1 + i

√
3) the old-fashioned way.

However, Theorem 87 pays huge dividends when compuƟng powers of complex
numbers. Consider how we computed w5 above and compare that to using the
Binomial Theorem to accomplish the same feat by expanding (−1+ i

√
3)5. Divi-

sion is tricky in the best of Ɵmes, and we saved ourselves a lot of Ɵme and effort
using Theorem 87 to find and simplify z

w using their polar forms as opposed to
starƟng with 2

√
3+2i

−1+i
√
3 , raƟonalizing the denominator, and so forth.

There is geometric reason for studying these polar forms and we would be
derelict in our duƟes if we did notmenƟon the Geometry hidden in Theorem 87.
Take the product rule, for instance. If z = |z| cis(α) and w = |w| cis(β), the for-
mula zw = |z||w| cis(α+ β) can be viewed geometrically as a two step process.
The mulƟplicaƟon of |z| by |w| can be interpreted as magnifying the distance |z|
from z to 0, by the factor |w|. (Assuming |w| > 1.) Adding the argument of w
to the argument of z can be interpreted geometrically as a rotaƟon of β radians
counter-clockwise. (Assuming β > 0.) Focusing on z and w from Example 190,
we can arrive at the product zw by ploƫng z, doubling its distance from 0 (since
|w| = 2), and rotaƟng 2π

3 radians counter-clockwise. The sequence of diagrams
in Figure 9.94 below aƩempts to describe this process geometrically.

Real Axis

Imaginary Axis

0

z = 4cis
(
π
6

)
z|w| = 8cis

(
π
6

)

1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

Real Axis

Imaginary Axis

0

zw = 8cis
(
π
6 + 2π

3

)
z|w| = 8cis

(
π
6

)

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

i

2i

3i

4i

5i

6i

MulƟplying z by |w| = 2. RotaƟng counter-clockwise by Arg(w) = 2π
3 radians.

Figure 9.94: Visualizing zw for z = 4 cis
(
π
6

)
and w = 2 cis

( 2π
3

)
.

Wemay also visualize division similarly. Here, the formula z
w = |z|

|w| cis(α−β)

may be interpreted as shrinking (again, assuming |w| > 1) the distance from 0 to
z by the factor |w|, followed up by a clockwise rotaƟon (again, assuming β > 0)
of β radians. In the case of z and w from Example 190, we arrive at z

w by first
halving the distance from 0 to z, then rotaƟng clockwise 2π

3 radians.

Real Axis

Imaginary Axis

0

(
1

|w|

)
z = 2cis

(
π
6

)
z = 4cis

(
π
6

)

1 2 3

i

2i

3i

Real Axis

Imaginary Axis

0

zw = 2cis
(
π
6

2π
3

)

(
1

|w|

)
z = 2cis

(
π
6

)

1 2 3

−2i

−i

i

Dividing z by |w| = 2. RotaƟng clockwise by Arg(w) = 2π
3 radians.

Figure 9.95: Visualizing z
w

for z = 4 cis
(
π
6

)
and w = 2 cis

( 2π
3

)
.

Our last goal of the secƟon is to reverse DeMoivre’s Theorem to extract roots
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9.7 The Polar Form of Complex Numbers

of complex numbers.

DefiniƟon 58 Complex nth roots

Let z andw be complex numbers. If there is a natural number n such that
wn = z, then w is an nth root of z.

Unlike DefiniƟon 48 in SecƟon 6.3, we do not specify one parƟcular prinicpal
nth root, hence the use of the indefinite arƟcle ‘an’ as in ‘an nth root of z’. Using
this definiƟon, both 4 and −4 are square roots of 16, while

√
16 means the

principal square root of 16 as in
√
16 = 4. Suppose we wish to find all complex

third (cube) roots of 8. Algebraically, we are trying to solve w3 = 8. We know
that there is only one real soluƟon to this equaƟon, namely w = 3

√
8 = 2, but

if we take the Ɵme to rewrite this equaƟon as w3 − 8 = 0 and factor, we get
(w − 2)

(
w2 + 2w+ 4

)
= 0. The quadraƟc factor gives two more cube roots

w = −1± i
√
3, for a total of three cube roots of 8. In accordance with Theorem

28, since the degree of p(w) = w3 − 8 is three, there are three complex zeros,
counƟng mulƟplicity. Since we have found three disƟnct zeros, we know these
are all of the zeros, so there are exactly three disƟnct cube roots of 8. Let us now
solve this same problem using the machinery developed in this secƟon. To do
so, we express z = 8 in polar form. Since z = 8 lies 8 units away on the posiƟve
real axis, we get z = 8 cis(0). If we let w = |w| cis(α) be a polar form of w, the
equaƟon w3 = 8 becomes

w3 = 8

(|w| cis(α))3 = 8 cis(0)
|w|3 cis(3α) = 8 cis(0) DeMoivre’s Theorem

The complex number on the leŌ hand side of the equaƟon corresponds to
the point with polar coordinates

(
|w|3, 3α

)
, while the complex number on the

right hand side corresponds to the point with polar coordinates (8, 0). Since
|w| ≥ 0, so is |w|3, which means

(
|w|3, 3α

)
and (8, 0) are two polar representa-

Ɵons corresponding to the same complex number, both with posiƟve r values.
From SecƟon 9.6, we know |w|3 = 8 and 3α = 0+ 2πk for integers k. Since |w|
is a real number, we solve |w|3 = 8 by extracƟng the principal cube root to get
|w| = 3

√
8 = 2. As for α, we get α = 2πk

3 for integers k. This produces three
disƟnct points with polar coordinates corresponding to k = 0, 1 and 2: specif-
ically (2, 0),

(
2, 2π

3
)
and

(
2, 4π

3
)
. These correspond to the complex numbers

w0 = 2 cis(0), w1 = 2 cis
( 2π

3
)
and w2 = 2 cis

( 4π
3
)
, respecƟvely. WriƟng these

out in rectangular form yields w0 = 2, w1 = −1 + i
√
3 and w2 = −1 − i

√
3.

While this process seems a tad more involved than our previous factoring ap-
proach, this procedure can be generalized to find, for example, all of the fiŌh
roots of 32. (Try using Chapter 4 techniques on that!) If we start with a generic
complex number in polar form z = |z| cis(θ) and solve wn = z in the same
manner as above, we arrive at the following theorem.
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Chapter 9 Further Topics in Trigonometry

Theorem 88 The nth roots of a complex number

Let z ̸= 0 be a complex number with polar form z = r cis(θ). For each
natural number n, z has n disƟnct nth roots, which we denote by w0, w1,
…, wn−1, and they are given by the formula

wk =
n
√
r cis

(
θ

n
+

2π
n
k
)

The proof of Theorem 88 breaks into to two parts: first, showing that each
wk is an nth root, and second, showing that the set {wk | k = 0, 1, . . . , (n− 1)}
consists of n different complex numbers. To show wk is an nth root of z, we use
DeMoivre’s Theorem to show (wk)

n
= z.

(wk)
n
=

(
n
√
r cis

(
θ

n
+

2π
n
k
))n

=
(

n
√
r
)n cis(n · [θ

n
+

2π
n
k
])

DeMoivre’s Theorem

= r cis (θ + 2πk)

Since k is a whole number, cos(θ + 2πk) = cos(θ) and sin(θ + 2πk) =
sin(θ). Hence, it follows that cis(θ + 2πk) = cis(θ), so (wk)

n
= r cis(θ) = z, as

required. To show that the formula in Theorem 88 generates n disƟnct numbers,
we assume n ≥ 2 (or else there is nothing to prove) and note that the modulus
of each of the wk is the same, namely n

√
r. Therefore, the only way any two

of these polar forms correspond to the same number is if their arguments are
coterminal – that is, if the arguments differ by an integermulƟple of 2π. Suppose
k and j are whole numbers between 0 and (n − 1), inclusive, with k ̸= j. Since
k and j are different, let’s assume for the sake of argument that k > j. Then(
θ
n +

2π
n k
)
−
(
θ
n +

2π
n j
)
= 2π

( k−j
n

)
. For this to be an integer mulƟple of 2π,

(k − j) must be a mulƟple of n. But because of the restricƟons on k and j, 0 <
k− j ≤ n− 1. (Think this through.) Hence, (k− j) is a posiƟve number less than
n, so it cannot be a mulƟple of n. As a result, wk and wj are different complex
numbers, and we are done. By Theorem 28, we know there at most n disƟnct
soluƟons to wn = z, and we have just found all of them. We illustrate Theorem
88 in the next example.

Example 191 Finding complex roots
Use Theorem 88 to find the following:

1. both square roots of z = −2+ 2i
√
3

2. the four fourth roots of z = −16

3. the three cube roots of z =
√
2+ i

√
2

4. the five fiŌh roots of z = 1.

SÊ½çã®ÊÄ

1. We start by wriƟng z = −2 + 2i
√
3 = 4 cis

( 2π
3
)
. To use Theorem 88,

we idenƟfy r = 4, θ = 2π
3 and n = 2. We know that z has two square

roots, and in keeping with the notaƟon in Theorem 88, we’ll call them
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Figure 9.96: The two square roots of z =
−2+ 2

√
3i

Figure 9.97: The four fourth roots of z =
−16

Figure 9.98: The three third roots of z =√
2+ i

√
2

Figure 9.99: The five fiŌh roots of 1

9.7 The Polar Form of Complex Numbers

w0 and w1. We get w0 =
√
4 cis

(
(2π/3)

2 + 2π
2 (0)

)
= 2 cis

(
π
3
)
and w1 =

√
4 cis

(
(2π/3)

2 + 2π
2 (1)

)
= 2 cis

( 4π
3
)
. In rectangular form, the two square

roots of z are w0 = 1 + i
√
3 and w1 = −1 − i

√
3. We can check our an-

swers by squaring them and showing that we get z = −2+ 2i
√
3. We’ve

ploƩed the posiƟon of the two square roots along the circle r = 2 in Figure
9.96.

2. Proceeding as above, we get z = −16 = 16 cis(π). With r = 16, θ = π
andn = 4, we get the four fourth roots of z to bew0 =

4
√
16 cis

(
π
4 + 2π

4 (0)
)
=

2 cis
(
π
4
)
,w1 =

4
√
16 cis

(
π
4 + 2π

4 (1)
)
= 2 cis

( 3π
4
)
,w2 =

4
√
16 cis

(
π
4 + 2π

4 (2)
)
=

2 cis
( 5π

4
)
and w3 = 4

√
16 cis

(
π
4 + 2π

4 (3)
)
= 2 cis

( 7π
4
)
. ConverƟng these

to rectangular form gives w0 =
√
2 + i

√
2, w1 = −

√
2 + i

√
2, w2 =

−
√
2− i

√
2 and w3 =

√
2 − i

√
2. We’ve ploƩed the four roots in Figure

9.97. Note how the roots are placed symmetrically about the circle r = 2.

3. For z =
√
2 + i

√
2, we have z = 2 cis

(
π
4
)
. With r = 2, θ = π

4 and n = 3
the usual computaƟons yield w0 = 3

√
2 cis

(
π
12
)
, w1 = 3

√
2 cis

( 9π
12
)

=
3
√
2 cis

( 3π
4
)
andw2 =

3
√
2 cis

( 17π
12
)
. If wewere to convert these to rectan-

gular form, wewould need to use either the Sum and Difference IdenƟƟes
in Theorem 64 or the Half-Angle IdenƟƟes in Theorem 67 to evaluate w0
and w2. Since we are not explicitly told to do so, we leave this as a good,
but messy, exercise, and plot the points in Figure 9.98.

4. To find the five fiŌh roots of 1, wewrite 1 = 1 cis(0). Wehave r = 1, θ = 0
and n = 5. Since 5

√
1 = 1, the roots are w0 = cis(0) = 1, w1 = cis

( 2π
5
)
,

w2 = cis
( 4π

5
)
, w3 = cis

( 6π
5
)
and w4 = cis

( 8π
5
)
. The situaƟon here is

even graver than in the previous example, since we have not developed
any idenƟƟes to help us determine the cosine or sine of 2π

5 . At this stage,
we could approximate our answers using a calculator, and we leave this
as an exercise. Once more, we plot the roots, which in this case all lie on
the unit circle.

NoƟce the geometric interpretaƟon given in Figures 9.96-9.99. EssenƟally,
Theorem 88 says that to find the nth roots of a complex number, we first take the
nth root of the modulus and divide the argument by n. This gives the first root
w0. Each successive root is found by adding 2π

n to the argument, which amounts
to rotaƟng w0 by 2π

n radians. This results in n roots, spaced equally around the
complex plane.

We have only glimpsed at the beauty of the complex numbers in this secƟon.
The complex plane is without a doubt one of the most important mathemaƟcal
constructs ever devised. Coupled with Calculus, it is the venue for incredibly im-
portant Science and Engineering applicaƟons. For now, the following exercises
will have to suffice.
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Exercises 9.7
Problems
In Exercises 1 – 20, find a polar representaƟon for the com-
plex number z and then idenƟfy Re(z), Im(z), |z|, arg(z) and
Arg(z).

1. z = 9+ 9i

2. z = 5+ 5i
√
3

3. z = 6i

4. z = −3
√
2+ 3i

√
2

5. z = −6
√
3+ 6i

6. z = −2

7. z = −
√
3
2

− 1
2
i

8. z = −3− 3i

9. z = −5i

10. z = 2
√
2− 2i

√
2

11. z = 6

12. z = i 3√7

13. z = 3+ 4i

14. z =
√
2+ i

15. z = −7+ 24i

16. z = −2+ 6i

17. z = −12− 5i

18. z = −5− 2i

19. z = 4− 2i

20. z = 1− 3i

In Exercises 21 – 40, find the rectangular form of the given
complex number. Use whatever idenƟƟes are necessary to
find the exact values.

21. z = 6 cis(0)

22. z = 2 cis
(π
6

)
23. z = 7

√
2 cis

(π
4

)

24. z = 3 cis
(π
2

)
25. z = 4 cis

(
2π
3

)

26. z =
√
6 cis

(
3π
4

)
27. z = 9 cis (π)

28. z = 3 cis
(
4π
3

)

29. z = 7 cis
(
−3π

4

)

30. z =
√
13 cis

(
3π
2

)

31. z = 1
2
cis
(
7π
4

)

32. z = 12 cis
(
−π

3

)
33. z = 8 cis

( π

12

)
34. z = 2 cis

(
7π
8

)

35. z = 5 cis
(
arctan

(
4
3

))

36. z =
√
10 cis

(
arctan

(
1
3

))
37. z = 15 cis (arctan (−2))

38. z =
√
3
(
arctan

(
−
√
2
))

39. z = 50 cis
(
π − arctan

(
7
24

))

40. z = 1
2
cis
(
π + arctan

(
5
12

))

In Exercises 41 – 52, use z = −3
√
3

2
+
3
2
i andw = 3

√
2−3i

√
2

to compute the quanƟty. Express your answers in polar form
using the principal argument.

41. zw

42. z
w

43. w
z
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44. z4

45. w3

46. z5w2

47. z3w2

48. z2

w

49. w
z2

50. z3

w2

51. w2

z3

52.
(w
z

)6
In Exercises 53 – 64, use DeMoivre’s Theorem to find the indi-
cated power of the given complex number. Express your final
answers in rectangular form.

53.
(
−2+ 2i

√
3
)3

54. (−
√
3− i)3

55. (−3+ 3i)4

56. (
√
3+ i)4

57.
(
5
2
+

5
2
i
)3

58.
(
−1
2
−

√
3
2

i
)6

59.
(
3
2
− 3

2
i
)3

60.
(√

3
3

− 1
3
i
)4

61.
(√

2
2

+

√
2
2

i
)4

62. (2+ 2i)5

63. (
√
3− i)5

64. (1− i)8

In Exercises 65 – 76, find the indicated complex roots. Ex-
press your answers in polar form and then convert them into
rectangular form.

65. the two square roots of z = 4i

66. the two square roots of z = −25i

67. the two square roots of z = 1+ i
√
3

68. the two square roots of 5
2 −

5
√
3

2 i

69. the three cube roots of z = 64

70. the three cube roots of z = −125

71. the three cube roots of z = i

72. the three cube roots of z = −8i

73. the four fourth roots of z = 16

74. the four fourth roots of z = −81

75. the six sixth roots of z = 64

76. the six sixth roots of z = −729

77. Use the Sum and Difference IdenƟƟes in Theorem 64 or the
Half Angle IdenƟƟes in Theorem 67 to express the three
cube roots of z =

√
2 + i

√
2 in rectangular form. (See

Example 191, number 3.)

78. Use a calculator or computer to approximate the five fiŌh
roots of 1. (See Example 191, number 4.)

79. Complete the proof of Theorem85by showing that ifw ̸= 0
than

∣∣ 1
w

∣∣ = 1
|w| .

80. Recall from SecƟon 1.4 that given a complex number z =
a + bi its complex conjugate, denoted z, is given by z =
a− bi.

(a) Prove that |z| = |z|.
(b) Prove that |z| =

√
zz

(c) Show that Re(z) = z+ z
2

and Im(z) = z− z
2i

(d) Show that if θ ∈ arg(z) then−θ ∈ arg (z). Interpret
this result geometrically.

(e) Is it always true that Arg (z) = −Arg(z)?

81. Given any natural number n ≥ 2, the n complex nth roots of
the number z = 1 are called the nth Roots of Unity. In the
following exercises, assume that n is a fixed, but arbitrary,
natural number such that n ≥ 2.

(a) Show that w = 1 is an nth root of unity.
(b) Show that if bothwj andwk are nth roots of unity then

so is their product wjwk.
(c) Show that if wj is an nth root of unity then there ex-

ists another nth root of unity wj′ such that wjwj′ = 1.
Hint: Ifwj = cis(θ) letwj′ = cis(2π− θ). You’ll need
to verify that wj′ = cis(2π − θ) is indeed an nth root
of unity.
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82. Another way to express the polar form of a complex num-
ber is to use the exponenƟal funcƟon. For real numbers t,
Euler’s Formula defines eit = cos(t) + i sin(t).

(a) Use Theorem 87 to show that eixeiy = ei(x+y) for all
real numbers x and y.

(b) Use Theorem 87 to show that
(
eix
)n

= ei(nx) for any
real number x and any natural number n.

(c) Use Theorem 87 to show that e
ix

eiy
= ei(x−y) for all real

numbers x and y.

(d) If z = r cis(θ) is the polar form of z, show that z = reit

where θ = t radians.

(e) Show that eiπ + 1 = 0. (This famous equaƟon re-
lates the fivemost important constants in all ofMath-
emaƟcs with the three most fundamental operaƟons
in MathemaƟcs.)

(f) Show that cos(t) =
eit + e−it

2
and that sin(t) =

eit − e−it

2i
for all real numbers t.
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Figure 10.1: sin(x)/x near x = 1.
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Figure 10.2: sin(x)/x near x = 0.

10: L®Ã®ãÝ
Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the 17th century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
– can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behaviour of a funcƟon. This chapter begins our study of the limit by
approximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

10.1 An IntroducƟon To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the funcƟon y =
sin x
x

. When x is near the value 1, what value (if
any) is y near?

While our quesƟon is not precisely formed (what consƟtutes “near the value
1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this funcƟon to approximate the appropriate y values. Consider Figure
10.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value (if
any) is y near? By considering Figure 10.2, one can see that it seems that y takes
on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives



x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 10.3: Values of sin(x)/xwith x near
1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 10.4: Values of sin(x)/xwith x near
0.
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Figure 10.5: Graphically approximaƟng a
limit in Example 192.

Chapter 10 Limits

no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = 0 for this funcƟon simply by leƫng x = 0.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches 1” describes a number, oŌen referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definiƟon (that will come in the next secƟon); this is a
pseudo-definiƟon that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

Once we have the true definiƟon of a limit, we will find limits analyƟcally;
that is, exactly using a variety of mathemaƟcal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a funcƟon can provide
a good approximaƟon, though oŌen not very precise. Numerical methods can
provide a more accurate approximaƟon. We have already approximated limits
graphically, so we now turn our aƩenƟon to numerical approximaƟons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
10.3.

NoƟce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 10.2. The table in Figure 10.4
shows the value of sin(x)/x for values of x near 0. Ten places aŌer the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concernedwith the value of our funcƟon at x = 0, only on the behaviour
of the funcƟon near 0.

This numerical method gives confidence to say that 1 is a good approxima-
Ɵon of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 192 ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)
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x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 10.6: Numerically approximaƟng a
limit in Example 192.
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Figure 10.7: Graphically approximaƟng a
limit in Example 193.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 10.8: Numerically approximaƟng a
limit in Example 193.
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on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 10.5 and
10.6, respecƟvely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a beƩer approximaƟon.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximaƟon?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example 192, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do beƩer. Using values “on both sides of 3” helps us idenƟfy trends.

Example 193 ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of 0. Figure 10.7 shows a graph of f(x), and on
either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 10.8 shows values of f(x) for values of x near 0. It
is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

IdenƟfying When Limits Do Not Exist

A funcƟon may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three ways in which a limit may fail
to exist.

1. The funcƟon f(x)may approach different values on either side of c. 487
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Figure 10.10: Observing no limit as x → 1
in Example 194.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 10.11: Values of f(x) near x = 1 in
Example 194.
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Figure 10.12: Observing no limit as x → 1
in Example 195.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 10.13: Values of f(x) near x = 1 in
Example 195.

Chapter 10 Limits

2. The funcƟon may grow without upper or lower bound as x approaches c.

3. The funcƟon may oscillate as x approaches c.

We’ll explore each of these in turn.

Example 194 Different Values Approached From LeŌ and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1 .

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given Figures
10.10 and 10.11, respecƟvely. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the leŌ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 195 The FuncƟon Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x − 1)2 are given in Figures
10.12 and 10.13, respecƟvely. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.

Example 196 The FuncƟon Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figures 10.9. Fig-
ure 10.9(a) shows f(x) on the interval [−1, 1]; noƟce how f(x) seems to oscillate
near x = 0. One might think that despite the oscillaƟon, as x approaches 0,
f(x) approaches 0. However, Figure 10.9(b) zooms in on sin(1/x), on the inter-
val [−0.1, 0.1]. Here the oscillaƟon is even more pronounced. Finally, in the
table in Figure 10.9(c), we see sin(x)/x evaluated for values of x near 0. As x
approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinite Ɵmes! Because of this oscillaƟon,
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Figure 10.14: InterpreƟng a difference
quoƟent as the slope of a secant line.

10.1 An IntroducƟon To Limits

lim
x→0

sin(1/x) does not exist.
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 10.9: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 196.

Limits of Difference QuoƟents

We have approximated limits of funcƟons as x approached a parƟcular num-
ber. We will consider another important kind of limit aŌer explaining a few key
ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the parƟcle is at posiƟon 10 Ō., and when x = 5, the parƟcle is at 20 Ō. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the parƟcle traveled 10 feet in 4 seconds, we can say the parƟcle’s average
velocity was 2.5 Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(5)− f(1)
5− 1

=
10
4

= 2.5Ō/s.

This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 10.14.

Now consider finding the average speed on another Ɵme interval. We again
start at x = 1, but consider the posiƟon of the parƟcle h seconds later. That is,
consider the posiƟons of the parƟcle when x = 1 and when x = 1 + h. The
difference quoƟent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
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Figure 10.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 10.16: The difference quoƟent
evaluated at values of h near 0.

Chapter 10 Limits

Figure 10.15. This leads us to wonder what the limit of the difference quoƟent
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure 10.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

Unfortunately, the precise definiƟon of the limit, and most of the applica-
Ɵons menƟoned in the paragraph above, are beyond what we can cover in this
course. Instead, we will seƩle for the following imprecise definiƟon:

DefiniƟon 59 Informal DefiniƟon of the Limit

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim
x→c

f(x) = L,

if we can make the value of f(x) arbitrarily close to L by choosing x ̸= c
sufficiently close to c.

The formal definiƟon of the limit, which we will not discuss, makes precise
the meaning of the phrases “arbitrarily close” and “sufficiently close”. The prob-
lem with the definiƟon we have given is that, while it gives an intuiƟve under-
standing of the meaning of the limit, it’s of no use for proving theorems about
limits. In the next secƟon we will state (but not prove) several theorems about
limits which will allow use to compute their values analyƟcally, without recourse
to tables of values.
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Exercises 10.1
Terms and Concepts
1. In your own words, what does it mean to “find the limit of

f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situaƟons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quoƟent?

Problems
In Exercises 6 – 15, approximate the given limits both numer-
ically and graphically.

6. lim
x→1

x2 + 3x− 5

7. lim
x→0

x3 − 3x2 + x− 5

8. lim
x→0

x+ 1
x2 + 3x

9. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

10. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

11. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

12. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

13. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

14. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

15. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 16 – 23, a funcƟon f and a value a are
given. Approximate the limit of the difference quoƟent,

lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

16. f(x) = −7x+ 2, a = 3

17. f(x) = 9x+ 0.06, a = −1

18. f(x) = x2 + 3x− 7, a = 1

19. f(x) = 1
x+ 1

, a = 2

20. f(x) = −4x2 + 5x− 1, a = −3

21. f(x) = ln x, a = 5

22. f(x) = sin x, a = π

23. f(x) = cos x, a = π

491



The rigorous definiƟon of limits is oŌen
known as the “ε – δ” definiƟon of the
limit. You might have a few brief encoun-
ters with this definiƟon as you make your
way through the calculus sequence, but a
careful treatment of limits is usually not
encountered unƟl Math 3500.

Chapter 10 Limits

10.2 Finding Limits AnalyƟcally

In SecƟon 10.1 we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. Proving that these approxima-
Ɵons are correct requires a rigorous definiƟon of limits, which is beyond the
scope of this course. Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What
is

lim
x→2

(f(x) + g(x))?

IntuiƟon tells us that the limit should be 5, as we expect limits to behave in a
niceway. The following theorem states that already established limits do behave
nicely.

Theorem 89 Basic Limit ProperƟes

Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f and g be
funcƟons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. IdenƟty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar MulƟples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L

9. ComposiƟons: Adjust our previously given limit situaƟon to:

lim
x→c

f(x) = L and lim
x→L

g(x) = K.

Then lim
x→c

g(f(x)) = K.

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 197 Using basic limit properƟes
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)
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SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMulƟple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem 89. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Theorem 90 Limits of Polynomial and RaƟonal FuncƟons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 198 Finding a limit of a raƟonal funcƟon
Using Theorem 90, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 90, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.

Using approximaƟons (or worse – the rigorous definiƟon) to deal with limits
such as

lim
x→2

x2 = 4

can be annoying, since the result seems fairly obvious. The previous theorems
state thatmany funcƟons behave in such an “obvious” fashion, as demonstrated
by the raƟonal funcƟon in Example 198.
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Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behaviour is parƟcularly “nice” in terms of limits. In the next secƟon, we will
give a formal name to these funcƟons that behave “nicely.”

Theorem 91 Special Limits

Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Example 199 EvaluaƟng limits analyƟcally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straighƞorward applicaƟon of Theorem 91. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 91, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 89 and Theorem 91 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

Wecan also use the ComposiƟon limit rule of Theorem89. Using Theorem
91, we have lim

x→1
ln x = ln 1 = 0. Applying the ComposiƟon rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.494
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5. We encountered this limit in SecƟon 10.1. Applying our theorems, we
aƩempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condiƟon of Theorem 89, as the limit of the de-
nominator is not allowed to be 0. Therefore, we are sƟll unable to evaluate
this limit with tools we currently have at hand.

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 92 Squeeze Theorem

Let f, g and h be funcƟons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
the given funcƟon of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluaƟng
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.

Example 200 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
10.17. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)
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Chapter 10 Limits

Figure 10.17 shows three regions have been constructed in the first quad-
rant, two triangles and a sector of a circle, which are also drawn below. The
area of the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the
triangle contained inside the sector is 1

2 sin θ. It is then clear from the diagram
that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

MulƟply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequaliƟes hold for all values of θ near 0, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this textwe
will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the raƟo of x and sin x
approaches 1, meaning that they are approaching 0 in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.
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Figure 10.18: Graphing f in Example 201
to understand a limit.

10.2 Finding Limits AnalyƟcally

Theorem 93 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the laƩer three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equalling 1), and we know that 1 raised to any power
is sƟll 1. At the same Ɵme, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulƟng in a limit of 1.

Our final theorem for this secƟon will be moƟvated by the following exam-
ple.

Example 201 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SÊ½çã®ÊÄ We begin by aƩempƟng to apply Theorem 91 and subsƟtut-
ing 1 for x in the quoƟent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

and indeterminate form. We cannot apply the theorem.
By graphing the funcƟon, as in Figure 10.18, we see that the funcƟon seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The funcƟon is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the funcƟon at 1, only the value the funcƟon approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.
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Chapter 10 Limits

The key to the above example is that the funcƟons y = (x2− 1)/(x− 1) and
y = x+1 are idenƟcal except at x = 1. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Theorem 94 Limits of FuncƟons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 94. We demonstrate
this once more.

Example 202 EvaluaƟng a limit using Theorem 94

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SÊ½çã®ÊÄ We begin by applying Theorem 91 and subsƟtuƟng 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, syntheƟc division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

Wecan cancel the (x−3) terms as long as x ̸= 3. Using Theorem94we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

We end this secƟon by revisiƟng a limit first seen in SecƟon 10.1, a limit of
a difference quoƟent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Example 203 EvaluaƟng the limit of a difference quoƟent

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-
ploy Theorem 91 and subsƟtute 0 for h. However, we see that this gives us
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10.2 Finding Limits AnalyƟcally

“0/0.” Knowing that we have a raƟonal funcƟon hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 94, as h ̸= 0)

= 8.5 (using Theorem 91)

This matches our previous approximaƟon.

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem 91; it states that many funcƟons that we
use regularly behave in a very nice, predictable way. In the next secƟon we give
a name to this nice behaviour; we label such funcƟons as conƟnuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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Exercises 10.2
Terms and Concepts

1. Explain in your own words why lim
x→c

b = b.

2. Explain in your own words why lim
x→c

x = c.

3. What does the text mean when it says that certain func-
Ɵons’ “behaviour is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informaƟon:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches 1?

Problems

Using:
lim
x→9

f(x) = 6 lim
x→6

f(x) = 9
lim
x→9

g(x) = 3 lim
x→6

g(x) = 3

evaluate the limits given in Exercises 6 – 13, where possible.
If it is not possible to know, state so.

6. lim
x→9

(f(x) + g(x))

7. lim
x→9

(3f(x)/g(x))

8. lim
x→9

(
f(x)− 2g(x)

g(x)

)

9. lim
x→6

(
f(x)

3− g(x)

)

10. lim
x→9

g
(
f(x)
)

11. lim
x→6

f
(
g(x)

)
12. lim

x→6
g
(
f(f(x))

)
13. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

Using:
lim
x→1

f(x) = 2 lim
x→10

f(x) = 1
lim
x→1

g(x) = 0 lim
x→10

g(x) = π

evaluate the limits given in Exercises 14 – 17, where possible.
If it is not possible to know, state so.

14. lim
x→1

f(x)g(x)

15. lim
x→10

cos
(
g(x)

)
16. lim

x→1
f(x)g(x)

17. lim
x→1

g
(
5f(x)

)
In Exercises 18 – 32, evaluate the given limit.

18. lim
x→3

x2 − 3x+ 7

19. lim
x→π

(
x− 3
x− 5

)7

20. lim
x→π/4

cos x sin x

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7
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Use the Squeeze Theorem in Exercises 33 – 36, where appro-
priate, to evaluate the given limit.

33. lim
x→0

x sin
(
1
x

)

34. lim
x→0

sin x cos
(

1
x2

)

35. lim
x→1

f(x), where 3x− 2 ≤ f(x) ≤ x3.

36. lim
x→3+

f(x), where 6x− 9 ≤ f(x) ≤ x2 on [0, 3].

Exercises 37 – 40 challenge your understanding of limits but
can be evaluated using the knowledge gained in this secƟon.

37. lim
x→0

sin 3x
x

38. lim
x→0

sin 5x
8x

39. lim
x→0

ln(1+ x)
x

40. lim
x→0

sin x
x

, where x is measured in degrees, not radians.
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Chapter 10 Limits

10.3 One Sided Limits

We introduced the concept of a limit gently, approximaƟng their values graph-
ically and numerically. The previous secƟon gave us tools (which we call theo-
rems) that allow us to compute limits with greater ease. Chief among the re-
sults were the facts that polynomials and raƟonal, trigonometric, exponenƟal
and logarithmic funcƟons (and their sums, products, etc.) all behave “nicely.” In
this secƟon we rigorously define what we mean by “nicely.”

In SecƟon 10.1 we explored the three ways in which limits of funcƟons failed
to exist:

1. The funcƟon approached different values from the leŌ and right,

2. The funcƟon grows without bound, and

3. The funcƟon oscillates.

In this secƟonwe explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with definiƟons that are very similar to the definiƟon
of the limit given at the end of SecƟon 10.1, but the notaƟon is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

DefiniƟon 60 One Sided Limits

LeŌ-Hand Limit
Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. We say that limit of f(x), as x approaches c from
the leŌ, is L, or, the leŌ–hand limit of f at c is L, and write

lim
x→c−

f(x) = L,

if we can make the value of f(x) arbitrarily close to L by choosing x < c
sufficiently close to c.

Right-Hand Limit
Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c
from the right, is L, or, the right–hand limit of f at c is L, and write

lim
x→c+

f(x) = L,

if we can make the value of f(x) sufficiently close to L by choosing x > c
sufficiently close to c.

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar
statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

We pracƟce evaluaƟng leŌ and right-hand limits through a series of exam-
ples.
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Figure 10.19: A graph of f in Example 204.

10.3 One Sided Limits

Example 204 EvaluaƟng one sided limits

Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 10.19. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

1. As x goes to 1 from the leŌ, we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

4. Using the definiƟon and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a leŌ-hand limit at 0 as f is

not defined for values of x < 0.

6. Using the definiƟon and the graph, f(0) = 0.

7. As x goes to 2 from the leŌ, we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the definiƟon of the funcƟon show that f(2) is not defined.

Note how the leŌ and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuiƟve: the limit exists precisely when the leŌ and right-hand limits are equal.

Theorem 95 Limits and One Sided Limits

Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.
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Figure 10.20: A graph of f from Example
205
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Figure 10.21: Graphing f in Example 206

Chapter 10 Limits

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 204 – 207 is that the value of the funcƟon
may/may not be equal to the value(s) of its leŌ/right-hand limits, even when
these limits agree.

Example 205 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 , as shown in Figure 10.20. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ Againwewill evaluate each using both the definiƟon of f and
its graph.

1. As x approaches 1 from the leŌ, we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and leŌ. Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the leŌ, f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

Example 206 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =
{

(x− 1)2 0 ≤ x ≤ 2, x ̸= 1
1 x = 1 , as shown in Figure 10.21. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)
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Figure 10.22: Graphing f in Example 207

10.3 One Sided Limits

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches 1, is 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 207 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 10.22. Evaluate the fol-

lowing.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear from the definiƟon of the funcƟon and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 204 – 207wewere asked to find both lim
x→1

f(x) and f(1). Consider
the following table:

lim
x→1

f(x) f(1)

Example 204 does not exist 1
Example 205 1 not defined
Example 206 0 1
Example 207 1 1

Only in Example 207 do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in the next secƟon, enƟtled “ConƟnuity.” In short, a conƟnu-
ous funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.
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Exercises 10.3
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→0+

f(x)

8.

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

10.
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.

−1

.

1
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4

. −4.

−2

.

2

.

4

.

x

.

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

506



11.

.....
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x
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y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

12.
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.
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4

. −4.
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4
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x

.

y

Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined funcƟons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 10.23: A graph of f in Example 208.
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Figure 10.24: A graph of the step funcƟon
in Example 209.

Chapter 10 Limits

10.4 ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good in-
dicator of what f(1) actually this. This can be problemaƟc; funcƟons can tend
to one value but aƩain another. This secƟon focuses on funcƟons that do not
exhibit such behaviour.

DefiniƟon 61 ConƟnuous FuncƟon

Let f be a funcƟon defined on an open interval I containing c.

1. f is conƟnuous at c if lim
x→c

f(x) = f(c).

2. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If f
is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 208 Finding intervals of conƟnuity
Let f be defined as shown in Figure 10.23. Give the interval(s) on which f is
conƟnuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be conƟnuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is conƟnuous at every point of (0, 3) except at x = 1.
Therefore f is conƟnuous on (0, 1) ∪ (1, 3).

Example 209 Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than the input
x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 10.24 demonstrates
why this is oŌen called a “step funcƟon.”

Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.
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10.4 ConƟnuity

2. The funcƟon is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. We can extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

DefiniƟon 62 ConƟnuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a, b.
f is conƟnuous on [a, b] if:

1. f is conƟnuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Example 210 Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a raƟonal funcƟon,
we apply Theorem 90 to recognize that f is conƟnuous on all of its domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 91 shows that sin x is conƟnuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 91 shows that

f(x) =
√
x is conƟnuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 89 and 91

shows that f is conƟnuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous on
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Chapter 10 Limits

(−∞, 0) and [0,∞). We cannot assume this implies that f is conƟnuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transiƟons from one “piece” of its definiƟon to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is conƟnuous everywhere.

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems 89 and 90 apply to conƟnuity as well.
Further, now knowing the definiƟon of conƟnuity we can re–read Theorem 91
as giving a list of funcƟons that are conƟnuous on their domains. The following
theorem states how conƟnuous funcƟons can be combined to form other con-
Ɵnuous funcƟons, followed by a theorem which formally lists funcƟons that we
know are conƟnuous on their domains.

Theorem 96 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous funcƟons on an interval I, let c be a real number
and let n be a posiƟve integer. The following funcƟons are conƟnuous on
I.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on I; if n is odd,

then true for all values of f on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on I, where the range of f on I is J,
and let g be conƟnuous on J. Then g ◦ f, i.e.,
g(f(x)), is conƟnuous on I.

Theorem 97 ConƟnuous FuncƟons

The following funcƟons are conƟnuous on their domains.

1. f(x) = sin x

3. f(x) = tan x

5. f(x) = sec x

7. f(x) = ln x

9. f(x) = ax (a > 0)

2. f(x) = cos x

4. f(x) = cot x

6. f(x) = csc x

8. f(x) = n
√
x,

(where n is a posiƟve integer)

We apply these theorems in the following Example.
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Figure 10.25: A graph of f in Example
211(a).

10.4 ConƟnuity

Example 211 Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ We examine each in turn, applying Theorems 96 and 97 as
appropriate.

1. The square–root terms are conƟnuous on the intervals [1,∞) and (−∞, 5],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [1, 5], the intersecƟon of these two intervals. A graph of f
is given in Figure 10.25.

2. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

3. Theorem 97 states that f(x) = tan x is conƟnuous “on its domain.” Its
domain includes all real numbers except oddmulƟples of π/2. Thus f(x) =
tan x is conƟnuous on

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricƟng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

A common way of thinking of a conƟnuous funcƟon is that “its graph can
be sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is conƟnuous on [1, 2] (i.e., its graph can be sketched as a conƟnu-
ous curve from (1,−10) to (2, 5)) then we know intuiƟvely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some Ɵme, for instance, but we are guaranteed all
values between−10 and 5.

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 98 Intermediate Value Theorem

Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is a
value c in [a, b] such that f(c) = y.
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Figure 10.26: Graphing a root of f(x) =
x− cos x.

IteraƟon # Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 10.27: IteraƟons of the BisecƟon
Method of Root Finding

Chapter 10 Limits

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approximaƟons
can be found through successive applicaƟons of this theorem. Suppose through
direct computaƟon we find that f(a) < 0 and f(b) > 0, where a < b. The Inter-
mediate Value Theorem states that there is a c in [a, b] such that f(c) = 0. The
theorem does not give us any clue as to where that value is in the interval [a, b],
just that it exists.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

1. f(d) = 0 – we got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0 Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

3. f(d) > 0 Then we know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

Example 212 Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x − cos x, shown in Figure
10.26. It is clear that the graph crosses the x-axis somewhere near x = 0.8.
To start the BisecƟon Method, pick an interval that contains 0.8. We choose
[0.7, 0.9]. Note that all we care about are signs of f(x), not their actual value, so
this is all we display.

IteraƟon 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

IteraƟon 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
Ɵnue to check the endpoints, just the midpoint. Thus we put the rest of
the iteraƟons in Table 10.27.

NoƟce that in the 12th iteraƟon we have the endpoints of the interval each
starƟng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximaƟon of where f is 0. The
IntermediateValue Theoremstates that the actual zero is sƟll within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places aŌer the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a512
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second for the program to run the necessary 35 iteraƟons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iteraƟons).

It is a simplemaƩer to extend theBisecƟonMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new funcƟon gwhere g(x) = f(x)−1. Then
use the BisecƟon Method to solve g(x) = 0.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next secƟon we examine onemore aspect of limits: limits that involve
infinity.

513



Exercises 10.4
Terms and Concepts
1. In your own words, describe what it means for a funcƟon

to be conƟnuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a funcƟon?

4. Given funcƟons f and g on an interval I, how can the Bisec-
Ɵon Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is conƟnuous at c.

6. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is conƟnuous on [0, 1) and [1, 2), then f is conƟnu-
ous on [0, 2).

10. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises 11 – 17, a graph of a funcƟon f is given along with
a value a. Determine if f is conƟnuous at a; if it is not, state
why it is not.
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In Exercises 18 – 21, determine if f is conƟnuous at the indi-
cated values. If not, explain why.

18. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0
(b) x = π

19. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0
(b) x = 1

20. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1
(b) x = 10

21. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0
(b) x = 8

In Exercises 22 – 32, give the intervals on which the given
funcƟon is conƟnuous.

22. f(x) = x2 − 3x+ 9

23. g(x) =
√
x2 − 4

24. h(k) =
√
1− k+

√
k+ 1

25. f(t) =
√
5t2 − 30

26. g(t) = 1√
1− t2

27. g(x) = 1
1+ x2

28. f(x) = ex

29. g(s) = ln s

30. h(t) = cos t

31. f(k) =
√

1− ek

32. f(x) = sin(ex + x2)

33. Let f be conƟnuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

34. Let g be conƟnuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

35. Let f be conƟnuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

36. Let h be a funcƟon on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 37 – 40, use the BisecƟon Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given funcƟon in the given interval.

37. f(x) = x2 + 2x− 4 on [1, 1.5].

38. f(x) = sin x− 1/2 on [0.5, 0.55]

39. f(x) = ex − 2 on [0.65, 0.7].

40. f(x) = cos x− sin x on [0.7, 0.8].

Review

41. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

42. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

43. Give an example of funcƟon f(x) for which lim
x→0

f(x) does not
exist.

515



.....
−1
.

−0.5
.

0.5
.

1
.

50

.

100

. x.

y

Figure 10.28: Graphing f(x) = 1/x2 for
values of x near 0.
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Figure 10.29: Observing infinite limit as
x → 1 in Example 213.

Chapter 10 Limits

10.5 Limits Involving Infinity

In DefiniƟon 59 we stated that in the equaƟon lim
x→c

f(x) = L, both c and L were
numbers. In this secƟon we relax that definiƟon a bit by considering situaƟons
when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = 1/x2, as shown in Figure 10.28.
Note how, as x approaches 0, f(x) grows very, very large. It seems appropriate,
and descripƟve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

DefiniƟon 63 Limit of Infinity,∞

We say lim
x→c

f(x) = ∞ if we can make the value of f(x) arbitrarily large by
choosing x ̸= c sufficiently close to c.

This is once again an informal definiƟon, like DefiniƟon 59: we say that if we
get close enough to c, then we canmake f(x) as large as we want, without giving
precise answers to the quesƟons “How close?” or “How large?” We can define
limits equal to −∞ in a similar way by requiring f(x) to be large (in absolute
value) but negaƟve.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly staƟng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descripƟve.

Example 213 EvaluaƟng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 10.29.

SÊ½çã®ÊÄ In Example 195 of SecƟon 10.1, by inspecƟng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
Ɵon does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general, we
can see that as the difference |x − 1| gets smaller, the value of f(x) gets larger
and larger, so we may say lim

x→1
1/(x− 1)2 = ∞.
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Figure 10.31: Graphing f(x) = 3x
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Figure 10.32: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

10.5 Limits Involving Infinity

Example 214 EvaluaƟng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 10.30.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
0, but it does so in differentways on different sides of 0. Since its behaviour is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

VerƟcal asymptotes

If the limit of f(x) as x approaches c from either the leŌ or right (or both) is
∞ or−∞, we say the funcƟon has a verƟcal asymptote at c.

Example 215 Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ VerƟcal asymptotes occurwhere the funcƟon growswithout
bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the funcƟon take on
large values. In the case of the given funcƟon, the denominator is 0 at x = ±2.
SubsƟtuƟng in values of x close to 2 and−2 seems to indicate that the funcƟon
tends toward ∞ or −∞ at those points. We can graphically confirm this by
looking at Figure 10.31. Thus the verƟcal asymptotes are at x = ±2.

When a raƟonal funcƟon has a verƟcal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a verƟcal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a verƟcal asymptote at x = 1,
as shown in Figure 10.32. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Cancelling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote, rather a hole exists in the graph at x = 1.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this

funcƟon several Ɵmes in the previous secƟons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no verƟcal asymptote. No simple algebraic cancellaƟon makes this
fact obvious; we used the Squeeze Theorem in SecƟon 10.2 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.
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Chapter 10 Limits

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respecƟvely. However, 0/0 is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are 1 and 2.

With a liƩle cleverness, one can come up 0/0 expressions which have a limit
of∞, 0, or any other real number. That is why this expression is called indeter-
minate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to do more work in order
to compute the limit. That work may be algebraic (such as factoring and can-
celling) or it may require a tool such as the Squeeze Theorem. In later courses
you may encounter a technique called l’Hospital’s Rule that provides another
way to handle indeterminate forms using derivaƟves.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. In each, the funcƟon is growing
without bound, indicaƟng that the limit will be∞,−∞, or simply not exist if the
leŌ- and right-hand limits do not match.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this secƟonwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behaviour of the funcƟon
to the “far right” of the graph. Wemake this noƟonmore explicit in the following
definiƟon.

DefiniƟon 64 Limits at Infinity and Horizontal Asymptote

1. We say lim
x→∞

f(x) = L if we can make f(x) sufficiently close to L by
choosing a sufficiently large (and posiƟve) value for x.

2. We say lim
x→−∞

f(x) = L if we can make f(x) sufficiently close to L
by choosing a sufficiently large (and negaƟve) value for x.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say that y = L is a horizontal
asymptote of f.
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Figure 10.34: Using a graph and a table
to approximate a horizontal asymptote in
Example 216.

10.5 Limits Involving Infinity

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definiƟon
with DefiniƟon 63.

Example 216 ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 10.34(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analyƟcally.

Horizontal asymptotes can take on a variety of forms. Figure 10.33(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 10.33(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymp-

totes; one at y = 1 and the other at y = −1.
Figure 10.33(c) shows that f(x) = (sin x)/x has even more interesƟng be-

haviour than at just x = 0; as x approaches ±∞, f(x) approaches 0, but oscil-
lates as it does this.
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Figure 10.33: Considering different types of horizontal asymptotes.

We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we
understand lim

x→∞
1/x. As x gets larger and larger, the 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large
enough value of x.

It is now not much of a jump to conclude the following:

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.
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Chapter 10 Limits

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence dividing by 1), which is the largest power of x to appear in
the funcƟon. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing theorem.

Theorem 99 Limits of RaƟonal FuncƟons at Infinity

Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and limx→−∞ f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situaƟon like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then aŌer dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indicaƟve of some sort of infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward 0. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
funcƟons by considering the largest powers of x. For instance, consider again
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Figure 10.36: Visualizing the funcƟons in
Example 218.

10.5 Limits Involving Infinity

lim
x→±∞

x√
x2 + 1

, graphed in Figure 10.33(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posiƟve and−1 when x is negaƟve. Hence we get
asymptotes of y = 1 and y = −1, respecƟvely.

Example 217 Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 216.

SÊ½çã®ÊÄ Before using Theorem 99, let’s use the technique of evalu-
aƟng limits at infinity of raƟonal funcƟons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 99 directly; in this case n = m so the limit is the
raƟo of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 218 Finding limits of raƟonal funcƟons
Use Theorem 99 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

SÊ½çã®ÊÄ

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 10.36(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the raƟo of the coefficients of x2, which
is−1/3. See Figure 10.36(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 10.36(c).
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Chapter 10 Limits

Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• explored when limits do not exist,

• defined conƟnuity and explored properƟes of conƟnuous funcƟons, and

• considered limits that involved infinity.

Why? MathemaƟcs is famous for building on itself and calculus proves to be
no excepƟon. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quanƟty by a smaller and smaller number and see
what value the quoƟent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posiƟon informaƟon.
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Exercises 10.5
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly staƟng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly staƟng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a verƟcal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a funcƟon with a verƟcal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the funcƟon.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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.
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

.....
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.
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.

5

.

10

. −100.

−50

.

50

.

100

.

x

.

y
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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14. f(x) = 2x + 10

(a) lim
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In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, idenƟfy the horizontal and verƟcal
asymptotes, if any, of the given funcƟon.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Let lim

x→2
f(x) = 3 and lim

x→2
g(x) = −1. Evaluate the following

limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

30. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f conƟnuous everywhere?

31. Evaluate the limit: lim
x→e

ln x.
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11: D�Ù®ò�ã®ò�Ý
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

11.1 Instantaneous Rates of Change: The DerivaƟve
A common amusement park ride liŌs riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Student of physics may recall that the
height (in feet) of the riders, t seconds aŌer freefall (and ignoring air resistance,
etc.) can be accurately modelled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall aŌer 2 seconds (corresponding
to a height of 86 Ō.). How fast will the riders be traveling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in SecƟon 10.1 when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some Ɵme period containing t = 2. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 Ō/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 Ō/s.



h
Average Velocity

Ō/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 11.2: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.
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Over a Ɵme span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compuƟng

f(2+ h)− f(2)
h

where h is small.

What we really want is for h = 0, but this, of course, returns the familiar
“0/0” indeterminate form. So we employ a limit, as we did in SecƟon 10.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 11.2. It looks as though the velocity is approaching−64 Ō/s.
CompuƟng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
−64− 16h

= −64.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2 + h, f(2 + h)). In Figure 11.1, the secant line corresponding to h = 1 is
shown in three contexts. Figure 11.1(a) shows a “zoomed out” version of f with
its secant line. In (b), we zoom in around the points of intersecƟon between
f and the secant line. NoƟce how well this secant line approximates f between
those twopoints – it is a commonpracƟce to approximate funcƟonswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 11.1, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).

526



11.1 Instantaneous Rates of Change: The DerivaƟve

.....
1

.
2

.
3

.−50.

50

.

100

.

150

.

x

.

y

...

..

2

.

2.5

.

3

.

50

.

100

. x.

y

(a) (b)

..... 1.5. 2. 2.5.

50

.

100

. x.

y

..... 1.5. 2. 2.5.

50

.

100

. x.

y

(c) (d)

Figure 11.1: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

DefiniƟon 65 DerivaƟve at a Point

Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differenƟable
at c; if the limit does not exist, then f is not differenƟable at c. If f is
differenƟable at every point in I, then f is differenƟable on I.

DefiniƟon 66 Tangent Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivaƟve of f at c.

Some examples will help us understand these definiƟons.
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Example 219 Finding derivaƟves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equaƟon of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equaƟon of the tangent line
to the graph f at x = 3.

SÊ½çã®ÊÄ

1. We compute this directly using DefiniƟon 65.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

3h+ 11 = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equaƟon, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definiƟon,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

3h+ 23

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equaƟon y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 11.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing informaƟon from thederiva-
Ɵve is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.
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DefiniƟon 67 Normal Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The normal line to the graph of f at c is the line with equaƟon

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the verƟcal line
through

(
c, f(c)

)
; that is, x = c.

Example 220 Finding equaƟons of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 219. Find the equaƟons of the normal
lines to the graph of f at x = 1 and x = 3.

SÊ½çã®ÊÄ In Example 219, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope−1/11. An equaƟon for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is ploƩed with y = f(x) in Figure 11.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” MathemaƟcally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect raƟo of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equaƟon for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common pracƟce
in mathemaƟcal problem solving is to approximate difficult funcƟons with not–
so–difficult funcƟons. Lines are a common choice. It turns out that at any given
point on the graph of a differenƟable funcƟon f, the best linear approximaƟon
to f is its tangent line. That is one reason we’ll spend considerable Ɵme finding
tangent lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example 221 Finding the DerivaƟve of a Linear FuncƟon
Consider f(x) = 3x + 5. Find the equaƟon of the tangent line to f at x = 1 and
x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon 65.
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f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 222 Numerical ApproximaƟon of the Tangent Line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximaƟon of the equaƟon of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 11.5. The graph seems to imply the
approximaƟon is rather good.

Recall from SecƟon 10.2 that lim
x→0

sin x
x

= 1, meaning for values of x near
0, sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 219. To find the derivaƟve of f at x = 1, we needed
to evaluate a limit. To find the derivaƟve of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific
number c

do something
to f and c

return
number f ′(c)
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This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

DefiniƟon 68 DerivaƟve FuncƟon

Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟons all represent the derivaƟve:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

Example 223 Finding the derivaƟve of a funcƟon
Let f(x) = 3x2 + 5x− 7 as in Example 219. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 68.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
x→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
x→0

3h2 + 6xh+ 5h
h

= lim
x→0

3h+ 6x+ 5

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computaƟon of f ′(x) affirm these facts.
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Example 224 Finding the derivaƟve of a funcƟon
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 68.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2

So f ′(x) =
−1

(x+ 1)2
. To pracƟce using our notaƟon, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 225 Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applying DefiniƟon 68, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we seƩled
for an approximaƟon in Example 222.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig idenƟty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fracƟons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine funcƟon is a nice
funcƟon. Then again, perhaps this is not enƟrely surprising. The sine funcƟon
is periodic – it repeats itself on regular intervals. Therefore its rate of change
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also repeats itself on the same regular intervals. We should have known the
derivaƟve would be periodic; we now know exactly which periodic funcƟon it is.

Thinking back to Example 222, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivaƟve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 226 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 11.6.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computaƟon shows that
d
dx
(
x
)
= 1.

We need to also find the derivaƟve at x = 0. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our funcƟon’s definiƟon switches from one piece
to other, we need to consider leŌ and right-hand limits. Consider the following,
where we compute the leŌ and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the leŌ and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differenƟable at 0. So
we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump disconƟnuity at 0; see Figure 11.7.
So f(x) = |x| is differenƟable everywhere except at 0.

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
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does not always cause trouble.

Example 227 Finding the derivaƟve of a piecewise defined funcƟon

Find the derivaƟve of f(x), where f(x) =
{

sin x x ≤ π/2
1 x > π/2 . See Figure 11.8.

SÊ½çã®ÊÄ Using Example 225, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
x→0

f(x+ h)− f(x)
h

= lim
x→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We sƟll need to find f ′(π/2). NoƟce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/2, uƟlizing again leŌ and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0

Since both the leŌ and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 11.9 for a graph of this funcƟon.

Recall we pseudo–defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure 11.6. Even though the func-
Ɵon f in Example 227 is piecewise–defined, the transiƟon is “smooth” hence it
is differenƟable. Note how in the graph of f in Figure 11.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”
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Exercises 11.1
Terms and Concepts
1. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
Ɵons 65 and 68.

5. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

Problems
In Exercises 6 – 12, use the definiƟon of the derivaƟve to com-
pute the derivaƟve of the given funcƟon.

6. f(x) = 6

7. f(x) = 2x

8. f(t) = 4− 3t

9. g(x) = x2

10. f(x) = 3x2 − x+ 4

11. r(x) = 1
x

12. r(s) = 1
s− 2

In Exercises 13 – 19, a funcƟon and an x–value c are given.
(Note: these funcƟons are the same as those given in Exer-
cises 6 through 12.)

(a) Find the tangent line to the graph of the funcƟon at c.
(b) Find the normal line to the graph of the funcƟon at c.

13. f(x) = 6, at x = −2.

14. f(x) = 2x, at x = 3.

15. f(x) = 4− 3x, at x = 7.

16. g(x) = x2, at x = 2.

17. f(x) = 3x2 − x+ 4, at x = −1.

18. r(x) = 1
x
, at x = −2.

19. r(x) = 1
x− 2

, at x = 3.

In Exercises 20 – 23, a funcƟon f and an x–value a are given.
Approximate the equaƟon of the tangent line to the graph of
f at x = a by numerically approximaƟng f ′(a), using h = 0.1.

20. f(x) = x2 + 2x+ 1, x = 3

21. f(x) = 10
x+ 1

, x = 9

22. f(x) = ex, x = 2

23. f(x) = cos x, x = 0

24. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points
(−1, 0), (0,−1) and (2, 3).
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25. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1, 0.5).
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In Exercises 26 – 29, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).
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30. Using the graph of g(x) below, answer the following ques-
Ɵons.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(c) Where is g′(x) < 0?

(d) Where is g′(x) > 0?

(e) Where is g′(x) = 0?
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Review

31. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

32. Use the BisecƟon Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

33. Give intervals on which each of the following funcƟons are
conƟnuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

34. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f conƟnu-
ous?
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11.2 InterpretaƟons of the DerivaƟve

11.2 InterpretaƟons of the DerivaƟve
The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #1: Instantaneous Rate of Change

The previous secƟon started with an example of using the posiƟon of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is oŌen used when introducing the derivaƟve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posiƟon. In general, if f is a funcƟon of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
Ɵve answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When Ɵme changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have travelled. Certainly, lots
of things could have happened in those 5 minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximaƟon of
the distance travelled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of 60 mph with a Ɵme of 5/60 hours. Hence we would approxi-
mate the distance travelled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 Ō/s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were
acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon
of x, i.e., y = f(x) for some funcƟon f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wriƩen as “Ō/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like behaviour
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of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

Example 228 The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the populaƟon of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the populaƟon grew by about 28, 800 ·156 = 4, 492, 800 people.

Example 229 The meaning of the derivaƟve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
iƟve) profit making just one widget; the start–up costs will likely exceed $10.
MathemaƟcally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

SÊ½çã®ÊÄ The equaƟon P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other informaƟon to use, our best approximaƟon
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance travelled assumed the rate of change was constant.
In Examples 228 and 229 we made similar approximaƟons. We were given rate
of change informaƟon which we used to approximate total change. NotaƟon-
ally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon

One of the most fundamental applicaƟons of the derivaƟve is the study of
moƟon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s couldmeasure the height of a projecƟle or the distance an object has
travelled.

Let’s let s(t)measure the distance travelled, in feet, of an object aŌer t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v ′(t), gives the instantaneous rate of538
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11.2 InterpretaƟons of the DerivaƟve

velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v ′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = 32Ō/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleraƟon of 32(Ō/s)/s means that the velocity changes by
32Ō/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while travelling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −32Ō/s2. If v(1) = 20Ō/s, then
when t = 2, the velocity will have decreased by 32Ō/s; that is, v(2) = −12Ō/s.
We can conƟnue: v(3) = −44Ō/s, and we can also figure that v(0) = 42Ō/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 42 The DerivaƟve and MoƟon

1. Let s(t) be the posiƟon funcƟon of an object. Then s ′(t) is the
velocity funcƟon of the object.

2. Let v(t) be the velocity funcƟon of an object. Then v ′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #2: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 230 Understanding the derivaƟve: the rate of change
Consider f(x) = x2 as shown in Figure 11.10. It is clear that at x = 3 the funcƟon
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?
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SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at
a parƟcular point. In Figure 11.11, we have sketched the tangent lines to f at
x = 1 and x = 3, along with a grid to help us measure the slopes of these lines.
At x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three Ɵmes as fast.

Example 231 Understanding the graph of the derivaƟve
Consider the graph of f(x) and its derivaƟve, f ′(x), in Figure 11.12(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 11.12(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help beƩer visualize the y value of f ′ at those points.

Example 232 ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example 231. Use the
tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 11.13 shows the graph of f along with its tangent line,
zoomed in at x = 3. NoƟce that near x = 3, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 231, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is oŌen useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example 232, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computaƟon. In reality, we oŌen only know two things:

1. What f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
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11.2 InterpretaƟons of the DerivaƟve

for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example 229. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 232, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding the derivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.
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Exercises 11.2
Terms and Concepts

1. What is the instantaneous rate of change of posiƟon
called?

2. Given a funcƟon y = f(x), in your own words describe how
to find the units of f ′(x).

3. What funcƟons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours aŌermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of funcƟons f(x) and g(x) are
given. IdenƟfy which funcƟon is the derivaƟve of the other.)
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Review
In Exercises 19 – 20, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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11.3 Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+b. What is y ′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y ′, gives the instan-
taneous rate of change; with a linear funcƟon, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = ax2 + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

Theorem 100 DerivaƟves of Common FuncƟons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

3.
d
dx

(sin x) = cos x

5.
d
dx

(ex) = ex

2. Power Rule:
d
dx

(xn) = nxn−1, where n is an integer, n > 0.

4.
d
dx

(cos x) = − sin x

6.
d
dx

(ln x) =
1
x

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have no
rate of change as they are constant. Therefore their derivaƟve is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivaƟves of Power FuncƟons (of the form y = xn) are very
straighƞorward: mulƟply by the power, then subtract 1 from the power. We see
something incredible about the funcƟon y = ex: it is its own derivaƟve. We also
see a new connecƟon between the sine and cosine funcƟons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
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gent line at x = −1.

Chapter 11 DerivaƟves

is: 1. They change at the same rate.

Let’s pracƟce using this theorem.

Example 233 Using Theorem 100 to find, and use, derivaƟves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equaƟon of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equaƟon of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equaƟon y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.
We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 11.14.

Theorem 100 gives useful informaƟon, but we will need much more. For
instance, using the theorem, we can easily find the derivaƟve of y = x3, but
it does not tell how to compute the derivaƟve of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next secƟon).

Theorem 101 ProperƟes of the DerivaƟve

Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant MulƟple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 101 allows us to find the derivaƟves of a wide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example 223 that we found, using the limit definiƟon, the
derivaƟve of f(x) = 3x2+5x−7. We cannowfind its derivaƟvewithout expressly
using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.544



Note: DefiniƟon 69 comes with the
caveat “Where the corresponding limits
exist.” With f differenƟable on I, it is pos-
sible that f ′ is not differenƟable on all of
I, and so on.
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We were a bit pedanƟc here, showing every step. Normally we would do all
the arithmeƟc and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Example 234 Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
Onemustmake a judgement usingwhatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 100 we find f ′(x) = cos x+ 2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximaƟon is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places aŌer the decimal:
f(3) = 7.1411. Our iniƟal guesswas 7; our tangent line approximaƟonwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate.

Higher Order DerivaƟves

The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its
derivaƟve. The following definiƟon gives a name to this concept and introduces
its notaƟon.

DefiniƟon 69 Higher Order DerivaƟves

Let y = f(x) be a differenƟable funcƟon on I.

1. The second derivaƟve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).
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In general, when finding the fourth derivaƟve and on, we resort to the f (4)(x)
notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is too confusing.

Let’s pracƟce using this new concept.

Example 235 Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

SÊ½çã®ÊÄ

1. Using the Power and Constant MulƟple Rules, we have: f ′(x) = 8x. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

NoƟce how all successive derivaƟves will also be 0.

2. We employ Theorem 100 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 100 and the Constant MulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

InterpreƟng Higher Order DerivaƟves

What do higher order derivaƟves mean? What is the pracƟcal interpreta-
Ɵon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

Oneway to grasp this concept is to let f describe a posiƟon funcƟon. Then, as
stated in Key Idea 42, f ′ describes the rate of posiƟon change: velocity. We now
consider f ′′, which describes the rate of velocity change. Sports car enthusiasts
talk of how fast a car can go from 0 to 60 mph; they are bragging about the
acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t Ō/s and
f ′′(t) = −32 (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
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the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.
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Exercises 11.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a funcƟon f(x) where f ′(x) = f(x).

4. Give an example of a funcƟon f(x) where f ′(x) = 0.

5. The derivaƟve rules introduced in this secƟon explain how
to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17

• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

7. Give an example of a funcƟonwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second derivaƟve
“means.”

9. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

10. Let f(x) be a funcƟon measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 25, compute the derivaƟve of the given func-
Ɵon.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this idenƟty when b = e, i.e., using loge x =
ln x.

(b) Use part (a) to find the derivaƟve of y = loga x.
(c) Give the derivaƟve of y = log10 x.

In Exercises 27 – 32, compute the first four derivaƟves of the
given funcƟon.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equaƟons of the tangent and
normal lines to the graph of the funcƟon at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.

40. Approximate the value of (3.01)4 using the tangent line to
f(x) = x4 at x = 3.
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11.4 The Product and QuoƟent Rules
The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = 5x2 + sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

Theorem 102 Product Rule

Let f and g be differenƟable funcƟons on an open interval I. Then fg is a
differenƟable funcƟon on I, and

d
dx

(
f(x)g(x)

)
= f(x)g ′(x) + f ′(x)g(x).

Important:
d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)! While this answer is simpler than

the Product Rule, it is wrong.
We pracƟce using this new rule in an example, followed by an example that

demonstrates why this theorem is true.

Example 236 Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = 5x2 sin x. Evaluate the
derivaƟve at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

At x = π/2, we have

y ′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
11.15. While this does not prove that the Produce Rule is the correct way to
handle derivaƟves of products, it helps validate its truth.

We now invesƟgate why the Product Rule is true.

Example 237 A proof of the Product Rule
Use the definiƟon of the derivaƟve to prove Theorem 102.

SÊ½çã®ÊÄ By the limit definiƟon, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
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as shown.

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)g(x+ h)− g(x)
h

+ lim
h→0

f(x+ h)− f(x)
h

g(x)

(apply limits)
= f(x)g ′(x) + f ′(x)g(x)

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

Example 238 Exploring alternate derivaƟve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′;

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)
=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivaƟve of the product is the
product of the derivaƟves.” Thus we are tempted to say that y ′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct.

Example 239 Using the Product Rule with a product of three funcƟons
Let y = x3 ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three funcƟonswhile the Product Rule
only specifies how to handle a product of two funcƟons. Ourmethod of handling
this problem is to simply group the laƩer two funcƟons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (x3)
(
ln x cos x

)′
+ 3x2

(
ln x cos x

)
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To evaluate
(
ln x cos x

)′, we apply the Product Rule again:
= (x3)

(
ln x(− sin x) +

1
x
cos x

)
+ 3x2

(
ln x cos x

)
= x3 ln x(− sin x) + x3

1
x
cos x+ 3x2 ln x cos x

Recognize the paƩern in our answer above: when applying the Product Rule to
a product of three funcƟons, there are three terms added together in the final
derivaƟve. Each terms contains only one derivaƟve of one of the original func-
Ɵons, and each funcƟon’s derivaƟve shows up in only one term. It is straighƞor-
ward to extend this paƩern to finding the derivaƟve of a product of 4 or more
funcƟons.

We consider one more example before discussing another derivaƟve rule.

Example 240 Using the Product Rule
Find the derivaƟves of the following funcƟons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute
d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Theorem 103 QuoƟent Rule

Let f and g be funcƟons defined on an open interval I, where g(x) ̸= 0
on I. Then f/g is differenƟable on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g ′(x)
g(x)2

.

The QuoƟent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fracƟon’s numerator
and denominator as “HI” and “LO”, respecƟvely. Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,
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read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivaƟves of the numerator and denominator, respecƟvely.

Let’s pracƟce using the QuoƟent Rule.

Example 241 Using the QuoƟent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x · 10x− 5x2 · cos x
sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

Example 242 Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.
But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is beauƟful result. To confirm its truth, we can find the equaƟon of the tan-
gent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x, along
with its tangent line, is graphed in Figure 11.16.

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Exam-
ple 225 and stated the derivaƟve of the cosine funcƟon in Theorem 100. The
derivaƟves of the cotangent, cosecant and secant funcƟons can all be computed
directly using Theorem 100 and the QuoƟent Rule.
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Theorem 104 DerivaƟves of Trigonometric FuncƟons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
Ɵves of the trigonometric funcƟons that start with “c” have aminus sign in them.

Example 243 Exploring alternate derivaƟve methods

In Example 241 the derivaƟve of f(x) =
5x2

sin x
was found using the QuoƟent

Rule. RewriƟng f as f(x) = 5x2 csc x, find f ′ using Theorem 104 and verify the
two answers are the same.

SÊ½çã®ÊÄ We found in Example 241 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2(− csc x cot x) + 10x csc x (now rewrite trig funcƟons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. Work to “simplify” your results into a form that is most readable and
useful to you.

The QuoƟent Rule gives other useful results, as show in the next example.

Example 244 Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.
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2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivaƟve of y =
1
xn

turned out to be rather nice. It gets beƩer. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 244)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

This is reminiscent of the Power Rule: mulƟply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stricƟon of n > 0.

Theorem 105 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivaƟve. We demonstrate this concept in an example.

Example 245 Exploring alternate derivaƟve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the QuoƟent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the QuoƟent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.
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2. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.
f ′(x) = 1− 1

x2
,

the same result as before.

Example 245 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next secƟon we conƟnue to learn rules that allow us to more easily
compute derivaƟves than using the limit definiƟon directly. We have to memo-
rize the derivaƟves of a certain set of funcƟons, such as “the derivaƟve of sin x
is cos x.” The Sum/Difference, Constant MulƟple, Power, Product and QuoƟent
Rules show us how to find the derivaƟves of certain combinaƟons of these func-
Ɵons. The next secƟon shows how to find the derivaƟves when we compose
these funcƟons together.
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Exercises 11.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 29, compute the derivaƟve of the given func-
Ɵon.

15. f(x) = x sin x

16. f(t) = 1
t2
(csc t− 4)

17. g(x) = x+ 7
x− 5

18. g(t) = t5

cos t− 2t2

19. h(x) = cot x− ex

20. h(t) = 7t2 + 6t− 2

21. f(x) = x4 + 2x3

x+ 2

22. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

23. f(t) = t5(sec t+ et)

24. f(x) = sin x
cos x+ 3

25. g(x) = e2
(
sin(π/4)− 1

)
26. g(t) = 4t3et − sin t cos t

27. h(t) = t2 sin t+ 3
t2 cos t+ 2

28. f(x) = x2ex tan x

29. g(x) = 2x sin x sec x

In Exercises 30 – 33, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

30. g(s) = es(s2 + 2) at (0, 2).

31. g(t) = t sin t at ( 3π2 ,−
3π
2 )

32. g(x) = x2

x− 1
at (2, 4)

33. g(θ) = cos θ − 8θ
θ + 1

at (0,−5)

In Exercises 34 – 37, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

34. f(x) = 6x2 − 18x− 24

35. f(x) = x sin x on [−1, 1]
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36. f(x) = x
x+ 1

37. f(x) = x2

x+ 1

In Exercises 38 – 41, find the requested derivaƟve.

38. f(x) = x sin x; find f ′′(x).

39. f(x) = x sin x; find f (4)(x).

40. f(x) = csc x; find f ′′(x).

41. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

In Exercises 42 – 45, use the graph of f(x) to sketch f ′(x).
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11.5 The Chain Rule

We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(x2). We currently
do not know how to compute this derivaƟve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivaƟve of cos x
and 2x as the derivaƟve of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 249 we’ll see the correct answer, which employs the new rule this
secƟon introduces, the Chain Rule.

Before we define this new rule, recall the notaƟon for composiƟon of func-
Ɵons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differenƟaƟon rule, we note that the rule extends to
mulƟple composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

Example 246 Exploring similar derivaƟves
Find the derivaƟves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,

F′2(x) = −3+ 6x− 3x2 and

F′3(x) = −4+ 12x− 12x2 + 4x3.

An interesƟng fact is that these can be rewriƩen as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A paƩern might jump out at you. Recognize that each of these funcƟons is a
composiƟon, leƫng g(x) = 1− x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern.
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Theorem 106 The Chain Rule

Let y = f(u) be a differenƟable funcƟon of u and let u = g(x) be a
differenƟable funcƟon of x. Then y = f(g(x)) is a differenƟable funcƟon
of x, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 246.

Example 247 Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the following funcƟons, as given in
Example 246.

SÊ½çã®ÊÄ Example 246 ended with the recogniƟon that each of the
given funcƟons was actually a composiƟon of funcƟons. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the

equaƟon for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 247 demonstrated a parƟcular paƩern: when f(x) = xn, then y ′ =
n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.

Theorem 107 Generalized Power Rule

Let g(x) be a differenƟable funcƟon and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).
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This allows us to quickly find the derivaƟve of funcƟons like y = (3x2 − 5x+
7 + sin x)20. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

We now consider more examples that employ the Chain Rule.

Example 248 Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 249 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 11.17.

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.
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A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

Example 250 Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerwards.
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Chapter 11 DerivaƟves

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Example 251 Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(6x3 − 7x) funcƟon
“inside” the f(x) = x5 funcƟon; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one must take
several simple steps and be careful to keep track of how to apply each of these
steps.

It is a tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrarily
complicated funcƟons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 252 Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It
employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.

f ′(x) =
ln(x2 + 5x4)·

[(
x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)

)
−2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2)− sin2(e4x)

)
· 2x+ 20x3

x2 + 5x4


(
ln(x2 + 5x4)

)2 .

The reader is highly encouraged to look at each term and recognize why it
is there. (I.e., the QuoƟent Rule is used; in the numerator, idenƟfy the “LOdHI”
term, etc.) This example demonstrates that derivaƟves can be computed sys-
temaƟcally, no maƩer how arbitrarily complicated the funcƟon is.
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11.5 The Chain Rule

The Chain Rule also has theoreƟc value. That is, it can be used to find the
derivaƟves of funcƟons that we have not yet learned as we do in the following
example.

Example 253 The Chain Rule and exponenƟal funcƟons
Use the Chain Rule to find the derivaƟve of y = ax where a > 0, a ̸= 1 is
constant.

SÊ½çã®ÊÄ We only know how to find the derivaƟve of one exponenƟal
funcƟon: y = ex; this problem is asking us to find the derivaƟve of funcƟons
such as y = 2x.

This can be accomplished by rewriƟng ax in terms of e. Recalling that ex and
ln x are inverse funcƟons, we can write

a = eln a and so y = ax = eln(a
x).

By the exponent property of logarithms, we can “bring down” the power to
get

y = ax = ex(ln a).

The funcƟon is now the composiƟon y = f(g(x)), with f(x) = ex and g(x) =
x(ln a). Since f ′(x) = ex and g ′(x) = ln a, the Chain Rule gives

y ′ = ex(ln a) · ln a.

Recall that the ex(ln a) term on the right hand side is just ax, our original funcƟon.
Thus, the derivaƟve contains the original funcƟon itself. We have

y ′ = y · ln a = ax · ln a.

The Chain Rule, coupled with the derivaƟve rule of ex, allows us to find the
derivaƟves of all exponenƟal funcƟons.

The previous example produced a result worthy of its own “box.”

Theorem 108 DerivaƟves of ExponenƟal FuncƟons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differenƟable for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule NotaƟon

It is instrucƟve to understand what the Chain Rule “looks like” using “ dydx” no-
taƟon instead of y ′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where
u = g(x) is a funcƟon of x, as stated in Theorem 106. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:
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Chapter 11 DerivaƟves

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not cancelling these terms; the derivaƟve
notaƟon of dy

dx is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behaviour. It makes applying the Chain
Rule easy with mulƟple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 11.18. The gears have 36, 18, and 6 teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revoluƟon is twice as fast
as the rate at which the x gear makes a revoluƟon. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revoluƟon of u causes 3 revoluƟons of y: dy

du = 3. How does
y change with respect to x? For each revoluƟon of x, y revolves 6 Ɵmes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So oŌen the
funcƟons thatwe dealwith are composiƟons of twoormore funcƟons, requiring
us to use this rule to compute derivaƟves. It is oŌen used in pracƟcewhen actual
funcƟons are unknown. Rather, through measurement, we can calculate dy

du and
du
dx . With our knowledge of the Chain Rule, finding dy

dx is straighƞorward.
In the next secƟon, we use the Chain Rule to jusƟfy another differenƟaƟon

technique. There are many curves that we can draw in the plane that fail the
“verƟcal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay sƟll be interested in finding slopes of tangent lines to the circle at
various points. The next secƟon shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situaƟons, implicit differenƟaƟon is indispensable.
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Exercises 11.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. T/F: Taking the derivaƟve of f(x) = x2 sin(5x) requires the
use of both the Product and Chain Rules.

Problems
In Exercises 7 – 28, compute the derivaƟve of the given func-
Ɵon.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
x+ 1

x

)4
12. f(x) = cos(3x)

13. g(x) = tan(5x)

14. h(t) = sin4(2t)

15. p(t) = cos3(t2 + 3t+ 1)

16. f(x) = ln(cos x)

17. f(x) = ln(x2)

18. f(x) = 2 ln(x)

19. g(r) = 4r

20. g(t) = 5cos t

21. g(t) = 152

22. m(w) = 3w

2w

23. h(t) = 2t + 3
3t + 2

24. m(w) = 3w + 1
2w

25. f(x) = 3x
2
+ x

2x2

26. f(x) = x2 sin(5x)

27. g(t) = cos(t2 + 3t) sin(5t− 7)

28. g(t) = cos( 1t )e
5t2

In Exercises 29 – 32, find the equaƟons of tangent and normal
lines to the graphof the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises 7 through 10.

29. f(x) = (4x3 − x)10 at x = 0

30. f(t) = (3t− 2)5 at t = 1

31. g(θ) = (sin θ + cos θ)3 at θ = π/2

32. h(t) = e3t
2+t−1 at t = −1

33. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.

34. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ap) = p ln a, then
taking the derivaƟve.

Review

35. The “wind chill factor” is a measurement of how cold it
“feels” during cold, windy weather. Let W(w) be the wind
chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW′(w)?

(b) What would you expect the sign ofW′(10) to be?

36. Find the derivaƟves of the following funcƟons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Note: The extreme values of a funcƟon
are “y” values, values the funcƟon aƩains,
not the input values.
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Figure 12.1: Graphs of funcƟons with and
without extreme values.
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Our study of limits led to conƟnuous funcƟons, which is a certain class of func-
Ɵons that behave in a parƟcularly nice way. Limits then gave us an even nicer
class of funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

12.1 Extreme Values

Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a funcƟon describes the value of a stock, we might want
to know how the highest/lowest values the stock aƩained over the past year.
We call such values extreme values.

DefiniƟon 70 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 12.1. The funcƟon displayed in (a) has a maximum, but no
minimum, as the interval over which the funcƟon is defined is open. In (b), the
funcƟon has a minimum, but no maximum; there is a disconƟnuity in the “natu-
ral” place for themaximum to occur. Finally, the funcƟon shown in (c) has both a
maximum and a minimum; note that the funcƟon is conƟnuous and the interval
on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.

Theorem 109 The Extreme Value Theorem

Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. AŌer the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.
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Example 254 ApproximaƟng extreme values
Consider f(x) = 2x3−9x2 on I = [−1, 5], as graphed in Figure 12.2. Approximate
the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximaƟon, we
approximate the extreme values to be 25 and−27.

NoƟce how theminimum value came at “the boƩom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the locaƟon of an extreme value for some interval is important, leading us to
a definiƟon.

DefiniƟon 71 RelaƟve Minimum and RelaƟve Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a relaƟve minimum of f. We also say that
f has a relaƟve minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maxi-
mum value, then f(c) is a relaƟve maximum of f. We also say that
f has a relaƟve maximum at (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve ex-
trema of f.

We briefly pracƟce using these definiƟons.

Example 255 ApproximaƟng relaƟve extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 12.3. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relaƟve maximum at the point (0, 1).

We approximate the relaƟve minima to be 0 and−5.4; we approximate the
relaƟve maximum to be 1.

It is straighƞorward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 256 ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x−1)2/3+2, shown in Figure 12.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (1, 2). In fact, the graph suggests that not only is
this point a relaƟve minimum, y = f(1) = 2 theminimum value of the funcƟon.
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Figure 12.6: A graph of f(x) = 2x3+3x2−
12x on [0, 3] as in Example 257.

12.1 Extreme Values

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either 0 or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

DefiniƟon 72 CriƟcal Numbers and CriƟcal Points

Let f be defined at c. The value c is a criƟcal number (or criƟcal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of f.

Theorem 110 RelaƟve Extrema and CriƟcal Points

Let a funcƟon f have a relaƟve extrema at the point (c, f(c)). Then c is a
criƟcal number of f.

Be careful to understand that this theorem states “All relaƟve extrema occur
at criƟcal points.” It does not say “All criƟcal numbers produce relaƟve extrema.”
For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is straighƞorward to de-
termine that x = 0 is a criƟcal number of f. However, f has no relaƟve extrema,
as illustrated in Figure 12.5.

Theorem 109 states that a conƟnuous funcƟon on a closed interval will have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at criƟcal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea 43 Finding Extrema on a Closed Interval

Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the criƟcal numbers of f in [a, b].

3. Evaluate f at each criƟcal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

Example 257 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
12.6.

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 43. We first evalu-
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Figure 12.7: Finding the extreme values
of f in Example 257.
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Figure 12.8: Finding the extreme values
of f in Example 258.
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Figure 12.9: A graph of f(x) on [−4, 2] as
in Example 258.
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ate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the criƟcal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 =
6(x + 2)(x − 1); therefore the criƟcal values of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only
criƟcal number in our interval gives: f(1) = −7.

The table in Figure 12.7 gives f evaluated at the “important” x values in [0, 3].
We can easily see the maximum and minimum values of f: the maximum value
is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analyƟc algorithm and did not depend on any visualizaƟon. Figure 12.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

Example 258 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
43. EvaluaƟng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f does
not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from the
right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0. (We may be tempted to say that f ′(x) = 0 when x = 1. However,
this is nonsensical, for we only consider f ′(x) = 2(x− 1)when x < 0, so we will
ignore a soluƟon that says x = 1.)

Sowehave three important x values to consider: x = −4, 2 and 0. EvaluaƟng
f at each gives, respecƟvely, 25, 3 and 1, shown in Figure 12.8. Thus the absolute
minimum of f is 1; the absolute maximum of f is 25. Our answer is confirmed by
the graph of f in Figure 12.9.
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Figure 12.10: Finding the extrema of
f(x) = cos(x2) in Example 259.
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Figure 12.11: A graph of f(x) = cos(x2)
on [−2, 2] as in Example 259.
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Figure 12.12: Finding the extrema of the
half–circle in Example 260.
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Figure 12.13: A graph of f(x) =
√
1− x2

on [−1, 1] as in Example 260.

12.1 Extreme Values

Example 259 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2].

SÊ½çã®ÊÄ We again use Key Idea 43. EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posiƟve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 12.10. In this exam-

ple we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 12.11 confirms our results.

We consider one more example.

Example 260 Finding extreme values
Find the extreme values of f(x) =

√
1− x2.

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. EvaluaƟng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 12.12. The maximum
value is 1, and the minimum value is 0.

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter 2). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 12.1
Terms and Concepts

1. Describe what an “extreme value” of a funcƟon is in your
own words.

2. Sketch the graph of a funcƟon f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relaƟve
maxima in your own words.

4. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

Problems
In Exercises 6 – 7, idenƟfy each of the marked points as being
an absolute maximum or minimum, a relaƟve maximum or
minimum, or none of the above.
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In Exercises 8 – 14, evaluate f ′(x) at the points indicated in
the graph.

8. f(x) = 2
x2 + 1
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√
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10. f(x) = sin x
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√
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12. f(x) =
{

x2 x ≤ 0
x5 x > 0
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14. f(x) = (x− 2)2/3
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In Exercises 15 – 24, find the extreme values of the funcƟon
on the given interval.

15. f(x) = x2 + x+ 4 on [−1, 2].

16. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

17. f(x) = 3 sin x on [π/4, 2π/3].

18. f(x) = x2
√
4− x2 on [−2, 2].

19. f(x) = x+ 3
x

on [1, 5].

20. f(x) = x2

x2 + 5
on [−3, 5].

21. f(x) = ex cos x on [0, π].

22. f(x) = ex sin x on [0, π].

23. f(x) = ln x
x

on [1, 4].

24. f(x) = x2/3 − x on [0, 2].

Review

25. Find dy
dx , where x

2y− y2x = 1.

26. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

27. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Figure 12.14: A graph of a funcƟon f used
to illustrate the concepts of increasing
and decreasing.
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Figure 12.15: Examining the secant line of
an increasing funcƟon.

The Mean Value Theorem, which is cov-
ered inmore advanced courses, likeMath
1560, is a remarkably powerful result. It
guarantees that if a funcƟon f is conƟnu-
ous on [a, b] and differenƟable on (a, b),
then there is some c ∈ (a, b) such that

f′(c) = f(b)− f(a)
b− a

; that is, that at some
point the instantaneous rate of change
must equal the average rate of change.

Chapter 12 The Graphical Behavior of FuncƟons

12.2 Increasing and Decreasing FuncƟons

Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure 12.14, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

DefiniƟon 73 Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

2. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A funcƟon is strictly increasingwhen a < b in I implies f(a) < f(b), with
a similar definiƟon holding for strictly decreasing.

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differenƟable funcƟon on an open interval I, such as the one shown in Figure
12.15, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we strongly imply that f ′(x) ≥ 0 on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is proba-
bly posiƟve.” Theorem 111 below turns this around by staƟng “If f ′ is posƟve,
then f is increasing.” This leads us to a method for finding when funcƟons are
increasing and decreasing.
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Note: Theorem 111 also holds if f ′(c) =
0 for a finite number of values of c in I.

12.2 Increasing and Decreasing FuncƟons

Theorem 111 Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let a and b be in I where f ′(a) > 0 and f ′(b) < 0. It follows from the
Intermediate Value Theorem that there must be some value c between a and b
where f ′(c) = 0. This leads us to the following method for finding intervals on
which a funcƟon is increasing or decreasing.

Key Idea 44 Finding Intervals onWhich f is Increasing or Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.

Example 261 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 44, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 12.16.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 12.16: Number line for f in Example 261.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
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Figure 12.17: A graph of f(x) in Example
261, showing where f is increasing and
decreasing.

Chapter 12 The Graphical Behavior of FuncƟons

increasing on (−∞,−1).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculaƟons by considering Figure 12.17, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”576



12.2 Increasing and Decreasing FuncƟons

In SecƟon 12.1 we learned the definiƟon of relaƟvemaxima andminima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

Theorem 112 First DerivaƟve Test

Let f be differenƟable on I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is
a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is
a relaƟve minimum of f.

3. If the sign of f ′ does not change at c, then f(c) is not a relaƟve
extrema of f.

Example 262 Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 44 describes how tofind intervalswhere f is increasing anddecreasingwhen
the domain of f is an interval. Since the domain of f in this example is the union
of two intervals, we apply the techniques of Key Idea 44 to both intervals of the
domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Using the QuoƟent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two criƟcal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
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262, showing where f is increasing and
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complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1)∪(3,∞) and is decreasing on
the set (−1, 1)∪ (1, 3). Since at x = −1, the sign of f ′ switched from posiƟve to
negaƟve, Theorem112 states that f(−1) is a relaƟvemaximumof f. At x = 3, the
sign of f ′ switched fromnegaƟve to posiƟve,meaning f(3) is a relaƟveminimum.
At x = 1, f is not defined, so there is no relaƟve extrema at x = 1.
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min

Figure 12.18: Number line for f in Example 262.
This is summarized in the number line shown in Figure 12.18. Also, Figure

12.19 shows a graph of f, confirming our calculaƟons. This figure also shows
f ′, again demonstraƟng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 263 Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking derivaƟves. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking derivaƟves.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 criƟcal values, breaking the number line into
4 subintervals as shown in Figure 12.20.
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Figure 12.21: A graph of f(x) in Example
263, showing where f is increasing and
decreasing.

12.2 Increasing and Decreasing FuncƟons

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.
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.

0

.
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.
f ′ < 0 decr

.
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

.
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min

.

rel.
min

.

rel.
max

Figure 12.20: Number line for f in Example 263.

Weconclude by staƟng that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from negaƟve to posiƟve around
x = −1 and x = 1, meaning by Theorem 112 that f(−1) and f(1) are relaƟve
minima of f. As the sign of f ′ changes from posiƟve to negaƟve at x = 0, we
have a relaƟve maximum at f(0). Figure 12.21 shows a graph of f, confirming
our result. We also graph f ′, highlighƟng once more that f is increasing when
f ′ > 0 and is decreasing when f ′ < 0.

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.
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Exercises 12.2
Terms and Concepts
1. In your own words describe what it means for a funcƟon to

be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing but
not strictly increasing.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises 6 – 13, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem 111.

6. f(x) = 2x+ 3

7. f(x) = x2 − 3x+ 5

8. f(x) = cos x

9. f(x) = tan x

10. f(x) = x3 − 5x2 + 7x− 1

11. f(x) = 2x3 − x2 + x− 1

12. f(x) = x4 − 5x2 + 4

13. f(x) = 1
x2 + 1

In Exercises 14 – 23, a funcƟon f(x) is given.
(a) Give the domain of f.
(b) Find the criƟcal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First DerivaƟve Test to determine whether

each criƟcal point is a relaƟve maximum, minimum,
or neither.

14. f(x) = x2 + 2x− 3

15. f(x) = x3 + 3x2 + 3

16. f(x) = 2x3 + x2 − x+ 3

17. f(x) = x3 − 3x2 + 3x− 1

18. f(x) = 1
x2 − 2x+ 2

19. f(x) = x2 − 4
x2 − 1

20. f(x) = x
x2 − 2x− 8

21. f(x) = (x− 2)2/3

x

22. f(x) = sin x cos x on (−π, π).

23. f(x) = x5 − 5x

Review
24. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

25. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 12.22: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.

.....
−2

.
2

.

10

.

20

.

30

. x.

y

Figure 12.23: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.

12.3 Concavity and the Second DerivaƟve

12.3 Concavity and the Second DerivaƟve

Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = 0 or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

DefiniƟon 74 Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from leŌ to right, the slopes of the tangent lines
will be increasing. Consider Figure 12.22, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 12.23, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.

Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 113 Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.
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Figure 12.24: DemonstraƟng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.
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Figure 12.25: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.
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Figure 12.26: A number line determining
the concavity of f in Example 264.
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Figure 12.27: A graph of f(x) used in Ex-
ample 264.

Chapter 12 The Graphical Behavior of FuncƟons

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon 75 Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 12.25 shows a graph of a funcƟon with inflecƟon points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem 114 Points of InflecƟon

If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′ = 0 or
f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.

Example 264 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x3 − 3x+ 1. Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflecƟon points, we use Theorem 114 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 12.26 illustrates the process of determining con-
cavity; Figure 12.27 shows a graph of f and f ′′, confirming our results. No-
Ɵce how f is concave down precisely when f ′′(x) < 0 and concave up when
f ′′(x) > 0.

Example 265 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(x2 − 1). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.
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Figure 12.29: A graph of f(x) and f ′′(x) in
Example 265.
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Figure 12.30: A graph of S(t) in Example
266, modeling the sale of a product over
Ɵme.

12.3 Concavity and the Second DerivaƟve

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflecƟon at x = ±1 as
they are not part of the domain, but we must sƟll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
12.28. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (c2 + 3) will be posiƟve and the 2c term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negaƟve, the term (c2 + 3) in the numerator will be posiƟve, and
the term (c2 − 1)3 in the denominator will be negaƟve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).

..

−1

.
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.

1

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

Figure 12.28: Number line for f in Example 265.

We conclude that f is concave up on (−1, 0)∪ (1,∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflecƟon, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 12.29. NoƟce how
f is concave upwhenever f ′′ is posiƟve, and concave downwhen f ′′ is negaƟve.

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding the where f is increasing the
most – where f has the steepest tangent line. A similar statement can be made
for minimizing f ′; it corresponds to where f has the steepest negaƟvely–sloped
tangent line.

We uƟlize this concept in the next example.

Example 266 Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 12.30. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

583



.....

1

.

2

.

3

.
−10

.

10

.

20

.
S ′(t)

.

S(t)

.

t

.

y

Figure 12.31: A graph of S(t) in Example
266 along with S ′(t).
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Figure 12.32: A graph of f(x) = x4.
Clearly f is always concave up, despite the
fact that f ′′(x) = 0 when x = 0. It this
example, the possible point of inflecƟon
(0, 0) is not a point of inflecƟon.
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Figure 12.33: DemonstraƟng the fact that
relaƟve maxima occur when the graph is
concave down and relaƟve minima occur
when the graph is concave up.

Chapter 12 The Graphical Behavior of FuncƟons

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Seƫng S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the negaƟve value of t since it does not lie in

the domain of our funcƟon S).
This is both the inflecƟon point and the point of maximum decrease. This

is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 12.31. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 12.32.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure 12.33 for a visual-
izaƟon of this.

Theorem 115 The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.
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Figure 12.34: A graph of f(x) in Example
267. The second derivaƟve is evaluated
at each criƟcal point. When the graph is
concave up, the criƟcal point represents
a local minimum; when the graph is con-
cave down, the criƟcal point represents a
local maximum.

12.3 Concavity and the Second DerivaƟve

Example 267 Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 12.34.

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter
10 we saw how limits explained asymptoƟc behavior. In the next secƟon we
combine all of this informaƟon to produce accurate sketches of funcƟons.
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Exercises 12.3
Terms and Concepts

1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞) with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems

In Exercises 5 – 15, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem 113.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = cos x

11. f(x) = sin x

12. f(x) = tan x

13. f(x) = 1
x2 + 1

14. f(x) = 1
x

15. f(x) = 1
x2

In Exercises 16 – 28, a funcƟon f(x) is given.

(a) Find the possible points of inflecƟon of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

16. f(x) = x2 − 2x+ 1

17. f(x) = −x2 − 5x+ 7

18. f(x) = x3 − x+ 1

19. f(x) = 2x3 − 3x2 + 9x+ 5

20. f(x) = x4

4
+

x3

3
− 2x+ 3

21. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

22. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 41, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises 16 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = 1
x2 + 1
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37. f(x) = x
x2 − 1

38. f(x) = sin x+ cos x on (−π, π)

39. f(x) = x2ex

40. f(x) = x2 ln x

41. f(x) = e−x2

In Exercises 42 – 54, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a relaƟve maximum or minimum. (Note:
these are the same funcƟons as in Exercises 16 – 28.)

42. f(x) = x2 − 2x+ 1

43. f(x) = −x2 − 5x+ 7

44. f(x) = x3 − x+ 1

45. f(x) = 2x3 − 3x2 + 9x+ 5

46. f(x) = x4

4
+

x3

3
− 2x+ 3

47. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

48. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

49. f(x) = 1
x2 + 1

50. f(x) = x
x2 − 1

51. f(x) = sin x+ cos x on (−π, π)

52. f(x) = x2ex

53. f(x) = x2 ln x

54. f(x) = e−x2
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Chapter 12 The Graphical Behavior of FuncƟons

12.4 Curve Sketching

We have been learning how we can understand the behaviour of a funcƟon
based on its first and second derivaƟves. While we have been treaƟng the prop-
erƟes of a funcƟon separately (increasing and decreasing, concave up and con-
cave down, etc.), we combine them here to produce an accurate graph of the
funcƟon without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We are aƩempƟng to understand the behaviour of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behaviour we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to staƟng that one understands howan engineworks aŌer looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea 45 Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is 0 or where negaƟves appear under the radical.

2. Find the criƟcal values of f.

3. Find the possible points of inflecƟon of f.

4. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behaviour of the funcƟon.

(conƟnued)
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Figure 12.36: Sketching f in Example 268.

12.4 Curve Sketching

Key Idea 45 Curve Sketching – ConƟnued

6. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these pointswith curves
exhibiƟng the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 268 Curve sketching
Use Key Idea 45 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. Find the criƟcal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
QuadraƟc Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

3. Find the possible points of inflecƟon of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

4. There are no verƟcal asymptotes.

5. We determine the end behaviour using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 12.35. We mark each subinterval as increasing
or decreasing, concave up or down, using the techniques used in SecƟons
12.2 and 12.3.

..
1
9 (10−

√
37)

≈ 0.435

.
10
9 ≈ 1.111

.
1
9 (10+

√
37)

≈ 1.787

.

f ′ > 0 incr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ > 0 c. up

.

f ′ > 0 incr
f ′′ < 0 c. up

Figure 12.35: Number line for f in Example 268.

7. We plot the appropriate points on axes as shown in Figure 12.36(a) and
connect the points with straight lines. In Figure 12.36(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 12.36(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

589



.....

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

(a)

.....

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

(b)

...

..

−4

.

−2

.

2

.

4

.

−5

.

5

.

x

.

y

(c)

Figure 12.38: Sketching f in Example 269.

Chapter 12 The Graphical Behavior of FuncƟons

Example 269 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 45.

1. In determining the domain, we assume it is all real numbers and looks for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2.

3. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The verƟcal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 12.37. We mark in each interval whether f is increasing
or decreasing, concave up or down. We see that f has a relaƟvemaximum
at x = 1/2; concavity changes only at the verƟcal asymptotes.

..

−2

.
1
2

.

3

.

f ′ > 0 incr
f ′′ > 0 c. up

.

f ′ > 0 incr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ > 0 c. up

Figure 12.37: Number line for f in Example 269.

7. In Figure 12.38(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure 12.38(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 12.38(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.
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Figure 12.40: Sketching f in Example 270.

12.4 Curve Sketching

Example 270 Curve sketching

Sketch f(x) =
5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 45.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

3. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no verƟcal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the criƟcal points and possible points on a number line as shown
in Figure 12.39 and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
−5.579

.
−4

.
−1.305

.
0

.
1.064

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 decr

f ′′ < 0 c. down

Figure 12.39: Number line for f in Example 270.

7. In Figure 12.40(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
12.40(b), we add concavity. Figure 12.40(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
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Chapter 12 The Graphical Behavior of FuncƟons

“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 12.41, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x
is relaƟvely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behavior” is accurate.)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 12.41: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behavior of the
funcƟon at a few key places.” In Example 270, we were able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.
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Exercises 12.4
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

4. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

5. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

Problems
In Exercises 6 – 11, pracƟce using Key Idea 45 by applying the
principles to the given funcƟons with familiar graphs.

6. f(x) = 2x+ 4

7. f(x) = −x2 + 1

8. f(x) = sin x

9. f(x) = ex

10. f(x) = 1
x

11. f(x) = 1
x2

In Exercises 12 – 25, sketch a graph of the given funcƟon using
Key Idea 45. Show all work; check your answer with technol-
ogy.

12. f(x) = x3 − 2x2 + 4x+ 1

13. f(x) = −x3 + 5x2 − 3x+ 2

14. f(x) = x3 + 3x2 + 3x+ 1

15. f(x) = x3 − x2 − x+ 1

16. f(x) = (x− 2) ln(x− 2)

17. f(x) = (x− 2)2 ln(x− 2)

18. f(x) = x2 − 4
x2

19. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

20. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

21. f(x) = x
√
x+ 1

22. f(x) = x2ex

23. f(x) = sin x cos x on [−π, π]

24. f(x) = (x− 3)2/3 + 2

25. f(x) = (x− 1)2/3

x

In Exercises 26 – 28, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

26. f(x) = a
x2 + b2

27. f(x) = sin(ax+ b)

28. f(x) = (x− a)(x− b)

29. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2 . Use this informaƟon to jusƟfy the sketch of the

unit circle.
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We have spent considerable Ɵme considering the derivaƟves of a funcƟon
and their applicaƟons. In the secƟon, we are going to starƟng thinking in “the
other direcƟon.” That is, given a funcƟon f(x), we are going to consider funcƟons
F(x) such that F ′(x) = f(x). Here, wewill only consider very basic examples, and
leave most of the heavy liŌing to later courses. The importance of anƟderiva-
Ɵves becomes apparent in Math 1560, once integraƟon and the Fundamental
Theorem of Calculus have been introduced. More advanced techniques for find-
ing anƟderivaƟves are taught in Math 2560.

12.5 AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

DefiniƟon 76 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
We oŌen use upper-case leƩers to denote anƟderivaƟves.

Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem 116 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x). Then there exists a constant
C such that

G(x) = F(x) + C.
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12.5 AnƟderivaƟves and Indefinite IntegraƟon

Given a funcƟon f and one of its anƟderivaƟves F, we know all anƟderivaƟves
of f have the form F(x)+ C for some constant C. Using DefiniƟon 76, we can say
that ∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 12.42: Understanding the indefinite integral notaƟon.

Figure 12.42 shows the typical notaƟon of the indefinite integral. The inte-
graƟon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.”

We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Example 271 EvaluaƟng indefinite integrals
Evaluate

∫
sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill lead us to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.
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Chapter 12 The Graphical Behavior of FuncƟons

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Example 272 EvaluaƟng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

For ease of reference, and to stress the relaƟonship between derivaƟves and
anƟderivaƟves, we include below a list of many of the common differenƟaƟon
rules we have learned, along with the corresponding anƟdifferenƟaƟon rules.
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Theorem 117 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 117:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by
5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
272. So: ∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C
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Chapter 12 The Graphical Behavior of FuncƟons

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 11.3 we saw that the derivaƟve of a posiƟon funcƟon gave a ve-
locity funcƟon, and the derivaƟve of a velocity funcƟon describes acceleraƟon.
We can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon
gives a velocity funcƟon, etc. While there is just one derivaƟve of a given func-
Ɵon, there are infinite anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 273 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86
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12.5 AnƟderivaƟves and Indefinite IntegraƟon

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 274 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a posiƟon funcƟon given a velocity funcƟon.

If you conƟnue on to Math 1560, you will see how posiƟon and velocity are
unexpectedly related by the areas of certain regions on a graph of the velocity
funcƟon, and how the Fundamental Theoremof Calculus Ɵes together areas and
anƟderivaƟves.
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Exercises 12.5
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

Problems
In Exercises 8 – 26, evaluate the given indefinite integral.

8.
∫

3x3 dx

9.
∫

x8 dx

10.
∫

(10x2 − 2) dx

11.
∫

dt

12.
∫

1 ds

13.
∫

1
3t2

dt

14.
∫

3
t2

dt

15.
∫

1√
x
dx

16.
∫

sec2 θ dθ

17.
∫

sin θ dθ

18.
∫

(sec x tan x+ csc x cot x) dx

19.
∫

5eθ dθ

20.
∫

3t dt

21.
∫

5t

2
dt

22.
∫

(2t+ 3)2 dt

23.
∫

(t2 + 3)(t3 − 2t) dt

24.
∫

x2x3 dx

25.
∫

eπ dx

26.
∫

a dx

27. This problem invesƟgates why Theorem 117 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 28 – 38, find f(x) described by the given iniƟal
value problem.

28. f ′(x) = sin x and f(0) = 2

29. f ′(x) = 5ex and f(0) = 10

30. f ′(x) = 4x3 − 3x2 and f(−1) = 9

31. f ′(x) = sec2 x and f(π/4) = 5

32. f ′(x) = 7x and f(2) = 1

33. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

34. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

35. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

36. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4
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37. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

38. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review
39. Use informaƟon gained from the first and second deriva-

Ɵves to sketch f(x) = 1
ex + 1

.

40. Given y = x2ex cos x, find dy.
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A: AÄÝó�ÙÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 1
SecƟon 1.1

1.

Set of Real Interval Region on the
Numbers NotaƟon Real Number Line

{x | − 1 ≤ x < 5} [−1, 5) −1 5

{x | 0 ≤ x < 3} [0, 3) 0 3

{x | 2 < x ≤ 7} (2, 7] 2 7

{x | − 5 < x ≤ 0} (−5, 0] −5 0

{x | − 3 < x < 3} (−3, 3) −3 3

{x | 5 ≤ x ≤ 7} [5, 7] 5 7

{x | x ≤ 3} (−∞, 3] 3

{x | x < 9} (−∞, 9) 9

{x | x > 4} (4,∞) 4

{x | x ≥ −3} [−3,∞) −3

3. (−1, 1) ∪ [0, 6] = (−1, 6]

5. (−∞, 0) ∩ [1, 5] = ∅

7. (−∞, 5] ∩ [5, 8) = {5}

9. (−∞,−1) ∪ (−1,∞)

11. (−∞, 0) ∪ (0, 2) ∪ (2,∞)

13. (−∞,−4) ∪ (−4, 0) ∪ (0, 4) ∪ (4,∞)

15. (−∞,∞)

17. (−∞, 5] ∪ {6}

19. (−3, 3) ∪ {4}

SecƟon 1.2

1. 6

3.
2
21

5. −
1
3

7.
3
5

9. −
7
8

11. 0

13.
23
9

15. −
24
7

17.
243
32

19.
9
22

21. 5

23.
107
27

25.
√
10

27.
√
7

29. −1

31.
15
16

33. −
385
12

SecƟon 1.3

1. The required points A(−3,−7), B(1.3,−2), C(π,
√
10),

D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8), and H(7, 5) are
ploƩed in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√
10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

3. d = 5,M =
(
−1, 7

2
)

5. d =
√
26,M =

(
1, 3

2
)

7. d =
√
74,M =

( 13
10 ,−

13
10
)

9. d =
√
83,M =

(
4
√
5, 5

√
3

2

)
11. (3+

√
7,−1), (3−

√
7,−1)

13. (−1+
√
3, 0), (−1−

√
3, 0)

15. (−3,−4), 5 miles, (4,−4)
17.
19.
21.

SecƟon 1.4

1. For z = 2+ 3i and w = 4i

• z+ w = 2+ 7i
• zw = −12+ 8i
• z2 = −5+ 12i



• 1
z = 2

13 − 3
13 i

• z
w = 3

4 − 1
2 i

• w
z = 12

13 + 8
13 i

• z = 2− 3i
• zz = 13
• (z)2 = −5− 12i

3. For z = i and w = −1+ 2i

• z+ w = −1+ 3i
• zw = −2− i

• z2 = −1
• 1

z = −i

• z
w = 2

5 − 1
5 i

• w
z = 2+ i

• z = −i

• zz = 1
• (z)2 = −1

5. For z = 3− 5i and w = 2+ 7i

• z+ w = 5+ 2i
• zw = 41+ 11i
• z2 = −16− 30i
• 1

z = 3
34 + 5

34 i

• z
w = − 29

53 − 31
53 i

• w
z = − 29

34 + 31
34 i

• z = 3+ 5i
• zz = 34
• (z)2 = −16+ 30i

7. For z =
√
2− i

√
2 and w =

√
2+ i

√
2

• z+ w = 2
√
2

• zw = 4
• z2 = −4i

• 1
z =

√
2
4 +

√
2
4 i

• z
w = −i

• w
z = i

• z =
√
2+ i

√
2

• zz = 4
• (z)2 = 4i

9. For z = 1
2 +

√
3
2 i and w = − 1

2 +
√
3
2 i

• z+ w = i
√
3

• zw = −1

• z2 = − 1
2 +

√
3
2 i

• 1
z = 1

2 −
√
3
2 i

• z
w = 1

2 −
√
3
2 i

• w
z = 1

2 +
√
3
2 i

• z = 1
2 −

√
3
2 i

• zz = 1
• (z)2 = − 1

2 −
√
3
2 i

11. 7i

13. −10

15. −12

17. 3

19. i5 = i4 · i = 1 · i = i

21. i7 = i4 · i3 = 1 · (−i) = −i

23. i15 =
(
i4
)3 · i3 = 1 · (−i) = −i

25. i117 =
(
i4
)29 · i = 1 · i = i

27. x =
2± i

√
14

3
29. y = ±2,±i

31. y = ±
3i
√
2

2

33. x =
√
5± i

√
3

2
35. z = ±2,±2i

Chapter 2
SecƟon 2.1

1. x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

3.

x

y

−2−1 1 2−1

−2

−3

−4

1

2

3

4

5.
x

y

−2−1 1 2

1

2

3

4

A.2



7.

x

y

−4−3−2−1 1 2 3 4

−3

−1

9.
x

y

−1 1 2

1

2

3

4

5

6

7

8

11.

x

y

−3−2−1

−3

−2

−1

1

2

3

4

13.
x

y

−4−3−2−1 1 2 3 4

1

2

3

15.

x

y

321−2−1

−3

−2

−1

1

2

3

17.
x

y

−3−2−1 1 2 3

1

2

3

4

19.
x

y

−1 1 2 3

1

2

3

4

21. A = {(−4,−1), (−2, 1), (0, 3), (1, 4)}

23. C = {(2, y) | y > −3}

25. E = {(x, 2) | − 4 ≤ x < 3}

27. G = {(x, y) | x > −2}

29. I = {(x, y) | x ≥ 0,y ≥ 0}

31.

x

y

−3−2−1

1

2

3

−1

−2

−3

The line x = −2

33.
x

y

−3−2−1 1 2 3

1

2

3

The line y = 3

35.

x

y

−3−2−1 1 2 3−1

−2

−3

1

2

3

The line x = 0 is the y-axis

37.

39.

A.3



41. The graph has no x-intercepts

y-intercept: (0, 1)

x y (x, y)
−2 5 (−2, 5)
−1 2 (−1, 2)
0 1 (0, 1)
1 2 (1, 2)
2 5 (2, 5)

x

y

−2−1 1 2

1

2

3

4

5

The graph is not symmetric about the x-axis (e.g. (2, 5) is on the
graph but (2,−5) is not)

The graph is symmetric about the y-axis

The graph is not symmetric about the origin (e.g. (2, 5) is on the
graph but (−2,−5) is not)

43. x-intercepts: (−1, 0), (0, 0), (1, 0)

y-intercept: (0, 0)

x y (x, y)
−2 −6 (−2,−6)
−1 0 (−1, 0)
0 0 (0, 0)
1 0 (1, 0)
2 6 (2, 6)

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

The graph is not symmetric about the x-axis. (e.g. (2, 6) is on the
graph but (2,−6) is not)

The graph is not symmetric about the y-axis. (e.g. (2, 6) is on the
graph but (−2, 6) is not)

The graph is symmetric about the origin.

45. x-intercept: (2, 0)

The graph has no y-intercepts

x y (x, y)
2 0 (2, 0)
3 1 (3, 1)
6 2 (6, 2)

11 3 (11, 3)

x

y

1 2 3 4 5 6 7 8 9 10 11

1

2

3

The graph is not symmetric about the x-axis (e.g. (3, 1) is on the
graph but (3,−1) is not)

The graph is not symmetric about the y-axis (e.g. (3, 1) is on the
graph but (−3, 1) is not)

The graph is not symmetric about the origin (e.g. (3, 1) is on the
graph but (−3,−1) is not)

47. x-intercept: ( 73 , 0)

y-intercept: (0,−7)

x y (x, y)
−2 −13 (−2,−13)
−1 −10 (−1,−10)
0 −7 (0,−7)
1 −4 (1,−4)
2 −1 (2,−1)
3 2 (3, 2)

x

y

−2−1 1 2 3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

The graph is not symmetric about the x-axis (e.g. (3, 2) is on the
graph but (3,−2) is not)

The graph is not symmetric about the y-axis (e.g. (3, 2) is on the
graph but (−3, 2) is not)

The graph is not symmetric about the origin (e.g. (3, 2) is on the
graph but (−3,−2) is not)

49. x-intercepts: (−6, 0), (2, 0)

y-intercepts:
(
0,±2

√
3
)

x y (x, y)
−6 0 (−6, 0)
−4 ±2

√
3

(
−4,±2

√
3
)

−2 ±4 (−2,±4)
0 ±2

√
3

(
0,±2

√
3
)

2 0 (2, 0)

x

y

−7−6−5−4−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

A.4



The graph is symmetric about the x-axis

The graph is not symmetric about the y-axis (e.g. (−6, 0) is on the
graph but (6, 0) is not)

The graph is not symmetric about the origin (e.g. (−6, 0) is on
the graph but (6, 0) is not)

51. 4y2 − 9x2 = 36
Re-write as: y = ±

√
9x2+36
2 .

The graph has no x-intercepts

y-intercepts: (0,±3)

x y (x, y)
−4 ±3

√
5

(
−4,±3

√
5
)

−2 ±3
√
2

(
−2,±3

√
2
)

0 ±3 (0,±3)
2 ±3

√
2

(
2,±3

√
2
)

4 ±3
√
5

(
4,±3

√
5
)

x

y

−4−3−2−1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

The graph is symmetric about the x-axis

The graph is symmetric about the y-axis

The graph is symmetric about the origin

53.

SecƟon 2.2

1. FuncƟon
domain = {−3,−2,−1, 0, 1, 2, 3}
range = {0, 1, 4, 9}

3. FuncƟon
domain = {−7,−3, 3, 4, 5, 6}
range = {0, 4, 5, 6, 9}

5. Not a funcƟon

7. FuncƟon
domain = {x|x = 2n for some whole number n}
range = {y | y ≥ 0 is an integer}

9. Not a funcƟon

11. FuncƟon
domain = (−∞,∞)
range = [0,∞)

13. FuncƟon
domain = {−4,−3,−2,−1, 0, 1}
range = {−1, 0, 1, 2, 3, 4}

15. FuncƟon
domain = (−∞,∞)
range = [1,∞)

17. FuncƟon
domain = [2,∞)
range = [0,∞)

19. Not a funcƟon
21. FuncƟon

domain = [−2,∞)
range = [−3,∞)

23. FuncƟon
domain = [−5, 4)
range = [−4, 4)

25. FuncƟon
domain = (−∞,∞)
range = (−∞, 4]

27. FuncƟon
domain = [−2,∞)
range = (−∞, 3]

29. FuncƟon
domain = (−∞, 0] ∪ (1,∞)
range = (−∞, 1] ∪ {2}

31. Not a funcƟon
33. FuncƟon
35. FuncƟon
37. FuncƟon
39. Not a funcƟon
41. FuncƟon
43. Not a funcƟon
45. FuncƟon
47. Not a funcƟon
49.
51.
53.

SecƟon 2.3

1. f(x) = 2x+3
4

Domain: (−∞,∞)

3. f(x) = 2
( x
4 + 3

)
= 1

2 x+ 6
Domain: (−∞,∞)

5. f(x) =
√

2(x+ 3) =
√
2x+ 6

Domain: [−3,∞)

7. f(x) = 4√
x−13

Domain: [0, 169) ∪ (169,∞)

9. f(x) = 4√
x − 13

Domain: (0,∞)

11. For f(x) = 2x+ 1

• f(3) = 7
• f(−1) = −1
• f
( 3
2
)
= 4

• f(4x) = 8x+ 1
• 4f(x) = 8x+ 4

• f(−x) = −2x+ 1

• f(x− 4) = 2x− 7

• f(x)− 4 = 2x− 3

• f
(
x2
)
= 2x2 + 1

13. For f(x) = 2− x2

• f(3) = −7
• f(−1) = 1
• f
( 3
2
)
= − 1

4

• f(4x) = 2− 16x2

• 4f(x) = 8− 4x2

• f(−x) = 2− x2

• f(x− 4) =
−x2 + 8x− 14

• f(x)− 4 = −x2 − 2

• f
(
x2
)
= 2− x4
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15. For f(x) =
x

x− 1

• f(3) =
3
2

• f(−1) =
1
2

• f
(
3
2

)
= 3

• f(4x) =
4x

4x− 1

• 4f(x) =
4x

x− 1

• f(−x) =
x

x+ 1

• f(x− 4) =
x− 4
x− 5

• f(x)− 4 =
x

x− 1
− 4 = 4−3x

x−1

• f
(
x2
)
=

x2

x2 − 1

17. For f(x) = 6

• f(3) = 6
• f(−1) = 6
• f
( 3
2
)
= 6

• f(4x) = 6
• 4f(x) = 24

• f(−x) = 6

• f(x− 4) = 6

• f(x)− 4 = 2

• f
(
x2
)
= 6

19. For f(x) = 2x− 5

• f(2) = −1

• f(−2) = −9

• f(2a) = 4a− 5

• 2f(a) = 4a− 10

• f(a+ 2) = 2a− 1

• f(a) + f(2) = 2a− 6

• f
( 2
a
)
= 4

a − 5 = 4−5a
a

• f(a)
2 = 2a−5

2

• f(a+ h) = 2a+ 2h− 5

21. For f(x) = 2x2 − 1

• f(2) = 7

• f(−2) = 7

• f(2a) = 8a2 − 1

• 2f(a) = 4a2 − 2

• f(a+ 2) = 2a2 + 8a+ 7

• f(a) + f(2) = 2a2 + 6

• f
( 2
a
)
= 8

a2 − 1 = 8−a2
a2

• f(a)
2 = 2a2−1

2

• f(a+ h) = 2a2 + 4ah+ 2h2 − 1

23. For f(x) =
√
2x+ 1

• f(2) =
√
5

• f(−2) is not real

• f(2a) =
√
4a+ 1

• 2f(a) = 2
√
2a+ 1

• f(a+ 2) =
√
2a+ 5

• f(a) + f(2) =
√
2a+ 1+

√
5

• f
( 2
a
)
=
√

4
a + 1 =

√
a+4
a

• f(a)
2 =

√
2a+1
2

• f(a+ h) =
√
2a+ 2h+ 1

25. For f(x) = x
2

• f(2) = 1
• f(−2) = −1
• f(2a) = a
• 2f(a) = a
• f(a+ 2) = a+2

2

• f(a) + f(2) = a
2 + 1 = a+2

2

• f
( 2
a
)
= 1

a

• f(a)
2 = a

4

• f(a+ h) = a+h
2

27. For f(x) = 2x− 1, f(0) = −1 and f(x) = 0 when x = 1
2

29. For f(x) = 2x2 − 6, f(0) = −6 and f(x) = 0 when x = ±
√
3

31. For f(x) =
√
x+ 4, f(0) = 2 and f(x) = 0 when x = −4

33. For f(x) = 3
4−x , f(0) =

3
4 and f(x) is never equal to 0

35. (a) f(−4) = 1
(b) f(−3) = 2
(c) f(3) = 0
(d) f(3.001) = 1.999
(e) f(−3.001) = 1.999
(f) f(2) =

√
5

37. (−∞,∞)

39. (−∞,−1) ∪ (−1,∞)

41. (−∞,∞)

43. (−∞,−6) ∪ (−6, 6) ∪ (6,∞)

45. (−∞, 3]

47. [−3,∞)

49.
[ 1
3 ,∞

)
51. (−∞,∞)

53.
[ 1
3 , 6
)
∪ (6,∞)

55. (−∞, 8) ∪ (8,∞)

57. (8,∞)

59. (−∞, 8) ∪ (8,∞)

61. [0, 5) ∪ (5,∞)

63. A(3) = 9, so the area enclosed by a square with a side of length 3
inches is 9 square inches. The soluƟons to A(x) = 36 are x = ±6.
Since x is restricted to x > 0, we only keep x = 6. This means for
the area enclosed by the square to be 36 square inches, the
length of the side needs to be 6 inches. Since x represents a
length, x > 0.

65. V(5) = 125, so the volume enclosed by a cube with a side of
length 5 cenƟmeters is 125 cubic cenƟmeters. The soluƟon to
V(x) = 27 is x = 3. This means for the volume enclosed by the
cube to be 27 cubic cenƟmeters, the length of the side needs to 3
cenƟmeters. Since x represents a length, x > 0.

67. V(3) = 36π, so the volume enclosed by a sphere with radius 3
feet is 36π cubic feet. The soluƟon to V(r) = 32π

3 is r = 2. This
means for the volume enclosed by the sphere to be 32π

3 cubic
feet, the radius needs to 2 feet. Since r represents a radius
(length), r > 0.

69. T(0) = 3, so at 6 AM (0 hours aŌer 6 AM), it is 3◦ Fahrenheit.
T(6) = 33, so at noon (6 hours aŌer 6 AM), the temperature is
33◦ Fahrenheit. T(12) = 27, so at 6 PM (12 hours aŌer 6 AM), it
is 27◦ Fahrenheit.

A.6



71. F(0) = 16.00, so in 1980 (0 years aŌer 1980), the average fuel
economy of passenger cars in the US was 16.00 miles per gallon.
F(14) = 20.81, so in 1994 (14 years aŌer 1980), the average fuel
economy of passenger cars in the US was 20.81 miles per gallon.
F(28) = 22.64, so in 2008 (28 years aŌer 1980), the average fuel
economy of passenger cars in the US was 22.64 miles per gallon.

73. (a) C(20) = 300. It costs $300 for 20 copies of the book.
(b) C(50) = 675, so it costs $675 for 50 copies of the book.

C(51) = 612, so it costs $612 for 51 copies of the book.
(c) 56 books.

75. (a) C(750) = 25, so it costs $25 to talk 750 minutes per month
with this plan.

(b) Since 20 hours = 1200minutes, we subsƟtutem = 1200
and get C(1200) = 45. It costs $45 to talk 20 hours per
month with this plan.

(c) It costs $25 for up to 1000 minutes and 10 cents per
minute for each minute over 1000 minutes.

77.

SecƟon 2.4

1. For f(x) = 3x+ 1 and g(x) = 4− x

• (f+ g)(2) = 9
• (f− g)(−1) = −7
• (g− f)(1) = −1
• (fg)

( 1
2
)
= 35

4

•
(

f
g

)
(0) = 1

4

•
(

g
f

)
(−2) = − 6

5

3. For f(x) = x2 − x and g(x) = 12− x2

• (f+ g)(2) = 10
• (f− g)(−1) = −9
• (g− f)(1) = 11
• (fg)

( 1
2
)
= − 47

16

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 4

3

5. For f(x) =
√
x+ 3 and g(x) = 2x− 1

• (f+ g)(2) = 3+
√
5

• (f−g)(−1) = 3+
√
2

• (g− f)(1) = −1
• (fg)

( 1
2
)
= 0

•
(

f
g

)
(0) = −

√
3

•
(

g
f

)
(−2) = −5

7. For f(x) = 2x and g(x) =
1

2x+ 1

• (f+ g)(2) = 21
5

• (f− g)(−1) = −1
• (g− f)(1) = − 5

3

• (fg)
( 1
2
)
= 1

2

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 1

12

9. For f(x) = x2 and g(x) =
1
x2

• (f+ g)(2) = 17
4

• (f− g)(−1) = 0
• (g− f)(1) = 0
• (fg)

( 1
2
)
= 1

•
(

f
g

)
(0) is undefined.

•
(

g
f

)
(−2) = 1

16

11. For f(x) = 2x+ 1 and g(x) = x− 2

• (f+ g)(x) = 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x+ 3 Domain: (−∞,∞)

• (fg)(x) = 2x2 − 3x− 2 Domain: (−∞,∞)

•
(

f
g

)
(x) = 2x+1

x−2 Domain: (−∞, 2) ∪ (2,∞)

13. For f(x) = x2 and g(x) = 3x− 1

• (f+ g)(x) = x2 + 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x+ 1 Domain: (−∞,∞)

• (fg)(x) = 3x3 − x2 Domain: (−∞,∞)

•
(

f
g

)
(x) = x2

3x−1 Domain:
(
−∞, 1

3
)
∪
( 1
3 ,∞

)
15. For f(x) = x2 − 4 and g(x) = 3x+ 6

• (f+ g)(x) = x2 + 3x+ 2 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x− 10 Domain: (−∞,∞)

• (fg)(x) = 3x3 + 6x2 − 12x− 24 Domain: (−∞,∞)

•
(

f
g

)
(x) = x−2

3 Domain: (−∞,−2) ∪ (−2,∞)

17. For f(x) = x
2 and g(x) = 2

x

• (f+ g)(x) = x2+4
2x Domain: (−∞, 0) ∪ (0,∞)

• (f− g)(x) = x2−4
2x Domain: (−∞, 0) ∪ (0,∞)

• (fg)(x) = 1 Domain: (−∞, 0) ∪ (0,∞)

•
(

f
g

)
(x) = x2

4 Domain: (−∞, 0) ∪ (0,∞)

19. For f(x) = x and g(x) =
√
x+ 1

• (f+ g)(x) = x+
√
x+ 1 Domain: [−1,∞)

• (f− g)(x) = x−
√
x+ 1 Domain: [−1,∞)

• (fg)(x) = x
√
x+ 1 Domain: [−1,∞)

•
(

f
g

)
(x) = x√

x+1 Domain: (−1,∞)

21. 2

23. 0

25. −2x− h+ 2

27. −2x− h+ 1

29. m

31.
−2

x(x+ h)

33.
−(2x+ h)
x2(x+ h)2

35.
−4

(4x− 3)(4x+ 4h− 3)

37.
−9

(x− 9)(x+ h− 9)

39.
1

√
x+ h− 9+

√
x− 9

41.
−4

√
−4x− 4h+ 5+

√
−4x+ 5

43.
a

√
ax+ ah+ b+

√
ax+ b

45.
1

(x+ h)2/3 + (x+ h)1/3x1/3 + x2/3

47. • C(0) = 100, so the fixed costs are $100.
• C(10) = 20, so when 10 boƩles of tonic are produced, the

cost per boƩle is $20.
• p(5) = 30, so to sell 5 boƩles of tonic, set the price at $30

per boƩle.
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• R(x) = −x2 + 35x, 0 ≤ x ≤ 35

• P(x) = −x2 + 25x− 100, 0 ≤ x ≤ 35

• P(x) = 0 when x = 5 and x = 20. These are the ‘break
even’ points, so selling 5 boƩles of tonic or 20 boƩles of
tonic will guarantee the revenue earned exactly recoups
the cost of producƟon.

49. • C(0) = 36, so the daily fixed costs are $36.

• C(10) = 6.6, so when 10 pies are made, the cost per pie is
$6.60.

• p(5) = 9.5, so to sell 5 pies a day, set the price at $9.50
per pie.

• R(x) = −0.5x2 + 12x, 0 ≤ x ≤ 24

• P(x) = −0.5x2 + 9x− 36, 0 ≤ x ≤ 24

• P(x) = 0 when x = 6 and x = 12. These are the ‘break
even’ points, so selling 6 pies or 12 pies a day will
guarantee the revenue earned exactly recoups the cost of
producƟon.

51. (f+ g)(−3) = 2

53. (fg)(−1) = 0

55. (g− f)(3) = 3

57.
(

f
g

)
(−2) does not exist

59.
(

f
g

)
(2) = 4

61.
(
g
f

)
(3) = −2

SecƟon 2.5

1. f(x) = 2− x
Domain: (−∞,∞)

x-intercept: (2, 0)
y-intercept: (0, 2)
No symmetry

x

y

−2−1 1 2 3
−1

1

2

3

3. f(x) = x2 + 1
Domain: (−∞,∞)

x-intercept: None
y-intercept: (0, 1)
Even

x

y

−2 −1 1 2

1

2

3

4

5

5. f(x) = 2
Domain: (−∞,∞)

x-intercept: None
y-intercept: (0, 2)
Even

x

y

−2 −1 1 2

1

2

3

7. f(x) = x(x− 1)(x+ 2)
Domain: (−∞,∞)

x-intercepts: (−2, 0), (0, 0), (1, 0)
y-intercept: (0, 0)
No symmetry

x

y

−2 −1 1 2

1

2

3

4

9. f(x) =
√
5− x

Domain: (−∞, 5]
x-intercept: (5, 0)
y-intercept: (0,

√
5)

No symmetry

x

y

−4−3−2−1 1 2 3 4 5

1

2

3

11. f(x) = 3√x
Domain: (−∞,∞)

x-intercept: (0, 0)
y-intercept: (0, 0)
Odd

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8
−2
−1

1
2

13.

y

x

1

2

3

4

5

−1 1 2 3 4 5 6 7
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15.

y

x

−2

−1

1

2

3

−4−3−2−1 1 2 3 4

17.

x

y

−2−1 1

−4

−3

−2

−1

1

2

3

19.
x

y

−2−1 1 2 3

1

2

3

4

5

6

21. odd

23. even

25. even

27. odd

29. even

31. neither

33. even and odd

35. even

37. neither

39. odd

41. even

43. [−5, 4]

45. x = −3

47. (0,−1)

49. [−4,−1] ∪ [1, 3]

51. neither

53. [−3, 0], [2, 3]

55. f(0) = −1

57. f(−5) = −5

59. [−5, 5)

61. x = −2

63. (0, 0)

65. [−4, 0] ∪ {4}

67. neither

69. [−4,−2], (2, 4]

71. f(−2) = −5, f(2) = 3

73. f(−2) = −5
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75. No absolute maximum
No absolute minimum
Local maximum at (0, 0)
Local minimum at (1.60,−3.28)
Increasing on (−∞, 0], [1.60,∞)
Decreasing on [0, 1.60]

77. Absolute maximum f(2.12) ≈ 4.50
Absolute minimum f(−2.12) ≈ −4.50
Local maximum (2.12, 4.50)
Local minimum (−2.12,−4.50)
Increasing on [−2.12, 2.12]
Decreasing on [−3,−2.12], [2.12, 3]

79. (f+ g)(1) = 5

81. (g− f)(2) = 0

83. (fg)(1) = 6

85.
(

g
f

)
(2) = 1

87. h(15) = 6, so the Saquatch is 6 feet tall when she is 15 years old.

89. h is constant on [30, 45]. This means the Sasquatch’s height is
constant (at 8 feet) for these years.

91.

x

y ...

...

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

1

2

3

4

5

6

The graph of f(x) = ⌊x⌋.

93.

95.
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97.

99.

SecƟon 2.6

1. (2, 0)

3. (2,−4)

5. (2,−9)

7. (2, 3)

9. (5,−2)

11. (2, 13)

13.
(
2,− 3

2
)

15. (−1,−7)

17.
( 2
3 ,−2

)
19. y = f(x) + 1

x

y

(−2, 3)

(0, 1)

(2, 3)

−4−3−2−1 1 2 3 4

1

2

3

4

21. y = f(x+ 1)

x

y

(−3, 2)

(−1, 0)

(1, 2)

−5−4−3 1 2 3

1

2

3

4

23. y = 2f(x)

x

y

(−2, 4)

(0, 0)

(2, 4)

−4−3−2−1 2 3 4

1

2

3

4

25. y = 2− f(x)

x

y

(−2, 0)

(0, 2)

(2, 0)−4−3 3 4

1

2

27. y = 2− f(2− x)

x

y

(0, 0)

(2, 2)

(4, 0)−2−1 2 5 6

1

2

3

4

29. y = f(x+ 1)

x

y

(−3, 0)

(−1, 4)

(1, 0)

(3,−2)

−4−3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

31. y = f(2x)

x

y

(−1, 0)

(0, 4)

(1, 0)

(2,−2)

−4−3−2 2 3 4

−4

−3

−2

1

2

3

4

33. y = f(−x)

x

y

(2, 0)

(0, 4)

(−2, 0)

(−4,−2)

−4−3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

35. y = 1− f(x)
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x

y

(−2, 1)

(0,−3)

(2, 1)

(4, 3)

−4−3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

37. g(x) = f(x) + 3

(−3, 3)

(0, 6)

(3, 3)

x

y

−3−2−1 1 2 3
−1

1

2

3

4

5

6

39. j(x) = f
(
x− 2

3
)

(
− 7

3
, 0

)

(
2
3
, 3

)

(
11
3

, 0
)x

y

−3−2−1 1 2 3
−1

1

2

3

41. b(x) = f(x+ 1)− 1

(−4,−1)

(−1, 2)

(2,−1)

x

y

−4−3−2−1 1 2
−1

1

2

43. d(x) = −2f(x)

(−3, 0)

(0,−6)

(3, 0)

x

y

−3−2−1 1 2 3

−6

−5

−4

−3

−2

−1

45. m(x) = − 1
4 f(3x)

(−1, 0)

(
0,− 3

4

)
(1, 0)

x

y

−1 1

−1

47. p(x) = 4+ f(1− 2x)

(−1, 4)

(
1
2
, 7

)

(2, 4)

x

y

−1 1 2
−1

1

2

3

4

5

6

7

49. y = S1(x) = S(x+ 1)

x

y

(−3, 0)

(−2,−3)

(−1, 0)

(0, 3)

(1, 0)−3 −2 −1

−3

−2

−1

1

2

3

51. y = S3(x) = 1
2 S2(x) =

1
2 S(−x+ 1)

x

y

(3, 0)

(
2,− 3

2

)

(1, 0)

(
0, 3

2

)

(−1, 0) 1 2 3

−2

−1

1

2

53. g(x) =
√
x− 2− 3

55. g(x) = −
√
x+ 1

57. g(x) =
√

−(x+ 1) + 2 =
√
−x− 1+ 2

59. g(x) = 2
(√

x+ 3− 4
)
= 2

√
x+ 3− 8

61. g(x) =
√

2(x− 3) + 1 =
√
2x− 6+ 1

63.

65.
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67. The same thing as reflecƟng it across the x-axis.

69. The same thing as reflecƟng it across the y-axis.

71.

Chapter 3
SecƟon 3.1

1. y+ 1 = 3(x− 3)
y = 3x− 10

3. y+ 1 = −(x+ 7)
y = −x− 8

5. y− 4 = − 1
5 (x− 10)

y = − 1
5 x+ 6

7. y− 117 = 0
y = 117

9. y− 2
√
3 = −5(x−

√
3)

y = −5x+ 7
√
3

11. y = − 5
3 x

13. y = 8
5 x− 8

15. y = 5

17. y = − 5
4 x+

11
8

19. y = −x

21. f(x) = 2x− 1
slope: m = 2
y-intercept: (0,−1)
x-intercept:

( 1
2 , 0
)

x

y

−2−1 1 2

−3

−2

−1

1

2

3

23. f(x) = 3
slope: m = 0
y-intercept: (0, 3)
x-intercept: none

x

y

−2−1 1 2

1

2

3

4

25. f(x) = 2
3 x+

1
3

slope: m = 2
3

y-intercept:
(
0, 1

3
)

x-intercept:
(
− 1

2 , 0
)

x

y

−2 1 2
−1

1

2

27. (−1,−1) and
( 11

5 , 27
5
)

29. E(t) = 360t, t ≥ 0.

31. C(t) = 80t+ 50, 0 ≤ t ≤ 8

33. C(p) = 0.035p+ 1.5 The slope 0.035 means it costs 3.5¢ per
page. C(0) = 1.5 means there is a fixed, or start-up, cost of $1.50
to make each book.

35. (a) F(C) = 9
5C+ 32

(b) C(F) = 5
9 (F− 32) = 5

9 F−
160
9

(c) F(−40) = −40 = C(−40).

37.

39. C(p) =
{

6p+ 1.5 if 1 ≤ p ≤ 5
5.5p if p ≥ 6

41. C(m) =

{
10 if 0 ≤ m ≤ 500

10+ 0.15(m− 500) if m > 500

43. (a)

D(d) =


8 if 0 ≤ d ≤ 15

− 1
2 d+ 31

2 if 15 ≤ d ≤ 27
2 if 27 ≤ d ≤ 37

(b)

D(s) =


2 if 0 ≤ s ≤ 10

1
2 s− 3 if 10 ≤ s ≤ 22

8 if 22 ≤ s ≤ 37

(c)

15 27 37

2

8

y = D(d)

10 22 37

2

8

y = D(s)

45.
1
5 − 1

1
5− 1

= −
1
5

47.
32 − (−3)2

3− (−3)
= 0

49.
(3(2)2 + 2(2)− 7)− (3(−4)2 + 2(−4)− 7)

2− (−4)
= −4

51.
−1

x(x+ h)

53. 6x+ 3h+ 2
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55. (a) T(4) = 56, so at 10 AM (4 hours aŌer 6 AM), it is 56◦F.
T(8) = 64, so at 2 PM (8 hours aŌer 6 AM), it is 64◦F.
T(12) = 56, so at 6 PM (12 hours aŌer 6 AM), it is 56◦F.

(b) The average rate of change is T(8)−T(4)
8−4 = 2. Between 10

AM and 2 PM, the temperature increases, on average, at a
rate of 2◦F per hour.

(c) The average rate of change is T(12)−T(8)
12−8 = −2. Between 2

PM and 6 PM, the temperature decreases, on average, at a
rate of 2◦F per hour.

(d) The average rate of change is T(12)−T(4)
12−4 = 0. Between 10

AM and 6 PM, the temperature, on average, remains
constant.

57.
59. y = 3x
61. y = 2

3 x− 4
63. y = −2
65. y = −3x
67. y = − 3

2 x+ 9
69. x = 3
71.
73.

SecƟon 3.2

1. x = −6 or x = 6
3. x = −3 or x = 11
5. x = − 1

2 or x = 1
10

7. x = −3 or x = 3
9. x = − 3

2

11. x = 1
13. x = −1, x = 0 or x = 1
15. x = −2 or x = 2
17. x = − 1

7 or x = 1
19. x = 1
21. x = 1

5 or x = 5
23. f(x) = |x|+ 4

No zeros
No x-intercepts
y-intercept (0, 4)
Domain (−∞,∞)
Range [4,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
RelaƟve and absolute minimum at (0, 4)
No relaƟve or absolute maximum

x

y

−4−3−2−1 1 2 3 4

1

2

3

4

5

6

7

8

25. f(x) = −3|x|
f(0) = 0
x-intercept (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range (−∞, 0]
Increasing on (−∞, 0]
Decreasing on [0,∞)
RelaƟve and absolute maximum at (0, 0)
No relaƟve or absolute minimum

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

27. f(x) = 1
3 |2x− 1|

f
( 1
2
)
= 0

x-intercepts
( 1
2 , 0
)

y-intercept
(
0, 1

3
)

Domain (−∞,∞)
Range [0,∞)
Decreasing on

(
−∞, 1

2
]

Increasing on
[ 1
2 ,∞

)
RelaƟve and absolute min. at

( 1
2 , 0
)

No relaƟve or absolute maximum

x

y

−3−2−1 1 2 3 4

1

2

29. f(x) =
|2− x|
2− x

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞, 2) ∪ (2,∞)
Range {−1, 1}
Constant on (−∞, 2)
Constant on (2,∞)
Absolute minimum at every point (x,−1) where x > 2
Absolute maximum at every point (x, 1) where x < 2
RelaƟve maximum AND minimum at every point on the graph

x

y

−3−2−1 1 2 3 4 5−1

1

31. Re-write f(x) = |x+ 2| − x as

f(x) =
{

−2x− 2 if x < −2
2 if x ≥ −2

No zeros
No x-intercepts
y-intercept (0, 2)
Domain (−∞,∞)
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Range [2,∞)
Decreasing on (−∞,−2]
Constant on [−2,∞)
Absolute minimum at every point (x, 2) where x ≥ −2
No absolute maximum
RelaƟve minimum at every point (x, 2) where x ≥ −2
RelaƟve maximum at every point (x, 2) where x > −2

x

y

−3−2−1 1 2

1

2

3

33. Re-write f(x) = |x+ 4|+ |x− 2| as

f(x) =

 −2x− 2 if x < −4
6 if −4 ≤ x < 2

2x+ 2 if x ≥ 2
No zeros
No x-intercept
y-intercept (0, 6)
Domain (−∞,∞)
Range [6,∞)
Decreasing on (−∞,−4]
Constant on [−4, 2]
Increasing on [2,∞)
Absolute minimum at every point (x, 6) where−4 ≤ x ≤ 2
No absolute maximum
RelaƟve minimum at every point (x, 6) where−4 ≤ x ≤ 2
RelaƟve maximum at every point (x, 6) where−4 < x < 2

x

y

−5−4−3−2−1 1 2 3

1

2

3

4

5

6

7

8

35.

SecƟon 3.3

1. f(x) = x2 + 2 (this is both forms!)
No x-intercepts
y-intercept (0, 2)
Domain: (−∞,∞)
Range: [2,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Vertex (0, 2) is a minimum
Axis of symmetry x = 0

x

y

−2−1 1 2

1
2
3
4
5
6
7
8
9

10

3. f(x) = x2 − 2x− 8 = (x− 1)2 − 9
x-intercepts (−2, 0) and (4, 0)
y-intercept (0,−8)
Domain: (−∞,∞)
Range: [−9,∞)
Decreasing on (−∞, 1]
Increasing on [1,∞)
Vertex (1,−9) is a minimum
Axis of symmetry x = 1

x

y

−2−1 1 2 3 4

−9
−8
−7
−6
−5
−4
−3
−2
−1

1
2

5. f(x) = 2x2 − 4x− 1 = 2(x− 1)2 − 3

x-intercepts
(

2−
√
6

2 , 0
)
and

(
2+

√
6

2 , 0
)

y-intercept (0,−1)
Domain: (−∞,∞)
Range: [−3,∞)
Increasing on [1,∞)
Decreasing on (−∞, 1]
Vertex (1,−3) is a minimum
Axis of symmetry x = 1

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

7. f(x) = x2 + x+ 1 =
(
x+ 1

2
)2

+ 3
4

No x-intercepts
y-intercept (0, 1)
Domain: (−∞,∞)
Range:

[ 3
4 ,∞

)
Increasing on

[
− 1

2 ,∞
)
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Decreasing on
(
−∞,− 1

2
]

Vertex
(
− 1

2 ,
3
4
)
is a minimum

Axis of symmetry x = − 1
2

x

y

−2 −1 1

1

2

3

4

9. f(x) = x2 − 1
100 x− 1 =

(
x− 1

200
)2 − 40001

40000

x-intercepts
(

1+
√
40001

200

)
and

(
1−

√
40001

200

)
y-intercept (0,−1)
Domain: (−∞,∞)
Range:

[
− 40001

40000 ,∞
)

Decreasing on
(
−∞, 1

200
]

Increasing on
[ 1
200 ,∞

)
Vertex

( 1
200 ,−

40001
40000

)
is a minimum

Axis of symmetry x = 1
200

x

y

−2−1 1 2

1
2
3
4
5
6
7
8

Note: You’ll need to plot this on a computer to zoom in far
enough to see that the vertex is not the y-intercept.

11. • P(x) = −x2 + 25x− 100, for 0 ≤ x ≤ 35
• Since the vertex occurs at x = 12.5, and it is impossible to

make or sell 12.5 boƩles of tonic, maximum profit occurs
when either 12 or 13 boƩles of tonic are made and sold.

• The maximum profit is $56.
• The price per boƩle can be either $23 (to sell 12 boƩles) or

$22 (to sell 13 boƩles.) Both will result in the maximum
profit.

• The break even points are x = 5 and x = 20, so to make a
profit, between 5 and 20 boƩles of tonic need to be made
and sold.

13. • P(x) = −0.5x2 + 9x− 36, for 0 ≤ x ≤ 24
• 9 pies should be made and sold to maximize the daily

profit.
• The maximum daily profit is $4.50.
• The price per pie should be set at $7.50 to maximize profit.
• The break even points are x = 6 and x = 12, so to make a

profit, between 6 and 12 pies need to be made and sold
daily.

15. 495 cookies

17. 64◦ at 2 PM (8 hours aŌer 6 AM.)

19. 8 feet by 16 feet; maximum area is 128 square feet.

21. The largest rectangle has area 12.25 square inches.

23. The rocket reaches its maximum height of 500 feet 10 seconds
aŌer liŌ-off.

25. (a) The applied domain is [0,∞).
(d) The height funcƟon is this case is s(t) = −4.9t2 + 15t. The

vertex of this parabola is approximately (1.53, 11.48) so
the maximum height reached by the marble is 11.48
meters. It hits the ground again when t ≈ 3.06 seconds.

(e) The revised height funcƟon is s(t) = −4.9t2 + 15t+ 25
which has zeros at t ≈ −1.20 and t ≈ 4.26. We ignore the
negaƟve value and claim that the marble will hit the
ground aŌer 4.26 seconds.

(f) ShooƟng down means the iniƟal velocity is negaƟve so the
height funcƟons becomes s(t) = −4.9t2 − 15t+ 25.

27. x

y

−2−1 1 2

1
2
3
4
5
6
7

29. D(x) = x2 + (2x+ 1)2 = 5x2 + 4x+ 1, D is minimized when
x = − 2

5 , so the point on y = 2x+ 1 closest to (0, 0) is
(
− 2

5 ,
1
5
)

31. x = ±y
√
10

33. x =
m±

√
m2 + 4
2

35. y = 2± x

SecƟon 3.4

1.
[ 1
3 , 3
]

3. (−3, 2)

5. No soluƟon

7. (−3, 2] ∪ [6, 11)

9.
[
− 12

7 ,− 6
5
]

11.
(
−∞,− 4

3
]
∪ [6,∞)

13. No SoluƟon

15.
(
1, 5

3
)

17. (−∞,−3] ∪ [1,∞)

19. No soluƟon

21. {2}

23.
[
− 1

3 , 4
]

25.
(
−∞, 1−

√
6
2

)
∪
(
1+

√
6
2 ,∞

)
27. (−3

√
2,−

√
11] ∪ [−

√
7, 0) ∪ (0,

√
7] ∪ [

√
11, 3

√
2)

29. (−∞,∞)

31. [−6,−3] ∪ [−2,∞)

33. P(x) ≥ 50 on [10, 15]. This means anywhere between 10 and 15
boƩles of tonic need to be sold to earn at least $50 in profit.

35. T(t) > 42 on (8− 2
√
11, 8+ 2

√
11) ≈ (1.37, 14.63), which

corresponds to between 7:22 AM (1.37 hours aŌer 6 AM) to 8:38
PM (14.63 hours aŌer 6 AM.) However, since the model is valid
only for t, 0 ≤ t ≤ 12, we restrict our answer and find it is
warmer than 42◦ Fahrenheit from 7:22 AM to 6 PM.
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37. s(t) = −4.9t2 + 30t+ 2. s(t) > 35 on (approximately)
(1.44, 4.68). This means between 1.44 and 4.68 seconds aŌer it
is launched into the air, the marble is more than 35 feet off the
ground.

39. |x− 2| ≤ 4, [−2, 6]

41. |x2 − 3| ≤ 1, [−2,−
√
2 ] ∪ [

√
2, 2]

43. Solving |S(x)− 42| ≤ 3, and disregarding the negaƟve soluƟons
yields

[√
13
2 ,
√

15
2

]
≈ [2.550, 2.739]. The edge length must be

within 2.550 and 2.739 cenƟmetres.

45.

x

y

−2 −1 1 2 3

−3

−2

−1

1

2

3

47.

x

y

−2 −1 1 2

1

2

3

4

5

49.

x

y

−2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

Chapter 4
SecƟon 4.1

1. f(x) = 4− x− 3x2
Degree 2

Leading term−3x2
Leading coefficient−3
Constant term 4
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

3. q(r) = 1− 16r4
Degree 4
Leading term−16r4
Leading coefficient−16
Constant term 1
As r → −∞, q(r) → −∞
As r → ∞, q(r) → −∞

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3
Degree 17
Leading term

√
3x17

Leading coefficient
√
3

Constant term 1
3

As x → −∞, f(x) → −∞
As x → ∞, f(x) → ∞

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)
Degree 4
Leading term x4
Leading coefficient 1
Constant term 24
As x → −∞, P(x) → ∞
As x → ∞, P(x) → ∞

9. f(x) = −2x3(x+ 1)(x+ 2)2
Degree 6
Leading term−2x6
Leading coefficient−2
Constant term 0
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

11. a(x) = x(x+ 2)2
x = 0 mulƟplicity 1
x = −2 mulƟplicity 2

x

y

−2 −1

13. f(x) = −2(x− 2)2(x+ 1)
x = 2 mulƟplicity 2
x = −1 mulƟplicity 1

x

y

−2 −1 1 2

15. F(x) = x3(x+ 2)2
x = 0 mulƟplicity 3
x = −2 mulƟplicity 2
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x

y

−2 −1

17. Q(x) = (x+ 5)2(x− 3)4
x = −5 mulƟplicity 2
x = 3 mulƟplicity 4

x

y

−5−4−3−2−1 1 2 3 4 5

19. H(t) = (3− t)
(
t2 + 1

)
x = 3 mulƟplicity 1

t

y

1 2 3

21. g(x) = (x+ 2)3 + 1
domain: (−∞,∞)
range: (−∞,∞)

x

y

−4 −3 −2 −1

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8
9

10
11
12

23. g(x) = 2− 3(x− 1)4
domain: (−∞,∞)
range: (−∞, 2]

x

y

1 2

−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

1
2

25. g(x) = (x+ 1)5 + 10
domain: (−∞,∞)
range: (−∞,∞)

x

y

−4 −3 −2 −1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

27. We have
f(−4) = −23, f(−3) = 5, f(0) = 5, f(1) = −3, f(2) = −5
and f(3) = 5 so the Intermediate Value Theorem tells us that
f(x) = x3 − 9x+ 5 has real zeros in the intervals [−4,−3], [0, 1]
and [2, 3].

29. The calculator gives the locaƟon of the absolute maximum
(rounded to three decimal places) as x ≈ 6.305 and
y ≈ 1115.417. Since x represents the number of TVs sold in
hundreds, x = 6.305 corresponds to 630.5 TVs. Since we can’t
sell half of a TV, we compare R(6.30) ≈ 1115.415 and
R(6.31) ≈ 1115.416, so selling 631 TVs results in a (slightly)
higher revenue. Since y represents the revenue in thousands of
dollars, the maximum revenue is $1,115,416.

31. The calculator gives the locaƟon of the absolute maximum
(rounded to three decimal places) as x ≈ 3.897 and y ≈ 35.255.
Since x represents the number of TVs sold in hundreds, x = 3.897
corresponds to 389.7 TVs. Since we can’t sell 0.7 of a TV, we
compare P(3.89) ≈ 35.254 and P(3.90) ≈ 35.255, so selling 390
TVs results in a (slightly) higher revenue. Since y represents the
revenue in thousands of dollars, the maximum revenue is
$35,255.

33. (a) Our ulƟmate goal is to maximize the volume, so we’ll start
with the maximum Length+ Girth of 130. This means the
length is 130− 4x. The volume of a rectangular box is
always length× width× height so we get
V(x) = x2(130− 4x) = −4x3 + 130x2.

(b) Graphing y = V(x) on [0, 33]× [0, 21000] shows a
maximum at (21.67, 20342.59) so the dimensions of the
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box with maximum volume are
21.67in.× 21.67in.× 43.32in. for a volume of
20342.59in.3.

(c) If we start with Length+ Girth= 108 then the length is
108− 4x and the volume is V(x) = −4x3 + 108x2.
Graphing y = V(x) on [0, 27]× [0, 11700] shows a
maximum at (18.00, 11664.00) so the dimensions of the
box with maximum volume are 18.00in.× 18.00in.× 36in.
for a volume of 11664.00in.3. (Calculus will confirm that
the measurements which maximize the volume are exactly
18in. by 18in. by 36in., however, as I’m sure you are aware
by now, we treat all calculator results as approximaƟons
and list them as such.)

35.

SecƟon 4.2

1. 4x2 + 3x− 1 = (x− 3)(4x+ 15) + 44

3. 5x4 − 3x3 + 2x2 − 1 =
(
x2 + 4

) (
5x2 − 3x− 18

)
+ (12x+ 71)

5. 9x3 + 5 = (2x− 3)
( 9
2 x

2 + 27
4 x+ 81

8
)
+ 283

8

7.
(
3x2 − 2x+ 1

)
= (x− 1) (3x+ 1) + 2

9.
(
3− 4x− 2x2

)
= (x+ 1) (−2x− 2) + 5

11.
(
x3 + 8

)
= (x+ 2)

(
x2 − 2x+ 4

)
+ 0

13.
(
18x2 − 15x− 25

)
=
(
x− 5

3
)
(18x+ 15) + 0

15.
(
2x3 + x2 + 2x+ 1

)
=
(
x+ 1

2
) (

2x2 + 2
)
+ 0

17.
(
2x3 − 3x+ 1

)
=
(
x− 1

2
) (

2x2 + x− 5
2
)
− 1

4

19.
(
x4 − 6x2 + 9

)
=
(
x−

√
3
) (

x3 +
√
3 x2 − 3x− 3

√
3
)
+ 0

21. p(4) = 29

23. p(−3) = −45

25. p(2) = 0, p(x) = (x− 2)
(
3x2 + 4

)
27. p

( 3
2
)
= 73

16

29. p(−
√
7) = 0,

p(x) = (x+
√
7)
(
x3 + (1−

√
7)x2 + (1−

√
7)x−

√
7
)

31. x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

33. 3x3 + 4x2 − x− 2 = 3
(
x− 2

3
)
(x+ 1)2

35. x3 + 2x2 − 3x− 6 = (x+ 2)(x+
√
3)(x−

√
3)

37. 4x4 − 28x3 + 61x2 − 42x+ 9 = 4
(
x− 1

2
)2

(x− 3)2

39. 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324 =
125

(
x+ 3

5
)3

(x+ 2)(x− 6)

41. p(x) = 117(x+ 2)(x− 2)(x+ 1)(x− 1)

43. p(x) = 7(x+ 3)2(x− 3)(x− 6)

45. p(x) = a(x+ 6)2(x− 1)(x− 117) or
p(x) = a(x+ 6)(x− 1)(x− 117)2 where a can be any negaƟve
real number

SecƟon 4.3

1. Possible raƟonal zeros are±1,±2,±3,±6

3. Possible raƟonal zeros are±1,±2,±3,±4,±6,±12

5. Possible raƟonal zeros are±1,±7

7. Possible raƟonal zeros are± 1
17 ,±

2
17 ,±

5
17 ,±

10
17 ,±1,±2,±5,

±10

9. Possible raƟonal zeros are± 1
3 ,±

2
3 ,±

5
3 ,±

10
3 ,±1,±2,±5,±10

11. f(x) = x3 − 2x2 − 5x+ 6
x = −2, x = 1, x = 3 (each has mult. 1)

13. f(x) = x4 − 9x2 − 4x+ 12
x = −2 (mult. 2), x = 1 (mult. 1), x = 3 (mult. 1)

15. f(x) = x3 − 7x2 + x− 7
x = 7 (mult. 1)

17. f(x) = −17x3 + 5x2 + 34x− 10
x = 5

17 , x = ±
√
2 (each has mult. 1)

19. f(x) = 3x3 + 3x2 − 11x− 10
x = −2, x = 3±

√
69

6 (each has mult. 1)

21. f(x) = 9x3 − 5x2 − x
x = 0, x = 5±

√
61

18 (each has mult. 1)

23. f(x) = x4 + 2x2 − 15
x = ±

√
3 (each has mult. 1)

25. f(x) = 3x4 − 14x2 − 5
x = ±

√
5 (each has mult. 1)

27. f(x) = x6 − 3x3 − 10
x = 3√−2 = − 3√2, x = 3√5 (each has mult. 1)

29. f(x) = x5 − 2x4 − 4x+ 8
x = 2, x = ±

√
2 (each has mult. 1)

31. f(x) = x5 − 60x3 − 80x2 + 960x+ 2304
x = −4 (mult. 3), x = 6 (mult. 2)

33. f(x) = 90x4 − 399x3 + 622x2 − 399x+ 90
x = 2

3 , x =
3
2 , x =

5
3 , x =

3
5 (each has mult. 1)

35. x = 0, 5±
√
61

18

37. x = −2, 1, 3

39. x = 7

41. x = −2, 3±
√
69

6

43. x = ±
√
5

45. (−∞, 1
2 ) ∪ (4, 5)

47. (−∞,−1] ∪ [3,∞)

49. [−2, 2]

51. (−∞,−2) ∪
(
−
√
2,
√
2
)

53. (−∞,−
√
3) ∪ (

√
3,∞)

55. V(x) ≥ 80 on [1, 5−
√
5] ∪ [5+

√
5,∞). Only the porƟon

[1, 5−
√
5] lies in the applied domain, however. In the context of

the problem, this says for the volume of the box to be at least 80
cubic inches, the square removed from each corner needs to have
a side length of at least 1 inch, but no more than 5−

√
5 ≈ 2.76

inches.

57.

SecƟon 4.4

1. f(x) = x2 − 4x+ 13 = (x− (2+ 3i))(x− (2− 3i))
Zeros: x = 2± 3i

3. f(x) = 3x2 + 2x+ 10 =

3
(
x−

(
− 1

3 +
√
29
3 i
))(

x−
(
− 1

3 −
√
29
3 i
))

Zeros: x = − 1
3 ±

√
29
3 i

5. f(x) = x3 + 6x2 + 6x+ 5 = (x+ 5)(x2 + x+ 1) =
(x+ 5)

(
x−

(
− 1

2 +
√
3
2 i
))(

x−
(
− 1

2 −
√
3
2 i
))

Zeros: x = −5, x = − 1
2 ±

√
3
2 i

7. f(x) = x3 + 3x2 + 4x+ 12 = (x+ 3)
(
x2 + 4

)
=

(x+ 3)(x+ 2i)(x− 2i)
Zeros: x = −3, ±2i
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9. f(x) = x3 + 7x2 + 9x− 2 =

(x+ 2)
(
x−

(
− 5

2 +
√
29
2

))(
x−

(
− 5

2 −
√
29
2

))
Zeros: x = −2, x = − 5

2 ±
√
29
2

11. f(x) = 4x4 − 4x3 + 13x2 − 12x+ 3 =
(
x− 1

2
)2 (4x2 + 12

)
=

4
(
x− 1

2
)2

(x+ i
√
3)(x− i

√
3)

Zeros: x = 1
2 , x = ±

√
3i

13. f(x) = x4 + x3 + 7x2 + 9x− 18 = (x+ 2)(x− 1)
(
x2 + 9

)
=

(x+ 2)(x− 1)(x+ 3i)(x− 3i)
Zeros: x = −2, 1, ±3i

15. f(x) = −3x4−8x3−12x2−12x−5 = (x+1)2
(
−3x2 − 2x− 5

)
= −3(x+ 1)2

(
x−

(
− 1

3 +
√
14
3 i
))(

x−
(
− 1

3 −
√
14
3 i
))

Zeros: x = −1, x = − 1
3 ±

√
14
3 i

17. f(x) = x4 + 9x2 + 20 =
(
x2 + 4

) (
x2 + 5

)
=

(x− 2i)(x+ 2i)
(
x− i

√
5
) (

x+ i
√
5
)

Zeros: x = ±2i,±i
√
5

19. f(x) = x5−x4+7x3−7x2+12x−12 = (x−1)
(
x2 + 3

) (
x2 + 4

)
= (x− 1)(x− i

√
3)(x+ i

√
3)(x− 2i)(x+ 2i)

Zeros: x = 1, ±
√
3i, ±2i

21. f(x) = x4 − 2x3 + 27x2 − 2x+ 26 = (x2 − 2x+ 26)(x2 + 1) =
(x− (1+ 5i))(x− (1− 5i))(x+ i)(x− i)
Zeros: x = 1± 5i, x = ±i

23. f(x) = 42(x− 1)(x+ 1)(x− i)(x+ i)

25. f(x) = −3(x− 2)2(x+ 2)(x− 7i)(x+ 7i)

27. f(x) = −2(x− 2i)(x+ 2i)(x+ 2)

Chapter 5
SecƟon 5.1

1. f(x) =
x

3x− 6
Domain: (−∞, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 1

3
As x → −∞, f(x) → 1

3
−

As x → ∞, f(x) → 1
3
+

3. f(x) =
x

x2 + x− 12
=

x
(x+ 4)(x− 3)

Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
VerƟcal asymptotes: x = −4, x = 3
As x → −4−, f(x) → −∞
As x → −4+, f(x) → ∞
As x → 3−, f(x) → −∞
As x → 3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

5. f(x) =
x+ 7

(x+ 3)2
Domain: (−∞,−3) ∪ (−3,∞)
VerƟcal asymptote: x = −3
As x → −3−, f(x) → ∞
As x → −3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
No verƟcal asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

9. f(x) =
x2 − x− 12
x2 + x− 6

=
x− 4
x− 2

Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → ∞
As x → 2+, f(x) → −∞
Hole at

(
−3, 7

5
)

Horizontal asymptote: y = 1
As x → −∞, f(x) → 1+
As x → ∞, f(x) → 1−

11. f(x) =
x3 + 2x2 + x
x2 − x− 2

=
x(x+ 1)
x− 2

Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x → −∞, the graph is below y = x+ 3
As x → ∞, the graph is above y = x+ 3

13. f(x) =
2x2 + 5x− 3

3x+ 2
Domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

VerƟcal asymptote: x = − 2
3

As x → − 2
3
−
, f(x) → ∞

As x → − 2
3
+
, f(x) → −∞

No holes in the graph
Slant asymptote: y = 2

3 x+
11
9

As x → −∞, the graph is above y = 2
3 x+

11
9

As x → ∞, the graph is below y = 2
3 x+

11
9

15. f(x) =
−5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

=
−5x4 − 3x3 + x2 − 10

(x− 1)3
Domain: (−∞, 1) ∪ (1,∞)
VerƟcal asymptotes: x = 1
As x → 1−, f(x) → ∞
As x → 1+, f(x) → −∞
No holes in the graph
Slant asymptote: y = −5x− 18
As x → −∞, the graph is above y = −5x− 18
As x → ∞, the graph is below y = −5x− 18

17. f(x) =
18− 2x2

x2 − 9
= −2

Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
No verƟcal asymptotes
Holes in the graph at (−3,−2) and (3,−2)
Horizontal asymptote y = −2
As x → ±∞, f(x) = −2

19. (a) C(25) = 590 means it costs $590 to remove 25% of the
fish and and C(95) = 33630 means it would cost $33630
to remove 95% of the fish from the pond.

(b) The verƟcal asymptote at x = 100 means that as we try to
remove 100% of the fish from the pond, the cost increases
without bound; i.e., it’s impossible to remove all of the fish.

(c) For $40000 you could remove about 95.76% of the fish.

21. (a) C(x) = 100x+2000
x , x > 0.
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(b) C(1) = 2100 and C(100) = 120. When just 1 dOpi is
produced, the cost per dOpi is $2100, but when 100 dOpis
are produced, the cost per dOpi is $120.

(c) C(x) = 200 when x = 20. So to get the cost per dOpi to
$200, 20 dOpis need to be produced.

(d) As x → 0+, C(x) → ∞. This means that as fewer and
fewer dOpis are produced, the cost per dOpi becomes
unbounded. In this situaƟon, there is a fixed cost of $2000
(C(0) = 2000), we are trying to spread that $2000 over
fewer and fewer dOpis.

(e) As x → ∞, C(x) → 100+. This means that as more and
more dOpis are produced, the cost per dOpi approaches
$100, but is always a liƩle more than $100. Since $100 is
the variable cost per dOpi (C(x) = 100x+ 2000), it means
that no maƩer how many dOpis are produced, the average
cost per dOpi will always be a bit higher than the variable
cost to produce a dOpi. As before, we can aƩribute this to
the $2000 fixed cost, which factors into the average cost
per dOpi no maƩer how many dOpis are produced.

SecƟon 5.2

1. f(x) =
4

x+ 2
Domain: (−∞,−2) ∪ (−2,∞)
No x-intercepts
y-intercept: (0, 2)
VerƟcal asymptote: x = −2
As x → −2−, f(x) → −∞
As x → −2+, f(x) → ∞
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

x

y

−7−6−5−4−3−2−1 1 2 3 4 5

−5
−4
−3
−2
−1

1
2
3
4
5

3. f(x) =
1
x2

Domain: (−∞, 0) ∪ (0,∞)
No x-intercepts
No y-intercepts
VerƟcal asymptote: x = 0
As x → 0−, f(x) → ∞
As x → 0+, f(x) → ∞
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0+
As x → ∞, f(x) → 0+

x

y

−4−3−2−1 1 2 3 4

1

2

3

4

5

5. f(x) =
2x− 1

−2x2 − 5x+ 3
= −

2x− 1
(2x− 1)(x+ 3)

Domain: (−∞,−3) ∪ (−3, 1
2 ) ∪ ( 12 ,∞)

No x-intercepts
y-intercept: (0,− 1

3 )

f(x) =
−1
x+ 3

, x ̸= 1
2

Hole in the graph at ( 12 ,−
2
7 )

VerƟcal asymptote: x = −3
As x → −3−, f(x) → ∞
As x → −3+, f(x) → −∞
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0+
As x → ∞, f(x) → 0−

x

y

−7−6−5−4−3−2−1 1 2

−1

1

7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
No verƟcal asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+
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x

y

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

−1

1

9. f(x) =
x2 − x− 12
x2 + x− 6

=
x− 4
x− 2

x ̸= −3

Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
x-intercept: (4, 0)
y-intercept: (0, 2)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → ∞
As x → 2+, f(x) → −∞
Hole at

(
−3, 7

5
)

Horizontal asymptote: y = 1
As x → −∞, f(x) → 1+
As x → ∞, f(x) → 1−

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

11. f(x) =
x2 − x− 6

x+ 1
=

(x− 3)(x+ 2)
x+ 1

Domain: (−∞,−1) ∪ (−1,∞)
x-intercepts: (−2, 0), (3, 0)
y-intercept: (0,−6)
VerƟcal asymptote: x = −1
As x → −1−, f(x) → ∞
As x → −1+, f(x) → −∞
Slant asymptote: y = x− 2
As x → −∞, the graph is above y = x− 2
As x → ∞, the graph is below y = x− 2

x

y

−4−3−2−1 1 2 3 4

−6

−4

−2

2

4

6

8
9

1

3

5

7

13. f(x) =
x3 + 2x2 + x
x2 − x− 2

=
x(x+ 1)
x− 2

x ̸= −1

Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x → −∞, the graph is below y = x+ 3
As x → ∞, the graph is above y = x+ 3

x

y

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−10
−8
−6
−4
−2

2
4
6
8

10
12
14
16
18

15. f(x) =
x3 − 2x2 + 3x

2x2 + 2
Domain: (−∞,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Slant asymptote: y = 1

2 x− 1
As x → −∞, the graph is below y = 1

2 x− 1
As x → ∞, the graph is above y = 1

2 x− 1

x

y

−4−3−2−1 1 2 3 4

−2

−1

1

2
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17. f(x) =
1

x− 2
ShiŌ the graph of y =

1
x

to the right 2 units.

x

y

−1 1 2 3 4 5

−3

−2

−1

1

2

3

19. h(x) =
−2x+ 1

x
= −2+

1
x

ShiŌ the graph of y =
1
x

down 2 units.

x

y

−3 −2 −1 1 2 3

−5

−4

−3

−2

−1

1

21.

23.

25.

27.

SecƟon 5.3

1. x = − 6
7

3. x = −1

5. No soluƟon

7. (−2,∞)

9. (−1, 0) ∪ (1,∞)

11. (−∞,−3) ∪ (−3, 2) ∪ (4,∞)

13. (−1, 0] ∪ (2,∞)

15. (−∞, 1] ∪ [2,∞)

17. (−∞,−3) ∪
[
−2

√
2, 0
]
∪
[
2
√
2, 3
)

19. [−3, 0) ∪ (0, 4) ∪ [5,∞)

21. 4.5 miles per hour

23. 3600 gallons

25. 3 hours

27. The width (and depth) should be 10.00 cenƟmetres, the height
should be 5.00 cenƟmetres. The minimum surface area is 300.00
square cenƟmetres.

29. The dimensions are≈ 7 feet by≈ 14 feet; minimum amount of
fencing required≈ 28 feet.

31. The radius of the drum should be≈ 1.05 feet and the height of
the drum should be≈ 2.12 feet. The minimum surface area of
the drum is≈ 20.93 cubic feet.

33. T = kV

35. d = km
V

37. D = kρν2

39. RewriƟng f =
1
2L

√
T
µ
as f =

1
2
√
T

L√µ
we see that the frequency f

varies directly with the square root of the tension and varies
inversely with the length and the square root of the linear mass.

41.

Chapter 6
SecƟon 6.1

1. For f(x) = x2 and g(x) = 2x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 16

• (g ◦ f)(−3) = 19

• (f ◦ g)
( 1
2
)
= 4

• (f ◦ f)(−2) = 16

3. For f(x) = 4− 3x and g(x) = |x|,

• (g ◦ f)(0) = 4

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 10

• (g ◦ f)(−3) = 13

• (f ◦ g)
( 1
2
)
= 5

2

• (f ◦ f)(−2) = −26

5. For f(x) = 4x+ 5 and g(x) =
√
x,

• (g ◦ f)(0) =
√
5

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = 57

• (g ◦ f)(−3) is not real

• (f ◦ g)
( 1
2
)
= 5+ 2

√
2

• (f ◦ f)(−2) = −7

7. For f(x) = 6− x− x2 and g(x) = x
√
x+ 10,

• (g ◦ f)(0) = 24

• (f ◦ g)(−1) = 0

• (f ◦ f)(2) = 6

• (g ◦ f)(−3) = 0

• (f◦g)
( 1
2
)
= 27−2

√
42

8

• (f ◦ f)(−2) = −14

9. For f(x) = 3
1−x and g(x) = 4x

x2+1 ,

• (g ◦ f)(0) = 6
5

• (f ◦ g)(−1) = 1
• (f ◦ f)(2) = 3

4

• (g ◦ f)(−3) = 48
25

• (f ◦ g)
( 1
2
)
= −5

• (f ◦ f)(−2) is
undefined

11. For f(x) = 2x
5−x2 and g(x) =

√
4x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = − 8
11

• (g ◦ f)(−3) =
√
7

• (f ◦ g)
( 1
2
)
=

√
3

• (f ◦ f)(−2) = 8
11

13. For f(x) = 2x+ 3 and g(x) = x2 − 9
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• (g ◦ f)(x) = 4x2 + 12x, domain: (−∞,∞)

• (f ◦ g)(x) = 2x2 − 15, domain: (−∞,∞)

• (f ◦ f)(x) = 4x+ 9, domain: (−∞,∞)

15. For f(x) = x2 − 4 and g(x) = |x|

• (g ◦ f)(x) = |x2 − 4|, domain: (−∞,∞)

• (f ◦ g)(x) = |x|2 − 4 = x2 − 4, domain: (−∞,∞)

• (f ◦ f)(x) = x4 − 8x2 + 12, domain: (−∞,∞)

17. For f(x) = |x+ 1| and g(x) =
√
x

• (g ◦ f)(x) =
√

|x+ 1|, domain: (−∞,∞)

• (f ◦ g)(x) = |
√
x+ 1| =

√
x+ 1, domain: [0,∞)

• (f ◦ f)(x) = ||x+ 1|+ 1| = |x+ 1|+ 1, domain: (−∞,∞)

19. For f(x) = |x| and g(x) =
√
4− x

• (g ◦ f)(x) =
√

4− |x|, domain: [−4, 4]

• (f ◦ g)(x) = |
√
4− x| =

√
4− x, domain: (−∞, 4]

• (f ◦ f)(x) = ||x|| = |x|, domain: (−∞,∞)

21. For f(x) = 3x− 1 and g(x) = 1
x+3

• (g ◦ f)(x) = 1
3x+2 , domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

• (f ◦ g)(x) = − x
x+3 , domain: (−∞,−3) ∪ (−3,∞)

• (f ◦ f)(x) = 9x− 4, domain: (−∞,∞)

23. For f(x) = x
2x+1 and g(x) = 2x+1

x

• (g ◦ f)(x) = 4x+1
x , domain:(

−∞,− 1
2
)
∪
(
− 1

2 , 0),∪(0,∞
)

• (f ◦ g)(x) = 2x+1
5x+2 , domain:(

−∞,− 2
5
)
∪
(
− 2

5 , 0
)
∪ (0,∞)

• (f ◦ f)(x) = x
4x+1 , domain:(

−∞,− 1
2
)
∪
(
− 1

2 ,−
1
4
)
∪
(
− 1

4 ,∞
)

25. (h ◦ g ◦ f)(x) = |
√
−2x| =

√
−2x, domain: (−∞, 0]

27. (g ◦ f ◦ h)(x) =
√

−2|x|, domain: {0}

29. (f ◦ h ◦ g)(x) = −2|
√
x| = −2

√
x, domain: [0,∞)

31. For f(x) = |x| and g(x) =
√
4− x

• (g ◦ f)(x) =
√

4− |x|, domain: [−4, 4]

• (f ◦ g)(x) = |
√
4− x| =

√
4− x, domain: (−∞, 4]

• (f ◦ f)(x) = ||x|| = |x|, domain: (−∞,∞)

33. Let f(x) = x2 − x+ 1 and g(x) = x5, P(x) = (g ◦ f)(x).

35. Let f(x) = 7− 3x and g(x) = |x|, then H(x) = (g ◦ f)(x).

37. Let f(x) = x2 − 1 and g(x) = 7
x , then R(x) = (g ◦ f)(x).

39. Let f(x) = x3 and g(x) = 2x+1
x−1 , then Q(x) = (g ◦ f)(x).

41. Let f(x) = x2 and g(x) = x
x2+1 , then w(x) = (g ◦ f)(x).

43. F(x) = 3
√
−x+ 2− 4 = k(j(f(h(g(x)))))

45. (f ◦ g)(3) = f(g(3)) = f(2) = 4

47. (f ◦ f)(0) = f(f(0)) = f(1) = 3

49. (g ◦ f)(3) = g(f(3)) = g(−1) = −4

51. (g ◦ g)(−2) = g(g(−2)) = g(0) = 0

53. g(f(g(0))) = g(f(0)) = g(1) = −3

55. f(f(f(f(f(1))))) = f(f(f(f(3)))) = f(f(f(−1))) = f(f(0)) =
f(1) = 3

57. (g ◦ f)(1) = 3

59. (g ◦ f)(2) = 0

61. (f ◦ f)(1) = 3

63. V(x) = x3 so V(x(t)) = (t+ 1)3

65.

SecƟon 6.2

1. f−1(x) =
x+ 2
6

3. f−1(x) = 3x− 10

5. f−1(x) = 1
3 (x− 5)2 + 1

3 , x ≥ 5

7. f−1(x) = 1
9 (x+ 4)2 + 1, x ≥ −4

9. f−1(x) = 1
3 x

5 + 1
3

11. f−1(x) = 5+
√
x+ 25

13. f−1(x) = 3−
√
x+ 4

15. f−1(x) =
4x− 3

x

17. f−1(x) =
4x+ 1
2− 3x

19. f−1(x) =
−3x− 2
x+ 3

21.

23.

25. (a) p−1(x) = 450−x
15 . The domain of p−1 is the range of p

which is [0, 450]
(b) p−1(105) = 23. This means that if the price is set to $105

then 23 dOpis will be sold.
(c)
(
P ◦ p−1) (x) = − 1

15 x
2 + 110

3 x− 5000, 0 ≤ x ≤ 450. The
graph of y =

(
P ◦ p−1) (x) is a parabola opening

downwards with vertex
(
275, 125

3
)
≈ (275, 41.67). This

means that the maximum profit is a whopping $41.67
when the price per dOpi is set to $275. At this price, we
can produce and sell p−1(275) = 11.6 dOpis. Since we
cannot sell part of a system, we need to adjust the price to
sell either 11 dOpis or 12 dOpis. We find p(11) = 285 and
p(12) = 270, which means we set the price per dOpi at
either $285 or $270, respecƟvely. The profits at these
prices are

(
P ◦ p−1) (285) = 35 and(

P ◦ p−1) (270) = 40, so it looks as if the maximum profit
is $40 and it is made by producing and selling 12 dOpis a
week at a price of $270 per dOpi.

27. Given that f(0) = 1, we have f−1(1) = 0. Similarly f−1(5) = 1
and f−1(−3) = −1

29.

31.

33.

SecƟon 6.3

1. f(x) =
√
1− x2

Domain: [−1, 1]

−1

(+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps
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x

y

−1 1

1

3. f(x) = x
√
1− x2

Domain: [−1, 1]

−1

0 (−)

0

(+)0

1

0

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−1 1

1

−1

5. f(x) = 4

√
16x

x2 − 9
Domain: (−3, 0] ∪ (3,∞)

(+)

−3

‽
0

0 ‽
3

(+)

VerƟcal asymptotes: x = −3 and x = 3
Horizontal asymptote: y = 0
Unusual steepness at x = 0
No cusps

x

y

−3−2−1 1 2 3 4 5 6 7 8

1

2

3

4

5

7. f(x) = x
2
3 (x− 7)

1
3

Domain: (−∞,∞)

(−)

0

0 (−)

7

0 (+)

No verƟcal or horizontal asymptotes1
Unusual steepness at x = 7
Cusp at x = 0

x

y

−3−2−1 1 2 3 4 5 6 7 8 9

−4
−3
−2
−1

1
2
3
4
5

9. f(x) =
√

x(x+ 5)(x− 4)
Domain: [−5, 0] ∪ [4,∞)

−5

0 (+)

0

0

4

0 (+)

No asymptotes
Unusual steepness at x = −5, x = 0 and x = 4
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

1
2
3
4
5
6
7
8
9

11. g(x) = 3√x− 1− 2

x

y

−4

−3

−2

−1
−9 −7 −5 −3 −1 1 3 5 7 9 11

13. g(x) = 4√x− 1− 2

x

y

−2

−1

1 3 5 7 9 11 13 15 17 19 21

15. g(x) = 5√x+ 2+ 3

x

y

−34 −2 30

1
2
3
4
5

17. x = 3
1Using Calculus it can be shown that y = x− 7

3 is a slant asymptote of this graph.
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19. x = −3

21. x = 5+
√
57

8

23. x = ±8

25. x = 4

27. [2,∞)

29. (−∞, 2) ∪ (2, 3]

31. (−∞, 0) ∪ [2, 3) ∪ (3,∞)

33.
(
0, 27

13
)

35. (−∞,−4) ∪
(
−4,− 22

19
]
∪ (2,∞)

37. (a) h(r) = 300
πr2 , r > 0.

(b) S(r) = πr
√

r2 +
(

300
πr2

)2
=

√
π2r6+90000

r , r > 0

(c) The calculator gives the absolute minimum at the point
≈ (4.07, 90.23). This means the radius should be
(approximately) 4.07 cenƟmetres and the height should be
5.76 cenƟmetres to give a minimum surface area of 90.23
square cenƟmetres.

39. (a) W(V) = 53.142− 23.78V0.16. Since we are told in Exercise
38 that wind chill is only effect for wind speeds of more
than 3 miles per hour, we restrict the domain to V > 3.

(b) W(V) = 0 when V ≈ 152.29. This means, according to the
model, for the wind chill temperature to be 0◦F, the wind
speed needs to be 152.29 miles per hour.

(c) The graph is below.

41. (a) First rewrite the model as P = 1.23x
2
5 y

3
5 . Then

300 = 1.23x
2
5 y

3
5 yields y =

(
300

1.23x
2
5

) 5
3
. If x = 100 then

y ≈ 441.93687.

43. k−1(x) =
x

√
x2 − 4

45.

47.

Chapter 7
SecƟon 7.1

1. log2(8) = 3

3. log4(32) = 5
2

5. log 4
25

( 5
2
)
= − 1

2

7. ln(1) = 0

9. (25)
1
2 = 5

11.
( 4
3
)−1

= 3
4

13. 10−1 = 0.1

15. e−
1
2 = 1√

e

17. log6(216) = 3

19. log6
( 1
36
)
= −2

21. log36(216) = 3
2

23. log 1
6
(216) = −3

25. log 1
1000000 = −6

27. ln
(
e3
)
= 3

29. log6(1) = 0

31. log36
( 4√36

)
= 1

4

33. 36log36(216) = 216

35. ln(e5) = 5

37. log
(

3√105
)
= 5

3

39. log5
(
3log3 5

)
= 1

41. log2
(
3− log3(2)

)
= −1

43. (−∞,∞)

45. (5,∞)

47. (−2,−1) ∪ (1,∞)

49. (4, 7)

51. (−∞,∞)

53. (−∞,−7) ∪ (1,∞)

55. (0, 125) ∪ (125,∞)

57. (−∞,−3) ∪
( 1
2 , 2
)

59. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

61. Domain of g: (−∞,∞)
Range of g: (−20,∞)

x

y

H.A. y = −20

−3−2 1 2 3
−10

10

20

30

40

50

60

70

80

63. Domain of g: (−∞,∞)
Range of g: (0,∞)
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x

y

−10 10 20 30

10

20

30

40

50

60

70

80

65. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9

67. Domain of g: (−20,∞)
Range of g: (−∞,∞)

y

x

V.A.x = −20−3

−2

1

2

3

−10 10 20 30 40 50 60 70 80 90 100

69. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x
−10

10

20

30

10 20 30 40 50 60 70 80

71. f(x) = 3x+2 − 4
f−1(x) = log3(x+ 4)− 2

x

y

y = f(x) = 3x+2 − 4

y = f−1(x) = log3(x + 4) − 2

−4−3−2−1 1 2 3 4 5 6

−4
−3
−2
−1

1
2
3
4
5
6

73. f(x) = −2−x + 1
f−1(x) = − log2(1− x)

x

y

y = f(x) = −2−x + 1
y = f−1(x) = − log2(1 − x)

−2 −1 1 2

−2

−1

1

2

75. (a) M(0.001) = log
( 0.001
0.001

)
= log(1) = 0.

(b) M(80, 000) = log
(

80,000
0.001

)
= log(80, 000, 000) ≈ 7.9.

77. (a) The pH of pure water is 7.
(b) If [H+] = 6.3× 10−13 then the soluƟon has a pH of 12.2.
(c) [H+] = 10−0.7 ≈ .1995 moles per liter.

79.

SecƟon 7.2

1. 3 ln(x) + 2 ln(y)

3. 3 log5(z)− 6

5. 1
2 ln(z)− ln(x)− ln(y)

7. 3 log√2(x) + 4

9. 3+ 3 log(x) + 5 log(y)

11. 1
4 ln(x) +

1
4 ln(y)−

1
4 − 1

4 ln(z)

13. 5
3 + log(x) + 1

2 log(y)

15. 1
3 ln(x)− ln(10)− 1

2 ln(y)−
1
2 ln(z)

17. log2
( xy

z
)

19. log3
(√

x
y2z

)
21. log

(
x√y
3√z

)
23. log5

( x
125
)

25. log7
(

x(x−3)
49

)
27. log2

(
x3/2

)
29. log2

(
x

x−1

)
31. log3(x+ 2) = log(x+2)

log(3)

33. log(x2 + 1) = ln(x2+1)
ln(10)

35. log5(80) ≈ 2.72271

37. log4
( 1
10
)
≈ −1.66096

39. log 2
3
(50) ≈ −9.64824

41.

43.

45.

SecƟon 7.3

1. x = 3
4

3. x = 2

5. x = − 7
3

7. x = 16
15
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9. x = ln(5)
2 ln(3)

11. No soluƟon.

13. x = ln(3)
12 ln(1.005)

15. t = ln(2)
0.1 = 10 ln(2)

17. t = ln( 1
18 )

−0.1 = 10 ln(18)

19. x = ln(2)

21. t = ln( 1
29 )

−0.8 = 5
4 ln(29)

23. x = ln(2)

25. x = ln(3)
ln(3)−ln(2)

27. x = 4 ln(3)−3 ln(7)
7 ln(7)+2 ln(3)

29. x = ln(2)

31. x = ln(3)

33. x = ln(5)
ln(3)

35.
[

ln(3)
12 ln(1.005) ,∞

)
37.

(
−∞,

ln( 2
5 )

ln( 4
5 )

]
=
(
−∞,

ln(2)−ln(5)
ln(4)−ln(5)

]

39.
[
ln( 1

18 )
−0.1 ,∞

)
= [10 ln(18),∞)

41. x ≈ 0.01866, x ≈ 1.7115

43. (−∞, 1]

45. ≈ (2.3217, 4.3717)

47.

49.

SecƟon 7.4

1. x = 5
4

3. x = −2

5. x = −1

7. x = ±10

9. x = − 17
7

11. x = 10−5.4

13. x = 25
2

15. x = 5

17. x = 2

19. x = 6

21. x = 81

23. x = 10−3, 105

25. (e,∞)

27.
[
10−3,∞

)
29.

(
10−5.4, 10−2.3)

31. x ≈ 1.3098

33. ≈ (−∞,−12.1414) ∪ (12.1414,∞)

35. −
1
2
< x <

e3 − 1
2

37. y =
3

5e2x + 1

39. f−1(x) =
e2x − 1
e2x + 1

=
ex − e−x

ex + e−x . The domain of f−1 is (−∞,∞)

and its range is the same as the domain of f, namely (−1, 1).

41.

SecƟon 7.5

1. • A(t) = 500
(
1+ 0.0075

12
)12t

• A(5) ≈ $519.10, A(10) ≈ $538.93, A(30) ≈ $626.12,
A(35) ≈ $650.03

• It will take approximately 92 years for the investment to
double.

• The average rate of change from the end of the fourth year
to the end of the fiŌh year is approximately 3.88. This
means that the investment is growing at an average rate of
$3.88 per year at this point. The average rate of change
from the end of the thirty-fourth year to the end of the
thirty-fiŌh year is approximately 4.85. This means that the
investment is growing at an average rate of $4.85 per year
at this point.

3. • A(t) = 1000
(
1+ 0.0125

12
)12t

• A(5) ≈ $1064.46, A(10) ≈ $1133.07, A(30) ≈ $1454.71,
A(35) ≈ $1548.48

• It will take approximately 55 years for the investment to
double.

• The average rate of change from the end of the fourth year
to the end of the fiŌh year is approximately 13.22. This
means that the investment is growing at an average rate of
$13.22 per year at this point. The average rate of change
from the end of the thirty-fourth year to the end of the
thirty-fiŌh year is approximately 19.23. This means that
the investment is growing at an average rate of $19.23 per
year at this point.

5. • A(t) = 5000
(
1+ 0.02125

12
)12t

• A(5) ≈ $5559.98, A(10) ≈ $6182.67, A(30) ≈ $9453.40,
A(35) ≈ $10512.13

• It will take approximately 33 years for the investment to
double.

• The average rate of change from the end of the fourth year
to the end of the fiŌh year is approximately 116.80. This
means that the investment is growing at an average rate of
$116.80 per year at this point. The average rate of change
from the end of the thirty-fourth year to the end of the
thirty-fiŌh year is approximately 220.83. This means that
the investment is growing at an average rate of $220.83
per year at this point.

7.

9. P = 5000
(1+ 0.0225

12 )12·10
≈ $3993.42

11. (a) A(8) = 2000
(
1+ 0.0225

12
)12·8 ≈ $2394.03
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(b) t =
ln(2)

12 ln
(
1+ 0.0225

12
) ≈ 30.83 years

(c) P =
2000(

1+ 0.0225
12
)36 ≈ $1869.57

(d)
(
1+ 0.0225

12
)12 ≈ 1.0227 so the APY is 2.27%

13.

15. • k =
ln(1/2)

14 ≈ −0.0495

• A(t) = 2e−0.0495t

• t = ln(0.1)
−0.0495 ≈ 46.52 days.

17. • k =
ln(1/2)
432.7 ≈ −0.0016

• A(t) = 0.29e−0.0016t

• t = ln(0.1)
−0.0016 ≈ 1439.11 years.

19. t = ln(0.1)
k = − ln(10)

k

21. (a) G(0) = 9743.77 This means that the GDP of the US in
2000 was $9743.77 billion dollars.

(b) G(7) = 13963.24 and G(10) = 16291.25, so the model
predicted a GDP of $13, 963.24 billion in 2007 and
$16, 291.25 billion in 2010.

23. (a) k =
ln(2)
20 ≈ 0.0346

(b) N(t) = 1000e0.0346t

(c) t = ln(9)
0.0346 ≈ 63 minutes

25. N0 = 52, k = 1
3 ln
( 118

52
)
≈ 0.2731, N(t) = 52e0.2731t.

N(6) ≈ 268.

27. (a) P(0) = 120
4.167 ≈ 29. There are 29 Sasquatch in Bigfoot

County in 2010.

(b) P(3) = 120
1+3.167e−0.05(3) ≈ 32 Sasquatch.

(c) t = 20 ln(3.167) ≈ 23 years.

(d) As t → ∞, P(t) → 120. As Ɵme goes by, the Sasquatch
PopulaƟon in Bigfoot County will approach 120.
Graphically, y = P(x) has a horizontal asymptote y = 120.

29. A(t) = 2.3e−0.0138629t

31. (a) T(t) = 75+ 105e−0.005005t

(b) The roast would have cooled to 140◦F in about 95 minutes.

33. The steady state current is 2 amps.

35.

Chapter 8
SecƟon 8.1

1. 330◦ is a Quadrant IV angle
coterminal with 690◦ and−30◦

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

3. 120◦ is a Quadrant II angle
coterminal with 480◦ and−240◦

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

5. −270◦ lies on the posiƟve y-axis
coterminal with 90◦ and−630◦

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

7. −
11π
3

is a Quadrant I angle

coterminal with
π

3
and−

5π
3

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

9.
3π
4

is a Quadrant II angle

coterminal with
11π
4

and−
5π
4

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

11.
7π
2

lies on the negaƟve y-axis

coterminal with
3π
2

and−
π

2
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x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

13. −
π

2
lies on the negaƟve y-axis

coterminal with
3π
2

and−
5π
2

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

15. −
5π
3

is a Quadrant I angle

coterminal with
π

3
and−

11π
3

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

17. −2π lies on the posiƟve x-axis
coterminal with 2π and−4π

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4

19.
15π
4

is a Quadrant IV angle

coterminal with
7π
4

and−
π

4

x

y

−4−3−2−1 1 2 3 4−1
−2
−3
−4

1
2
3
4
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21. 0

23.
3π
4

25. −
7π
4

27.
π

4
29. 180◦

31. 210◦

33. 60◦

35. −30◦

37. t =
5π
6

x

y

1

1

39. t = 6

x

y

1

1

41. t = 12 (between 1 and 2 revoluƟons)

x

y

1

1

43. About 6274.52 revoluƟons per minute

45. About 53.55 miles per hour

47. About 4.32 miles per hour

49. 12π square units

51. 79.2825π ≈ 249.07 square units

53.
50π
3

square units

55.

SecƟon 8.2

1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2
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21. If sin(θ) = −
7
25

with θ in Quadrant IV, then cos(θ) =
24
25

.

23. If sin(θ) =
5
13

with θ in Quadrant II, then cos(θ) = −
12
13

.

25. If sin(θ) = −
2
3
with θ in Quadrant III, then cos(θ) = −

√
5
3

.

27. If sin(θ) =
2
√
5

5
and

π

2
< θ < π, then cos(θ) = −

√
5
5

.

29. If sin(θ) = −0.42 and π < θ <
3π
2
, then

cos(θ) = −
√
0.8236 ≈ −0.9075.

31. sin(θ) =
1
2
when θ =

π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

33. sin(θ) = 0 when θ = πk for any integer k.

35. sin(θ) =
√
3
2

when θ =
π

3
+ 2πk or θ =

2π
3

+ 2πk for any
integer k.

37. sin(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

39. cos(θ) = −1.001 never happens
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41. sin(t) = −
√
2
2

when t =
5π
4

+ 2πk or t =
7π
4

+ 2πk for any
integer k.

43. sin(t) = −
1
2
when t =

7π
6

+ 2πk or t =
11π
6

+ 2πk for any
integer k.

45. sin(t) = −2 never happens

47. sin(t) = 1 when t =
π

2
+ 2πk for any integer k.

49. sin(78.95◦) ≈ 0.981

51. sin(392.994) ≈ −0.291

53. sin (π◦) ≈ 0.055

55. θ = 60◦, b =

√
3
3

, c =
2
√
3

3

57. α = 57◦, a = 8 cos(33◦) ≈ 6.709, b = 8 sin(33◦) ≈ 4.357

59. The hypotenuse has length
4

cos(12◦)
≈ 4.089.

61. The hypotenuse has length
117.42
sin(59◦)

≈ 136.99.

63. The side adjacent to θ has length 10 cos(5◦) ≈ 9.962.
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65. cos(θ) = −
7
25

, sin(θ) =
24
25

67. cos(θ) =
5
√
106

106
, sin(θ) = −

9
√
106

106

69. r = 1.125 inches, ω = 9000π radians
minute , x = 1.125 cos(9000π t),

y = 1.125 sin(9000π t). Here x and y are measured in inches and
t is measured in minutes.

71. r = 1.25 inches, ω = 14400π radians
minute , x = 1.25 cos(14400π t),

y = 1.25 sin(14400π t). Here x and y are measured in inches and
t is measured in minutes.

73. r = 64 feet, ω = 4π
127

radians
second , x = 64 cos

( 4π
127 t

)
,

y = 64 sin
( 4π
127 t

)
. Here x and y are measured in feet and t is

measured in seconds.

75.

SecƟon 8.3

1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2

21. sin(θ) = 3
5 , cos(θ) = − 4

5 , tan(θ) = − 3
4 , csc(θ) =

5
3 , sec(θ) =

− 5
4 , cot(θ) = − 4

3

23. sin(θ) = 24
25 , cos(θ) =

7
25 , tan(θ) =

24
7 , csc(θ) = 25

24 , sec(θ) =
25
7 , cot(θ) = 7

24

25. sin(θ) = −
√
91
10 , cos(θ) = − 3

10 , tan(θ) =
√
91
3 , csc(θ) =

− 10
√
91

91 , sec(θ) = − 10
3 , cot(θ) = 3

√
91

91

27. sin(θ) = − 2
√
5

5 , cos(θ) =
√
5
5 , tan(θ) = −2, csc(θ) =

−
√
5
2 , sec(θ) =

√
5, cot(θ) = − 1

2

29. sin(θ) = −
√
6
6 , cos(θ) = −

√
30
6 , tan(θ) =

√
5
5 , csc(θ) =

−
√
6, sec(θ) = −

√
30
5 , cot(θ) =

√
5

31. sin(θ) =
√
5
5 , cos(θ) = 2

√
5

5 , tan(θ) = 1
2 , csc(θ) =√

5, sec(θ) =
√
5
2 , cot(θ) = 2

33. sin(θ) = −
√
110
11 , cos(θ) = −

√
11
11 , tan(θ) =

√
10, csc(θ) =

−
√
110
10 , sec(θ) = −

√
11, cot(θ) =

√
10
10

35. csc(78.95◦) ≈ 1.019

37. cot(392.994) ≈ 3.292

39. csc(5.902) ≈ −2.688

41. cot(3◦) ≈ 19.081

43. tan(θ) =
√
3 when θ =

π

3
+ πk for any integer k

45. csc(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

47. tan(θ) = 0 when θ = πk for any integer k

49. csc(θ) = 2 when θ =
π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

51. tan(θ) = −1 when θ =
3π
4

+ πk for any integer k

53. csc(θ) = −
1
2
never happens

55. tan(θ) = −
√
3 when θ =

2π
3

+ πk for any integer k

57. cot(θ) = −1 when θ =
3π
4

+ πk for any integer k

59. tan(t) =
√
3
3

when t =
π

6
+ πk for any integer k

61. csc(t) = 0 never happens

63. tan(t) = −
√
3
3

when t =
5π
6

+ πk for any integer k

65. csc(t) =
2
√
3

3
when t =

π

3
+ 2πk or t =

2π
3

+ 2πk for any
integer k
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67. α = 56◦, b = 12 tan(34◦) = 8.094,

c = 12 sec(34◦) =
12

cos(34◦)
≈ 14.475

69. β = 40◦, b = 2.5 tan(50◦) ≈ 2.979,

c = 2.5 sec(50◦) =
2.5

cos(50◦)
≈ 3.889

71. The side opposite θ has length 10 sin(15◦) ≈ 2.588

73. The hypotenuse has length
14 csc(38.2◦) =

14
sin(38.2◦)

≈ 22.639

75. The side opposite θ has length 31 tan(42◦) ≈ 27.912

77. The lights are about 75 feet apart.

79. The tree is about 41 feet tall.

81. The tower is about 682 feet tall. The guy wire hits the ground
about 731 feet away from the base of the tower.

83.

85.

87.

89.

91.

93.

95.

97.

99.

101.

103.

105.

107.

109.

111.

113.

115.

117.

119.

121.

123.

125.

127.

129.

131.

133.

135.

137.

SecƟon 8.4

1.

3.

5.

7. cos(75◦) =
√
6−

√
2

4

9. sin(105◦) =
√
6+

√
2

4

11. cot(255◦) =
√
3− 1

√
3+ 1

= 2−
√
3

13. cos
(
13π
12

)
= −

√
6+

√
2

4

15. tan
(
13π
12

)
=

3−
√
3

3+
√
3
= 2−

√
3

17. tan
(
17π
12

)
= 2+

√
3

19. cot
(
11π
12

)
= −(2+

√
3)

21. sec
(
−

π

12

)
=

√
6−

√
2

23. (a) cos(α+ β) = −
4+ 7

√
2

30

(b) sin(α+ β) =
28−

√
2

30

(c) tan(α+ β) =
−28+

√
2

4+ 7
√
2

=
63− 100

√
2

41

(d) cos(α− β) =
−4+ 7

√
2

30

(e) sin(α− β) = −
28+

√
2

30

(f) tan(α− β) =
28+

√
2

4− 7
√
2
= −

63+ 100
√
2

41

25. (a) csc(α− β) = −
5
4

(b) sec(α+ β) =
125
117

(c) cot(α+ β) =
117
44

27.

29.

31.

33.

35.

37.

39. cos(75◦) =

√
2−

√
3

2

41. cos(67.5◦) =

√
2−

√
2

2

43. tan(112.5◦) = −

√
2+

√
2

2−
√
2
= −1−

√
2

45. sin
( π

12

)
=

√
2−

√
3

2

47. sin
(
5π
8

)
=

√
2+

√
2

2

49. • sin(2θ) = −
336
625

• sin
(

θ
2

)
=

√
2

10

• cos(2θ) =
527
625

• cos
(

θ
2

)
= −

7
√
2

10
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• tan(2θ) = −
336
527

• tan
(

θ
2

)
= −

1
7

51. • sin(2θ) =
120
169

• sin
(

θ
2

)
=

3
√
13

13

• cos(2θ) = −
119
169

• cos
(

θ
2

)
= −

2
√
13

13

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

3
2

53. • sin(2θ) =
24
25

• sin
(

θ
2

)
=

√
5
5

• cos(2θ) = −
7
25

• cos
(

θ
2

)
=

2
√
5

5

• tan(2θ) = −
24
7

• tan
(

θ
2

)
=

1
2

55. • sin(2θ) = −
120
169

• sin
(

θ
2

)
=

√
26
26

• cos(2θ) =
119
169

• cos
(

θ
2

)
= −

5
√
26

26

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

1
5

57. • sin(2θ) = −
4
5

• sin
(

θ
2

)
=

√
50− 10

√
5

10

• cos(2θ) = −
3
5

• cos
(

θ
2

)
= −

√
50+ 10

√
5

10

• tan(2θ) =
4
3

• tan
(

θ
2

)
= −

√
5−

√
5

5+
√
5
=

5− 5
√
5

10

59.

61.

63.

65.

67.

69.

71.

73.

75.
cos(5θ)− cos(9θ)

2

77.
cos(4θ) + cos(8θ)

2

79.
sin(2θ) + sin(4θ)

2

81. −2 cos
(
9
2
θ

)
sin
(
5
2
θ

)
83. 2 cos(4θ) sin(5θ)

85. −
√
2 sin

(
θ −

π

4

)
87.

89.

91.
14x

x2 + 49
93.

95.

97.

99.

101.

SecƟon 8.5

1. y = 3 sin(x)
Period: 2π
Amplitude: 3
Phase ShiŌ: 0
VerƟcal ShiŌ: 0

x

y

π
2

π 3π
2

2π

−3

3

3. y = −2 cos(x)
Period: 2π
Amplitude: 2
Phase ShiŌ: 0
VerƟcal ShiŌ: 0

x

y

π
2

π 3π
2

2π

−2

2
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5. y = − sin
(
x+

π

3

)
Period: 2π
Amplitude: 1
Phase ShiŌ: −

π

3
VerƟcal ShiŌ: 0

x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

7. y = −
1
3
cos
(
1
2
x+

π

3

)
Period: 4π
Amplitude:

1
3

Phase ShiŌ: −
2π
3

VerƟcal ShiŌ: 0

x

y

− 2π
3

π
3

4π
3

7π
3

10π
3

− 1
3

1
3

9. y = sin
(
−x−

π

4

)
− 2

Period: 2π
Amplitude: 1
Phase ShiŌ: −

π

4
(You need to use

y = − sin
(
x+

π

4

)
− 2 to find this.)2

VerƟcal ShiŌ: −2

x

y

− 9π
4 − 7π

4 − 5π
4 − 3π

4
−π

4
π
4

3π
4

5π
4

7π
4

−3

−2

−1

11. y = −
3
2
cos
(
2x+

π

3

)
−

1
2

Period: π
Amplitude:

3
2

Phase ShiŌ: −
π

6
VerƟcal ShiŌ: −

1
2

x

y

−π
6

π
12

π
3

7π
12

5π
6

−2

− 1
2

1

13. y = tan
(
x−

π

3

)
Period: π

x

y

−π
6

π
12

π
3

7π
12

5π
6−1

1

15. y =
1
3
tan(−2x− π) + 1

is equivalent to
y = −

1
3
tan(2x+ π) + 1

via the Even / Odd idenƟty for tangent.
Period:

π

2

x

y

− 3π
4 − 5π

8
−π

2 − 3π
8

−π
4

4
3

1
2
3

17. y = − csc
(
x+

π

3

)
Start with y = − sin

(
x+

π

3

)
Period: 2π

2Two cycles of the graph are shown to illustrate the discrepancy discussed on page 377.
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x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

19. y = csc(2x− π)
Start with y = sin(2x− π)
Period: π

x

y

π
2

3π
4

π 5π
4

3π
2

−1

1

21. y = csc
(
−x−

π

4

)
− 2

Start with y = sin
(
−x−

π

4

)
− 2

Period: 2π

x

y

−π
4

π
4

3π
4

5π
4

7π
4

−3

−2

−1

23. y = −11 cot
(
1
5
x
)

Period: 5π

x

y

5π
4

5π
2

15π
4

5π
−11

11

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1 = 2 sin

(
x+

π

4

)
+ 1 =

2 cos
(
x+

7π
4

)
+ 1

27. f(x) = − sin(x) + cos(x)− 2 =
√
2 sin

(
x+

3π
4

)
− 2 =

√
2 cos

(
x+

π

4

)
− 2

29. f(x) = 2
√
3 cos(x)− 2 sin(x) = 4 sin

(
x+

2π
3

)
=

4 cos
(
x+

π

6

)

31. f(x) = −
1
2
cos(5x)−

√
3
2

sin(5x) = sin
(
5x+

7π
6

)
=

cos
(
5x+

2π
3

)

33. f(x) =
5
√
2

2
sin(x)−

5
√
2

2
cos(x) = 5 sin

(
x+

7π
4

)
=

5 cos
(
x+

5π
4

)

35.

37.
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39.

41.

43.

45.

47.

49.

51.

Chapter 9
SecƟon 9.1

1. arcsin (−1) = −
π

2

3. arcsin

(
−
√
2
2

)
= −

π

4

5. arcsin (0) = 0

7. arcsin

(√
2
2

)
=

π

4

9. arcsin (1) =
π

2

11. arccos

(
−
√
3
2

)
=

5π
6

13. arccos
(
−
1
2

)
=

2π
3

15. arccos
(
1
2

)
=

π

3

17. arccos

(√
3
2

)
=

π

6

19. arctan
(
−
√
3
)
= −

π

3

21. arctan

(
−
√
3
3

)
= −

π

6

23. arctan

(√
3
3

)
=

π

6

25. arctan
(√

3
)
=

π

3

27. arccot (−1) =
3π
4

29. arccot (0) =
π

2

31. arccot (1) =
π

4

33. arcsec (2) =
π

3

35. arcsec
(√

2
)
=

π

4

37. arcsec

(
2
√
3

3

)
=

π

6

39. arcsec (1) = 0

41. arcsec (−2) =
4π
3

43. arcsec

(
−
2
√
3

3

)
=

7π
6

45. arccsc (−2) =
7π
6

47. arccsc

(
−
2
√
3

3

)
=

4π
3

49. arcsec (−2) =
2π
3

51. arcsec

(
−
2
√
3

3

)
=

5π
6

53. arccsc (−2) = −
π

6

55. arccsc

(
−
2
√
3

3

)
= −

π

3

57. sin
(
arcsin

(
1
2

))
=

1
2

59. sin
(
arcsin

(
3
5

))
=

3
5

61. sin
(
arcsin

(
5
4

))
is undefined.

63. cos
(
arccos

(
−
1
2

))
= −

1
2

65. cos (arccos (−0.998)) = −0.998

67. tan (arctan (−1)) = −1

69. tan
(
arctan

(
5
12

))
=

5
12

71. tan (arctan (3π)) = 3π

73. cot
(
arccot

(
−
√
3
))

= −
√
3

75. cot (arccot (−0.001)) = −0.001

77. sec (arcsec (2)) = 2

79. sec
(
arcsec

(
1
2

))
is undefined.

81. sec (arcsec (117π)) = 117π

83. csc

(
arccsc

(
−
2
√
3

3

))
= −

2
√
3

3

85. csc (arccsc (1.0001)) = 1.0001

87. arcsin
(
sin
(
π

6

))
=

π

6

89. arcsin
(
sin
(
3π
4

))
=

π

4

91. arcsin
(
sin
(
4π
3

))
= −

π

3

93. arccos
(
cos
(
2π
3

))
=

2π
3

95. arccos
(
cos
(
−
π

6

))
=

π

6

97. arctan
(
tan
(
π

3

))
=

π

3
99. arctan (tan (π)) = 0

101. arctan
(
tan
(
2π
3

))
= −

π

3

103. arccot
(
cot
(
−
π

4

))
=

3π
4

105. arccot
(
cot
(
3π
2

))
=

π

2
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107. arcsec
(
sec
(
π

4

))
=

π

4

109. arcsec
(
sec
(
5π
6

))
=

7π
6

111. arcsec
(
sec
(
5π
3

))
=

π

3

113. arccsc
(
csc
(
5π
4

))
=

5π
4

115. arccsc
(
csc
(
−
π

2

))
=

3π
2

117. arcsec
(
sec
(
11π
12

))
=

13π
12

119. arcsec
(
sec
(
π

4

))
=

π

4

121. arcsec
(
sec
(
5π
6

))
=

5π
6

123. arcsec
(
sec
(
5π
3

))
=

π

3

125. arccsc
(
csc
(
5π
4

))
= −

π

4

127. arccsc
(
csc
(
−
π

2

))
= −

π

2

129. arcsec
(
sec
(
11π
12

))
=

11π
12

131. sin
(
arccos

(
−
1
2

))
=

√
3
2

133. sin (arctan (−2)) = −
2
√
5

5

135. sin (arccsc (−3)) = −
1
3

137. cos
(
arctan

(√
7
))

=

√
2
4

139. cos (arcsec (5)) =
1
5

141. tan
(
arccos

(
−
1
2

))
= −

√
3

143. tan (arccot (12)) =
1
12

145. cot

(
arccos

(√
3
2

))
=

√
3

147. cot (arctan (0.25)) = 4

149. sec
(
arcsin

(
−
12
13

))
=

13
5

151. sec

(
arccot

(
−
√
10
10

))
= −

√
11

153. csc
(
arcsin

(
3
5

))
=

5
3

155. sin
(
arcsin

(
5
13

)
+

π

4

)
=

17
√
2

26

157. tan
(
arctan(3) + arccos

(
−
3
5

))
=

1
3

159. sin
(
2 arccsc

(
13
5

))
=

120
169

161. cos
(
2 arcsin

(
3
5

))
=

7
25

163. cos
(
2 arccot

(
−
√
5
))

=
2
3

165. sin (arccos (x)) =
√
1− x2 for−1 ≤ x ≤ 1

167. tan (arcsin (x)) =
x

√
1− x2

for−1 < x < 1

169. csc (arccos (x)) =
1

√
1− x2

for−1 < x < 1

171. sin (2 arccos (x)) = 2x
√
1− x2 for−1 ≤ x ≤ 1

173. sin(arccos(2x)) =
√
1− 4x2 for− 1

2 ≤ x ≤ 1
2

175. cos
(
arcsin

( x
2

))
=

√
4− x2

2
for−2 ≤ x ≤ 2

177. sin(2 arcsin(7x)) = 14x
√
1− 49x2 for−

1
7
≤ x ≤

1
7

179. cos(2 arcsin(4x)) = 1− 32x2 for−
1
4
≤ x ≤

1
4

181. sin (arcsin(x) + arccos(x)) = 1 for−1 ≤ x ≤ 1

183. tan (2 arcsin(x)) =
2x
√
1− x2

1− 2x2
for x in(

−1,−
√
2
2

)
∪
(
−
√
2
2

,

√
2
2

)
∪
(√

2
2

, 1

)
3

185. If sin(θ) =
x
2
for−

π

2
< θ <

π

2
, then

θ + sin(2θ) = arcsin
( x
2

)
+

x
√
4− x2

2

187. If sec(θ) =
x
4
for 0 < θ <

π

2
, then

4 tan(θ)− 4θ =
√
x2 − 16− 4 arcsec

(
x
4

)
189. x = arccos

(
−
2
9

)
+ 2πk or x = − arccos

(
−
2
9

)
+ 2πk, in

[0, 2π), x ≈ 1.7949, 4.4883

191. x = arccos(0.117) + 2πk or x = 2π − arccos(0.117) + 2πk, in
[0, 2π), x ≈ 1.4535, 4.8297

193. x = arccos
(
359
360

)
+ 2πk or x = 2π − arccos

(
359
360

)
+ 2πk, in

[0, 2π), x ≈ 0.0746, 6.2086

195. x = arctan
(
−

1
12

)
+ πk, in [0, 2π), x ≈ 3.0585, 6.2000

197. x = π + arcsin
(
17
90

)
+ 2πk or x = 2π − arcsin

(
17
90

)
+ 2πk,

in [0, 2π), x ≈ 3.3316, 6.0932

199. x = arcsin
(
3
8

)
+ 2πk or x = π − arcsin

(
3
8

)
+ 2πk, in

[0, 2π), x ≈ 0.3844, 2.7572

201. x = arctan(0.03) + πk, in [0, 2π), x ≈ 0.0300, 3.1716

203. x = π + arcsin(0.721) + 2πk or x = 2π − arcsin(0.721) + 2πk,
in [0, 2π), x ≈ 3.9468, 5.4780

205. x = arccos(−0.5637) + 2πk or x = − arccos(−0.5637) + 2πk,
in [0, 2π), x ≈ 2.1697, 4.1135

207. x = arctan(−0.6109) + πk, in [0, 2π), x ≈ 2.5932, 5.7348

209. 22.62◦ and 67.38◦

3The equivalence for x = ±1 can be verified independently of the derivaƟon of the formula, but Calculus is required to fully understand what is
happening at those x values. You’ll see what we mean when you work through the details of the idenƟty for tan(2t). For now, we exclude x = ±1
from our answer.
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211. 68.9◦

213. 51◦

215. 41.81◦

217. f(x) = 3 cos(2x) + 4 sin(2x) = 5 sin
(
2x+ arcsin

(
3
5

))
≈

5 sin(2x+ 0.6435)

219. f(x) = 7 sin(10x)− 24 cos(10x) =

25 sin
(
10x+ arcsin

(
−
24
25

))
≈ 25 sin(10x− 1.2870)

221. f(x) = 2 sin(x)− cos(x) =
√
5 sin

(
x+ arcsin

(
−
√
5
5

))
≈

√
5 sin(x− 0.4636)

223.
[
−
1
3
, 1
]

225. (−∞,−
√
5] ∪ [−

√
3,
√
3] ∪ [

√
5,∞)

227. (−∞,−3) ∪ (−3, 3) ∪ (3,∞)

229.
[
1
2
,∞
)

231. (−∞,−6] ∪ [−4,∞)

233. [0,∞)

235.

237.

SecƟon 9.2

1. x =
πk
5
; x = 0,

π

5
,
2π
5
,
3π
5
,
4π
5
, π,

6π
5
,
7π
5
,
8π
5
,
9π
5

3. x =
2π
3

+ πk or x =
5π
6

+ πk; x =
2π
3
,
5π
6
,
5π
3
,
11π
6

5. x =
3π
8

+
πk
2
; x =

3π
8
,
7π
8
,
11π
8

,
15π
8

7. x =
π

3
+

πk
2
; x =

π

3
,
5π
6
,
4π
3
,
11π
6

9. x =
3π
4

+ 6πk or x =
9π
4

+ 6πk; x =
3π
4

11. x =
3π
4

+ πk or x =
13π
12

+ πk; x =
π

12
,
3π
4
,
13π
12

,
7π
4

13. No soluƟon

15. x =
π

3
+ πk or x =

2π
3

+ πk; x =
π

3
,
2π
3
,
4π
3
,
5π
3

17. x =
π

4
+

πk
2
; x =

π

4
,
3π
4
,
5π
4
,
7π
4

19. x =
π

4
,
5π
4

21. x =
π

6
,
π

2
,
5π
6
,
3π
2

23. x = 0,
2π
3
,
4π
3

25. x =
2π
3
,
4π
3
, arccos

(
1
3

)
, 2π − arccos

(
1
3

)
27. x =

7π
6
,
11π
6

, arcsin
(
1
3

)
, π − arcsin

(
1
3

)
29. x = 0,

2π
3
,
4π
3

31. x = arctan(2), π + arctan(2)

33. x = 0, π,
π

4
,
3π
4
,
5π
4
,
7π
4

35. x =
π

2
,
3π
2

37. x =
π

3
,
5π
3

39. x =
π

6
,
π

2
,
5π
6
,
3π
2

41. x =
π

8
,
5π
8
,
9π
8
,
13π
8

43. x =
0,

π

7
,
2π
7
,
3π
7
,
4π
7
,
5π
7
,
6π
7
, π,

8π
7
,
9π
7
,
10π
7

,
11π
7

,
12π
7

,
13π
7

45. x = 0

47. x = 0,
π

2

49. x =
π

12
,
17π
12

51. x =
17π
24

,
41π
24

,
23π
24

,
47π
24

53. x = 0,
π

4
,
π

2
,
3π
4
, π,

5π
4
,
3π
2
,
7π
4

55. x = 0,
π

8
,
3π
8
,
5π
8
,
7π
8
, π,

9π
8
,
11π
8

,
13π
8

,
15π
8

57. x = 0,
2π
7
,
4π
7
,
6π
7
,
8π
7
,
10π
7

,
12π
7

,
π

5
,
3π
5
, π,

7π
5
,
9π
5

59. x = − 1
2

61. x = 2
3

63. x = 2
√
2

65. x = ±
√
3
2

67. x = −1, 0

69. [π, 2π]

71.
[
0,

π

3

]
∪
[
2π
3
,
4π
3

]
∪
[
5π
3
, 2π
]

73.
[
π

4
,
3π
4

]
∪
[
5π
4
,
7π
4

]
75.

(
0,

π

3

]
∪
[
2π
3
, π

)
∪
(
π,

4π
3

]
∪
[
5π
3
, 2π
)

77. No soluƟon

79.
[
0,

π

4

]
∪
(
π

2
,
3π
2

)
∪
[
7π
4
, 2π
]

81.
(
−
π

6
,
π

6

)
83.

[
−π,−

π

2

)
∪
[
−
π

3
,
π

3

]
∪
(π
2
, π
]

85.
(
−π,−

π

4

]
∪
(
0,

3π
4

]
87.

(
−2π,−

3π
2

)
∪
(
−
3π
2
,−π

)
∪
(
0,

π

2

)
∪
(π
2
, π
)

89. (−2π, arccot(5)− 2π] ∪ (−π, arccot(5)− π] ∪ (0, arccot(5)] ∪
(π, π + arccot(5)]

91.
[
−2π,−

5π
3

]
∪
[
−π,−

π

3

]
∪
[
0,

π

3

]
∪
[
π,

5π
3

]
93.

(
0, 1

2
]

95.
(
−∞,

√
3
7

]
97. [−1, 0)

99.
∞∪

k=−∞
(2kπ, (2k+ 2)π)
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101.
∞∪

k=−∞

{[
(4k+ 1)π

4
,
(2k+ 1)π

2

)
∪
(
(2k+ 1)π

2
,
(4k+ 3)π

4

]}

103.
∞∪

k=−∞

(
kπ
2
,
(k+ 1)π

2

)

105.
∞∪

k=−∞

(
kπ
2
,
(k+ 1)π

2

)

107.
∞∪

k=−∞

[
(4k− 1)π

4
,
(4k+ 1)π

4

]

SecƟon 9.3

1. S(t) = sin (880πt)

3. h(t) = 67.5 sin
(

π
15 t−

π
2
)
+ 67.5

5. h(t) = 28 sin
( 2π

3 t− π
2
)
+ 30

7. (a) θ(t) = θ0 sin
(√

g
l t+

π
2

)
(b) θ(t) = π

12 sin
(
4πt+ π

2
)

9.

SecƟon 9.4

1. α = 13◦ β = 17◦ γ = 150◦
a = 5 b ≈ 6.50 c ≈ 11.11

3. InformaƟon does not produce a triangle

5. InformaƟon does not produce a triangle

7. α = 68.7◦ β ≈ 76.9◦ γ ≈ 34.4◦
a = 88 b = 92 c ≈ 53.36
α = 68.7◦ β ≈ 103.1◦ γ ≈ 8.2◦
a = 88 b = 92 c ≈ 13.47

9. InformaƟon does not produce a triangle

11. α = 42◦ β ≈ 23.78◦ γ ≈ 114.22◦
a = 39 b = 23.5 c ≈ 53.15

13. α = 6◦ β ≈ 169.43◦ γ ≈ 4.57◦
a = 57 b = 100 c ≈ 43.45
α = 6◦ β ≈ 10.57◦ γ ≈ 163.43◦
a = 57 b = 100 c ≈ 155.51

15. α ≈ 28.61◦ β = 102◦ γ ≈ 49.39◦
a ≈ 8.20 b = 16.75 c = 13

17. α = 43◦ β = 102◦ γ = 35◦
a ≈ 11.68 b = 16.75 c ≈ 9.82

19. InformaƟon does not produce a triangle

21. The area of the triangle from Exercise 1 is about 8.1 square units.
The area of the triangle from Exercise 12 is about 377.1 square
units.
The area of the triangle from Exercise 20 is about 149 square
units.

23. About 17%

25. The UFO is hovering about 9539 feet above the ground.

27.

A.42



29. The Colonel is about 3193 feet from the campfire.
Sarge is about 2525 feet to the campfire.

31. The SS Bigfoot is about 4.1 miles from the flare.
The HMS Sasquatch is about 2.9 miles from the flare.

33. She is about 3.02 miles from the lodge

35.

SecƟon 9.5

1. α ≈ 35.54◦ β ≈ 85.16◦ γ = 59.3◦
a = 7 b = 12 c ≈ 10.36

3. α ≈ 85.90◦ β = 8.2◦ γ ≈ 85.90◦
a = 153 b ≈ 21.88 c = 153

5. α = 120◦ β ≈ 25.28◦ γ ≈ 34.72◦
a =

√
37 b = 3 c = 4

7. InformaƟon does not produce a triangle

9. α = 60◦ β = 60◦ γ = 60◦
a = 5 b = 5 c = 5

11. α = 63◦ β ≈ 98.11◦ γ ≈ 18.89◦
a = 18 b = 20 c ≈ 6.54
α = 63◦ β ≈ 81.89◦ γ ≈ 35.11◦
a = 18 b = 20 c ≈ 11.62

13. InformaƟon does not produce a triangle

15. α = 42◦ β ≈ 89.23◦ γ ≈ 48.77◦
a ≈ 78.30 b = 117 c = 88

17. The area of the triangle given in Exercise 6 is√
1200 = 20

√
3 ≈ 34.64 square units.

The area of the triangle given in Exercise 8 is√
51764375 ≈ 7194.75 square units.

The area of the triangle given in Exercise 10 is exactly 30 square
units.

19. The diameter of the crater is about 5.22 miles.

21. N31.8◦W

23. It is about 4.50 miles from port and its heading to port is S47◦W.

25. The fires are about 17456 feet apart. (Try to avoid rounding
errors.)

27.

SecƟon 9.6

1.
(
2,

π

3

)
,

(
−2,

4π
3

)
(
2,−

5π
3

)
,

(
2,

7π
3

)

x

y

−1 1 2

1

2

3.
(
1
3
,
3π
2

)
,

(
−
1
3
,
π

2

)
(
1
3
,−

π

2

)
,

(
1
3
,
7π
2

)

x

y

1

1

5.
(
12,−

7π
6

)
,

(
−12,

11π
6

)
(
12,−

19π
6

)
,

(
12,

17π
6

)

x

y

−12 −9 −6 −3

3

6

7.
(
2
√
2,−π

)
,
(
−2

√
2, 0
)(

2
√
2,−3π

)
,
(
2
√
2, 3π

)

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

9. (−20, 3π), (−20, π)
(20,−2π), (20, 4π)

x

y

−20 −10 10 20−1

1

11.
(
−1,

2π
3

)
,

(
−1,

2π
3

)
(
1,−

π

3

)
,

(
1,

11π
3

)
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x

y

−2 −1 1 2

−2

−1

1

2

13.
(
−3,−

11π
6

)
,

(
−3,

π

6

)
(
3,−

5π
6

)
,

(
3,

19π
6

)

x

y

−3−2−1 1 2 3

−3

−2

−1

1

2

3

15.
(
−
√
5,−

4π
3

)
,

(
−
√
5,

2π
3

)
(√

5,−
π

3

)
,

(√
5,

11π
3

)

x

y

−2−1 1 2

−2

−1

1

2

17.

(
5
√
2

2
,−

5
√
2

2

)

19.

(
−
11

√
3

2
,
11
2

)

21.
(
0,

3
5

)
23. (0,−9)

25.
(
21

√
3, 21

)
27.

(
6
√
5

5
,
12

√
5

5

)

29.
(
−
9
5
,−

12
5

)

31.

(
−
4
√
5

5
,
2
√
5

5

)

33.
(
4
5
,
3
5

)
35.

(
π√
1+π2

, π2√
1+π2

)
37.

(
5,

π

2

)
39.

(
7
√
2,

7π
4

)
41. (3, π)

43.
(
8,

4π
3

)
45.

(
3
5
,
4π
3

)
47.

(
10, arctan

(
4
3

))
49.

(√
65, π − arctan

(
1
8

))
51.

(
13, π + arctan

(
12
5

))
53.

(
25, 2π − arctan

(
7
24

))

55.

(√
2
2

,
π

3

)
57. r = 6 sec(θ)

59. r = 7 csc(θ)

61. θ = 3π
4

63. θ = arctan(2)

65. r =
√
117

67. x = 1
cos(θ)−3 sin(θ)

69. r = 4 csc(θ) cot(θ)

71. r = 4 cos(θ)

73. r = 7 sin(θ)

75. r = 6 sin(θ)

77. x2 + y2 = 49

79. x2 + y2 = 2

81. y = −
√
3x

83. x = 0

85. 5x2 + 5y2 = x or
(
x−

1
10

)2
+ y2 =

1
100

87. x2 + y2 = −2y or x2 + (y+ 1)2 = 1

89. y =
1
12

91. y = −
√
5

93. y2 = −x

95.
(
x2 + 2x+ y2

)2
= x2 + y2

97. Any point of the form (0, θ) will work, e.g.

(0, π), (0,−117),
(
0,

23π
4

)
and (0, 0).

SecƟon 9.7
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1. z = 9+ 9i = 9
√
2 cis

(
π
4
)
, Re(z) = 9, Im(z) = 9, |z| = 9

√
2,

arg(z) =
{

π
4 + 2πk | k is an integer

}
and Arg(z) = π

4 .

3. z = 6i = 6 cis
(
π
2
)
, Re(z) = 0, Im(z) = 6, |z| = 6,

arg(z) =
{

π
2 + 2πk | k is an integer

}
and Arg(z) = π

2 .

5. z = −6
√
3+ 6i = 12 cis

( 5π
6
)
, Re(z) = −6

√
3, Im(z) = 6,

|z| = 12, arg(z) =
{ 5π

6 + 2πk | k is an integer
}
and

Arg(z) = 5π
6 .

7. z = −
√
3
2 − 1

2 i = cis
( 7π

6
)
, Re(z) = −

√
3
2 , Im(z) = − 1

2 ,
|z| = 1, arg(z) =

{ 7π
6 + 2πk | k is an integer

}
and

Arg(z) = − 5π
6 .

9. z = −5i = 5 cis
( 3π

2
)
, Re(z) = 0, Im(z) = −5, |z| = 5,

arg(z) =
{ 3π

2 + 2πk | k is an integer
}
and Arg(z) = − π

2 .

11. z = 6 = 6 cis (0), Re(z) = 6, Im(z) = 0, |z| = 6,
arg(z) = {2πk | k is an integer} and Arg(z) = 0.

13. z = 3+ 4i = 5 cis
(
arctan

( 4
3
))
, Re(z) = 3, Im(z) = 4,

|z| = 5, arg(z) =
{
arctan

( 4
3
)
+ 2πk | k is an integer

}
and

Arg(z) = arctan
( 4
3
)
.

15. z = −7+ 24i = 25 cis
(
π − arctan

( 24
7
))
, Re(z) = −7,

Im(z) = 24, |z| = 25,
arg(z) =

{
π − arctan

( 24
7
)
+ 2πk | k is an integer

}
and

Arg(z) = π − arctan
( 24

7
)
.

17. z = −12− 5i = 13 cis
(
π + arctan

( 5
12
))
, Re(z) = −12,

Im(z) = −5, |z| = 13,
arg(z) =

{
π + arctan

( 5
12
)
+ 2πk | k is an integer

}
and

Arg(z) = arctan
( 5
12
)
− π.

19. z = 4− 2i = 2
√
5 cis

(
arctan

(
− 1

2
))
, Re(z) = 4, Im(z) = −2,

|z| = 2
√
5, arg(z) =

{
arctan

(
− 1

2
)
+ 2πk | k is an integer

}
and

Arg(z) = arctan
(
− 1

2
)
= − arctan

( 1
2
)
.

21. z = 6 cis(0) = 6

23. z = 7
√
2 cis

(
π
4
)
= 7+ 7i

25. z = 4 cis
( 2π

3
)
= −2+ 2i

√
3

27. z = 9 cis (π) = −9

29. z = 7 cis
(
− 3π

4
)
= − 7

√
2

2 − 7
√
2

2 i

31. z = 1
2 cis

( 7π
4
)
=

√
2
4 − i

√
2
4

33. z = 8 cis
(

π
12
)
= 4
√

2+
√
3+ 4i

√
2−

√
3

35. z = 5 cis
(
arctan

( 4
3
))

= 3+ 4i

37. z = 15 cis (arctan (−2)) = 3
√
5− 6i

√
5

39. z = 50 cis
(
π − arctan

( 7
24
))

= −48+ 14i

41. Since z = − 3
√
3

2 + 3
2 i = 3 cis

( 5π
6
)
and

w = 3
√
2− 3i

√
2 = 6 cis

(
− π

4
)
, we have zw = 18 cis

( 7π
12
)

43. Since z = 3 cis
( 5π

6
)
and w = 6 cis

(
− π

4
)
, w

z = 2 cis
( 11π

12
)

45. Since z = 3 cis
( 5π

6
)
and w = 6 cis

(
− π

4
)
, w3 = 216 cis

(
− 3π

4
)

47. Since z = 3 cis
( 5π

6
)
and w = 6 cis

(
− π

4
)
, z3w2 = 972 cis(0)

49. Since z = 3 cis
( 5π

6
)
and w = 6 cis

(
− π

4
)
, w
z2 = 2

3 cis
(

π
12
)

51. Since z = 3 cis
( 5π

6
)
and w = 6 cis

(
− π

4
)
, w2

z3 = 4
3 cis(π)

53.
(
−2+ 2i

√
3
)3

= 64

55. (−3+ 3i)4 = −324

57.
( 5
2 + 5

2 i
)3

= − 125
4 + 125

4 i

59.
( 3
2 − 3

2 i
)3

= − 27
4 − 27

4 i

61.
(√

2
2 +

√
2
2 i
)4

= −1

63. (
√
3− i)5 = −16

√
3− 16i

65. Since z = 4i = 4 cis
(
π
2
)
we have

w0 = 2 cis
(
π
4
)
=

√
2+ i

√
2

w1 = 2 cis
( 5π

4
)
= −

√
2− i

√
2

67. Since z = 1+ i
√
3 = 2 cis

(
π
3
)
we have

w0 =
√
2 cis

(
π
6
)
=

√
6
2 +

√
2
2 i

w1 =
√
2 cis

( 7π
6
)
= −

√
6
2 −

√
2
2 i

69. Since z = 64 = 64 cis (0) we have
w0 = 4 cis (0) = 4
w1 = 4 cis

( 2π
3
)
= −2+ 2i

√
3

w2 = 4 cis
( 4π

3
)
= −2− 2i

√
3

71. Since z = i = cis
(
π
2
)
we have

w0 = cis
(
π
6
)
=

√
3
2 + 1

2 i

w1 = cis
( 5π

6
)
= −

√
3
2 + 1

2 i
w2 = cis

( 3π
2
)
= −i

73. Since z = 16 = 16 cis (0) we have
w0 = 2 cis (0) = 2
w1 = 2 cis

(
π
2
)
= 2i

w2 = 2 cis (π) = −2
w3 = 2 cis

( 3π
2
)
= −2i

75. Since z = 64 = 64 cis(0) we have
w0 = 2 cis(0) = 2
w1 = 2 cis

(
π
3
)
= 1+

√
3i

w2 = 2 cis
( 2π

3
)
= −1+

√
3i

w3 = 2 cis (π) = −2
w4 = 2 cis

(
− 2π

3
)
= −1−

√
3i

w5 = 2 cis
(
− π

3
)
= 1−

√
3i

77. Note: In the answers for w0 and w2 the first rectangular form
comes from applying the appropriate Sum or Difference IdenƟty
( π
12 = π

3 − π
4 and 17π

12 = 2π
3 + 3π

4 , respecƟvely) and the second
comes from using the Half-Angle IdenƟƟes.
w0 =

3√2 cis
(

π
12
)
= 3√2

(√
6+

√
2

4 + i
(√

6−
√
2

4

))
=

3√2
(√

2+
√
3

2 + i
√

2−
√
3

2

)
w1 =

3√2 cis
( 3π

4
)
= 3√2

(
−

√
2
2 +

√
2
2 i
)

w2 =
3√2 cis

( 17π
12
)
= 3√2

(√
2−

√
6

4 + i
(

−
√
2−

√
6

4

))
=

3√2
(√

2−
√
3

2 + i
√

2+
√
3

2

)
79.

81.

Chapter 10
SecƟon 10.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −5

9. 2

11. Limit does not exist.

13. 7

15. Limit does not exist.
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17.

h f(a+h)−f(a)
h

−0.1 9
−0.01 9
0.01 9
0.1 9

The limit seems to be exactly 9.

19.

h f(a+h)−f(a)
h

−0.1 −0.114943
−0.01 −0.111483
0.01 −0.110742
0.1 −0.107527

The limit is approx. −0.11.

21.

h f(a+h)−f(a)
h

−0.1 0.202027
−0.01 0.2002
0.01 0.1998
0.1 0.198026

The limit is approx. 0.2.

23.

h f(a+h)−f(a)
h

−0.1 −0.0499583
−0.01 −0.00499996
0.01 0.00499996
0.1 0.0499583

The limit is approx. 0.005.

SecƟon 10.2

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 6

9. Limit does not exist.

11. Not possible to know.

13. −45

15. −1

17. π

19. −0.000000015 ≈ 0

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 0

35. 1

37. 3

39. 1

SecƟon 10.3

1. The funcƟon approaches different values from the leŌ and right;
the funcƟon grows without bound; the funcƟon oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2
(b) 2
(c) 2
(d) 0
(e) 2
(f) 2
(g) 2
(h) Not defined

13. (a) 2
(b) −4
(c) Does not exist.
(d) 2

15. (a) 0
(b) 0
(c) 0
(d) 0
(e) 2
(f) 2
(g) 2
(h) 2

17. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

19. (a) 4
(b) 4
(c) 4
(d) 3

21. (a) −1
(b) 1
(c) Does not exist
(d) 0

23. 2/3

25. −9

SecƟon 10.4

1. Answers will vary.

3. A root of a funcƟon f is a value c such that f(c) = 0.

5. F

7. T

9. F
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11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes

(c) No; f(2) is not defined.

19. (a) Yes

(b) No; the leŌ and right hand limits at 1 are not equal.

21. (a) Yes

(b) No. limx→8 f(x) = 16/5 ̸= f(8) = 5.

23. (−∞,−2] ∪ [2,∞)

25. (−∞,−
√
6] ∪ [

√
6,∞)

27. (−∞,∞)

29. (0,∞)

31. (−∞, 0]

33. Yes, by the Intermediate Value Theorem.

35. We cannot say; the Intermediate Value Theorem only applies to
funcƟon values between−10 and 10; as 11 is outside this range,
we do not know.

37. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

39. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

41. (a) 20

(b) 25

(c) Limit does not exist

(d) 25

43. Answers will vary.

SecƟon 10.5

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞

(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; verƟcal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; verƟcal asymptotes at x = −1, 0.

23. No horizontal or verƟcal asymptotes.

25. ∞
27. −∞
29. (a) 2

(b) −3
(c) −3
(d) 1/3

31. 1

Chapter 11
SecƟon 11.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 2

9. g′(x) = 2x

11. r ′(x) = −1
x2

13. (a) y = 6
(b) x = −2

15. (a) y = −3x+ 4
(b) y = 1/3(x− 7)− 17

17. (a) y = −7(x+ 1) + 8
(b) y = 1/7(x+ 1) + 8

19. (a) y = −1(x− 3) + 1
(b) y = 1(x− 3) + 1

21. y = −0.099(x− 9) + 1

23. y = −0.05x+ 1

25. (a) ApproximaƟons will vary; they should match (c) closely.
(b) f ′(x) = −1/(x+ 1)2

(c) At (0, 1), slope is−1. At (1, 0.5), slope is−1/4.

27. ...

..

−6

.

−4

.

−2

.

2

.

−2

.

2

.

x

.

y
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29. ..... −1.

−0.5

.

0.5

.

1

.

−2π

.

−π

.

π

.

2π

.

x

.

y

31. Approximately 24.

33. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]

(d) [−5, 5]

SecƟon 11.2

1. Velocity

3. Linear funcƟons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. Ō/s2

13. (a) thousands of dollars per car

(b) It is likely that P(0) < 0. That is, negaƟve profit for not
producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

SecƟon 11.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2
2 (x− π

4 )−
√
2

Normal line: y = −2√
2
(x− π

4 )−
√
2

39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

SecƟon 11.4

1. F
3. T
5. F
7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x
(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)
(b) h′(s) = 4s+ 7
(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.
15. f ′(x) = sin x+ x cos x
17. g′(x) = −12

(x−5)2

19. h′(x) = − csc2 x− ex

21. (a) f ′(x) = (x+2)(4x3+6x2)−(x4+2x3)(1)
(x+2)2

(b) f(x) = x3 when x ̸= −2, so f ′(x) = 3x2.
(c) They are equal.

23. f ′(t) = 5t4(sec t+ et) + t5(sec t tan t+ et)
25. g′(x) = 0

27. f ′(x) = (t2 cos t+2)(2t sin t+t2 cos t)−(t2 sin t+3)(2t cos t−t2 sin t)
(t2 cos t+2)2

29. g′(x) = 2 sin x sec x+ 2x cos x sec x+ 2x sin x sec x tan x =
2 tan x+ 2x+ 2x tan2 x = 2 tan x+ 2x sec2 x

31. Tangent line: y = −(x− 3π
2 )− 3π

2 = −x
Normal line: y = (x− 3π

2 )− 3π
2 = x− 3π

33. Tangent line: y = −9x− 5
Normal line: y = 1/9x− 5

35. x = 0
37. x = −2, 0
39. f(4)(x) = −4 cos x+ x sin x
41. f(8) = 0

43. .....

−2

.

−1

.

1

.

2

.

−3
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3

.
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2

.
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.

4
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x

.

y
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45. .....−5. 5.

5

.

10

.
x

.

y

SecƟon 11.5

1. T

3. F

5. T

7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

11. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

13. g′(x) = 5 sec2(5x)

15. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)

17. f ′(x) = 2/x

19. g′(r) = ln 4 · 4r

21. g′(t) = 0

23. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

25. f ′(x) = 2x
2
(ln 3·3xx22x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

27. g′(t) = 5 cos(t2+3t) cos(5t−7)−(2t+3) sin(t2+3t) sin(5t−7)

29. Tangent line: y = 0
Normal line: x = 0

31. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

33. In both cases the derivaƟve is the same: 1/x.

35. (a) ◦ F/mph
(b) The sign would be negaƟve; when the wind is blowing at

10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Chapter 12
SecƟon 12.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: abs. min B: none C: abs. max D: none E: none

9. f ′(0) = 0 f ′(2) = 0

11. f ′(0) = 0 f ′(3.2) = 0 f ′(4) is undefined

13. f ′(0) is not defined

15. min: (−0.5, 3.75)
max: (2, 10)

17. min: (π/4, 3
√
2/2)

max: (π/2, 3)

19. min: (
√
3, 2

√
3)

max: (5, 28/5)

21. min: (π,−eπ)

max: (π/4,
√
2eπ/4
2 )

23. min: (1, 0)
max: (e, 1/e)

25. dy
dx =

y(y−2x)
x(x−2y)

27. 3x2 + 1

SecƟon 12.2

1. Answers will vary.

3. Answers will vary.

5. Increasing

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. domain=(−∞,∞)

c.p. at c = −2, 0;
increasing on (−∞,−2) ∪ (0,∞);
decreasing on (−2, 0);
rel. min at x = 0;
rel. max at x = −2.

17. domain=(−∞,∞)

c.p. at c = 1;
increasing on (−∞,∞);

19. domain=(−∞,−1) ∪ (−1, 1) ∪ (1,∞)

c.p. at c = 0;
decreasing on (−∞,−1) ∪ (−1, 0);
increasing on (0, 1) ∪ (1,∞);
rel. min at x = 0;

21. domain=(−∞, 0) ∪ (0,∞);
c.p. at c = 2, 6;
decreasing on (−∞, 0) ∪ (0, 2) ∪ (6,∞);
increasing on (2, 6);
rel. min at x = 2; rel. max at x = 6.

23. domain = (−∞,∞);
c.p. at c = −1, 1;
decreasing on (−1, 1);
increasing on (−∞,−1) ∪ (1,∞);
rel. min at x = 1;
rel. max at x = −1

25. c = ± cos−1(2/π)

SecƟon 12.3

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Graph and verify.

17. Possible points of inflecƟon: none; concave down on (−∞,∞)
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19. Possible points of inflecƟon: x = 1/2; concave down on
(−∞, 1/2); concave up on (1/2,∞)

21. Possible points of inflecƟon: x = (1/3)(2±
√
7); concave up on

((1/3)(2−
√
7), (1/3)(2+

√
7)); concave down on

(−∞, (1/3)(2−
√
7)) ∪ ((1/3)(2+

√
7),∞)

23. Possible points of inflecƟon: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflecƟon: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflecƟon: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. criƟcal values: x = −1, 1; no max/min

39. max: x = −2; min: x = 0

41. max: x = 0

43. f ′ has no maximal or minimal value

45. f ′ has a minimal value at x = 1/2

47. f ′ has a relaƟve max at: x = (1/3)(2+
√
7) relaƟve min at:

x = (1/3)(2−
√
7)

49. f ′ has a relaƟve max at x = −1/
√
3; relaƟve min at x = 1/

√
3

51. f ′ has a relaƟve min at x = 3π/4; relaƟve max at x = −π/4

53. f ′ has a relaƟve min at x = 1/
√
e3 = e−3/2

SecƟon 12.4

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts..

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. CriƟcal points: x = nπ/2−b
a , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

29. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posiƟve when y < 0 and is
negaƟve when y > 0. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

SecƟon 12.5

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 1/9x9 + C

11. t+ C

13. −1/(3t) + C

15. 2
√
x+ C

17. − cos θ + C

19. 5eθ + C

21. 5t
2 ln 5 + C

23. t6/6+ t4/4− 3t2 + C

25. eπx+ C

27. (a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. ExplanaƟons will vary.

29. 5ex + 5

31. tan x+ 4

33. 5/2x2 + 7x+ 3

35. 5ex − 2x

37. 2x4 ln2(2)+2x+x ln 2)(ln 32−1)+ln2(2) cos(x)−1−ln2(2)
ln2(2)

39. No answer provided.
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Index

∈, 2
/∈, 2
nth root

principal, 20
nth Roots of Unity, 483
nth root

of a complex number, 479, 480
principal, 250

u-subsƟtuƟon, 179
x-axis, 27
x-coordinate, 27
x-intercept, 46
y-axis, 27
y-coordinate, 27
y-intercept, 46

abscissa, 27
absolute maximum, 567
absolute minimum, 567
absolute value

definiƟon of, 124
inequality, 147
properƟes of, 124

acceleraƟon, 539
acidity of a soluƟon

pH, 273
acute angle, 312
alkalinity of a soluƟon

pH, 273
amplitude, 376, 431
angle

acute, 312
central angle, 314
complementary, 312
coterminal, 313
definiƟon, 311
degree, 311
iniƟal side, 312
measurement, 311
negaƟve, 312
obtuse, 312
of declinaƟon, 355
of depression, 355
of elevaƟon, 349
of inclinaƟon, 349
oriented, 312
posiƟve, 312
quadrantal, 313
radian measure, 314
reference, 325
right, 311

standard posiƟon, 313
straight, 311
supplementary, 312
terminal side, 312
vertex, 311

angle side opposite pairs, 438
angular frequency, 319
anƟderivaƟve, 594
applied domain of a funcƟon, 64
arccosecant

calculus friendly
definiƟon of, 400
graph of, 400
properƟes of, 400

trigonometry friendly
definiƟon of, 398
graph of, 397
properƟes of, 398

arccosine
definiƟon of, 392
graph of, 391
properƟes of, 392

arccotangent
definiƟon of, 395
graph of, 394
properƟes of, 395

arcsecant
calculus friendly
definiƟon of, 400
graph of, 400
properƟes of, 400

trigonometry friendly
definiƟon of, 398
graph of, 397
properƟes of, 398

arcsine
definiƟon of, 392
graph of, 391
properƟes of, 392

arctangent
definiƟon of, 395
graph of, 394
properƟes of, 395

argument
of a complex number
definiƟon of, 469
properƟes of, 473

of a funcƟon, 60
of a logarithm, 268
of a trigonometric funcƟon, 375

associaƟve property
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for funcƟon composiƟon, 233
asymptote

horizontal, 518
verƟcal, 517

asymptote
horizontal
formal definiƟon of, 195
intuiƟve definiƟon of, 195
locaƟon of, 199

slant
determinaƟon of, 202
formal definiƟon of, 201

slant (oblique), 201
verƟcal
formal definiƟon of, 195
intuiƟve definiƟon of, 195
locaƟon of, 196

average angular velocity, 318
average cost, 219
average cost funcƟon, 75
average rate of change, 119
axis of symmetry, 135

base, 17
bearings, 446
BisecƟon Method, 180, 512
BMI, body mass index, 225
Boyle’s Law, 222
buffer soluƟon, 306

Cartesian coordinate plane, 27
Cartesian coordinates, 27
central angle, 314
Chain Rule, 559

notaƟon, 563
change of base formulas, 279
Charles’s Law, 225
circular funcƟon, 340
cis(θ), 473
CofuncƟon IdenƟƟes, 360
common base, 263
common logarithm, 265
commutaƟve property

funcƟon composiƟon does not have, 233
complementary angles, 312
Complex FactorizaƟon Theorem, 186
complex number

nth root, 479, 480
nth Roots of Unity, 483
argument
definiƟon of, 469
properƟes of, 473

complex conjugate
definiƟon of, 37

conjugate
properƟes of, 37

definiƟon of, 4, 35, 469
imaginary part, 469
imaginary unit, i, 35
modulus

definiƟon of, 469
properƟes of, 471

polar form
cis-notaƟon, 474

principal argument, 469
real part, 469
rectangular form, 469
set of, 4

complex numbers, 35
complex plane, 469
composite funcƟon

definiƟon of, 227
properƟes of, 233

compound interest, 299
concave down, 581
concave up, 581
concavity, 581

inflecƟon point, 581
test for, 581

conjugate
complex conjugate
definiƟon of, 37

conjugate of a complex number
properƟes of, 37

Conjugate Pairs Theorem, 187
constant funcƟon

as a horizontal line, 115
formal definiƟon of, 85
intuiƟve definiƟon of, 85

Constant MulƟple Rule
of derivaƟves, 544
of integraƟon, 597

constant of proporƟonality, 222
constant term of a polynomial, 156
conƟnuous, 159
conƟnuous funcƟon, 508

properƟes, 510
conƟnuously compounded interest, 301
coordinates

Cartesian, 27
polar, 455
rectangular, 455

cosecant
graph of, 381
of an angle, 340, 348
properƟes of, 383

cosine
graph of, 374
of an angle, 322, 333, 340
properƟes of, 374

cost
average, 75, 219
fixed, start-up, 75
variable, 117

cost funcƟon, 75
cotangent

graph of, 385
of an angle, 340, 348
properƟes of, 387

coterminal angle, 313



Coulomb’s Law, 225
criƟcal number, 569
criƟcal point, 569
curve sketching, 588

decibel, 272
decreasing funcƟon, 574

finding intervals, 575
strictly, 574

decreasing funcƟon
formal definiƟon of, 85
intuiƟve definiƟon of, 85

degree measure, 311
degree of a polynomial, 156
DeMoivre’s Theorem, 475
dependent variable, 60
depreciaƟon, 263
derivaƟve

acceleraƟon, 539
as a funcƟon, 531
at a point, 527
basic rules, 543
Chain Rule, 559, 563
Constant MulƟple Rule, 544
Constant Rule, 543
exponenƟal funcƟons, 563
First Deriv. Test, 577
Generalized Power Rule, 559
higher order, 545
interpretaƟon, 546

interpretaƟon, 537
moƟon, 539
normal line, 529
notaƟon, 531, 545
Power Rule, 543, 554
Product Rule, 549
QuoƟent Rule, 551
Second Deriv. Test, 584
Sum/Difference Rule, 544
tangent line, 527
trigonometric funcƟons, 553
velocity, 539

diagram
Venn Diagram, 3

Difference IdenƟty
for cosine, 358, 363
for sine, 361, 363
for tangent, 363

difference quoƟent, 72
differenƟable, 527
direct variaƟon, 222
discriminant

of a quadraƟc equaƟon, 138
trichotomy, 139

distance
definiƟon, 30
distance formula, 31

domain
applied, 64
definiƟon of, 55

implied, 62
Double Angle IdenƟƟes, 363

earthquake
Richter Scale, 272

empty set, 3, 4
end behaviour

of f(x) = axn, n even, 159
of f(x) = axn, n odd, 159
of a funcƟon graph, 158
polynomial, 161

equaƟon
graph of, 45

even funcƟon, 82
Even/Odd IdenƟƟes, 358
exponent, 17
exponenƟal funcƟon

algebraic properƟes of, 275
change of base formula, 279
common base, 263
definiƟon of, 262
graphical properƟes of, 263
inverse properƟes of, 274
natural base, 263
one-to-one properƟes of, 274
solving equaƟons with, 283

extended interval notaƟon, 351
extrema

absolute, 567
and First Deriv. Test, 577
and Second Deriv. Test, 584
finding, 569
relaƟve, 568

Extreme Value Theorem, 567
extreme values, 567

Factor Theorem, 167
factorizaƟon

over the complex numbers, 186
First DerivaƟve Test, 577
fixed cost, 75
floor funcƟon, 508
frequency

angular, 319, 431
of a sinusoid, 377
ordinary, 318, 431

funcƟon
(absolute) maximum, 86
(absolute, global) minimum, 86
absolute value, 124
algebraic, 251
argument, 60
arithmeƟc, 70
as a process, 60, 238
average cost, 75
circular, 340
composite
definiƟon of, 227
properƟes of, 233

constant, 85, 115



conƟnuous, 159
cost, 75
decreasing, 85
definiƟon as a relaƟon, 53
dependent variable of, 60
difference, 70
difference quoƟent, 72
domain, 55
even, 82
exponenƟal, 262
Fundamental Graphing Principle, 80
idenƟty, 123
increasing, 85
independent variable of, 60
inverse
definiƟon of, 238
properƟes of, 239
solving for, 243
uniqueness of, 239

linear, 115
local (relaƟve) maximum, 86
local (relaƟve) minimum, 86
logarithmic, 265
notaƟon, 60
odd, 82
one-to-one, 240
periodic, 373
piecewise-defined, 66
polynomial, 155
price-demand, 75
product, 70
profit, 75
quadraƟc, 133
quoƟent, 70
range, 55
raƟonal, 193
revenue, 75
smooth, 159
sum, 70
transformaƟon of graphs, 94, 104
zero, 81

fundamental cycle
of y = cos(x), 374

Fundamental Graphing Principle
for equaƟons, 45
for funcƟons, 80

Fundamental Theorem of Algebra, 185

Generalized Power Rule, 559
graph

hole in, 196
horizontal scaling, 102
horizontal shiŌ, 96
of a funcƟon, 80
of a relaƟon, 43
of an equaƟon, 45
raƟonal funcƟon, 206
reflecƟon about an axis, 98
transformaƟons, 104
verƟcal scaling, 101

verƟcal shiŌ, 95
greatest integer funcƟon, 69
growth model

limited, 304
logisƟc, 304
uninhibited, 301

Half-Angle Formulas, 366
harmonic moƟon, 432
Henderson-Hasselbalch EquaƟon, 282
Heron’s Formula, 450
hole

in a graph, 196
locaƟon of, 196

Hooke’s Law, 222
horizontal asymptote

formal definiƟon of, 195
intuiƟve definiƟon of, 195
locaƟon of, 199

horizontal line, 45
Horizontal Line Test (HLT), 240

idenƟty
funcƟon, 234

imaginary axis, 469
imaginary part of a complex number, 469
imaginary unit, i, 35
implied domain of a funcƟon, 62
increasing funcƟon, 574

finding intervals, 575
strictly, 574

increasing funcƟon
formal definiƟon of, 85
intuiƟve definiƟon of, 85

indefinite integral, 594
independent variable, 60
indeterminate form, 485, 518
index of a root, 20, 250
inequality

absolute value, 147
graphical interpretaƟon, 146
quadraƟc, 149
sign diagram, 148

inflecƟon point, 305, 582
informaƟon entropy, 306
iniƟal side of an angle, 312
iniƟal value problem, 598
instantaneous rate of change, 119, 301
integer

definiƟon of, 4
greatest integer funcƟon, 69
set of, 4

integraƟon
indefinite, 594
notaƟon, 595
Power Rule, 598
Sum/Difference Rule, 597

intercept
definiƟon of, 46
locaƟon of, 47



interest
compound, 299
compounded conƟnuously, 301
simple, 298

Intermediate Value Theorem, 511
Intermediate Value Theorem

polynomial zero version, 160
interrobang, 205
intersecƟon of two sets, 2
interval

definiƟon of, 6
notaƟon for, 6
notaƟon, extended, 351

inverse
of a funcƟon
definiƟon of, 238
properƟes of, 239
solving for, 243
uniqueness of, 239

inverse variaƟon, 222
inverƟbility

funcƟon, 241
inverƟble

funcƟon, 238
irraƟonal number

definiƟon of, 4
set of, 4

irreducible quadraƟc, 187

joint variaƟon, 222

Kepler’s Third Law of Planetary MoƟon, 225

Law of Cosines, 447
Law of Sines, 439
leading coefficient of a polynomial, 156
leading term of a polynomial, 156
limit

at infinity, 518
definiƟon, 490
difference quoƟent, 489
does not exist, 487, 503
indeterminate form, 485, 518
informal definiƟon, 490
leŌ handed, 502
of infinity, 516
one sided, 502
properƟes, 492
pseudo-definiƟon, 486
right handed, 502
Squeeze Theorem, 495

line
horizontal, 45
linear funcƟon, 115
parallel, 123
perpendicular, 123
point-slope form, 114
slope of, 111
slope-intercept form, 114
verƟcal, 45

linear funcƟon, 115

local maximum
formal definiƟon of, 86
intuiƟve definiƟon of, 86

local minimum
formal definiƟon of, 86
intuiƟve definiƟon of, 86

logarithm
algebraic properƟes of, 275
change of base formula, 279
common, 265
general, “base b”, 265
graphical properƟes of, 266
inverse properƟes of, 274
natural, 265
one-to-one properƟes of, 274
solving equaƟons with, 291

logarithmic scales, 272
logisƟc growth, 304

mathemaƟcal model, 64
maximum

absolute, 567
and First Deriv. Test, 577
and Second Deriv. Test, 584
relaƟve/local, 568

maximum
formal definiƟon of, 86
intuiƟve definiƟon of, 86

measure of an angle, 311
midpoint

definiƟon of, 32
midpoint formula, 32

minimum
absolute, 567
and First Deriv. Test, 577, 584
relaƟve/local, 568

minimum
formal definiƟon of, 86
intuiƟve definiƟon of, 86

model
mathemaƟcal, 64

modulus of a complex number
definiƟon of, 469
properƟes of, 471

mulƟplicity
effect on the graph of a polynomial, 163, 165
of a zero, 163

natural base, 263
natural logarithm, 265
natural number

definiƟon of, 4
set of, 4

negaƟve angle, 312
Newton’s Law of Cooling, 264, 303
Newton’s Law of Universal GravitaƟon, 222
normal line, 529
numbers

complex, 35

oblique asymptote, 201



obtuse angle, 312
odd funcƟon, 82
Ohm’s Law, 222
one-to-one funcƟon, 240
ordered pair, 27
ordinary frequency, 318
ordinate, 27
oriented angle, 312
oriented arc, 316
origin, 27

parabola
axis of symmetry, 135
graph of a quadraƟc funcƟon, 133
vertex, 133
vertex formulas, 137

password strength, 306
period

circular moƟon, 319
of a funcƟon, 373
of a sinusoid, 431

periodic funcƟon, 373
pH, 273
phase, 377, 431
phase shiŌ, 376, 431
pi, π, 314
piecewise-defined funcƟon, 66
point of diminishing returns, 305
point of inflecƟon, 582
point-slope form of a line, 114
polar coordinates

conversion into rectangular, 461
definiƟon of, 455
equivalent representaƟons of, 460
polar axis, 455
pole, 455

polar form of a complex number, 474
polynomial division

dividend, 166
divisor, 166
factor, 166
quoƟent, 166
remainder, 166
syntheƟc division, 168

polynomial funcƟon
completely factored
over the complex numbers, 187
over the real numbers, 187

constant term, 156
definiƟon of, 155
degree, 156
end behaviour, 158
leading coefficient, 156
leading term, 156
zero
mulƟplicity, 163

posiƟve angle, 312
Power ReducƟon Formulas, 365
Power Rule

differenƟaƟon, 543, 549, 554

integraƟon, 598
power rule

for absolute value, 124
for complex numbers, 475
for exponenƟal funcƟons, 275
for logarithms, 275
for radicals, 21, 250
for the modulus of a complex number, 471

price-demand funcƟon, 75
principal, 298
principal nth root, 20
principal nth root, 250
principal argument of a complex number, 469
product rule

for absolute value, 124
for complex numbers, 475
for exponenƟal funcƟons, 275
for logarithms, 275
for radicals, 21, 250
for the modulus of a complex number, 471

Product to Sum Formulas, 368
profit funcƟon, 75
projecƟon

x−axis, 55
y−axis, 55

Pythagorean Conjugates, 346
Pythagorean IdenƟƟes, 344

quadrantal angle, 313
quadrants, 29
quadraƟc formula, 137
quadraƟc funcƟon

definiƟon of, 133
general form, 134
inequality, 149
irreducible quadraƟc, 187
standard form, 134

QuoƟent IdenƟƟes, 341
QuoƟent Rule, 551
quoƟent rule

for absolute value, 124
for complex numbers, 475
for exponenƟal funcƟons, 275
for logarithms, 275
for radicals, 21, 250
for the modulus of a complex number, 471

radian measure, 314
radical

properƟes of, 21, 250
radicand, 20, 250
radioacƟve decay, 302
range

definiƟon of, 55
rate of change

average, 119
instantaneous, 119, 301
slope of a line, 113

raƟonal exponent, 21, 251
raƟonal funcƟons, 193



raƟonal number
definiƟon of, 4
set of, 4

RaƟonal Zeros Theorem, 176
ray

definiƟon of, 311
iniƟal point, 311

real axis, 469
Real FactorizaƟon Theorem, 188
real number

definiƟon of, 3, 4
set of, 3, 4

real part of a complex number, 469
Reciprocal IdenƟƟes, 341
rectangular coordinates

also known as Cartesian coordinates, 455
conversion into polar, 461

rectangular form of a complex number, 469
reference angle, 325
Reference Angle Theorem

for cosine and sine, 326
for the circular funcƟons, 342

reflecƟon
of a funcƟon graph, 98
of a point, 30

relaƟon
algebraic descripƟon, 44
definiƟon, 43
Fundamental Graphing Principle, 45

relaƟvely prime, 13
Remainder Theorem, 167
revenue funcƟon, 75
Richter Scale, 272
right angle, 311
root

index, 20, 250
radicand, 20, 250

Roots of Unity, 483

secant
graph of, 380
of an angle, 340, 348
properƟes of, 383

secant line, 119
Second DerivaƟve Test, 584
set

definiƟon of, 1
empty, 3, 4
exclusion, 2
inclusion, 2
intersecƟon, 2
roster method, 1
set-builder notaƟon, 1
sets of numbers, 4
union, 2
verbal descripƟon, 1

set-builder notaƟon, 1
Side-Angle-Side triangle, 447
Side-Side-Side triangle, 447
sign diagram

algebraic funcƟon, 252
for quadraƟc inequality, 148
polynomial funcƟon, 161
raƟonal funcƟon, 206

simple interest, 298
sine

graph of, 374
of an angle, 322, 333, 340
properƟes of, 374

sinusoid
amplitude, 376, 431
baseline, 431
frequency
angular, 431
ordinary, 431

graph of, 376, 431
period, 431
phase, 431
phase shiŌ, 376, 431
properƟes of, 431
verƟcal shiŌ, 431

slant asymptote, 201
slant asymptote

determinaƟon of, 202
formal definiƟon of, 201

slope
definiƟon, 111
of a line, 111
rate of change, 113

slope-intercept form of a line, 114
smooth, 159
sound intensity level

decibel, 272
Squeeze Theorem, 495
standard posiƟon of an angle, 313
start-up cost, 75
straight angle, 311
subset

definiƟon of, 2
Sum IdenƟty

for cosine, 358, 363
for sine, 361, 363
for tangent, 363

Sum to Product Formulas, 368
Sum/Difference Rule

of derivaƟves, 544
of integraƟon, 597

supplementary angles, 312
symmetry

about the x-axis, 29
about the y-axis, 29
about the origin, 29
tesƟng a funcƟon graph for, 81
tesƟng an equaƟon for, 47

syntheƟc division tableau, 168

tangent
graph of, 385
of an angle, 340, 348
properƟes of, 387



tangent line, 527
terminal side of an angle, 312
theorem

Fundamental Theorem of Algebra, 185
transformaƟon

non-rigid, 100
rigid, 100

transformaƟons of funcƟon graphs, 94, 104
Triangle Inequality, 132
trichotomy, 6

uninhibited growth, 301
union of two sets, 2
Unit Circle

important points, 327

variable
dependent, 60
independent, 60

variable cost, 117
variaƟon

constant of proporƟonality, 222
direct, 222
inverse, 222
joint, 222

velocity, 538
velocity

average angular, 318
Venn Diagram, 3
vertex

of a parabola, 133
of an angle, 311

verƟcal asymptote
formal definiƟon of, 195
intuiƟve definiƟon of, 195
locaƟon of, 196

verƟcal line, 45
VerƟcal Line Test (VLT), 53

wrapping funcƟon, 316

zero
mulƟplicity of, 163
of a funcƟon, 81



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes

sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√
1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√
1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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