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PÙ�¥���
One of the challenges with a course like Math 1010 is finding a suitable text-

book. The course covers material from two topics – Precalculus and Calculus
– that are usually offered as separate courses, with separate texts. Before the
iniƟal offering of Math 1010, I reviewed a number of commercially available
opƟons, but these all had two things in common: they did not quite meet our
needs, and they were all very expensive (some were as much as $400).

Since wriƟng a new textbook from scratch is a huge undertaking, requiring
resources (like Ɵme) we simply did not have, I chose to explore non-commercial
opƟons. This took a bit of searching, since non-commercial texts, while inexpen-
sive (or free), are of varying quality. Fortunately, there are some decent texts
out there. Unfortunately, I couldn’t find a single text that covered all of the ma-
terial we need for Math 1010.

To get around this problem, I have selected two textbooks as our primary
sources for the course. The first is Precalculus, version 3, by Carl SƟtz and Jeff
Zeager. The second is APEX Calculus I, version 3.0, by Hartman et al. (As of
June, 2018, we have updated to version 4.0!) Both texts have two very useful
advantages. First, they’re both free (as in beer): you can download either text
in PDF format from the authors’ web pages. Second, they’re also open source
texts (that is, free, as in speech). Both books are wriƩen using the LATEXmarkup
language, as is typical in mathemaƟcs publishing. What is not typical is that the
authors of both texts make their source code freely available, allowing others
(such as myself) to edit and customize the books as they see fit.

In the first iteraƟon of this project (Fall 2015), I was only able to edit each text
individually for length and content, resulƟng in two separate textbooks forMath
1010. For Fall 2016, I had enough Ɵme to take the content of the Precalculus
textbook and adapt its source code to be compaƟble with the formaƫng of the
Calculus textbook, allowingme to produce a single textbook for all ofMath 1010.

For Fall 2017, I produced thismuch shortened, abridged version of the “Com-
plete (and Current) EdiƟon” produced the previous year. That version has more
material than an instructor can reasonably expect to cover in one semester. The
unabridged version is sƟll available for a student who wants a more complete
treatment of the precalculus material in the text.

The book is very much a work in progress, and I will be ediƟng it regularly.
Feedback is always welcome.
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One thing that student evaluaƟons teach
us is that any given MathemaƟcs instruc-
tor can be simultaneously the best and
worst teacher ever, depending on who is
compleƟng the evaluaƟon.

1: T«� R��½ NçÃ��ÙÝ
1.1 Some Basic Set Theory NoƟons

While the authors would like nothingmore than to delve quickly and deeply into
the sheer excitement that is Precalculus, experience has taught us that a brief
refresher on some basic noƟons is welcome, if not completely necessary, at this
stage. To that end, we present a brief summary of ‘set theory’ and some of
the associated vocabulary and notaƟons we use in the text. Like all good Math
books, we begin with a definiƟon.

DefiniƟon 1.1.1 Set

A set is a well-defined collecƟon of objects which are called the ‘ele-
ments’ of the set. Here, ‘well-defined’ means that it is possible to deter-
mine if something belongs to the collecƟon or not, without prejudice.

For example, the collecƟon of leƩers that make up the word “pronghorns”
is well-defined and is a set, but the collecƟon of the worst math teachers in the
world is not well-defined, and so is not a set. In general, there are three ways
to describe sets. They are

Key Idea 1.1.1 Ways to Describe Sets

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a leŌ brace ‘{’, list each element
of the set only once and then end with a right brace ‘}’.

3. The Set-Builder Method: A combinaƟon of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of leƩers thatmake
up the word “pronghorns”. A roster descripƟon of Swould be {p, r, o, n, g, h, s}.
Note that we listed ‘r’, ‘o’, and ‘n’ only once, even though they appear twice in
“pronghorns.” Also, the order of the elements doesn’tmaƩer, so {o, n, p, r, g, s, h}
is also a roster descripƟon of S. A set-builder descripƟon of S is:

{x | x is a leƩer in the word “pronghorns”.}

The way to read this is: ‘The set of elements x such that x is a leƩer in the
word “pronghorns.”’ In each of the above cases, we may use the familiar equals
sign ‘=’ andwrite S = {p, r, o, n, g, h, s}or S = {x | x is a leƩer in the word “pronghorns”.}.
Clearly r is in S and q is not in S. We express these senƟments mathemaƟcally
by wriƟng r ∈ S and q /∈ S.

More precisely, we have the following.



Chapter 1 The Real Numbers

DefiniƟon 1.1.2 NotaƟon for set inclusion

Let A be a set.

• If x is an element of A then we write x ∈ A which is read ‘x is in A’.

• If x is not an element of A then we write x /∈ A which is read ‘x is
not in A’.

Now let’s consider the setC = {x | x is a consonant in the word “pronghorns”}.
A roster descripƟon of C is C = {p, r, n, g, h, s}. Note that by construcƟon, every
element of C is also in S. We express this relaƟonship by staƟng that the set C
is a subset of the set S, which is wriƩen in symbols as C ⊆ S. The more formal
definiƟon is given below.

DefiniƟon 1.1.3 Subset

Given sets A and B, we say that the set A is a subset of the set B andwrite
‘A ⊆ B’ if every element in A is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but
o /∈ C. AddiƟonally, the set of vowels V = {a, e, i, o, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V, either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p, r, o, n, g, h, s, a, e, i, u}. Then S ⊆ U and V ⊆ U. The
set U we have built is called the union of the sets S and V and is denoted S ∪ V.
Furthermore, S and V aren’t completely different sets since they both contain
the leƩer ‘o.’ (Since the word ‘different’ could be ambiguous, mathemaƟcians
use the word disjoint to refer to two sets that have no elements in common.)
The intersecƟon of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersecƟon of S and V is {o}, wriƩen S ∩ V = {o}.
We formalize these ideas below.

DefiniƟon 1.1.4 IntersecƟon and Union

Suppose A and B are sets.

• The intersecƟon of A and B is A ∩ B = {x | x ∈ A and x ∈ B}

• The union of A and B is A ∪ B = {x | x ∈ A or x ∈ B (or both)}

The key words in DefiniƟon 1.1.4 to focus on are the conjuncƟons: ‘intersec-
Ɵon’ corresponds to ‘and’ meaning the elements have to be in both sets to be
in the intersecƟon, whereas ‘union’ corresponds to ‘or’ meaning the elements
have to be in one set, or the other set (or both). In other words, to belong to
the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {p, r, n, g, h, s, a, e, i, o, u}.
When it comes to their intersecƟon, however, we run into a bit of notaƟonal

2



The full extent of the empty set’s role will
not be explored in this text, but it is of fun-
damental importance in Set Theory. In
fact, the empty set can be used to gener-
ate numbers - mathemaƟcians can create
something from nothing! If you’re inter-
ested, read about the von Neumann con-
strucƟon of the natural numbers or con-
sider signing up for Math 2000.

p r n g h s o a e i u

S V

C

U

Figure 1.1.1: A Venn diagram for C, S, and
V

A B

U

Sets A and B.

A ∩ B

A B

U

A ∩ B is shaded.

A ∪ B

A B

U

A ∪ B is shaded.

Figure 1.1.2: Venn diagrams for intersec-
Ɵon and union
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awkwardness since C and V have no elements in common. While we could write
C ∩ V = {}, this sort of thing happens oŌen enough that we give the set with
no elements a name.

DefiniƟon 1.1.5 Empty set

The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x | x ̸= x}.

As promised, the empty set is the set containing no elements since nomaƩer
what ‘x’ is, ‘x = x.’ Like the number ‘0,’ the empty set plays a vital role in math-
emaƟcs. We introduce it here more as a symbol of convenience as opposed to
a contrivance. Using this new bit of notaƟon, we have for the sets C and V
above that C∩V = ∅. A nice way to visualize relaƟonships between sets and set
operaƟons is to draw a Venn Diagram. A Venn Diagram for the sets S, C and V is
drawn in Figure 1.1.1.

In Figure 1.1.1 we have three circles - one for each of the sets C, S and V. We
visualize the area enclosed by each of these circles as the elements of each set.
Here, we’ve spelled out the elements for definiƟveness. NoƟce that the circle
represenƟng the set C is completely inside the circle represenƟng S. This is a
geometric way of showing that C ⊆ S. Also, noƟce that the circles represenƟng
S and V overlap on the leƩer ‘o’. This common region is how we visualize S ∩ V.
NoƟce that since C∩V = ∅, the circles which represent C and V have no overlap
whatsoever.

All of these circles lie in a rectangle labelledU (for ‘universal’ set). A universal
set contains all of the elements under discussion, so it could always be taken as
the union of all of the sets in quesƟon, or an even larger set. In this case, we
could take U = S ∪ V or U as the set of leƩers in the enƟre alphabet. The usual
triptych of Venn Diagrams indicaƟng generic sets A and B along with A ∩ B and
A ∪ B is given below.

(The reader may well wonder if there is an ulƟmate universal set which con-
tains everything. The short answer is ‘no’. Our definiƟon of a set turns out to
be overly simplisƟc, but correcƟng this takes us well beyond the confines of
this course. If you want the longer answer, you can begin by reading about
Russell’s Paradox on Wikipedia.)

1.1.1 Sets of Real Numbers
The playground formost of this text is the set of Real Numbers. Many quanƟƟes
in the ‘real world’ can be quanƟfied using real numbers: the temperature at a
given Ɵme, the revenue generated by selling a certain number of products and
the maximum populaƟon of Sasquatch which can inhabit a parƟcular region are
just three basic examples. A succinct, but nonetheless incomplete definiƟon of
a real number is given below.

DefiniƟon 1.1.6 The real numbers

A real number is any number which possesses a decimal representaƟon.
The set of real numbers is denoted by the character R.
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An example of a number with a
repeaƟng decimal expansion is
a = 2.13234234234 . . .. This is ra-
Ɵonal since 100a = 213.2342342342...,
and 100000a = 213234.234234... so
99900a = 100000a − 100a = 213021.
This gives us the raƟonal expression
a =

213021
99900

.

The classic example of an irraƟonal num-
ber is the number π, but numbers like

√
2

and 0.101001000100001 . . . are other
fine representaƟves.

Chapter 1 The Real Numbers

Certain subsets of the real numbers are worthy of note and are listed below.
In more advanced courses like Analysis, you learn that the real numbers can be
constructed from the raƟonal numbers, which in turn can be constructed from
the integers (which themselves come from the natural numbers, which in turn
can be defined as sets...).

DefiniƟon 1.1.7 Sets of Numbers

1. The Empty Set: ∅ = {} = {x | x ̸= x}. This is the set with no elements.
Like the number ‘0,’ it plays a vital role in mathemaƟcs.

2. The Natural Numbers: N = {1, 2, 3, . . .} The periods of ellipsis here indi-
cate that the natural numbers contain 1, 2, 3, ‘and so forth’.

3. The Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

4. The RaƟonal Numbers: Q =
{ a

b | a ∈ Z and b ∈ Z
}
. RaƟonal numbers

are the raƟos of integers (provided the denominator is not zero!) It turns
out that another way to describe the raƟonal numbers is:

Q = {x | x possesses a repeaƟng or terminaƟng decimal representaƟon.}

5. The Real Numbers: R = {x | x possesses a decimal representaƟon.}

6. The IrraƟonal Numbers: Real numbers that are not raƟonal are called ir-
raƟonal. As a set, we have {x ∈ R | x /∈ Q}. (There is no standard symbol
for this set.) Every irraƟonal number has a decimal expansion which nei-
ther repeats nor terminates.

7. The Complex Numbers: C = {a+bi | a,b ∈ R and i =
√
−1} (Wewill not

deal with complex numbers in Math 1010, although they usually make an
appearance in Math 1410.)

It is important to note that every natural number is a whole number is an
integer. Each integer is a raƟonal number (take b = 1 in the above definiƟon for
Q) and the raƟonal numbers are all real numbers, since they possess decimal
representaƟons (via long division!). If we take b = 0 in the above definiƟon of
C, we see that every real number is a complex number. In this sense, the sets
N, Z, Q, R, and C are ‘nested’ like Matryoshka dolls. More formally, these sets
form a subset chain: N ⊆ Z ⊆ Q ⊆ R. The reader is encouraged to sketch a
Venn Diagram depicƟng R and all of the subsets menƟoned above.

As youmay recall, weoŌen visualize the set of real numbersR as a linewhere
each point on the line corresponds to one and only one real number. Given two
different real numbers a and b, we write a < b if a is located to the leŌ of b on
the number line, as shown in Figure 1.1.3.

While this noƟon seems innocuous, it is worth poinƟng out that this conven-
Ɵon is rooted in two deep properƟes of real numbers. The first property is that
R is complete. This means that there are no ‘holes’ or ‘gaps’ in the real number
line. (This intuiƟve feel for what it means to be ‘complete’ is as good as it gets at
this level. Completeness does get a muchmore precise meaning later in courses
like Analysis and Topology.) Another way to think about this is that if you choose

4
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a b

Figure 1.1.3: The real number line with
two numbers a and b, where a < b.

The Law of Trichotomy, strictly speaking,
is an axiom of the real numbers: a ba-
sic requirement that we assume to be
true. However, in any construcƟon of
the real numbers, such as the method of
Dedekind cuts, it is necessary to prove
that the Law of Trichotomy is saƟsfied.

1.1 Some Basic Set Theory NoƟons

any two disƟnct (different) real numbers, and look between them, you’ll find a
solid line segment (or interval) consisƟng of infinitely many real numbers.

The next result tells us what types of numbers we can expect to find.

Theorem 1.1.1 Density Property ofQ in R

Between any two disƟnct real numbers, there is at least one raƟonal
number and irraƟonal number. It then follows that between any two
disƟnct real numbers there will be infinitely many raƟonal and irraƟonal
numbers.

The root word ‘dense’ here communicates the idea that raƟonals and irra-
Ɵonals are ‘thoroughly mixed’ into R. The reader is encouraged to think about
how one would find both a raƟonal and an irraƟonal number between, say,
0.9999 and 1. Once you’ve done that, ask yourself whether there is any dif-
ference between the numbers 0.9 and 1.

The second property R possesses that lets us view it as a line is that the set
is totally ordered. This means that given any two real numbers a and b, either
a < b, a > b or a = b which allows us to arrange the numbers from least
(leŌ) to greatest (right). You may have heard this property given as the ‘Law of
Trichotomy’.

DefiniƟon 1.1.8 Law of Trichotomy

If a and b are real numbers then exactly one of the following statements
is true:
a < b a > b a = b

The reader is probably familiar with the relaƟons a < b and a > b in the
context of solving inequaliƟes. The order properƟes of the real number system
can be summarized as a collecƟon of rules for manipulaƟng inequaliƟes, as fol-
lows:

Key Idea 1.1.2 Rules for inequaliƟes

Let a, b, and c be any real numbers. Then:

• If a < b, then a+ c < b+ c.

• If a < b, then a− c < b− c.

• If a < b and c > 0, then ac < bc.

• If a < b and c < 0, then ac > bc. (In parƟcular,−a > −b.)

• If 0 < a < b, then
1
b
<

1
a
.

Note the emphasis in rule #3 above: cauƟonmust always be exercised when
manipulaƟng inequaliƟes: mulƟplying by a negaƟve number reverses the sign.

5
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The importance of understanding inter-
val notaƟon in Calculus cannot be over-
stated. If you don’t find yourself geƫng
the hang of it through repeated use, you
may need to take the Ɵme to just memo-
rize this chart.

Chapter 1 The Real Numbers

This is especially important to remember when dealing with inequaliƟes involv-
ing variable quanƟƟes, for example, with raƟonal inequaliƟes (see Example 3.3.5).

Segments of the real number line are called intervals of numbers. Below
is a summary of the so-called interval notaƟon associated with given sets of
numbers. For intervals with finite endpoints, we list the leŌ endpoint, then the
right endpoint. We use square brackets, ‘[’ or ‘]’, if the endpoint is included in the
interval and use a filled-in or ‘closed’ dot to indicate membership in the interval.
Otherwise, we use parentheses, ‘(’ or ‘)’ and an ‘open’ circle to indicate that the
endpoint is not part of the set. If the interval does not have finite endpoints,
we use the symbols−∞ to indicate that the interval extends indefinitely to the
leŌ and ∞ to indicate that the interval extends indefinitely to the right. Since
infinity is a concept, and not a number, we always use parentheses when using
these symbols in interval notaƟon, and use an appropriate arrow to indicate that
the interval extends indefinitely in one (or both) direcƟons.

DefiniƟon 1.1.9 Interval NotaƟon

Let a and b be real numbers with a < b.
Set of Real Numbers Interval NotaƟon Region on the Real Number Line

{x | a < x < b} (a, b)
a b

{x | a ≤ x < b} [a, b)
a b

{x | a < x ≤ b} (a, b]
a b

{x | a ≤ x ≤ b} [a, b]
a b

{x | x < b} (−∞, b)
b

{x | x ≤ b} (−∞, b]
b

{x | x > a} (a,∞)
a

{x | x ≥ a} [a,∞)
a

R (−∞,∞)

As you can glean from the table, for intervals with finite endpoints we start
by wriƟng ‘leŌ endpoint, right endpoint’. We use square brackets, ‘[’ or ‘]’, if the
endpoint is included in the interval. This corresponds to a ‘filled-in’ or ‘closed’
dot on the number line to indicate that the number is included in the set. Oth-
erwise, we use parentheses, ‘(’ or ‘)’ that correspond to an ‘open’ circle which
indicates that the endpoint is not part of the set. If the interval does not have
finite endpoints, we use the symbol −∞ to indicate that the interval extends
indefinitely to the leŌ and the symbol ∞ to indicate that the interval extends
indefinitely to the right. Since infinity is a concept, and not a number, we al-
ways use parentheses when using these symbols in interval notaƟon, and use
the appropriate arrow to indicate that the interval extends indefinitely in one or
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−5 1 3
A = [−5, 3), B = (1,∞)

−5 1 3
A ∩ B = (1, 3)

−5 1 3
A ∪ B = [−5,∞)

Figure 1.1.4: Union and intersecƟon of in-
tervals

−2 2

Figure 1.1.5: The set (−∞,−2] ∪ [2,∞)

3

Figure 1.1.6: The set (−∞, 3) ∪ (3,∞)

−3 3

Figure 1.1.7: The set (−∞,−3) ∪
(−3, 3) ∪ (3,∞)

−1 3 5

Figure 1.1.8: The set (−1, 3] ∪ {5}

1.1 Some Basic Set Theory NoƟons

both direcƟons.
Let’s do a few examples to make sure we have the hang of the notaƟon:

Set of Real Numbers Interval NotaƟon Region on the Real Number Line

{x | 1 ≤ x < 3} [1, 3)
1 3

{x | − 1 ≤ x ≤ 4} [−1, 4] −1 4

{x | x ≤ 5} (−∞, 5]
5

{x | x > −2} (−2,∞) −2

We defined the intersecƟon and union of arbitrary sets in DefiniƟon 1.1.4.
Recall that the union of two sets consists of the totality of the elements in each
of the sets, collected together. For example, if A = {1, 2, 3} and B = {2, 4, 6},
then A ∩ B = {2} and A ∪ B = {1, 2, 3, 4, 6}. If A = [−5, 3) and B = (1,∞),
then we can find A∩B and A∪B graphically. To find A∩B, we shade the overlap
of the two and obtain A ∩ B = (1, 3). To find A ∪ B, we shade each of A and B
and describe the resulƟng shaded region to find A ∪ B = [−5,∞).

While both intersecƟon and union are important, we have more occasion to
use union in this text than intersecƟon, simply because most of the sets of real
numbers we will be working with are either intervals or are unions of intervals,
as the following example illustrates.

Example 1.1.1 Expressing sets as unions of intervals
Express the following sets of numbers using interval notaƟon.

1. {x | x ≤ −2 or x ≥ 2} 2. {x | x ̸= 3}

3. {x | x ̸= ±3} 4. {x | − 1 < x ≤ 3 or x = 5}

SÊ½çã®ÊÄ

1. The best way to proceed here is to graph the set of numbers on the num-
ber line and glean the answer from it. The inequality x ≤ −2 corresponds
to the interval (−∞,−2] and the inequality x ≥ 2 corresponds to the in-
terval [2,∞). Sincewe are looking to describe the real numbers x in one of
these or the other, we have {x | x ≤ −2 or x ≥ 2} = (−∞,−2]∪ [2,∞).

2. For the set {x | x ̸= 3}, we shade the enƟre real number line except x = 3,
where we leave an open circle. This divides the real number line into two
intervals, (−∞, 3) and (3,∞). Since the values of x could be in either
one of these intervals or the other, we have that {x | x ̸= 3} = (−∞, 3)∪
(3,∞)

3. For the set {x | x ̸= ±3}, we proceed as before and exclude both x = 3
and x = −3 from our set. This breaks the number line into three inter-
vals, (−∞,−3), (−3, 3) and (3,∞). Since the set describes real num-
bers which come from the first, second or third interval, we have {x | x ̸=
±3} = (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

7



Chapter 1 The Real Numbers

4. Graphing the set {x | − 1 < x ≤ 3 or x = 5}, we get one interval, (−1, 3]
along with a single number, or point, {5}. While we could express the
laƩer as [5, 5] (Can you seewhy?), we choose towrite our answer as {x | −
1 < x ≤ 3 or x = 5} = (−1, 3] ∪ {5}.
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Exercises 1.1
Problems
1. Fill in the chart below:

Set of Real Interval Region on the
Numbers NotaƟon Real Number Line

{x | − 1 ≤ x < 5}

[0, 3)

2 7

{x | − 5 < x ≤ 0}

(−3, 3)

5 7

{x | x ≤ 3}

(−∞, 9)

4

{x | x ≥ −3}

In Exercises 2 – 7, find the indicated intersecƟon or union and
simplify if possible. Express your answers in interval nota-
Ɵon.

2. (−1, 5] ∩ [0, 8)

3. (−1, 1) ∪ [0, 6]

4. (−∞, 4] ∩ (0,∞)

5. (−∞, 0) ∩ [1, 5]

6. (−∞, 0) ∪ [1, 5]

7. (−∞, 5] ∩ [5, 8)

In Exercises 8 – 19, write the set using interval notaƟon.

8. {x | x ̸= 5}

9. {x | x ̸= −1}

10. {x | x ̸= −3, 4}

11. {x | x ̸= 0, 2}

12. {x | x ̸= 2, −2}

13. {x | x ̸= 0, ±4}

14. {x | x ≤ −1 or x ≥ 1}

15. {x | x < 3 or x ≥ 2}

16. {x | x ≤ −3 or x > 0}

17. {x | x ≤ 5 or x = 6}

18. {x | x > 2 or x = ±1}

19. {x | − 3 < x < 3 or x = 4}

9



The Cartesian Plane is named in honour
of René Descartes.

Usually extending off towards infinity is
indicated by arrows, but here, the arrows
are used to indicate the direcƟon of in-
creasing values of x and y.

The names of the coordinates can vary
depending on the context of the appli-
caƟon. If, for example, the horizontal
axis represented Ɵme we might choose
to call it the t-axis. The first number in
the ordered pair would then be the t-
coordinate.

Chapter 1 The Real Numbers

1.2 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite
Algebra and Geometry. Simply put, wemust find a way to draw algebraic things.
Let’s start with possibly the greatest mathemaƟcal achievement of all Ɵme: the
Cartesian Coordinate Plane. Imagine two real number lines crossing at a right
angle at 0 as drawn below.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The horizontal number line is usually called the x-axiswhile the verƟcal num-
ber line is usually called the y-axis. As with the usual number line, we imagine
these axes extending off indefinitely in both direcƟons. Having two number lines
allows us to locate the posiƟons of points offof the number lines aswell as points
on the lines themselves.

For example, consider the point P on the next page. To use the numbers on
the axes to label this point, we imagine dropping a verƟcal line from the x-axis to
P and extending a horizontal line from the y-axis to P. This process is someƟmes
called ‘projecƟng’ the point P to the x- (respecƟvely y-) axis. We then describe
the point P using the ordered pair (2,−4). The first number in the ordered pair
is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate. Taken together, the ordered pair (2,−4) comprise the Cartesian
coordinates of the point P. In pracƟce, the disƟncƟon between a point and its
coordinates is blurred; for example, we oŌen speak of ‘the point (2,−4).’ We
can think of (2,−4) as instrucƟons on how to reach P from the origin (0, 0) by
moving 2 units to the right and 4 units downwards. NoƟce that the order in the
ordered pair is important− if we wish to plot the point (−4, 2), we would move
to the leŌ 4 units from the origin and then move upwards 2 units, as below on
the right.
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Cartesian coordinates are someƟmes re-
ferred to as rectangular coordinates, to
disƟnguish them from other coordinate
systems such as polar coordinates.

The leƩer O is almost always reserved for
the origin.

1.2 The Cartesian Coordinate Plane

x

y

P

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

P (2,−4)

(−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

When we speak of the Cartesian Coordinate Plane, we mean the set of all
possible ordered pairs (x, y) as x and y take values from the real numbers. Below
is a summary of important facts about Cartesian coordinates.

Key Idea 1.2.1 Important Facts about the Cartesian Coordinate
Plane

• (a, b) and (c, d) represent the same point in the plane if and only
if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both
axes.

Example 1.2.1 Ploƫng points in the Cartesian Plane
Plot the following points: A(5, 8), B

(
− 5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F(0, 5), G(−7, 0), H(0,−9), O(0, 0).

SÊ½çã®ÊÄ To plot these points, we start at the origin and move to the
right if the x-coordinate is posiƟve; to the leŌ if it is negaƟve. Next, we move up
if the y-coordinate is posiƟve or down if it is negaƟve. If the x-coordinate is 0,
we start at the origin and move along the y-axis only. If the y-coordinate is 0 we
move along the x-axis only.

11



x

y

Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

Figure 1.2.1: The four quadrants of the
Cartesian plane

Chapter 1 The Real Numbers

x

y

A(5, 8)

B
(
− 5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

The axes divide the plane into four regions called quadrants. They are la-
belled with Roman numerals and proceed counterclockwise around the plane:
see Figure 1.2.1.

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in
Quadrant III and (1,−2) in Quadrant IV. If a point other than the origin happens
to lie on the axes, we typically refer to that point as lying on the posiƟve or
negaƟve x-axis (if y = 0) or on the posiƟve or negaƟve y-axis (if x = 0). For
example, (0, 4) lies on the posiƟve y-axis whereas (−117, 0) lies on the negaƟve
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of MathemaƟcs is symmetry.
There are many types of symmetry in MathemaƟcs, but three of them can be
discussed easily using Cartesian Coordinates.

DefiniƟon 1.2.1 Symmetry in the Cartesian Plane

Two points (a, b) and (c, d) in the plane are said to be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d

12



0 x

y

P (x, y)Q(−x, y)

S(x,−y)R(−x,−y)

Figure 1.2.2: The three types of symmetry
in the plane

x

y

P (−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 1.2.3: The point P(−2, 3) and its
three reflecƟons

1.2 The Cartesian Coordinate Plane

In Figure 1.2.2, P and S are symmetric about the x-axis, as areQ and R; P and
Q are symmetric about the y-axis, as are R and S; and P and R are symmetric
about the origin, as are Q and S.

Example 1.2.2 Finding points exhibiƟng symmetry
Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y-axis 3. origin

Check your answer by ploƫng the points.

SÊ½çã®ÊÄ The figure aŌer DefiniƟon 1.2.1 gives us a goodway to think
about finding symmetric points in terms of taking the opposites of the x- and/or
y-coordinates of P(−2, 3).

1. To find the point symmetric about the x-axis, we replace the y-coordinate
with its opposite to get (−2,−3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate
with its opposite to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-
coordinates with their opposites to get (2,−3).
The points are ploƩed in Figure 1.2.3.

One way to visualize the processes in the previous example is with the con-
cept of a reflecƟon. If we start with our point (−2, 3) and pretend that the x-axis
is a mirror, then the reflecƟon of (−2, 3) across the x-axis would lie at (−2,−3).
If we pretend that the y-axis is a mirror, the reflecƟon of (−2, 3) across that axis
would be (2, 3). If we reflect across the x-axis and then the y-axis, we would
go from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the
point symmetric to (−2, 3) about the origin. We summarize and generalize this
process below.

Key Idea 1.2.2 ReflecƟons in the Cartesian Plane

To reflect a point (x, y) about the:

• x-axis, replace y with−y.

• y-axis, replace x with−x.

• origin, replace x with−x and y with−y.

1.2.1 Distance in the Plane
Another important concept in Geometry is the noƟon of length. If we are go-
ing to unite Algebra and Geometry using the Cartesian Plane, then we need to
develop an algebraic understanding of what distance in the plane means. Sup-
pose we have two points, P (x0, y0) and Q (x1, y1) , in the plane. By the distance
d between P and Q, we mean the length of the line segment joining P with Q.
(Remember, given any two disƟnct points in the plane, there is a unique line

13



P (x0, y0)

Q (x1, y1)

d

P (x0, y0)

Q (x1, y1)

d

(x1, y0)

Figure 1.2.4: Distance between P and Q

Chapter 1 The Real Numbers

containing both points.) Our goal now is to create an algebraic formula to com-
pute the distance between these two points. Consider the generic situaƟon in
Figure 1.2.4.

With a liƩle more imaginaƟon, we can envision a right triangle whose hy-
potenuse has length d as drawn above on the right. From the laƩer figure, we
see that the lengths of the legs of the triangle are |x1 − x0| and |y1 − y0| so the
Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2
+ (y1 − y0)

2
= d2

(Do you remember why we can replace the absolute value notaƟon with
parentheses?) By extracƟng the square root of both sides of the second equa-
Ɵon and using the fact that distance is never negaƟve, we get

Key Idea 1.2.3 The Distance Formula

The distance d between the points P (x0, y0) and Q (x1, y1) is:

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

It is not always the case that the points P andQ lend themselves to construct-
ing such a triangle. If the points P and Q are arranged verƟcally or horizontally,
or describe the exact same point, we cannot use the above geometric argument
to derive the distance formula. It is leŌ to the reader in Exercise 16 to verify
EquaƟon 1.2.3 for these cases.

Example 1.2.3 Distance between two points
Find and simplify the distance between P(−2, 3) and Q(1,−3).

SÊ½çã®ÊÄ

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

=
√

(1− (−2))2 + (−3− 3)2

=
√
9+ 36

= 3
√
5

So the distance is 3
√
5.

Example 1.2.4 Finding points at a given distance
Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

SÊ½çã®ÊÄ We shall soon see that the points we wish to find are on the
line x = 1, but for now we’ll just view them as points of the form (1, y).

We require that the distance from (3, 2) to (1, y) be 4. TheDistance Formula,
EquaƟon 1.2.3, yields

14

http://en.wikipedia.org/wiki/Pythagorean_Theorem


(1, y)

(3, 2)

x

y

distance is 4 units

2 3

−3

−2

−1

1

2

3

Figure 1.2.5: Diagram for Example 1.2.4

P (x0, y0)

Q (x1, y1)

M

Figure 1.2.6: The midpoint of a line seg-
ment

1.2 The Cartesian Coordinate Plane

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

4 =
√
(1− 3)2 + (y− 2)2

4 =
√
4+ (y− 2)2

42 =
(√

4+ (y− 2)2
)2

squaring both sides

16 = 4+ (y− 2)2

12 = (y− 2)2

(y− 2)2 = 12

y− 2 = ±
√
12 extracƟng the square root

y− 2 = ±2
√
3

y = 2± 2
√
3

We obtain two answers: (1, 2 + 2
√
3) and (1, 2 − 2

√
3). The reader is en-

couraged to think about why there are two answers.

Related to finding the distance between two points is the problem of find-
ing themidpoint of the line segment connecƟng two points. Given two points,
P (x0, y0) and Q (x1, y1), the midpoint M of P and Q is defined to be the point
on the line segment connecƟng P and Q whose distance from P is equal to its
distance from Q.

Key Idea 1.2.4 The Midpoint Formula

The midpointM of the line segment connecƟng P (x0, y0) and Q (x1, y1)
is:

M =

(
x0 + x1

2
,
y0 + y1

2

)

If we let d denote the distance between P and Q, we leave it as Exercise 17
to show that the distance between P and M is d/2 which is the same as the
distance between M and Q. This suffices to show that Key Idea 1.2.4 gives the
coordinates of the midpoint.

Example 1.2.5 Finding the midpoint of a line segment
Find the midpoint of the line segment connecƟng P(−2, 3) and Q(1,−3).

SÊ½çã®ÊÄ

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3+ (−3)

2

)
=

(
−1
2
,
0
2

)
=

(
−1
2
, 0
)

The midpoint is
(
− 1

2 , 0
)
.
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Exercises 1.2
Problems
1. Plot and label the points A(−3,−7), B(1.3,−2),

C(π,
√
10), D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8)

and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

2. For each point given in Exercise 1 above

• IdenƟfy the quadrant or axis in/on which the point
lies.

• Find the point symmetric to the given point about the
x-axis.

• Find the point symmetric to the given point about the
y-axis.

• Find the point symmetric to the given point about the
origin.

In Exercises 3 – 10, find the distance d between the points and
the midpointM of the line segment which connects them.

3. (1, 2), (−3, 5)

4. (3,−10), (−1, 2)

5.
(
1
2
, 4
)
,
(
3
2
,−1

)

6.
(
−2
3
,
3
2

)
,
(
7
3
, 2
)

7.
(
24
5
,
6
5

)
,
(
−11

5
,−19

5

)
.

8.
(√

2,
√
3
)
,
(
−
√
8,−

√
12
)

9.
(
2
√
45,

√
12
)
,
(√

20,
√
27
)
.

10. (0, 0), (x, y)

11. Find all of the points of the form (x,−1) which are 4 units
from the point (3, 2).

12. Find all of the points on the y-axis which are 5 units from
the point (−5, 3).

13. Find all of the points on the x-axis which are 2 units from
the point (−1, 1).

14. Find all of the points of the form (x,−x) which are 1 unit
from the origin.

15. Let’s assume for a moment that we are standing at the ori-
gin and the posiƟve y-axis points due North while the pos-
iƟve x-axis points due East. Our Sasquatch-o-meter tells us
that Sasquatch is 3milesWest and 4miles South of our cur-
rent posiƟon. What are the coordinates of his posiƟon?
How far away is he from us? If he runs 7 miles due East
what would his new posiƟon be?

16. Verify the Distance Formula 1.2.3 for the cases when:

(a) The points are arranged verƟcally. (Hint: Use P(a, y0)
and Q(a, y1).)

(b) The points are arranged horizontally. (Hint: Use
P(x0, b) and Q(x1, b).)

(c) The points are actually the same point. (You
shouldn’t need a hint for this one.)

17. Verify the Midpoint Formula by showing the distance be-
tween P(x1, y1) and M and the distance between M and
Q(x2, y2) are both half of the distance between P and Q.

18. Show that the points A, B and C below are the verƟces of
a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8)

(b) A(−3, 1), B(4, 0) and C(0,−3)

19. Find a point D(x, y) such that the points A(−3, 1), B(4, 0),
C(0,−3) and D are the corners of a square. JusƟfy your
answer.

20. Discuss with your classmates howmany numbers are in the
interval (0, 1).

21. The world is not flat. (There are those who disagree with
this statement. Look them up on the Internet some Ɵme
when you’re bored.) Thus the Cartesian Plane cannot pos-
sibly be the end of the story. Discuss with your classmates
how you would extend Cartesian Coordinates to represent
the three dimensional world. What would the Distance and
Midpoint formulas look like, assuming those conceptsmake
sense at all?
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It is common in many areas of mathemat-
ics to use the notaƟon f : A → B to
denote a funcƟon f with domain A and
codomain B. However, this notaƟon is
less common in Calculus, where the do-
main and codomain are almost always
subsets ofR. It is more common in calcu-
lus to specify a funcƟon using the formula
by which each element of the domain is
assigned to an element in the codomain.
For example, f(x) = x2 describes the
funcƟon f : R → R that assigns each real
number x ∈ R to its square.

f

x
Domain
(Inputs)

y = f(x)
Range

(Outputs)

Figure 2.1.1: Graphical depicƟon of a
funcƟon

2: FçÄ�ã®ÊÄÝ
2.1 FuncƟon NotaƟon

DefiniƟon 2.1.1 FuncƟon

A funcƟon f from a set A to a set B is a rule that assigns each element
x ∈ A to a unique element y ∈ B. We express the fact that the funcƟon
f relates the element x to the element y by wriƟng y = f(x).
The set A is called the domain of the funcƟon, and the set B is called the
codomain of the funcƟon.

Informally, we view a funcƟon as a process by which each x in its domain is
matched with some y in the codomain. If we think of the domain of a funcƟon
as a set of inputs and the range as a set of outputs, we can think of a funcƟon f
as a process by which each input x is matched with only one output y. Since the
output is completely determined by the input x and the process f, we symbolize
the output with funcƟon notaƟon: ‘f(x)’, read ‘f of x.’ In other words, f(x) is
the output which results by applying the process f to the input x. In this case,
the parentheses here do not indicate mulƟplicaƟon, as they do elsewhere in
Algebra. This can cause confusion if the context is not clear, so you must read
carefully. This relaƟonship is typically visualized using a diagram similar to the
one in Figure 2.1.1.

The value of y is completely dependent on the choice of x. For this reason,
x is oŌen called the independent variable, or argument of f, whereas y is oŌen
called the dependent variable.

As we shall see, the process of a funcƟon f is usually described using an al-
gebraic formula. For example, suppose a funcƟon f takes a real number and
performs the following two steps, in sequence

1. MulƟply by 3

2. Add 4

If we choose 5 as our input, in Step 1 wemulƟply by 3 to get (5)(3) = 15. In
Step 2, we add 4 to our result from Step 1 which yields 15+4 = 19. Using func-
Ɵon notaƟon, we would write f(5) = 19 to indicate that the result of applying
the process f to the input 5 gives the output 19. In general, if we use x for the
input, applying Step 1 produces 3x. Following with Step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x+ 4. NoƟce
that to check our formula for the case x = 5, we replace the occurrence of x in
the formula for f(x) with 5 to get f(5) = 3(5) + 4 = 15+ 4 = 19, as required.

Generally, we prefer to define funcƟons of a real variable using a formula,
rather than giving a verbal descripƟon, as in the following example.

Example 2.1.1 Using funcƟon notaƟon
Let f(x) = −x2 + 3x+ 4

1. Find and simplify the following.

(a) f(−1), f(0), f(2)
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(b) f(2x), 2f(x)

(c) f(x+ 2), f(x) + 2, f(x) + f(2)

2. Solve f(x) = 4.

SÊ½çã®ÊÄ

1. (a) To find f(−1), we replace every occurrence of x in the expression
f(x) with−1

f(−1) = −(−1)2 + 3(−1) + 4
= −(1) + (−3) + 4
= 0

Similarly, f(0) = −(0)2+3(0)+4 = 4, and f(2) = −(2)2+3(2)+4 =
−4+ 6+ 4 = 6.

(b) To find f(2x), we replace every occurrence of x with the quanƟty 2x

f(2x) = −(2x)2 + 3(2x) + 4
= −(4x2) + (6x) + 4
= −4x2 + 6x+ 4

The expression 2f(x)means we mulƟply the expression f(x) by 2

2f(x) = 2
(
−x2 + 3x+ 4

)
= −2x2 + 6x+ 8

(c) To find f(x+ 2), we replace every occurrence of x with the quanƟty
x+ 2

f(x+ 2) = −(x+ 2)2 + 3(x+ 2) + 4
= −

(
x2 + 4x+ 4

)
+ (3x+ 6) + 4

= −x2 − 4x− 4+ 3x+ 6+ 4
= −x2 − x+ 6

To find f(x) + 2, we add 2 to the expression for f(x)

f(x) + 2 =
(
−x2 + 3x+ 4

)
+ 2

= −x2 + 3x+ 6

From our work above, we see f(2) = 6 so that

f(x) + f(2) =
(
−x2 + 3x+ 4

)
+ 6

= −x2 + 3x+ 10

2. Since f(x) = −x2 + 3x+ 4, the equaƟon f(x) = 4 is equivalent to −x2 +
3x+4 = 4. Solving we get−x2+3x = 0, or x(−x+3) = 0. We get x = 0
or x = 3, and we can verify these answers by checking that f(0) = 4 and
f(3) = 4.

18



The ‘radicand’ is the expression ‘inside’
the radical.

2.1 FuncƟon NotaƟon

A few notes about Example 2.1.1 are in order. First note the difference be-
tween the answers for f(2x) and 2f(x). For f(2x), we aremulƟplying the input by
2; for 2f(x), we aremulƟplying the output by 2. As we see, we get enƟrely differ-
ent results. Along these lines, note that f(x+2), f(x)+2 and f(x)+f(2) are three
different expressions as well. Even though funcƟon notaƟon uses parentheses,
as does mulƟplicaƟon, there is no general ‘distribuƟve property’ of funcƟon no-
taƟon. Finally, note the pracƟce of using parentheses when subsƟtuƟng one
algebraic expression into another; we highly recommend this pracƟce as it will
reduce careless errors.

Suppose now we wish to find r(3) for r(x) =
2x

x2 − 9
. SubsƟtuƟon gives

r(3) =
2(3)

(3)2 − 9
=

6
0
,

which is undefined. (Why is this, again?) The number 3 is not an allowable
input to the funcƟon r; in other words, 3 is not in the domain of r. Which other
real numbers are forbidden in this formula? We think back to arithmeƟc. The
reason r(3) is undefined is because subsƟtuƟon results in a division by 0. To
determine which other numbers result in such a transgression, we set the de-
nominator equal to 0 and solve

x2 − 9 = 0
x2 = 9

√
x2 =

√
9 extract square roots

x = ±3

As long as we subsƟtute numbers other than 3 and −3, the expression r(x)
is a real number. Hence, we write our domain in interval notaƟon (see the Ex-
ercises for SecƟon 1.2) as (−∞,−3) ∪ (−3, 3) ∪ (3,∞). When a formula for a
funcƟon is given, we assume that the funcƟon is valid for all real numbers which
make arithmeƟc sense when subsƟtuted into the formula. This set of numbers
is oŌen called the implied domain (or ‘implicit domain’) of the funcƟon. At this
stage, there are only two mathemaƟcal sins we need to avoid: division by 0 and
extracƟng even roots of negaƟve numbers. The following example illustrates
these concepts.

Example 2.1.2 Determining an implied domain
Find the domain of the following funcƟons.

1. g(x) =
√
4− 3x

2. h(x) = 5
√
4− 3x

3. f(x) =
2

1− 4x
x− 3

SÊ½çã®ÊÄ

1. The potenƟal disaster for g is if the radicand is negaƟve. To avoid this, we
set 4 − 3x ≥ 0. From this, we get 3x ≤ 4 or x ≤ 4

3 . What this shows is
that as long as x ≤ 4

3 , the expression 4 − 3x ≥ 0, and the formula g(x)
returns a real number. Our domain is

(
−∞, 43

]
.
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2. The formula for h(x) is haunƟngly close to that of g(x) with one key dif-
ference− whereas the expression for g(x) includes an even indexed root
(namely a square root), the formula for h(x) involves an odd indexed root
(the fiŌh root). Since odd roots of real numbers (even negaƟve real num-
bers) are real numbers, there is no restricƟon on the inputs to h. Hence,
the domain is (−∞,∞).

3. In the expression for f, there are two denominators. We need to make
sure neither of them is 0. To that end, we set each denominator equal to
0 and solve. For the ‘small’ denominator, we get x− 3 = 0 or x = 3. For
the ‘large’ denominator

1− 4x
x− 3

= 0

1 =
4x

x− 3

(1)(x− 3) =
(

4x
���x− 3

)
����(x− 3) clear denominators

x− 3 = 4x
−3 = 3x
−1 = x

So we get two real numbers which make denominators 0, namely x = −1
and x = 3. Our domain is all real numbers except−1 and 3:

(−∞,−1) ∪ (−1, 3) ∪ (3,∞).

It is worth reiteraƟng the importance of finding the domain of a funcƟon
before simplifying, as evidenced by the funcƟon I in the previous example. Even
though the formula I(x) simplifies to 3x, it would be inaccurate to write I(x) =
3x without adding the sƟpulaƟon that x ̸= 0. It would be analogous to not
reporƟng taxable income or some other sin of omission.
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Exercises 2.1
Problems
In Exercises 1 – 8, use the given funcƟon f to find and simplify
the following:

• f(3)
• f(−1)
• f
( 3
2

)
• f(4x)
• 4f(x)

• f(−x)

• f(x− 4)

• f(x)− 4

• f
(
x2
)

1. f(x) = 2x+ 1

2. f(x) = 3− 4x

3. f(x) = 2− x2

4. f(x) = x2 − 3x+ 2

5. f(x) = x
x− 1

6. f(x) = 2
x3

7. f(x) = 6

8. f(x) = 0

In Exercises 9 – 16, use the given funcƟon f to find and sim-
plify the following:

• f(2)
• f(−2)
• f(2a)
• 2f(a)
• f(a+ 2)

• f(a) + f(2)

• f
( 2
a

)
• f(a)

2

• f(a+ h)

9. f(x) = 2x− 5

10. f(x) = 5− 2x

11. f(x) = 2x2 − 1

12. f(x) = 3x2 + 3x− 2

13. f(x) =
√
2x+ 1

14. f(x) = 117

15. f(x) = x
2

16. f(x) = 2
x

In Exercises 17 – 24, use the given funcƟon f to find f(0) and
solve f(x) = 0.

17. f(x) = 2x− 1

18. f(x) = 3− 2
5 x

19. f(x) = 2x2 − 6

20. f(x) = x2 − x− 12

21. f(x) =
√
x+ 4

22. f(x) =
√
1− 2x

23. f(x) = 3
4− x

24. f(x) = 3x2 − 12x
4− x2

25. Let f(x) =


x+ 5 if x ≤ −3√
9− x2 if −3 < x ≤ 3
−x+ 5 if x > 3

Compute the

following funcƟon values.

(a) f(−4)
(b) f(−3)
(c) f(3)

(d) f(3.001)
(e) f(−3.001)
(f) f(2)

26. Let f(x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1
x if x > 1

Compute the

following funcƟon values.

(a) f(4)
(b) f(−3)
(c) f(1)

(d) f(0)
(e) f(−1)
(f) f(−0.999)

In Exercises 27 – 52, find the (implied) domain of the funcƟon.

27. f(x) = x4 − 13x3 + 56x2 − 19

28. f(x) = x2 + 4

29. f(x) = x− 2
x+ 1

30. f(x) = 3x
x2 + x− 2

31. f(x) = 2x
x2 + 3

32. f(x) = 2x
x2 − 3

33. f(x) = x+ 4
x2 − 36
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34. f(x) = x− 2
x− 2

35. f(x) =
√
3− x

36. f(x) =
√
2x+ 5

37. f(x) = 9x
√
x+ 3

38. f(x) =
√
7− x

x2 + 1

39. f(x) =
√
6x− 2

40. f(x) = 6√
6x− 2

41. f(x) = 3√6x− 2

42. f(x) = 6
4−

√
6x− 2

43. f(x) =
√
6x− 2

x2 − 36

44. f(x) =
3√6x− 2
x2 + 36

45. s(t) = t
t− 8

46. Q(r) =
√
r

r− 8

47. b(θ) = θ√
θ − 8

48. A(x) =
√
x− 7+

√
9− x

49. α(y) = 3

√
y

y− 8

50. g(v) = 1

4− 1
v2

51. T(t) =
√
t− 8
5− t

52. u(w) = w− 8
5−

√
w
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Recall that if x is in the domains of both
f and g, then we can say that x is an el-
ement of the intersecƟon of the two do-
mains.

2.2 OperaƟons on FuncƟons

2.2 OperaƟons on FuncƟons

2.2.1 ArithmeƟc with FuncƟons
In the previous secƟon we used the newly defined funcƟon notaƟon to make
sense of expressions such as ‘f(x)+2’ and ‘2f(x)’ for a given funcƟon f. It would
seem natural, then, that funcƟons should have their own arithmeƟc which is
consistent with the arithmeƟc of real numbers. The following definiƟons allow
us to add, subtract, mulƟply and divide funcƟons using the arithmeƟcwealready
know for real numbers.

DefiniƟon 2.2.1 FuncƟon ArithmeƟc

Suppose f and g are funcƟons and x is in both the domain of f and the
domain of g.

• The sum of f and g, denoted f + g, is the funcƟon defined by the
formula

(f+ g)(x) = f(x) + g(x)

• The difference of f and g, denoted f−g, is the funcƟon defined by
the formula

(f− g)(x) = f(x)− g(x)

• The product of f and g, denoted fg, is the funcƟon defined by the
formula

(fg)(x) = f(x)g(x)

• The quoƟent of f and g, denoted
f
g
, is the funcƟon defined by the

formula (
f
g

)
(x) =

f(x)
g(x)

,

provided g(x) ̸= 0.

In other words, to add two funcƟons, we add their outputs; to subtract two
funcƟons, we subtract their outputs, and so on. Note that while the formula
(f+g)(x) = f(x)+g(x) looks suspiciously like some kind of distribuƟve property,
it is nothing of the sort; the addiƟon on the leŌ hand side of the equaƟon is
funcƟon addiƟon, and we are using this equaƟon to define the output of the
new funcƟon f+ g as the sum of the real number outputs from f and g.

Example 2.2.1 ArithmeƟc with funcƟons
Let f(x) = 6x2 − 2x and g(x) = 3− 1

x
.

1. Find (f+ g)(−1) 2. Find (fg)(2)

3. Find the domain of g− f then find and simplify a formula for (g− f)(x).

4. Find the domain of
(
g
f

)
then find and simplify a formula for

(
g
f

)
(x).

SÊ½çã®ÊÄ
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1. To find (f+ g)(−1) we first find f(−1) = 8 and g(−1) = 4. By definiƟon,
we have that (f+ g)(−1) = f(−1) + g(−1) = 8+ 4 = 12.

2. To find (fg)(2), we first need f(2) and g(2). Since f(2) = 20 and g(2) = 5
2 ,

our formula yields (fg)(2) = f(2)g(2) = (20)
( 5
2
)
= 50.

3. One method to find the domain of g − f is to find the domain of g and
of f separately, then find the intersecƟon of these two sets. Owing to the
denominator in the expression g(x) = 3 − 1

x , we get that the domain of
g is (−∞, 0) ∪ (0,∞). Since f(x) = 6x2 − 2x is valid for all real numbers,
we have no further restricƟons. Thus the domain of g − f matches the
domain of g, namely, (−∞, 0) ∪ (0,∞).
A secondmethod is to analyze the formula for (g−f)(x) before simplifying
and look for the usual domain issues. In this case,

(g− f)(x) = g(x)− f(x) =
(
3− 1

x

)
−
(
6x2 − 2x

)
,

so we find, as before, the domain is (−∞, 0) ∪ (0,∞).
Moving along, we need to simplify a formula for (g − f)(x). One issue
here is that what it means to ‘simplify’ this funcƟon may depend on the
context. On a most basic level, we could simply clear the parentheses:

(g− f)(x) =
(
3− 1

x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x.

In many contexts (compuƟng a derivaƟve comes to mind), this would be
the preferred result. In other contexts, we may instead want to express
our result as a single fracƟon. Geƫng a common denominator, we would
write

(g− f)(x) =
3x
x

− 1
x
− 6x3

x
+

2x2

x
=

−6x3 − 2x2 + 3x− 1
x

.

4. As in the previous example, we have two ways to approach finding the
domain of g

f . First, we can find the domain of g and f separately, and

find the intersecƟon of these two sets. In addiƟon, since
(

g
f

)
(x) = g(x)

f(x) ,
we are introducing a new denominator, namely f(x), so we need to guard
against this being 0 as well. Our previous work tells us that the domain of
g is (−∞, 0) ∪ (0,∞) and the domain of f is (−∞,∞). Seƫng f(x) = 0
gives 6x2 − 2x = 0 or x = 0, 13 . As a result, the domain of g

f is all real
numbers except x = 0 and x = 1

3 , or (−∞, 0) ∪
(
0, 13
)
∪
( 1
3 ,∞

)
.

AlternaƟvely, wemayproceed as above and analyze the expression
(

g
f

)
(x) =

g(x)
f(x) before simplifying. In this case,

(
g
f

)
(x) =

g(x)
f(x)

=

3− 1
x

6x2 − 2x

We see immediately from the ‘liƩle’ denominator that x ̸= 0. To keep the
‘big’ denominator away from 0, we solve 6x2 − 2x = 0 and get x = 0 or
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x = 1
3 . Hence, as before, we find the domain of

g
f
to be

(−∞, 0) ∪
(
0,

1
3

)
∪
(
1
3
,∞
)
.

Next, we find and simplify a formula for
(
g
f

)
(x).

(
g
f

)
(x) =

g(x)
f(x)

=
3− 1

x
6x2 − 2x

=
3− 1

x
6x2 − 2x

· x
x

simplify compound fracƟons

=

(
3− 1

x

)
x

(6x2 − 2x) x
=

3x− 1
(6x2 − 2x) x

=
3x− 1

2x2(3x− 1)
factor

= �����: 1
(3x− 1)

2x2����(3x− 1)
cancel

=
1
2x2

Please note the importance of finding the domain of a funcƟon before sim-
plifying its expression. In number 4 in Example 2.2.1 above, had we waited to
find the domain of

g
f
unƟl aŌer simplifying, we’d just have the formula

1
2x2

to

go by, and we would (incorrectly!) state the domain as (−∞, 0)∪ (0,∞), since
the other troublesome number, x = 1

3 , was cancelled away.
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f g

g ◦ f

x f(x)
g(f(x))

Figure 2.2.1: ComposiƟon of funcƟons

Chapter 2 FuncƟons

2.2.2 FuncƟon ComposiƟon

The four types of arithmeƟc operaƟons with funcƟons described so far are not
the only ways to combine funcƟons. There is one more especially important
operaƟon, known as funcƟon composiƟon.

DefiniƟon 2.2.2 ComposiƟon of FuncƟons

Suppose f and g are two funcƟons. The composite of g with f, denoted
g ◦ f, is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an
element of the domain of f and f(x) is an element of the domain of g.

The quanƟty g ◦ f is also read ‘g composed with f’ or, more simply ‘g of f.’ At
its most basic level, DefiniƟon 2.2.2 tells us to obtain the formula for (g ◦ f) (x),
we replace every occurrence of x in the formula for g(x) with the formula we
have for f(x). If we take a step back and look at this from a procedural, ‘inputs
and outputs’ perspecƟve, DefinƟon 2.2.2 tells us the output from g ◦ f is found
by taking the output from f, f(x), and thenmaking that the input to g. The result,
g(f(x)), is the output from g◦ f. From this perspecƟve, we see g◦ f as a two step
process taking an input x and first applying the procedure f then applying the
procedure g. This is diagrammed abstractly in Figure 2.2.1.

Example 2.2.2 EvaluaƟng composite funcƟons
Let f(x) = x2 − 4x and g(x) = 2−

√
x+ 3.

Find the indicated funcƟon value for each of the following:

1. (f ◦ g)(1) 2. (g ◦ f)(1) 3. (g ◦ f)(2)

SÊ½çã®ÊÄ

1. As before, we use DefiniƟon 2.2.2 to write (f ◦ g)(1) = f(g(1)). We find
g(1) = 0, so

(f ◦ g)(1) = f(g(1)) = f(0) = 0

2. Using DefiniƟon 2.2.2, (g ◦ f)(1) = g(f(1)). We find f(1) = −3, so

(g ◦ f)(1) = g(f(1)) = g(−3) = 2

3. We proceed as in the previous example by first finding f(2) = −4. How-
ever, we now run into trouble, since (g ◦ f)(2) = g(f(2)) = g(−4) is
undefined! We can’t compute

√
( − 4 + 3) =

√
−1 if we are working

over the real numbers. Here we see the importance of domain for com-
posite funcƟons: it is not enough for x to be in the domain of f: only those
x values such that f(x) belongs to the domain of g are permiƩed. We con-
sider this problem more generally in the next example.
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1 3

(+) 0 (−) 0 (+)

Figure 2.2.2: The sign diagram of r(x) =
x2 − 4x+ 3

2.2 OperaƟons on FuncƟons

Example 2.2.3 Domain of composite funcƟons
With f(x) = x2−4x, g(x) = 2−

√
x+ 3 as in Example 2.2.2 find and simplify the

composite funcƟons (g◦ f)(x) and (f◦g)(x). State the domain of each funcƟon.

SÊ½çã®ÊÄ By definiƟon, (g◦ f)(x) = g(f(x)). We insert the expression
f(x) into g to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3

= 2−
√

x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f, we need to find the elements in the domain of f
whose outputs f(x) are in the domain of g. We accomplish this by following the
rule set forth in SecƟon 2.1, that is, we find the domain before we simplify. To
that end, we examine (g ◦ f)(x) = 2−

√
(x2 − 4x) + 3. To keep the square root

happy, we solve the inequality x2 − 4x+ 3 ≥ 0 by creaƟng a sign diagram. If we
let r(x) = x2 − 4x+ 3, we find the zeros of r to be x = 1 and x = 3. We obtain
the sign diagram in Figure 2.2.2.

Our soluƟon to x2− 4x+ 3 ≥ 0, and hence the domain of g ◦ f, is (−∞, 1]∪
[3,∞).

To find (f ◦ g)(x), we find f(g(x)). We insert the expression g(x) into f to get

(f ◦ g)(x) = f(g(x)) = f
(
2−

√
x+ 3

)
=
(
2−

√
x+ 3

)2 − 4
(
2−

√
x+ 3

)
= 4− 4

√
x+ 3+

(√
x+ 3

)2 − 8+ 4
√
x+ 3

= 4+ x+ 3− 8
= x− 1

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to
the step before we did any simplificaƟon and find (f ◦ g)(x) =

(
2−

√
x+ 3

)2−
4
(
2−

√
x+ 3

)
. To keep the square root happy, we set x + 3 ≥ 0 and find our

domain to be [−3,∞).

NoƟce that in Example 2.2.3, we found (g ◦ f)(x) ̸= (f ◦ g)(x). In Example
2.2.4 we add evidence that this is the rule, rather than the excepƟon.

Example 2.2.4 Comparing order of composiƟon
Find and simplify the funcƟons (g ◦ h)(x) and (h ◦ g)(x), where we take g(x) =
2−

√
x+ 3 and h(x) =

2x
x+ 1

. State the domain of each funcƟon.

SÊ½çã®ÊÄ To find (g ◦ h)(x), we compute g(h(x)). We insert the ex-
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pression h(x) into g first to get

(g ◦ h)(x) = g(h(x)) = g
(

2x
x+ 1

)
= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

2x
x+ 1

+
3(x+ 1)
x+ 1

get common denominators

= 2−
√

5x+ 3
x+ 1

To find the domain of (g◦h), we look to the step beforewe began to simplify:

(g ◦ h)(x) = 2−

√(
2x

x+ 1

)
+ 3

To avoid division by zero, we need x ̸= −1. To keep the radical happy, we need
to solve

2x
x+ 1

+ 3 =
5x+ 3
x+ 1

≥ 0

Defining r(x) =
5x+ 3
x+ 1

, we see r is undefined at x = −1 and r(x) = 0 at x = − 3
5 .

Our sign diagram is given in Figure 2.2.3.
Our domain is (−∞,−1) ∪

[
− 3

5 ,∞
)
.

Next, we find (h ◦ g)(x) by finding h(g(x)). We insert the expression g(x)
into h first to get

(h ◦ g)(x) = h(g(x)) = h
(
2−

√
x+ 3

)
=

2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

To find the domain of h ◦ g, we look to the step before any simplificaƟon:

(h ◦ g)(x) =
2
(
2−

√
x+ 3

)(
2−

√
x+ 3

)
+ 1

To keep the square root happy, we require x + 3 ≥ 0 or x ≥ −3. Seƫng the
denominator equal to zero gives

(
2−

√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3. Squar-

ing both sides gives us x + 3 = 9, or x = 6. Since x = 6 checks in the original
equaƟon,

(
2−

√
x+ 3

)
+ 1 = 0, we know x = 6 is the only zero of the denom-

inator. Hence, the domain of h ◦ g is [−3, 6) ∪ (6,∞).

A useful skill in Calculus is to be able to take a complicated funcƟon and break
it down into a composiƟon of easier funcƟons which our last example illustrates.
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Example 2.2.5 Decomposing funcƟons
Write each of the following funcƟons as a composiƟon of two or more (non-
idenƟty) funcƟons. Check your answer by performing the funcƟon composiƟon.

1. F(x) = |3x− 1|

2. G(x) =
2

x2 + 1

3. H(x) =
√
x+ 1√
x− 1

SÊ½çã®ÊÄ There are many approaches to this kind of problem, and we
showcase a different methodology in each of the soluƟons below.

1. Our goal is to express the funcƟon F as F = g ◦ f for funcƟons g and f.
FromDefiniƟon 2.2.2, we know F(x) = g(f(x)), and we can think of f(x) as
being the ‘inside’ funcƟon and g as being the ‘outside’ funcƟon. Looking
at F(x) = |3x − 1| from an ‘inside versus outside’ perspecƟve, we can
think of 3x − 1 being inside the absolute value symbols. Taking this cue,
we define f(x) = 3x− 1. At this point, we have F(x) = |f(x)|. What is the
outside funcƟon? The funcƟonwhich takes the absolute value of its input,
g(x) = |x|. Sure enough, (g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F(x),
so we are done.

2. We aƩack deconstrucƟngG from an operaƟonal approach. Given an input
x, the first step is to square x, then add 1, then divide the result into 2. We
will assign each of these steps a funcƟon so as to write G as a composite
of three funcƟons: f, g and h. Our first funcƟon, f, is the funcƟon that
squares its input, f(x) = x2. The next funcƟon is the funcƟon that adds 1
to its input, g(x) = x + 1. Our last funcƟon takes its input and divides it
into 2, h(x) = 2

x . The claim is that G = h ◦ g ◦ f. We find

(h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) = h

(
x2 + 1

)
=

2
x2 + 1

= G(x),

so we are done.

3. If we look H(x) =

√
x+ 1√
x− 1

with an eye towards building a complicated

funcƟon from simpler funcƟons, we see the expression
√
x is a simple

piece of the larger funcƟon. If we define f(x) =
√
x, we have H(x) =

f(x)+1
f(x)−1 . If we want to decompose H = g◦ f, then we can glean the formula
for g(x) by looking at what is being done to f(x). We take g(x) = x+1

x−1 , so

(g ◦ f)(x) = g(f(x)) =
f(x) + 1
f(x)− 1

=

√
x+ 1√
x− 1

= H(x),

as required.
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Figure 2.2.4: The relaƟonship between a
funcƟon and its inverse
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2.2.3 Inverse FuncƟons
Thinking of a funcƟon as a process like we did in SecƟon 2.1, in this secƟon we
seek another funcƟon which might reverse that process. As in real life, we will
find that some processes (like puƫng on socks and shoes) are reversible while
some (like cooking a steak) are not. We start by discussing a very basic funcƟon
which is reversible, f(x) = 3x + 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in SecƟon 2.1

1. mulƟply by 3

2. add 4

To reverse this process, we seek a funcƟon g which will undo each of these
steps and take the output from f, 3x + 4, and return the input x. If we think of
the real-world reversible two-step process of first puƫng on socks then puƫng
on shoes, to reverse the process, we first take off the shoes, and then we take
off the socks. In much the same way, the funcƟon g should undo the second
step of f first. That is, the funcƟon g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) =
x− 4
3

. Let’s check to see if the
funcƟon g does the job. If x = 5, then f(5) = 3(5) + 4 = 15+ 4 = 19. Taking
the output 19 from f, we subsƟtute it into g to get g(19) = 19−4

3 = 15
3 = 5,

which is our original input to f. To check that g does the job for all x in the
domain of f, we take the generic output from f, f(x) = 3x + 4, and subsƟtute

that into g. That is, g(f(x)) = g(3x + 4) =
(3x+ 4)− 4

3
= 3x

3 = x, which
is our original input to f. If we carefully examine the arithmeƟc as we simplify
g(f(x)), we actually see g first ‘undoing’ the addiƟon of 4, and then ‘undoing’
the mulƟplicaƟon by 3. Not only does g undo f, but f also undoes g. That is, if
we take the output from g, g(x) =

x− 4
3

, and put that into f, we get f(g(x)) =

f
(
x− 4
3

)
= 3

(
x− 4
3

)
+ 4 = (x − 4) + 4 = x. Using the language of

funcƟon composiƟon developed in SecƟon 2.2.2, the statements g(f(x)) = x
and f(g(x)) = x can be wriƩen as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respecƟvely.
Abstractly, we can visualize the relaƟonship between f and g in Figure 2.2.4.

The main idea to get from Figure 2.2.4 is that g takes the outputs from f and
returns them to their respecƟve inputs, and conversely, f takes outputs from g
and returns them to their respecƟve inputs. We now have enough background
to state the central definiƟon of the secƟon.

DefiniƟon 2.2.3 Inverse of a funcƟon

Suppose f and g are two funcƟons such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g

then f and g are inverses of each other and the funcƟons f and g are said
to be inverƟble.
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Figure 2.2.5: ReflecƟng y = f(x) across
y = x to obtain y = g(x)
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Figure 2.2.6: The funcƟon f(x) = x2 is not
inverƟble
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(a) y = f(x) = x2
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(b) y = f−1(x)?

Figure 2.2.7: ReflecƟng y = x2 across the
line y = x does not produce a funcƟon

2.2 OperaƟons on FuncƟons

We now formalize the concept that inverse funcƟons exchange inputs and
outputs.

Theorem 2.2.1 ProperƟes of Inverse FuncƟons

Suppose f and g are inverse funcƟons.

• The range (recall this is the set of all outputs of a funcƟon) of f is
the domain of g and the domain of f is the range of g

• f(a) = b if and only if g(b) = a

• (a, b) is on the graph of f if and only if (b, a) is on the graph of g

Theorem 2.2.2 Uniqueness of Inverse FuncƟons and Their Graphs

Suppose f is an inverƟble funcƟon.

• There is exactly one inverse funcƟon for f, denoted f−1 (read f-
inverse)

• The graph of y = f−1(x) is the reflecƟon of the graph of y = f(x)
across the line y = x.

Let’s turn our aƩenƟon to the funcƟon f(x) = x2. Is f inverƟble? A likely
candidate for the inverse is the funcƟon g(x) =

√
x. Checking the composiƟon

yields (g ◦ f)(x) = g(f(x)) =
√
x2 = |x|, which is not equal to x for all x in

the domain (−∞,∞). For example, when x = −2, f(−2) = (−2)2 = 4, but
g(4) =

√
4 = 2, which means g failed to return the input−2 from its output 4.

What g did, however, is match the output 4 to a different input, namely 2, which
saƟsfies f(2) = 4. This issue is presented schemaƟcally in Figure 2.2.6.

We see from the diagram that since both f(−2) and f(2) are 4, it is impossi-
ble to construct a funcƟon which takes 4 back to both x = 2 and x = −2. (By
definiƟon, a funcƟon matches a real number with exactly one other real num-
ber.) From a graphical standpoint, we know that if y = f−1(x) exists, its graph
can be obtained by reflecƟng y = x2 about the line y = x, in accordance with
Theorem 2.2.2. Doing so takes the graph in Figure 2.2.7 (a) to the one in Figure
2.2.7 (b).

We see that the line x = 4 intersects the graph of the supposed inverse twice
- meaning the graph fails the VerƟcal Line Test, and as such, does not represent y
as a funcƟonof x. The verƟcal line x = 4on the graphon the right corresponds to
the horizontal line y = 4 on the graph of y = f(x). The fact that the horizontal
line y = 4 intersects the graph of f twice means two different inputs, namely
x = −2 and x = 2, are matched with the same output, 4, which is the cause of
all of the trouble. In general, for a funcƟon to have an inverse, different inputs
must go to different outputs, or else we will run into the same problem we did
with f(x) = x2. We give this property a name.
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DefiniƟon 2.2.4 One-to-one funcƟon

A funcƟon f is said to be one-to-one if f matches different inputs to dif-
ferent outputs. Equivalently, f is one-to-one if and only if whenever
f(c) = f(d), then c = d.

Graphically, we detect one-to-one funcƟons using the test below.

Theorem 2.2.3 The Horizontal Line Test

A funcƟon f is one-to-one if and only if no horizontal line intersects the
graph of fmore than once.

We say that the graph of a funcƟon passes the Horizontal Line Test if no hor-
izontal line intersects the graph more than once; otherwise, we say the graph of
the funcƟon fails the Horizontal Line Test. We have argued that if f is inverƟble,
then f must be one-to-one, otherwise the graph given by reflecƟng the graph
of y = f(x) about the line y = x will fail the VerƟcal Line Test. It turns out that
being one-to-one is also enough to guarantee inverƟbility. To see this, we think
of f as the set of ordered pairs which consƟtute its graph. If switching the x- and
y-coordinates of the points results in a funcƟon, then f is inverƟble and we have
found f−1. This is precisely what the Horizontal Line Test does for us: it checks to
see whether or not a set of points describes x as a funcƟon of y. We summarize
these results below.

Theorem 2.2.4 Equivalent CondiƟons for InverƟbility

Suppose f is a funcƟon. The following statements are equivalent.
• f is inverƟble

• f is one-to-one

• The graph of f passes the Horizontal Line Test

We put this result to work in the next example.

Example 2.2.6 Finding one-to-one funcƟons
Determine if the following funcƟons are one-to-one in two ways: (a) analyƟcally
using DefiniƟon 2.2.4 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

3. h(x) = x2 − 2x+ 4
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Figure 2.2.9: The funcƟon g is one-to-one

2.2 OperaƟons on FuncƟons

SÊ½çã®ÊÄ

1. (a) To determine if f is one-to-one analyƟcally, we assume f(c) = f(d)
and aƩempt to deduce that c = d.

f(c) = f(d)
1− 2c

5
=

1− 2d
5

1− 2c = 1− 2d
−2c = −2d

c = d X

Hence, f is one-to-one.
(b) To check if f is one-to-one graphically, we look to see if the graph of

y = f(x) passes the Horizontal Line Test. We have that f is a non-
constant linear funcƟon, which means its graph is a non-horizontal
line. Thus the graph of f passes the Horizontal Line Test: see Figure
2.2.8.

2. (a) We begin with the assumpƟon that g(c) = g(d) and try to show
c = d.

g(c) = g(d)
2c

1− c
=

2d
1− d

2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.

(b) The graph of g is shown in Figure 2.2.9. We get the sole intercept at
(0, 0), a verƟcal asymptote x = 1 and a horizontal asymptote (which
the graph never crosses) y = −2. We see from that the graph of g
in Figure 2.2.9 that g passes the Horizontal Line Test.

3. (a) We begin with h(c) = h(d). As we work our way through the prob-
lem, we encounter a nonlinear equaƟon. We move the non-zero
terms to the leŌ, leave a 0 on the right and factor accordingly.

h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that
c = 2−d. This suggests that fmay not be one-to-one. Taking d = 0,
we get c = 0 or c = 2. With h(0) = 4 and h(2) = 4, we have
produced two different inputs with the same output meaning h is
not one-to-one.
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(b) We note that h is a quadraƟc funcƟon and we graph y = h(x) using
the techniques presented in SecƟon 3.1.3. The vertex is (1, 3) and
the parabola opens upwards. We see immediately from the graph in
Figure 2.2.10 that h is not one-to-one, since there are several hori-
zontal lines which cross the graph more than once.

We have shown that the funcƟons f and g in Example 2.2.6 are one-to-one.
This means they are inverƟble, so it is natural to wonder what f−1(x) and g−1(x)
would be. For f(x) = 1−2x

5 , we can think our way through the inverse since
there is only one occurrence of x. We can track step-by-step what is done to x
and reverse those steps as we did at the beginning of the chapter. The func-
Ɵon g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one eval-
uates g(x) for a specific value of x, which is first, the 2x or the 1 − x? We can
imagine funcƟonsmore complicated than these sowe need to develop a general
methodology to aƩack this problem. Theorem 2.2.1 tells us equaƟon y = f−1(x)
is equivalent to f(y) = x and this is the basis of our algorithm.

Key Idea 2.2.1 Steps for finding the Inverse of a One-to-one Func-
Ɵon

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply wriƩen ‘Solve x = f(y) for y’ and be done
with it. The act of interchanging the x and y is there to remind us that we are
finding the inverse funcƟon by switching the inputs and outputs.

Example 2.2.7 CompuƟng inverse funcƟons
Find the inverse of the following one-to-one funcƟons. Check your answers an-
alyƟcally using funcƟon composiƟon and graphically.

1. f(x) =
1− 2x

5

2. g(x) =
2x

1− x

SÊ½çã®ÊÄ

1. AswemenƟoned earlier, it is possible to think ourway through the inverse
of f by recording the steps we apply to x and the order in which we apply
them and then reversing those steps in the reverse order. We encourage
the reader to do this. We, on the other hand, will pracƟce the algorithm.
We write y = f(x) and proceed to switch x and y
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Figure 2.2.11: The graphs of f and f−1

from Example 2.2.7
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y = f(x)

y =
1− 2x

5
x =

1− 2y
5

switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1
−2

= y

y = −5
2
x+

1
2

We have f−1(x) = − 5
2x +

1
2 . To check this answer analyƟcally, we first

check that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f, which is all real

numbers. (
f−1 ◦ f

)
(x) = f−1(f(x))

= −5
2
f(x) +

1
2

= −5
2

(
1− 2x

5

)
+

1
2

= −1
2
(1− 2x) +

1
2

= −1
2
+ x+

1
2

= x X

We now check that
(
f ◦ f−1) (x) = x for all x in the range of fwhich is also

all real numbers. (Recall that the domain of f−1) is the range of f.)

(
f ◦ f−1) (x) = f(f−1(x)) =

1− 2f−1(x)
5

=
1− 2

(
− 5

2x+
1
2
)

5
=

1+ 5x− 1
5

=
5x
5

= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the
same set of axes in Figure 2.2.11. They appear to be reflecƟons across the
line y = x.

2. To find g−1(x), we start with y = g(x). We note that the domain of g is
(−∞, 1) ∪ (1,∞).

y = g(x)
2x

1− x

x =
2y

1− y
switch x and y

x(1− y) = 2y
x− xy = 2y

x = xy+ 2y = y(x+ 2) factor

y =
x

x+ 2
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Figure 2.2.12: The graphs of g and g−1
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We obtain g−1(x) =
x

x+ 2
. To check this analyƟcally, we first check(

g−1 ◦ g
)
(x) = x for all x in the domain of g, that is, for all x ̸= 1.

(
g−1 ◦ g

)
(x) = g−1(g(x)) = g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

=

(
2x

1− x

)
(

2x
1− x

)
+ 2

· (1− x)
(1− x)

clear denominators

=
2x

2x+ 2(1− x)
=

2x
2x+ 2− 2x

=
2x
2

= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph of

g in Example 2.2.6, we have that the range of g is (−∞,−2) ∪ (−2,∞).
This matches the domain we get from the formula g−1(x) = x

x+2 , as it
should.

(
g ◦ g−1) (x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

)

=

2
(

x
x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)
(x+ 2)

clear denominators

=
2x

(x+ 2)− x
=

2x
2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we
can see the symmetric relaƟonship if we thicken the curve for y = g−1(x).
Note that the verƟcal asymptote x = 1 of the graph of g corresponds to
the horizontal asymptote y = 1 of the graph of g−1, as it should since x
and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the verƟcal asymptote x = −2 of the graph of
g−1. See Figure 2.2.12
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Exercises 2.2
Problems
In Exercises 1 – 10, use the pair of funcƟons f and g to find
the following values if they exist:

• (f+ g)(2)
• (f− g)(−1)
• (g− f)(1)
• (fg)

( 1
2

)
•
(

f
g

)
(0)

•
(
g
f

)
(−2)

1. f(x) = 3x+ 1 and g(x) = 4− x

2. f(x) = x2 and g(x) = −2x+ 1

3. f(x) = x2 − x and g(x) = 12− x2

4. f(x) = 2x3 and g(x) = −x2 − 2x− 3

5. f(x) =
√
x+ 3 and g(x) = 2x− 1

6. f(x) =
√
4− x and g(x) =

√
x+ 2

7. f(x) = 2x and g(x) = 1
2x+ 1

8. f(x) = x2 and g(x) = 3
2x− 3

9. f(x) = x2 and g(x) = 1
x2

10. f(x) = x2 + 1 and g(x) = 1
x2 + 1

In Exercises 11 – 20, use the pair of funcƟons f and g to find
the domain of the indicated funcƟon then find and simplify
an expression for it.

• (f+ g)(x)

• (f− g)(x)

• (fg)(x)

•
(

f
g

)
(x)

11. f(x) = 2x+ 1 and g(x) = x− 2

12. f(x) = 1− 4x and g(x) = 2x− 1

13. f(x) = x2 and g(x) = 3x− 1

14. f(x) = x2 − x and g(x) = 7x

15. f(x) = x2 − 4 and g(x) = 3x+ 6

16. f(x) = −x2 + x+ 6 and g(x) = x2 − 9

17. f(x) = x
2
and g(x) = 2

x

18. f(x) = x− 1 and g(x) = 1
x− 1

19. f(x) = x and g(x) =
√
x+ 1

20. f(x) =
√
x− 5 and g(x) = f(x) =

√
x− 5

In Exercises 21 – 32, let f be the funcƟon defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the funcƟon defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}.

Compute the indicated value if it exists.

21. (f+ g)(−3)

22. (f− g)(2)

23. (fg)(−1)

24. (g+ f)(1)

25. (g− f)(3)

26. (gf)(−3)

27.
(

f
g

)
(−2)

28.
(

f
g

)
(−1)

29.
(

f
g

)
(2)

30.
(
g
f

)
(−1)

31.
(
g
f

)
(3)

32.
(
g
f

)
(−3)

In Exercises 33 – 44, use the given pair of funcƟons to find the
following values if they exist.

• (g ◦ f)(0)
• (f ◦ g)(−1)
• (f ◦ f)(2)

• (g ◦ f)(−3)
• (f ◦ g)

( 1
2

)
• (f ◦ f)(−2)

33. f(x) = x2, g(x) = 2x+ 1

34. f(x) = 4− x, g(x) = 1− x2

35. f(x) = 4− 3x, g(x) = |x|
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36. f(x) = |x− 1|, g(x) = x2 − 5

37. f(x) = 4x+ 5, g(x) =
√
x

38. f(x) =
√
3− x, g(x) = x2 + 1

39. f(x) = 6− x− x2, g(x) = x
√
x+ 10

40. f(x) = 3√x+ 1, g(x) = 4x2 − x

41. f(x) = 3
1− x

, g(x) = 4x
x2 + 1

42. f(x) = x
x+ 5

, g(x) = 2
7− x2

43. f(x) = 2x
5− x2

, g(x) =
√
4x+ 1

44. f(x) =
√
2x+ 5, g(x) = 10x

x2 + 1

In Exercises 45 – 56, use the given pair of funcƟons to find and
simplify expressions for the following funcƟons and state the
domain of each using interval notaƟon.

• (g ◦ f)(x) • (f ◦ g)(x) • (f ◦ f)(x)

45. f(x) = 2x+ 3, g(x) = x2 − 9

46. f(x) = x2 − x+ 1, g(x) = 3x− 5

47. f(x) = x2 − 4, g(x) = |x|

48. f(x) = 3x− 5, g(x) =
√
x

49. f(x) = |x+ 1|, g(x) =
√
x

50. f(x) = 3− x2, g(x) =
√
x+ 1

51. f(x) = |x|, g(x) =
√
4− x

52. f(x) = x2 − x− 1, g(x) =
√
x− 5

53. f(x) = 3x− 1, g(x) = 1
x+ 3

54. f(x) = 3x
x− 1

, g(x) = x
x− 3

55. f(x) = x
2x+ 1

, g(x) = 2x+ 1
x

56. f(x) = 2x
x2 − 4

, g(x) =
√
1− x

In Exercises 57 – 62, use f(x) = −2x, g(x) =
√
x and h(x) =

|x| to find and simplify expressions for the following funcƟons
and state the domain of each using interval notaƟon.

57. (h ◦ g ◦ f)(x)

58. (h ◦ f ◦ g)(x)

59. (g ◦ f ◦ h)(x)

60. (g ◦ h ◦ f)(x)

61. (f ◦ h ◦ g)(x)

62. (f ◦ g ◦ h)(x)

In Exercises 63 – 72, write the given funcƟon as a composiƟon
of two ormore non-idenƟty funcƟons. (There are several cor-
rect answers, so check your answer using funcƟon composi-
Ɵon.)

63. p(x) = (2x+ 3)3

64. P(x) =
(
x2 − x+ 1

)5
65. h(x) =

√
2x− 1

66. H(x) = |7− 3x|

67. r(x) = 2
5x+ 1

68. R(x) = 7
x2 − 1

69. q(x) = |x|+ 1
|x| − 1

70. Q(x) = 2x3 + 1
x3 − 1

71. v(x) = 2x+ 1
3− 4x

72. w(x) = x2

x4 + 1

In Exercises 73 – 92, show that the given funcƟon is one-to-
one and find its inverse. Check your answers algebraically
and graphically. Verify that the range of f is the domain of
f−1 and vice-versa.

73. f(x) = 6x− 2

74. f(x) = 42− x

75. f(x) = x− 2
3

+ 4

76. f(x) = 1− 4+ 3x
5

77. f(x) =
√
3x− 1+ 5

78. f(x) = 2−
√
x− 5

79. f(x) = 3
√
x− 1− 4
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80. f(x) = 1− 2
√
2x+ 5

81. f(x) = 5√3x− 1

82. f(x) = 3− 3√x− 2

83. f(x) = x2 − 10x, x ≥ 5

84. f(x) = 3(x+ 4)2 − 5, x ≤ −4

85. f(x) = x2 − 6x+ 5, x ≤ 3

86. f(x) = 4x2 + 4x+ 1, x < −1

87. f(x) = 3
4− x

88. f(x) = x
1− 3x

89. f(x) = 2x− 1
3x+ 4

90. f(x) = 4x+ 2
3x− 6

91. f(x) = −3x− 2
x+ 3

92. f(x) = x− 2
2x− 1
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P (x0, y0)

Q (x1, y1)

Figure 3.1.1: The line between two points
P and Q

See www.mathforum.org or
www.mathworld.wolfram.com for
discussions on the use of the leƩer m to
indicate slope.

3: EÝÝ�Äã®�½ FçÄ�ã®ÊÄÝ
3.1 Linear and QuadraƟc FuncƟons

3.1.1 Linear FuncƟons

Wenowbegin the study of families of funcƟons. Our first family, linear funcƟons,
are old friends as we shall soon see. Recall from Geometry that two disƟnct
points in the plane determine a unique line containing those points, as indicated
in Figure 3.1.1.

To give a sense of the ‘steepness’ of the line, we recall that we can compute
the slope of the line using the formula below.

DefiniƟon 3.1.1 Slope

The slopem of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0
x1 − x0

,

provided x1 ̸= x0.

A couple of notes about DefiniƟon 3.1.1 are in order. First, don’t ask why we
use the leƩer ‘m’ to represent slope. There are many explanaƟons out there,
but apparently no one really knows for sure. Secondly, the sƟpulaƟon x1 ̸= x0
ensures that we aren’t trying to divide by zero. The reader is invited to pause to
think about what is happening geometrically; the anxious reader can skip along
to the next example.

Example 3.1.1 Finding the slope of a line
Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1. P(0, 0), Q(2, 4) 2. P(−2, 3), Q(2,−3)

3. P(−3, 2), Q(4, 2) 4. P(2, 3), Q(2,−1)

SÊ½çã®ÊÄ In each of these examples, we apply the slope formula, from
DefiniƟon 3.1.1.

1. m =
4− 0
2− 0

=
4
2
= 2

P

Q

x

y

1 2 3 4

1

2

3

4

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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Figure 3.1.2: Slope as “rise over run”

Chapter 3 EssenƟal FuncƟons

2. m =
−3− 3
2− (−2)

=
−6
4

= −3
2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

3. m =
2− 2

4− (−3)
=

0
7
= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4. m =
−1− 3
2− 2

=
−4
0

, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

Youmay recall fromhigh school that slope can be described as the raƟo ‘ riserun ’.
For example, in the second part of Example 3.1.1, we found the slope to be 1

2 .
We can interpret this as a rise of 1 unit upward for every 2 units to the right we
travel along the line, as shown in Figure 3.1.2.

Using more formal notaƟon, given points (x0, y0) and (x1, y1), we use the
Greek leƩer delta ‘∆’ to write∆y = y1−y0 and∆x = x1−x0. In most scienƟfic
circles, the symbol∆means ‘change in’.

Hence, we may write

m =
∆y
∆x

,

which describes the slope as the rate of change of y with respect to x. Given a
slopem and a point (x0, y0) on a line, suppose (x, y) is another point on our line,
as in Figure 3.1.3. DefiniƟon 3.1.1 yields

m =
y− y0
x− x0

m (x− x0) = y− y0
y− y0 = m (x− x0)

We have just derived the point-slope form of a line.
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(x0, y0)

(x, y)

Figure 3.1.3: Deriving the point-slope for-
mula

3.1 Linear and QuadraƟc FuncƟons

Key Idea 3.1.1 The point-slope form of a line

The point-slope form of the equaƟon of a line with slope m containing
the point (x0, y0) is the equaƟon y− y0 = m (x− x0).

Example 3.1.2 Using the point-slope form
Write the equaƟon of the line containing the points (−1, 3) and (2, 1).

SÊ½çã®ÊÄ In order to use Key Idea 3.1.1 we need to find the slope of
the line in quesƟon so we use DefiniƟon 3.1.1 to getm = ∆y

∆x = 1−3
2−(−1) = − 2

3 .
We are spoiled for choice for a point (x0, y0). We’ll use (−1, 3) and leave it to
the reader to check that using (2, 1) results in the same equaƟon. SubsƟtuƟng
into the point-slope form of the line, we get

y− y0 = m (x− x0)

y− 3 = −2
3
(x− (−1))

y− 3 = −2
3
(x+ 1)

y− 3 = −2
3
x− 2

3

y = −2
3
x+

7
3
.

In simplifying the equaƟon of the line in the previous example, we produced
another form of a line, the slope-intercept form. This is the familiar y = mx+ b
form you have probably seen in high school. The ‘intercept’ in ‘slope-intercept’
comes from the fact that if we set x = 0, we get y = b. In other words, the
y-intercept of the line y = mx+ b is (0, b).

Key Idea 3.1.2 Slope intercept form of a line

The slope-intercept form of the line with slopem and y-intercept (0, b)
is the equaƟon y = mx+ b.

Note that if we have slope m = 0, we get the equaƟon y = b. The formula
given in Key Idea 3.1.2 can be used to describe all lines except verƟcal lines. All
lines except verƟcal lines are funcƟons (Why is this?) so we have finally reached
a good point to introduce linear funcƟons.

DefiniƟon 3.1.2 Linear funcƟon

A linear funcƟon is a funcƟon of the form

f(x) = mx+ b,

where m and b are real numbers with m ̸= 0. The domain of a linear
funcƟon is (−∞,∞).
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Figure 3.1.4: The graph of f(x) = 3
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Figure 3.1.5: The graph of f(x) = 3x− 1

x

y

−3 −2 −1 1 2 3
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2

Figure 3.1.6: The graph of f(x) = 3− 2x
4
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For the casem = 0, we get f(x) = b. These are given their own classificaƟon.

DefiniƟon 3.1.3 Constant funcƟon

A constant funcƟon is a funcƟon of the form

f(x) = b,

where b is real number. The domain of a constant funcƟon is (−∞,∞).

Recall that to graph a funcƟon, f, we graph the equaƟon y = f(x). Hence,
the graph of a linear funcƟon is a line with slope m and y-intercept (0, b); the
graph of a constant funcƟon is a horizontal line (a line with slopem = 0) and a y-
intercept of (0, b). A line with posiƟve slope is called an increasing line because
a linear funcƟon with m > 0 is an increasing funcƟon. Similarly, a line with a
negaƟve slope is called a decreasing line because a linear funcƟon withm < 0 is
a decreasing funcƟon. And horizontal lines were called constant because, well,
we hope you’ve already made the connecƟon.

Example 3.1.3 Graphing linear funcƟons
Graph the following funcƟons. IdenƟfy the slope and y-intercept.

1. f(x) = 3

2. f(x) = 3x− 1

3. f(x) =
3− 2x

4

4. f(x) =
x2 − 4
x− 2

SÊ½çã®ÊÄ

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0)
through (0, 3): see Figure 3.1.4.

2. The graph of f(x) = 3x−1 is the graph of the line y = 3x−1. Comparison
of this equaƟon with EquaƟon 3.1.2 yields m = 3 and b = −1. Hence,
our slope is 3 and our y-intercept is (0,−1). To get another point on the
line, we can plot (1, f(1)) = (1, 2). ConstrucƟng the line through these
points gives us Figure 3.1.5.

3. At first glance, the funcƟon f(x) =
3− 2x

4
does not fit the form in Defi-

niƟon 3.1.2 but aŌer some rearranging we get f(x) = 3−2x
4 = 3

4 − 2x
4 =

− 1
2x+

3
4 . We idenƟfym = − 1

2 and b = 3
4 . Hence, our graph is a line with

a slope of− 1
2 and a y-intercept of

(
0, 34
)
. Ploƫng an addiƟonal point, we

can choose (1, f(1)) to get
(
1, 14
)
: see Figure 3.1.6.

4. If we simplify the expression for f, we get

f(x) =
x2 − 4
x− 2

=
����(x− 2)(x+ 2)

����(x− 2)
= x+ 2.

If wewere to state f(x) = x+2, wewould be commiƫng a sin of omission.
Remember, to find the domain of a funcƟon, we do so beforewe simplify!
In this case, f has big problems when x = 2, and as such, the domain of
f is (−∞, 2) ∪ (2,∞). To indicate this, we write f(x) = x + 2, x ̸= 2.
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Figure 3.1.7: The graph of f(x) = x2 − 4
x− 2

3.1 Linear and QuadraƟc FuncƟons

So, except at x = 2, we graph the line y = x + 2. The slope m = 1 and
the y-intercept is (0, 2). A second point on the graph is (1, f(1)) = (1, 3).
Since our funcƟon f is not defined at x = 2, we put an open circle at the
point that would be on the line y = x + 2 when x = 2, namely (2, 4), as
shown in Figure 3.1.7.

The last two funcƟons in the previous example showcase some of the diffi-
culty in defining a linear funcƟon using the phrase ‘of the form’ as in DefiniƟon
3.1.2, since some algebraic manipulaƟons may be needed to rewrite a given
funcƟon to match ‘the form’. Keep in mind that the domains of linear and con-
stant funcƟons are all real numbers (−∞,∞), so while f(x) = x2−4

x−2 simplified
to a formula f(x) = x+ 2, f is not considered a linear funcƟon since its domain
excludes x = 2. However, we would consider

f(x) =
2x2 + 2
x2 + 1

to be a constant funcƟon since its domain is all real numbers (Can you tell us
why?) and

f(x) =
2x2 + 2
x2 + 1

=
2����(
x2 + 1

)
����(
x2 + 1

) = 2.
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3.1.2 Absolute Value FuncƟons

Before we move on to quadraƟc funcƟons, we pause to consider the absolute
value. The absolute value funcƟon is an example of a piecewise funcƟon, given
by different formulas on different parts of its domain. The absolute value func-
Ɵon is in parƟcular a piecewise linear funcƟon, so we’ve chosen to place it be-
tween linear and quadraƟc funcƟons.

There are a few ways to describe what is meant by the absolute value |x| of
a real number x. You may have been taught that |x| is the distance from the real
number x to 0 on the number line. So, for example, |5| = 5 and |−5| = 5, since
each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5

Another way to define absolute value is by the equaƟon |x| =
√
x2. Using

this definiƟon, we have |5| =
√

(5)2 =
√
25 = 5 and | − 5| =

√
(−5)2 =√

25 = 5. The long and short of both of these procedures is that |x| takes nega-
Ɵve real numbers and assigns them to their posiƟve counterparts while it leaves
posiƟve numbers alone. This last descripƟon is the one we shall adopt, and is
summarized in the following definiƟon.

DefiniƟon 3.1.4 Absolute value funcƟon

The absolute value of a real number x, denoted |x|, is given by

|x| =

{
−x, if x < 0
x, if x ≥ 0

InDefiniƟon 3.1.4, wedefine |x|using a piecewise-defined funcƟon. To check
that this definiƟon agreeswithwhatwepreviously understood as absolute value,
note that since 5 ≥ 0, to find |5| we use the rule |x| = x, so |5| = 5. Similarly,
since−5 < 0, we use the rule |x| = −x, so that |−5| = −(−5) = 5. This is one
of the Ɵmes when it’s best to interpret the expression ‘−x’ as ‘the opposite of x’
as opposed to ‘negaƟve x’. Before we begin studying absolute value funcƟons,
we remind ourselves of the properƟes of absolute value.
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Theorem 3.1.1 ProperƟes of Absolute Value

Let a, b and x be real numbers and let n be an integer. Then

• Product Rule: |ab| = |a||b|

• Power Rule: |an| = |a|n whenever an is defined

• QuoƟent Rule:
∣∣∣ab ∣∣∣ = |a|

|b|
, provided b ̸= 0

Equality ProperƟes:

• |x| = 0 if and only if x = 0.

• For c > 0, |x| = c if and only if x = c or−x = c.

• For c < 0, |x| = c has no soluƟon.

Example 3.1.4 Solving equaƟons with absolute values
Solve each of the following equaƟons.

1. |3x− 1| = 6 2. 3− |x+ 5| = 1

3. 3|2x+ 1| − 5 = 0 4. 4− |5x+ 3| = 5

SÊ½çã®ÊÄ

1. The equaƟon |3x−1| = 6 is of the form |x| = c for c > 0, so by the Equality
ProperƟes, |3x−1| = 6 is equivalent to 3x−1 = 6 or 3x−1 = −6. Solving
the former, we arrive at x = 7

3 , and solving the laƩer, we get x = − 5
3 . We

may check both of these soluƟons by subsƟtuƟng them into the original
equaƟon and showing that the arithmeƟc works out.

2. To use the Equality ProperƟes to solve 3− |x+ 5| = 1, we first isolate the
absolute value.

3− |x+ 5| = 1
−|x+ 5| = −2 subtract 3
|x+ 5| = 2 divide by−1

From the Equality ProperƟes, we have x+ 5 = 2 or x+ 5 = −2, and get
our soluƟons to be x = −3 or x = −7. We leave it to the reader to check
both answers in the original equaƟon.

3. As in the previous example, we first isolate the absolute value in the equa-
Ɵon 3|2x+1|−5 = 0 and get |2x+1| = 5

3 . Using the Equality ProperƟes,
we have 2x+ 1 = 5

3 or 2x+ 1 = − 5
3 . Solving the former gives x = 1

3 and
solving the laƩer gives x = − 4

3 . As usual, wemay subsƟtute both answers
in the original equaƟon to check.

4. Upon isolaƟng the absolute value in the equaƟon 4−|5x+3| = 5, we get
|5x+ 3| = −1. At this point, we know there cannot be any real soluƟon,
since, by definiƟon, the absolute value of anything is never negaƟve. We
are done.
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f(x) = |x|, x ≥ 0
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f(x) = |x|

Figure 3.1.8: ConstrucƟng the graph of
f(x) = |x|
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Next, we turn our aƩenƟon to graphing absolute value funcƟons. Our strat-
egy in the next example is tomake liberal use of DefiniƟon 3.1.4 along with what
we know about graphing linear funcƟons (from SecƟon 3.1.1) and piecewise-
defined funcƟons (from SecƟon 2.1).
Example 3.1.5 Graphing the absolute value funcƟon
Graph the funcƟon f(x) = |x|.

SÊ½çã®ÊÄ To find the zeros of f, we set f(x) = 0. We get |x| = 0, which,
by Theorem 3.1.1 gives us x = 0. Since the zeros of f are the x-coordinates of
the x-intercepts of the graph of y = f(x), we get (0, 0) as our only x-intercept,
and this of course is our y-intercept as well. Using DefiniƟon 3.1.4, we get

f(x) = |x| =

{
−x, if x < 0
x, if x ≥ 0

.

Hence, for x < 0, we are graphing the line y = −x; for x ≥ 0, we have the line
y = x. Ploƫng these gives us the first two graphs in Figure 3.1.8.

NoƟce that we have an ‘open circle’ at (0, 0) in the graph when x < 0. As
we have seen before, this is due to the fact that the points on y = −x approach
(0, 0) as the x-values approach 0. Since x is required to be strictly less than
zero on this stretch, the open circle is drawn at the origin. However, noƟce that
when x ≥ 0, we get to fill in the point at (0, 0), which effecƟvely ‘plugs’ the hole
indicated by the open circle. Thus our final result is the graph at the boƩom of
Figure 3.1.8.
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Figure 3.1.9: The graph of the basic
quadraƟc funcƟon f(x) = x2
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Figure 3.1.10: The graph y = x2 with
points labelled

(−4, 1)

(−3,−2)

(−2,−3)

(−1,−2)

(0, 1)

x

y

−4 −3 −2 −1

−3

−1

1

Figure 3.1.11: g(x) = f(x + 2) − 3 =
(x+ 2)2 − 3
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Figure 3.1.12: h(x) = −2f(x − 3) + 1 =
−2(x− 3)2 + 1

3.1 Linear and QuadraƟc FuncƟons

3.1.3 QuadraƟc FuncƟons
Youmay recall studying quadraƟc equaƟons in high school. In this secƟon, we re-
view those equaƟons in the context of our next family of funcƟons: the quadraƟc
funcƟons.

DefiniƟon 3.1.5 QuadraƟc funcƟon

A quadraƟc funcƟon is a funcƟon of the form

f(x) = ax2 + bx+ c,

where a, b and c are real numbers with a ̸= 0. The domain of a quadraƟc
funcƟon is (−∞,∞).

Themost basic quadraƟc funcƟon is f(x) = x2, whose graph is given in Figure
3.1.9. Its shape should look familiar from high school – it is called a parabola.
The point (0, 0) is called the vertex of the parabola. In this case, the vertex is a
relaƟve minimum and is also the where the absolute minimum value of f can be
found.

Much likemany of the absolute value funcƟons in SecƟon 3.1.2, knowing the
graph of f(x) = x2 enables us to graph an enƟre family of quadraƟc funcƟons
using transformaƟons.

Example 3.1.6 Graphics quadraƟc funcƟons
Graph the following funcƟons starƟng with the graph of f(x) = x2 and using
transformaƟons. Find the vertex, state the range andfind the x- and y-intercepts,
if any exist.

1. g(x) = (x+ 2)2 − 3

2. h(x) = −2(x− 3)2 + 1

SÊ½çã®ÊÄ

1. Since g(x) = (x+2)2−3 = f(x+2)−3, we shiŌ the graph of y = f(x) to
the leŌ 2 units, and then down three units. We move our marked points
accordingly and connect the dots in parabolic fashion to get the graph in
Figure 3.1.11.
From the graph, we see that the vertex hasmoved from (0, 0)on the graph
of y = f(x) to (−2,−3) on the graph of y = g(x). This sets [−3,∞) as the
range of g. We see that the graph of y = g(x) crosses the x-axis twice, so
we expect two x-intercepts. To find these, we set y = g(x) = 0 and solve.
Doing so yields the equaƟon (x+ 2)2− 3 = 0, or (x+ 2)2 = 3. ExtracƟng
square roots gives x + 2 = ±

√
3, or x = −2 ±

√
3. Our x-intercepts

are (−2 −
√
3, 0) ≈ (−3.73, 0) and (−2 +

√
3, 0) ≈ (−0.27, 0). The y-

intercept of the graph, (0, 1) was one of the points we originally ploƩed,
so we are done.

2. To graph h(x) = −2(x − 3)2 + 1 = −2f(x − 3) + 1, we first shiŌ right
3 units. Next, we mulƟply each of our y-values first by −2 and then add
1 to that result. Geometrically, this is a verƟcal stretch by a factor of 2,
followed by a reflecƟon about the x-axis, followed by a verƟcal shiŌ up 1
unit. This gives us the graph in Figure 3.1.12.
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The vertex is (3, 1)which makes the range of h (−∞, 1]. From our graph,
we know that there are two x-intercepts, so we set y = h(x) = 0 and
solve. We get −2(x − 3)2 + 1 = 0 which gives (x − 3)2 = 1

2 . ExtracƟng
square roots gives x− 3 = ± 1√

2 , so that when we add 3 to each side, we
get x = 3± 1√

2 . Although our graph doesn’t show it, there is a y-intercept
which can be found by seƫng x = 0. With h(0) = −2(0−3)2+1 = −17,
we have that our y-intercept is (0,−17).

In the previous example, note that neither the formula given for g(x) nor
the one given for h(x) match the form given in DefiniƟon 3.1.5. We could, of
course, convert both g(x) and h(x) into that form by expanding and collecƟng
like terms. Doing so, we find g(x) = (x + 2)2 − 3 = x2 + 4x + 1 and h(x) =
−2(x− 3)2 + 1 = −2x2 + 12x− 17. While these ‘simplified’ formulas for g(x)
and h(x) saƟsfy DefiniƟon 3.1.5, they do not lend themselves to graphing easily.
For that reason, the form of g and h presented in Example 3.1.7 is given a special
name, which we list below, along with the form presented in DefiniƟon 3.1.5.

DefiniƟon 3.1.6 Standard andGeneral FormofQuadraƟc FuncƟons

Suppose f is a quadraƟc funcƟon.

• The general form of the quadraƟc funcƟon f is f(x) = ax2+bx+c,
where a, b and c are real numbers with a ̸= 0.

• The standard form of the quadraƟc funcƟon f is f(x) = a(x−h)2+
k, where a, h and k are real numbers with a ̸= 0.

One of the advantages of the standard form is that we can immediately read
off the locaƟon of the vertex:

Theorem 3.1.2 Vertex Formula for QuadraƟcs in Standard Form

For the quadraƟc funcƟon f(x) = a(x−h)2+k, where a, h and k are real
numbers with a ̸= 0, the vertex of the graph of y = f(x) is (h, k).

To convert a quadraƟc funcƟon given in general form into standard form, we
employ the ancient rite of ‘CompleƟng the Square’. We remind the reader how
this is done in our next example.

Example 3.1.7 ConverƟng from general to standard form
Convert the funcƟons below from general form to standard form.

1. f(x) = x2 − 4x+ 3.

2. g(x) = 6− x− x2

SÊ½çã®ÊÄ

1. To convert from general form to standard form, we complete the square.
First, we verify that the coefficient of x2 is 1. Next, we find the coefficient
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If you forget why we do what we do to
complete the square, start with a(x −
h)2 + k, mulƟply it out, step by step, and
then reverse the process.
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Figure 3.1.13: f(x) = x2 − 4x+ 3
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Figure 3.1.14: g(x) = 6− x− x2

3.1 Linear and QuadraƟc FuncƟons

of x, in this case −4, and take half of it to get 1
2 (−4) = −2. This tells us

that our target perfect square quanƟty is (x − 2)2. To get an expression
equivalent to (x− 2)2, we need to add (−2)2 = 4 to the x2− 4x to create
a perfect square trinomial, but to keep the balance, wemust also subtract
it. We collect the terms which create the perfect square and gather the
remaining constant terms. Puƫng it all together, we get

f(x) = x2 − 4x+ 3 (Compute 1
2 (−4) = −2.)

=
(
x2 − 4x+ 4− 4

)
+ 3 (Add and subtract (−2)2 = 4.)

=
(
x2 − 4x+ 4

)
− 4+ 3 (Group the perfect square trinomial.)

= (x− 2)2 − 1 (Factor the perfect square trinomial.)

From the standard form we can immediately (if desired) produce a sketch
of the graph of f, as shown in Figure 3.1.13.

2. To get started, we rewrite g(x) = 6− x− x2 = −x2 − x+ 6 and note that
the coefficient of x2 is−1, not 1. This means our first step is to factor out
the (−1) from both the x2 and x terms. We then follow the compleƟng
the square recipe as above.

g(x) = −x2 − x+ 6
= (−1)

(
x2 + x

)
+ 6 (Factor the coefficient of x2 from x2 and x.)

= (−1)
(
x2 + x+

1
4
− 1

4

)
+ 6

= (−1)
(
x2 + x+

1
4

)
+ (−1)

(
−1
4

)
+ 6

(Group the perfect square trinomial.)

= −
(
x+

1
2

)2

+
25
4

Using the standard form, we can again obtain the graph of g, as shown in
Figure 3.1.14.

In addiƟon to making it easy for us to sketch the graph of a quadraƟc func-
Ɵon by finding the standard form, compleƟng the square is also the technique
needed to obtain the famous quadraƟc formula.

Theorem 3.1.3 The QuadraƟc Formula

If a, b and c are real numbers with a ̸= 0, then the soluƟons to ax2 +
bx+ c = 0 are

x =
−b±

√
b2 − 4ac
2a

.

Assuming the condiƟons of EquaƟon 3.1.3, the soluƟons to ax2+bx+ c = 0
are precisely the zeros of f(x) = ax2 + bx + c. To find these zeros (if possible),
we proceed as follows:
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ax2 + bx+ c = 0

a
(
x2 +

b
a
x
)

= −c

a
(
x2 +

b
a
x+

b2

4a2

)
= −c+

b2

4a

a
(
x+

b
2a

)2

=
b2 − 4ac

4a(
x+

b
2a

)2

=
b2 − 4ac

4a2

x+
b
2a

= ±
√
b2 − 4ac
2a

x =
−b±

√
b2 − 4ac
2a

.

In our discussions of domain, we were warned against having negaƟve num-
bers underneath the square root. Given that

√
b2 − 4ac is part of the QuadraƟc

Formula, we will need to pay special aƩenƟon to the radicand b2 − 4ac. It turns
out that the quanƟty b2 − 4ac plays a criƟcal role in determining the nature of
the soluƟons to a quadraƟc equaƟon. It is given a special name.

DefiniƟon 3.1.7 Discriminant

If a, b and c are real numbers with a ̸= 0, then the discriminant of the
quadraƟc equaƟon ax2 + bx+ c = 0 is the quanƟty b2 − 4ac.

The discriminant ‘discriminates’ between the kinds of soluƟons we get from
a quadraƟc equaƟon. These cases, and their relaƟon to the discriminant, are
summarized below.

Theorem 3.1.4 Discriminant Trichotomy

Let a, b and c be real numbers with a ̸= 0.

• If b2−4ac < 0, the equaƟon ax2+bx+c = 0 has no real soluƟons.

• If b2 − 4ac = 0, the equaƟon ax2 + bx + c = 0 has exactly one
real soluƟon.

• If b2 − 4ac > 0, the equaƟon ax2 + bx + c = 0 has exactly two
real soluƟons.
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Exercises 3.1
Problems
In Exercises 1 – 10, find both the point-slope form and the
slope-intercept form of the line with the given slope which
passes through the given point.

1. m = 3, P(3,−1)

2. m = −2, P(−5, 8)

3. m = −1, P(−7,−1)

4. m = 2
3 , P(−2, 1)

5. m = 2
3 , P(−2, 1)

6. m = 1
7 , P(−1, 4)

7. m = 0, P(3, 117)

8. m = −
√
2, P(0,−3)

9. m = −5, P(
√
3, 2

√
3)

10. m = 678, P(−1,−12)

In Exercises 11 – 20, find the slope-intercept form of the line
which passes through the given points.

11. P(0, 0), Q(−3, 5)

12. P(−1,−2), Q(3,−2)

13. P(5, 0), Q(0,−8)

14. P(3,−5), Q(7, 4)

15. P(−1, 5), Q(7, 5)

16. P(4,−8), Q(5,−8)

17. P
( 1
2 ,

3
4

)
, Q
( 5
2 ,−

7
4

)
18. P

( 2
3 ,

7
2

)
, Q
(
− 1

3 ,
3
2

)
19. P

(√
2,−

√
2
)
, Q
(
−
√
2,
√
2
)

20. P
(
−
√
3,−1

)
, Q
(√

3, 1
)

In Exercises 21 – 26, graph the funcƟon. Find the slope, y-
intercept and x-intercept, if any exist.

21. f(x) = 2x− 1

22. f(x) = 3− x

23. f(x) = 3

24. f(x) = 0

25. f(x) = 2
3 x+

1
3

26. f(x) = 1− x
2

In Exercises 27 – 41, solve the equaƟon.

27. |x| = 6

28. |3x− 1| = 10

29. |4− x| = 7

30. 4− |x| = 3

31. 2|5x+ 1| − 3 = 0

32. |7x− 1|+ 2 = 0

33. 5− |x|
2

= 1

34. 2
3 |5− 2x| − 1

2 = 5

35. |x| = x+ 3

36. |2x− 1| = x+ 1

37. 4− |x| = 2x+ 1

38. |x− 4| = x− 5

39. |x| = x2

40. |x| = 12− x2

41. |x2 − 1| = 3

Prove that if |f(x)| = |g(x)| then either f(x) = g(x) or
f(x) = −g(x). Use that result to solve the equaƟons in Ex-
ercises 42 – 47.

42. |3x− 2| = |2x+ 7|

43. |3x+ 1| = |4x|

44. |1− 2x| = |x+ 1|

45. |4− x| − |x+ 2| = 0

46. |2− 5x| = 5|x+ 1|

47. 3|x− 1| = 2|x+ 1|
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In Exercises 48 – 59, graph the funcƟon. Find the zeros of each
funcƟon and the x- and y-intercepts of each graph, if any ex-
ist. From the graph, determine the domain and range of each
funcƟon, list the intervals onwhich the funcƟon is increasing,
decreasing or constant, and find the relaƟve and absolute ex-
trema, if they exist.

48. f(x) = |x+ 4|

49. f(x) = |x|+ 4

50. f(x) = |4x|

51. f(x) = −3|x|

52. f(x) = 3|x+ 4| − 4

53. f(x) = 1
3 |2x− 1|

54. f(x) = |x+ 4|
x+ 4

55. f(x) = |2− x|
2− x

56. f(x) = x+ |x| − 3

57. f(x) = |x+ 2| − x

58. f(x) = |x+ 2| − |x|

59. f(x) = |x+ 4|+ |x− 2|

In Exercises 60 – 67, graph the quadraƟc funcƟon. Find the
x- and y-intercepts of each graph, if any exist. If it is given
in general form, convert it into standard form; if it is given
in standard form, convert it into general form. Find the do-
main and range of the funcƟon and list the intervals onwhich
the funcƟon is increasing or decreasing. IdenƟfy the vertex
and the axis of symmetry and determine whether the vertex
yields a relaƟve and absolute maximum or minimum.

60. f(x) = x2 + 2

61. f(x) = −(x+ 2)2

62. f(x) = x2 − 2x− 8

63. f(x) = −2(x+ 1)2 + 4

64. f(x) = 2x2 − 4x− 1

65. f(x) = −3x2 + 4x− 7

66. f(x) = x2 + x+ 1

67. f(x) = −3x2 + 5x+ 4

In Exercises 68 – 99, solve the inequality. Write your answer
using interval notaƟon.

68. |3x− 5| ≤ 4

69. |7x+ 2| > 10

70. |2x+ 1| − 5 < 0

71. |2− x| − 4 ≥ −3

72. |3x+ 5|+ 2 < 1

73. 2|7− x|+ 4 > 1

74. 2 ≤ |4− x| < 7

75. 1 < |2x− 9| ≤ 3

76. |x+ 3| ≥ |6x+ 9|

77. |x− 3| − |2x+ 1| < 0

78. |1− 2x| ≥ x+ 5

79. x+ 5 < |x+ 5|

80. x ≥ |x+ 1|

81. |2x+ 1| ≤ 6− x

82. x+ |2x− 3| < 2

83. |3− x| ≥ x− 5

84. x2 + 2x− 3 ≥ 0

85. 16x2 + 8x+ 1 > 0

86. x2 + 9 < 6x

87. 9x2 + 16 ≥ 24x

88. x2 + 4 ≤ 4x

89. x2 + 1 < 0

90. 3x2 ≤ 11x+ 4

91. x > x2

92. 2x2 − 4x− 1 > 0

93. 5x+ 4 ≤ 3x2

94. 2 ≤ |x2 − 9| < 9

95. x2 ≤ |4x− 3|

96. x2 + x+ 1 ≥ 0

97. x2 ≥ |x|
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98. x|x+ 5| ≥ −6 99. x|x− 3| < 2
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3.2 Polynomial FuncƟons
3.2.1 Graphs of Polynomial FuncƟons
Threeof the families of funcƟons studied thus far – constant, linear andquadraƟc
– belong to a much larger group of funcƟons called polynomials. We begin our
formal study of general polynomials with a definiƟon and some examples.

DefiniƟon 3.2.1 Polynomial funcƟon

A polynomial funcƟon is a funcƟon of the form

f(x) = anxn + an−1xn−1 + . . .+ a2x2 + a1x+ a0,

where a0, a1, …, an are real numbers and n ≥ 1 is a natural number. The
domain of a polynomial funcƟon is (−∞,∞).

There are several things about DefiniƟon 3.2.1 that may be off-puƫng or
downright frightening. The best thing to do is look at an example. Consider
f(x) = 4x5 − 3x2 + 2x − 5. Is this a polynomial funcƟon? We can re-write the
formula for f as f(x) = 4x5+0x4+0x3+(−3)x2+2x+(−5). Comparing this with
DefiniƟon 3.2.1, we idenƟfy n = 5, a5 = 4, a4 = 0, a3 = 0, a2 = −3, a1 = 2
and a0 = −5. In other words, a5 is the coefficient of x5, a4 is the coefficient of
x4, and so forth; the subscript on the a’s merely indicates to which power of x
the coefficient belongs. The business of restricƟng n to be a natural number lets
us focus on well-behaved algebraic animals. (Yes, there are examples of worse
behaviour sƟll to come!)

Example 3.2.1 IdenƟfying polynomial funcƟons
Determine if the following funcƟons are polynomials. Explain your reasoning.

1. g(x) =
4+ x3

x

2. p(x) =
4x+ x3

x

3. q(x) =
4x+ x3

x2 + 4

4. f(x) = 3
√
x

5. h(x) = |x|

6. z(x) = 0

SÊ½çã®ÊÄ

1. We note directly that the domain of g(x) =
x3 + 4

x
is x ̸= 0. By defini-

Ɵon, a polynomial has all real numbers as its domain. Hence, g can’t be a
polynomial.

2. Even though p(x) =
x3 + 4x

x
simplifies to p(x) = x2 + 4, which certainly

looks like the form given in DefiniƟon 3.2.1, the domain of p, which, as you
may recall, we determine before we simplify, excludes 0. Alas, p is not a
polynomial funcƟon for the same reason g isn’t.

3. AŌer what happened with p in the previous part, you may be a liƩle shy

about simplifying q(x) =
x3 + 4x
x2 + 4

to q(x) = x, which certainly fits Defi-
niƟon 3.2.1. If we look at the domain of q before we simplified, we see
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Oncewe get to calculus, we’ll see that the
absolute value funcƟon is the classic ex-
ample of a funcƟon which is conƟnuous
everywhere, but fails to have a derivaƟve
everywhere: the graph of h(x) = |x| fails
to be “smooth” at the origin.

In the context of limits, results such as
00 are known as indeterminant forms.
These are cases where the funcƟon fails
to be defined, but the methods of calcu-
lus might sƟll be able to extract informa-
Ɵon.

3.2 Polynomial FuncƟons

that it is, indeed, all real numbers. A funcƟon which can be wriƩen in
the form of DefiniƟon 3.2.1 whose domain is all real numbers is, in fact, a
polynomial.

4. We can rewrite f(x) = 3
√
x as f(x) = x 1

3 . Since 1
3 is not a natural number, f

is not a polynomial.

5. The funcƟon h(x) = |x| isn’t a polynomial, since it can’t be wriƩen as a
combinaƟon of powers of x even though it can be wriƩen as a piecewise
funcƟon involving polynomials. As we shall see in this secƟon, graphs of
polynomials possess a quality that the graph of h does not.

6. There’s nothing in DefiniƟon 3.2.1 which prevents all the coefficients an,
etc., from being 0. Hence, z(x) = 0, is an honest-to-goodness polynomial.

DefiniƟon 3.2.2 Polynomial terminology

Suppose f is a polynomial funcƟon.

• Given f(x) = anxn+an−1xn−1+ . . .+a2x2+a1x+a0 with an ̸= 0,
we say

– The natural number n is called the degree of the polynomial
f.

– The term anxn is called the leading term of the polynomial f.
– The real number an is called the leading coefficient of the
polynomial f.

– The real number a0 is called the constant term of the poly-
nomial f.

• If f(x) = a0, and a0 ̸= 0, we say f has degree 0.

• If f(x) = 0, we say f has no degree.

The reader may well wonder why we have chosen to separate off constant
funcƟons from the other polynomials in DefiniƟon 3.2.2. Why not just lump
them all together and, instead of forcing n to be a natural number, n = 1, 2, . . .,
allow n to be a whole number, n = 0, 1, 2, . . .. We could unify all of the cases,
since, aŌer all, isn’t a0x0 = a0? The answer is ‘yes, as long as x ̸= 0.’ The
funcƟon f(x) = 3 and g(x) = 3x0 are different, because their domains are dif-
ferent. The number f(0) = 3 is defined, whereas g(0) = 3(0)0 is not. Indeed,
much of the theory we will develop in this chapter doesn’t include the constant
funcƟons, so we might as well treat them as outsiders from the start. One good
thing that comes from DefiniƟon 3.2.2 is that we can now think of linear func-
Ɵons as degree 1 (or ‘first degree’) polynomial funcƟons and quadraƟc funcƟons
as degree 2 (or ‘second degree’) polynomial funcƟons.
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Example 3.2.2 Using polynomial terminiology
Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial funcƟons.

1. f(x) = 4x5 − 3x2 + 2x− 5

2. g(x) = 12x+ x3

3. h(x) =
4− x
5

4. p(x) = (2x− 1)3(x− 2)(3x+ 2)

SÊ½çã®ÊÄ

1. There are no surprises with f(x) = 4x5 − 3x2 + 2x− 5. It is wriƩen in the
form of DefiniƟon 3.2.2, and we see that the degree is 5, the leading term
is 4x5, the leading coefficient is 4 and the constant term is−5.

2. The form given in DefiniƟon 3.2.2 has the highest power of x first. To that
end, we re-write g(x) = 12x+ x3 = x3 + 12x, and see that the degree of
g is 3, the leading term is x3, the leading coefficient is 1 and the constant
term is 0.

3. We need to rewrite the formula for h so that it resembles the form given
in DefiniƟon 3.2.2: h(x) = 4−x

5 = 4
5 − x

5 = − 1
5x +

4
5 . The degree of h is

1, the leading term is− 1
5x, the leading coefficient is− 1

5 and the constant
term is 4

5 .

4. It may seem that we have some work ahead of us to get p in the form
of DefiniƟon 3.2.2. However, it is possible to glean the informaƟon re-
quested aboutpwithoutmulƟplying out the enƟre expression (2x−1)3(x−
2)(3x + 2). The leading term of p will be the term which has the highest
power of x. Theway to get this term is tomulƟply the termswith the high-
est power of x fromeach factor together - in otherwords, the leading term
of p(x) is the product of the leading terms of the factors of p(x). Hence,
the leading term of p is (2x)3(x)(3x) = 24x5. This means that the degree
of p is 5 and the leading coefficient is 24. As for the constant term, we can
perform a similar trick. The constant term is obtained by mulƟplying the
constant terms from each of the factors (−1)3(−2)(2) = 4.

We now consider the graphs of polynomial funcƟons. In Figure 3.2.1 the
graphs of y = x2, y = x4 and y = x6, are shown. We have omiƩed the axes to
allow you to see that as the exponent increases, the ‘boƩom’ becomes ‘flaƩer’
and the ‘sides’ become ‘steeper.’ If you take the the Ɵme to graph these func-
Ɵons by hand, (make sure you choose some x-values between −1 and 1.) you
will see why.

All of these funcƟons are even, (Do you remember how to show this?) and it
is exactly because the exponent is even. (Herein lies one of the possible origins
of the term ‘even’ when applied to funcƟons.) This symmetry is important, but
we want to explore a different yet equally important feature of these funcƟons
which we can be seen graphically – their end behaviour.
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When x → ∞we think of x as moving far
to the right of zero and becoming a very
large posiƟve number. When x → −∞
we think of x as becoming a very large (in
the sense of its absolute value) negaƟve
number far to the leŌ of zero.

y = x2

y = x4

y = x6

Figure 3.2.1: Graphing even powers of x

y = x3

y = x5

y = x7

Figure 3.2.2: Graphing odd powers of x

3.2 Polynomial FuncƟons

The end behaviour of a funcƟon is a way to describe what is happening to
the funcƟon values (the y-values) as the x-values approach the ‘ends’ of the x-
axis. (Of course, there are no ends to the x-axis.) That is, what happens to y as
x becomes small without bound (wriƩen x → −∞) and, on the flip side, as x
becomes large without bound (wriƩen x → ∞).

For example, given f(x) = x2, as x → −∞, we imagine subsƟtuƟng x =
−100, x = −1000, etc., into f to get f(−100) = 10000, f(−1000) = 1000000,
and so on. Thus the funcƟon values are becoming larger and larger posiƟve
numbers (without bound). To describe this behaviour, we write: as x → −∞,
f(x) → ∞. If we study the behaviour of f as x → ∞, we see that in this case,
too, f(x) → ∞. (We told you that the symmetry was important!) The same can
be said for any funcƟon of the form f(x) = xn where n is an even natural number.
If we generalize just a bit to include verƟcal scalings and reflecƟons across the
x-axis, we have

Key Idea 3.2.1 End behaviour of funcƟons f(x) = axn, n even.

Suppose f(x) = axn where a ̸= 0 is a real number and n is an even
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → −∞

This is illustrated graphically below:

a > 0 a < 0

We now turn our aƩenƟon to funcƟons of the form f(x) = xn where n ≥ 3
is an odd natural number. (We ignore the case when n = 1, since the graph
of f(x) = x is a line and doesn’t fit the general paƩern of higher-degree odd
polynomials.) In Figure 3.2.2 we have graphed y = x3, y = x5, and y = x7. The
‘flaƩening’ and ‘steepening’ that we saw with the even powers presents itself
here as well, and, it should come as no surprise that all of these funcƟons are
odd. (And are, perhaps, the inspiraƟon for the moniker ‘odd funcƟon’.) The end
behaviour of these funcƟons is all the same, with f(x) → −∞ as x → −∞ and
f(x) → ∞ as x → ∞.

As with the even degreed funcƟons we studied earlier, we can generalize
their end behaviour.
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In fact, when we get to Calculus, you’ll
find that smooth funcƟons are automat-
ically conƟnuous, so that saying ‘polyno-
mials are conƟnuous and smooth’ is re-
dundant.

‘corner’

‘break’

‘cusp’

‘hole’

Figure 3.2.3: Pathologies not found on
graphs of polynomials

Figure 3.2.4: The graph of a polynomial
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Key Idea 3.2.2 End behaviour of funcƟons f(x) = axn, n odd.

Suppose f(x) = axn where a ̸= 0 is a real number and n ≥ 3 is an odd
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

• for a > 0, as x → −∞, f(x) → −∞ and as x → ∞, f(x) → ∞

• for a < 0, as x → −∞, f(x) → ∞ and as x → ∞, f(x) → −∞

This is illustrated graphically as follows:

a > 0 a < 0

Despite having different end behaviour, all funcƟons of the form f(x) = axn
for natural numbers n share two properƟes which help disƟnguish them from
other animals in the algebra zoo: they are conƟnuous and smooth. While these
concepts are formally defined using Calculus, informally, graphs of conƟnuous
funcƟons have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth funcƟons
have no ‘sharp turns’. It turns out that these traits are preservedwhen funcƟons
are added together, so general polynomial funcƟons inherit these qualiƟes. In
Figure 3.2.3, we find the graph of a funcƟon which is neither smooth nor conƟn-
uous, and to its right we have a graph of a polynomial, for comparison. The func-
Ɵonwhose graph appears on the leŌ fails to be conƟnuouswhere it has a ‘break’
or ‘hole’ in the graph; everywhere else, the funcƟon is conƟnuous. The funcƟon
is conƟnuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’,
so these are places where the funcƟon fails to be smooth. Apart from these
four places, the funcƟon is smooth and conƟnuous. Polynomial funcƟons are
smooth and conƟnuous everywhere, as exhibited in Figure 3.2.4.

ThenoƟonof smoothness iswhat tells us graphically that, for example, f(x) =
|x|, whose graph is the characterisƟc ‘∨’ shape, cannot be a polynomial. The no-
Ɵon of conƟnuity is key to construcƟng sign diagrams: the zeros of a polynomial
funcƟon are the only possible places where it can change sign. This last result is
formalized in the following theorem.

Theorem 3.2.1 The Intermediate Value Theorem (Zero Version)

Suppose f is a conƟnuous funcƟon on an interval containing x = a and
x = bwith a < b. If f(a) and f(b) have different signs, then f has at least
one zero between x = a and x = b; that is, for at least one real number
c such that a < c < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart
of what it means to be a real number, and is one of the most oŌen used and un-
der appreciated theorems in MathemaƟcs. With that being said, most students
see the result as common sense since it says, geometrically, that the graph of a
polynomial funcƟon cannot be above the x-axis at one point and below the x-
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The validity of the result in Example 3.2.3
of course relies on having a rigorous proof
of Theorem 3.2.1. Although intuiƟve, its
proof is one of the most difficult in sin-
gle variable calculus. Atmost universiƟes,
you don’t see a proof unƟl a first course in
Analysis, like Math 3500.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4

Figure 3.2.5: The sign diagram of f in Ex-
ample 3.2.4

x

y

Figure 3.2.6: The graph y = f(x) for Ex-
ample 3.2.4

3.2 Polynomial FuncƟons

axis at another point without crossing the x-axis somewhere in between. We’ll
return to the Intermediate Value Theorem later in the Calculus porƟon of the
course, when we study conƟnuity in general. The following example uses the
Intermediate Value Theorem to establish a fact that that most students take for
granted. Many students, and sadly some instructors, will find it silly.

Example 3.2.3 Existence of
√
2

Use the Intermediate Value Theorem to establish that
√
2 is a real number.

SÊ½çã®ÊÄ Consider the polynomial funcƟon f(x) = x2−2. Then f(1) =
−1 and f(3) = 7. Since f(1) and f(3) have different signs, the Intermediate
Value Theorem guarantees us a real number c between 1 and 3 with f(c) = 0. If
c2 − 2 = 0 then c = ±

√
2. Since c is between 1 and 3, c is posiƟve, so c =

√
2.

Our primary use of the Intermediate Value Theorem is in the construcƟon
of sign diagrams, since it guarantees us that polynomial funcƟons are always
posiƟve (+) or always negaƟve (−) on intervals which do not contain any of its
zeros. The general algorithm for polynomials is given below.

Key Idea 3.2.3 Steps for ConstrucƟng a Sign Diagram for a Polyno-
mial FuncƟon

Suppose f is a polynomial funcƟon.

1. Find the zeros of f and place them on the number line with the
number 0 above them.

2. Choose a real number, called a test value, in each of the intervals
determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write
that sign above the corresponding interval.

Example 3.2.4 Using a sign diagram to sketch a polynomial
Construct a sign diagram for f(x) = x3(x− 3)2(x+ 2)

(
x2 + 1

)
. Use it to give a

rough sketch of the graph of y = f(x).

SÊ½çã®ÊÄ First, wefind the zeros of fby solving x3(x−3)2(x+2)
(
x2 + 1

)
=

0. We get x = 0, x = 3 and x = −2. (The equaƟon x2 + 1 = 0 produces no
real soluƟons.) These three points divide the real number line into four inter-
vals: (−∞,−2), (−2, 0), (0, 3) and (3,∞). We select the test values x = −3,
x = −1, x = 1 and x = 4. We find f(−3) is (+), f(−1) is (−) and f(1) is (+)
as is f(4). Wherever f is (+), its graph is above the x-axis; wherever f is (−), its
graph is below the x-axis. The x-intercepts of the graph of f are (−2, 0), (0, 0)
and (3, 0). Knowing f is smooth and conƟnuous allows us to sketch its graph in
Figure 3.2.6.

A couple of notes about the Example 3.2.4 are in order. First, note that we
purposefully did not label the y-axis in the sketch of the graph of y = f(x). This
is because the sign diagram gives us the zeros and the relaƟve posiƟon of the
graph - it doesn’t give us any informaƟon as to how high or low the graph strays
from the x-axis. Furthermore, as we have menƟoned earlier in the text, without
Calculus, the values of the relaƟve maximum and minimum can only be found
approximately using a calculator. If we took the Ɵme to find the leading term of
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A view close to the origin

A ‘zoomed out’ view

Figure 3.2.7: Two views of the polynomi-
als f(x) and g(x)
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f, we would find it to be x8. Looking at the end behaviour of f, we noƟce that it
matches the end behaviour of y = x8. This is no accident, as we find out in the
next theorem.

Theorem 3.2.2 End behaviour for Polynomial FuncƟons

The end behaviour of a polynomial f(x) = anxn+an−1xn−1+. . .+a2x2+
a1x+ a0 with an ̸= 0 matches the end behaviour of y = anxn.

To see why Theorem 3.2.2 is true, let’s first look at a specific example. Con-
sider f(x) = 4x3 − x + 5. If we wish to examine end behaviour, we look to see
the behaviour of f as x → ±∞. Since we’re concerned with x’s far down the
x-axis, we are far away from x = 0 so can rewrite f(x) for these values of x as

f(x) = 4x3
(
1− 1

4x2
+

5
4x3

)

As x becomes unbounded (in either direcƟon), the terms
1
4x2

and
5
4x3

be-
come closer and closer to 0, as the table below indicates.

x 1
4x2

5
4x3

−1000 0.00000025 −0.00000000125
−100 0.000025 −0.00000125
−10 0.0025 −0.00125
10 0.0025 0.00125

100 0.000025 0.00000125
1000 0.00000025 0.00000000125

In other words, as x → ±∞, f(x) ≈ 4x3 (1− 0+ 0) = 4x3, which is the
leading term of f. The formal proof of Theorem 3.2.2 works in much the same
way. Factoring out the leading term leaves

f(x) = anxn
(
1+

an−1

anx
+ . . .+

a2
anxn−2 +

a1
anxn−1 +

a0
anxn

)
As x → ±∞, any term with an x in the denominator becomes closer and

closer to 0, and we have f(x) ≈ anxn. Geometrically, Theorem 3.2.2 says that if
we graph y = f(x) using a graphing calculator, and conƟnue to ‘zoom out’, the
graph of it and its leading term become indisƟnguishable. In Figure 3.2.7 the
graphs of y = 4x3 − x+ 5 and y = 4x3 ) in two different windows.

Let’s return to the funcƟon in Example 3.2.4, f(x) = x3(x−3)2(x+2)
(
x2 + 1

)
,

whose sign diagram and graph are given in Figures 3.2.5 and 3.2.6. Theorem
3.2.2 tells us that the end behaviour is the same as that of its leading term x8.
This tells us that the graph of y = f(x) starts and ends above the x-axis. In other
words, f(x) is (+) as x → ±∞, and as a result, we no longer need to evaluate
f at the test values x = −3 and x = 4. Is there a way to eliminate the need to
evaluate f at the other test values? What we would really need to know is how
the funcƟon behaves near its zeros - does it cross through the x-axis at these
points, as it does at x = −2 and x = 0, or does it simply touch and rebound
like it does at x = 3. From the sign diagram, the graph of f will cross the x-axis
whenever the signs on either side of the zero switch (like they do at x = −2 and
x = 0); it will touch when the signs are the same on either side of the zero (as is
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the case with x = 3). What we need to determine is the reason behind whether
or not the sign change occurs.

Fortunately, f was given to us in factored form: f(x) = x3(x − 3)2(x + 2).
When we aƩempt to determine the sign of f(−4), we are aƩempƟng to find the
sign of the number (−4)3(−7)2(−2), which works out to be (−)(+)(−) which
is (+). If we move to the other side of x = −2, and find the sign of f(−1), we
are determining the sign of (−1)3(−4)2(+1), which is (−)(+)(+) which gives
us the (−). NoƟce that signs of the first two factors in both expressions are the
same in f(−4) and f(−1). The only factor which switches sign is the third factor,
(x + 2), precisely the factor which gave us the zero x = −2. If we move to the
other side of 0 and look closely at f(1), we get the sign paƩern (+1)3(−2)2(+3)
or (+)(+)(+) and we note that, once again, going from f(−1) to f(1), the only
factor which changed sign was the first factor, x3, which corresponds to the
zero x = 0. Finally, to find f(4), we subsƟtute to get (+4)3(+2)2(+5) which
is (+)(+)(+) or (+). The sign didn’t change for the middle factor (x − 3)2.
Even though this is the factor which corresponds to the zero x = 3, the fact that
the quanƟty is squared kept the sign of the middle factor the same on either
side of 3. If we look back at the exponents on the factors (x+ 2) and x3, we see
that they are both odd, so as we subsƟtute values to the leŌ and right of the cor-
responding zeros, the signs of the corresponding factors change which results in
the sign of the funcƟon value changing. This is the key to the behaviour of the
funcƟon near the zeros. We need a definiƟon and then a theorem.

DefiniƟon 3.2.3 MulƟplicity of a zero

Suppose f is a polynomial funcƟon andm is a natural number. If (x− c)m
is a factor of f(x) but (x − c)m+1 is not, then we say x = c is a zero of
mulƟplicitym.

Hence, rewriƟng f(x) = x3(x−3)2(x+2) as f(x) = (x−0)3(x−3)2(x−(−2))1,
we see that x = 0 is a zero of mulƟplicity 3, x = 3 is a zero of mulƟplicity 2 and
x = −2 is a zero of mulƟplicity 1.

Theorem 3.2.3 The Role of MulƟplicity

Suppose f is a polynomial funcƟon and x = c is a zero of mulƟplicitym.

• Ifm is even, the graph of y = f(x) touches and rebounds from the
x-axis at (c, 0).

• If m is odd, the graph of y = f(x) crosses through the x-axis at
(c, 0).

Our last example showshowendbehaviour andmulƟplicity allowus to sketch
a decent graph without appealing to a sign diagram.

Example 3.2.5 Using end behaviour and mulƟplicity
Sketch the graph of f(x) = −3(2x − 1)(x + 1)2 using end behaviour and the
mulƟplicity of its zeros.

SÊ½çã®ÊÄ The end behaviour of the graph of f will match that of its
leading term. To find the leading term, wemulƟply by the leading terms of each
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y

Figure 3.2.8: The graph y = f(x) for Ex-
ample 3.2.5
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factor to get (−3)(2x)(x)2 = −6x3. This tells us that the graph will start above
the x-axis, in Quadrant II, and finish below the x-axis, in Quadrant IV. Next, we
find the zeros of f. Fortunately for us, f is factored. (Obtaining the factored form
of a polynomial is the main focus of the next few secƟons.) Seƫng each factor
equal to zero gives is x = 1

2 and x = −1 as zeros. To find the mulƟplicity of
x = 1

2 we note that it corresponds to the factor (2x − 1). This isn’t strictly in
the form required in DefiniƟon 3.2.3. If we factor out the 2, however, we get
(2x−1) = 2

(
x− 1

2
)
, and we see that the mulƟplicity of x = 1

2 is 1. Since 1 is an
odd number, we know from Theorem 3.2.3 that the graph of fwill cross through
the x-axis at

( 1
2 , 0
)
. Since the zero x = −1 corresponds to the factor (x+ 1)2 =

(x−(−1))2, we find itsmulƟplicity to be 2which is an even number. As such, the
graph of f will touch and rebound from the x-axis at (−1, 0). Though we’re not
asked to, we can find the y-intercept by finding f(0) = −3(2(0)−1)(0+1)2 = 3.
Thus (0, 3) is an addiƟonal point on the graph. Puƫng this together gives us the
graph in Figure 3.2.8.

3.2.2 Polynomial ArithmeƟc
The previous secƟon introduced all the important polynomial terminology and
taught us the basic techniques for graphing polynomial funcƟons. We saw that a
necessary ingredient for obtaining the graph of a polynomial funcƟon is knowl-
edge of the zeros of the polynomial. In the next few secƟons, we will cover the
algebraic techniques needed to obtain this informaƟon.

In this secƟon our focus is enƟrely on algebraic manipulaƟon, so we will
pause briefly in our discussion of funcƟons, and simply consider polynomial ex-
pressions. (That is, we simply dispense with wriƟng “p(x) =” in front of every
polynomial.)

We begin with (you guessed it) a bit more terminology that can come in
handy when comparing polynomials.

DefiniƟon 3.2.4 Polynomial Vocabulary, Part 2

• Like Terms: Terms in a polynomial are called like terms if they have
the same variables each with the same corresponding exponents.

• Simplified: A polynomial is said to be simplified if all arithmeƟc
operaƟons have been completed and there are no longer any like
terms.

• ClassificaƟon by Number of Terms: A simplified polynomial is
called a

– monomial if it has exactly one nonzero term
– binomial if it has exactly two nonzero terms
– trinomial if it has exactly three nonzero terms

For example, x2 + x
√
3+ 4 is a trinomial of degree 2. The coefficient of x2 is

1 and the constant term is 4. The polynomial 27x2y+ 7x
2 is a binomial of degree

3 (x2y = x2y1) with constant term 0.

The concept of ‘like’ terms really amounts to finding terms which can be
combinedusing theDistribuƟveProperty. For example, in the polynomial 17x2y−
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We caved to peer pressure on this one.
Apparently all of the cool Precalculus
books have FOIL in them even though it’s
redundant once you know how to dis-
tribute mulƟplicaƟon across addiƟon. In
general, we don’t like mechanical short-
cuts that interfere with a student’s under-
standing of thematerial and FOIL is one of
the worst.
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3xy2 + 7xy2, −3xy2 and 7xy2 are like terms, since they have the same variables
with the same corresponding exponents. This allows us to combine these two
terms as follows:

17x2y−3xy2+7xy2 = 17x2y+(−3)xy2+7xy2+17x2y+(−3+7)xy2 = 17x2y+4xy2

Note that even though 17x2y and 4xy2 have the same variables, they are not like
terms since in the first term we have x2 and y = y1 but in the second we have
x = x1 and y = y2 so the corresponding exponents aren’t the same. Hence,
17x2y+ 4xy2 is the simplified form of the polynomial.

There are four basic operaƟons we can perform with polynomials: addiƟon,
subtracƟon, mulƟplicaƟon and division. The first three of these operaƟons fol-
low directly from properƟes of real number arithmeƟc and will be discussed
together first. Division, on the other hand, is a bit more complicated and will be
discussed separately.

3.2.3 Polynomial AddiƟon, SubtracƟon and MulƟplicaƟon.
Adding and subtracƟng polynomials comes down to idenƟfying like terms and
then adding or subtracƟng the coefficients of those like terms. MulƟplying poly-
nomials comes to us courtesy of the Generalized DistribuƟve Property.

Theorem 3.2.4 Generalized DistribuƟve Property

To mulƟply a quanƟty of n terms by a quanƟty ofm terms, mulƟply each
of the n terms of the first quanƟty by each of them terms in the second
quanƟty and add the resulƟng n ·m terms together.

In parƟcular, Theorem3.2.4 says that, before combining like terms, a product
of an n-term polynomial and anm-term polynomial will generate (n ·m)-terms.
For example, a binomial Ɵmes a trinomial will produce six terms some of which
may be like terms. Thus the simplified end result may have fewer than six terms
but you will start with six terms.

A special case of Theorem 3.2.4 is the famous F.O.I.L., listed here:

Key Idea 3.2.4 F.O.I.L:

The terms generated from the product of two binomials: (a+ b)(c+ d)
can be verbalized as follows “Take the sum of:

• the product of the First terms a and c, ac

• the product of the Outer terms a and d, ad

• the product of the Inner terms b and c, bc

• the product of the Last terms b and d, bd.”

That is, (a+ b)(c+ d) = ac+ ad+ bc+ bd.
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Theorem 3.2.4 is best proved using the technique known as MathemaƟcal
InducƟon which is covered in Math 2000. The result is really nothing more than
repeated applicaƟons of the DistribuƟve Property so it seems reasonable and
we’ll use it without proof for now. The other major piece of polynomial mulƟpli-
caƟon is the law of exponents anam = an+m. The CommutaƟve and AssociaƟve
ProperƟes of addiƟon and mulƟplicaƟon are also used extensively. We put all
of these properƟes to good use in the next example.

Example 3.2.6 AddiƟon and subtracƟon of polynomials
Perform the indicated operaƟons and simplify.

1.
(
3x2 − 2x+ 1

)
− (7x− 3)

2. 4xz2 − 3z(xz− x+ 4)

3. (2t+ 1)(3t− 7)

4.
(
3y− 3

√
2
) (

9y2 + 3 3
√
2y+ 3

√
4
)

SÊ½çã®ÊÄ

1. We begin ‘distribuƟng the negaƟve’, then we rearrange and combine like
terms:(

3x2 − 2x+ 1
)
− (7x− 3) = 3x2 − 2x+ 1− 7x+ 3 Distribute

= 3x2 − 2x− 7x+ 1+ 3 Rearrange terms
= 3x2 − 9x+ 4 Combine like terms

Our answer is 3x2 − 9x+ 4.

2. Following in our footsteps from the previous example, we first distribute
the−3z through, then rearrange and combine like terms.

4xz2 − 3z(xz− x+ 4) = 4xz2 − 3z(xz) + 3z(x)− 3z(4) Distribute
= 4xz2 − 3xz2 + 3xz− 12z MulƟply
= xz2 + 3xz− 12z Combine like terms

We get our final answer: xz2 + 3xz− 12z

3. At last, we have a chance to use our F.O.I.L. technique:

(2t+ 1)(3t− 7) = (2t)(3t) + (2t)(−7) + (1)(3t) + (1)(−7) F.O.I.L.
= 6t2 − 14t+ 3t− 7 MulƟply
= 6t2 − 11t− 7 Combine like terms

We get 6t2 − 11t− 7 as our final answer.

4. We use the Generalized DistribuƟve Property here, mulƟplying each term
in the second quanƟty first by 3y, then by− 3

√
2:(

3y− 3
√
2
)(

9y2 + 3 3
√
2y+ 3

√
4
)
= 3y

(
9y2
)
+ 3y

(
3 3
√
2y
)
+ 3y

(
3
√
4
)

− 3
√
2
(
9y2
)
− 3
√
2
(
3 3
√
2y
)
− 3
√
2
(

3
√
4
)

= 27y3 + 9y2 3
√
2− 9y2 3

√
2+ 3y 3

√
4− 3y 3

√
4− 2

= 27y3 − 2

To our surprise and delight, this product reduces to 27y3 − 2.
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3.2 Polynomial FuncƟons

We conclude our discussion of polynomial mulƟplicaƟon by showcasing two
special productswhich happenoŌenenough they should be commiƩed tomem-
ory.

Key Idea 3.2.5 Special Products

Let a and b be real numbers:

• Perfect Square: (a+ b)2 = a2 + 2ab+ b2 and
(a− b)2 = a2 − 2ab+ b2

• Difference of Two Squares: (a− b)(a+ b) = a2 − b2

The formulas in Theorem 3.2.5 can be verified by working through the mul-
ƟplicaƟon. (These are both special cases of F.O.I.L.)

3.2.4 Polynomial Long Division.

We now turn our aƩenƟon to polynomial long division. Dividing two polyno-
mials follows the same algorithm, in principle, as dividing two natural numbers
so we review that process first. Suppose we wished to divide 2585 by 79. The
standard division tableau is given below.

32
79 2585
− 2 37↓

215
−158

57

In this case, 79 is called the divisor, 2585 is called the dividend, 32 is called
the quoƟent and 57 is called the remainder. We can check our answer by show-
ing:

dividend = (divisor)(quoƟent) + remainder

or in this case, 2585 = (79)(32)+ 57X. We hope that the long division tableau
evokes warm, fuzzy memories of your formaƟve years as opposed to feelings
of hopelessness and frustraƟon. If you experience the laƩer, keep in mind that
the Division Algorithm essenƟally is a two-step process, iterated over and over
again. First, we guess the number of Ɵmes the divisor goes into the dividend and
then we subtract off our guess. We repeat those steps with what’s leŌ over unƟl
what’s leŌ over (the remainder) is less than what we started with (the divisor).
That’s all there is to it!

The division algorithm for polynomials has the same basic two steps but
when we subtract polynomials, wemust take care to subtract like terms only. As
a transiƟon to polynomial division, let’s write out our previous division tableau
in expanded form.
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3 · 10 + 2
7 · 10+9 2 · 103 + 5 · 102 + 8 · 10 + 5

−
(
2 · 103+ 3 · 102 +7 · 10) ↓

2 · 102 + 1 · 10 + 5
−
(
1 · 102+ 5 · 10 +8)

5 · 10 + 7

WriƩen this way, we see that when we line up the digits we are really lining
up the coefficients of the corresponding powers of 10 - much like howwe’ll have
to keep the powers of x lined up in the same columns. The big difference be-
tween polynomial division and the division of natural numbers is that the value
of x is an unknown quanƟty. So unlike using the known value of 10, when we
subtract there can be no regrouping of coefficients as in our previous example.
(The subtracƟon 215 − 158 requires us to ‘regroup’ or ‘borrow’ from the tens
digit, then the hundreds digit.) This actually makes polynomial division easier.
(In our opinion - you can judge for yourself.) Before we dive into examples, we
first note that for any polynomial funcƟons d(x) and p(x) such that the degree
of p is greater than or equal to the degree of d, there exist unique polynomial
funcƟons q(x) and r(x) such that

p(x) = d(x)q(x) + r(x),

and either r(x) = 0, or the degree of r is less than the degree of d. This result
tells us that we can divide polynomials whenever the degree of the divisor is
less than or equal to the degree of the dividend. We know we’re done with
the division when the polynomial leŌ over (the remainder) has a degree strictly
less than the divisor. It’s Ɵme to walk through a few examples to refresh your
memory.
Example 3.2.7 Polynomial long division
Perform the indicated division. Check your answer by showing

dividend = (divisor)(quoƟent) + remainder

1.
(
x3 + 4x2 − 5x− 14

)
÷ (x− 2)

2. (2t+ 7)÷ (3t− 4)

3.
(
6y2 − 1

)
÷ (2y+ 5)

4.
(
w3)÷ (w2 −

√
2
)
.

SÊ½çã®ÊÄ

1. To begin
(
x3 + 4x2 − 5x− 14

)
÷ (x − 2), we divide the first term in the

dividend, namely x3, by the first term in the divisor, namely x, and get
x3
x = x2. This then becomes the first term in the quoƟent. We proceed as
in regular long division at this point: we mulƟply the enƟre divisor, x− 2,
by this first term in the quoƟent to get x2(x − 2) = x3 − 2x2. We then
subtract this result from the dividend.

x2

x−2 x3 + 4x2 −5x−14
−
(
x3−2x2

)
↓

6x2 −5x

68



3.2 Polynomial FuncƟons

Now we ‘bring down’ the next term of the quoƟent, namely −5x, and
repeat the process. We divide 6x2

x = 6x, and add this to the quoƟent
polynomial, mulƟply it by the divisor (which yields 6x(x−2) = 6x2−12x)
and subtract.

x2 + 6x
x−2 x3 + 4x2 − 5x −14

−
(
x3−2x2

)
↓

6x2 − 5x ↓
−
(
6x2−12x) ↓

7x −14

Finally, we ‘bring down’ the last term of the dividend, namely −14, and
repeat the process. We divide 7x

x = 7, add this to the quoƟent, mulƟply
it by the divisor (which yields 7(x− 2) = 7x− 14) and subtract.

x2 + 6x + 7
x−2 x3 + 4x2 − 5x − 14

−
(
x3−2x2

)
6x2 − 5x

−
(
6x2−12x)

7x − 14
− (7x −14)

0

In this case, we get a quoƟent of x2 + 6x + 7 with a remainder of 0. To
check our answer, we compute

(x−2)
(
x2 + 6x+ 7

)
+0 = x3+6x2+7x−2x2−12x−14 = x3+4x2−5x−14X

2. To compute (2t+ 7) ÷ (3t− 4), we start as before. We find 2t
3t = 2

3 , so
that becomes the first (and only) term in the quoƟent. We mulƟply the
divisor (3t − 4) by 2

3 and get 2t − 8
3 . We subtract this from the divided

and get 29
3 .

2
3

3t−4 2t + 7

−
(
2t− 8

3

)
29
3

Our answer is 2
3 with a remainder of 29

3 . To check our answer, we compute

(3t− 4)
(
2
3

)
+

29
3

= 2t− 8
3
+

29
3

= 2t+
21
3

= 2t+ 7X

3. When we set-up the tableau for
(
6y2 − 1

)
÷ (2y+ 5), we must first issue

a ‘placeholder’ for the ‘missing’ y-term in the dividend, 6y2 − 1 = 6y2 +
0y − 1. We then proceed as before. Since 6y2

2y = 3y, 3y is the first term
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in our quoƟent. We mulƟply (2y + 5) Ɵmes 3y and subtract it from the
dividend. We bring down the−1, and repeat.

3y − 15
2

2y+5 6y2 + 0y − 1

−
(
6y2+ 15y) ↓

−15y − 1

−
(
−15y− 75

2

)
73
2

Our answer is 3y − 15
2 with a remainder of 73

2 . To check our answer, we
compute:

(2y+ 5)
(
3y− 15

2

)
+

73
2

= 6y2 − 15y+ 15y− 75
2

+
73
2

= 6y2 − 1X

4. For our last example, we need ‘placeholders’ for both the divisor w2 −√
2 = w2 + 0w −

√
2 and the dividend w3 = w3 + 0w2 + 0w + 0. The

first term in the quoƟent is w3

w2 = w, and when we mulƟply and subtract
this from the dividend, we’re leŌ with just 0w2 + w

√
2+ 0 = w

√
2.

w
w2+0w−

√
2 w3 +0w2+ 0w +0
−
(
w3+0w2−w

√
2
)

↓
0w2+ w

√
2 +0

Since the degree ofw
√
2 (which is 1) is less than the degree of the divisor

(which is 2), we are done. Our answer is w with a remainder of w
√
2. To

check, we compute:(
w2 −

√
2
)
w+ w

√
2 = w3 − w

√
2+ w

√
2 = w3 X
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Exercises 3.2
Problems
In Exercises 1 – 10, solve the inequality. Write your answer
using interval notaƟon.

1. f(x) = 4− x− 3x2

2. g(x) = 3x5 − 2x2 + x+ 1

3. q(r) = 1− 16r4

4. Z(b) = 42b− b3

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3

6. s(t) = −4.9t2 + v0t+ s0

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

8. p(t) = −t2(3− 5t)(t2 + t+ 4)

9. f(x) = −2x3(x+ 1)(x+ 2)2

10. G(t) = 4(t− 2)2
(
t+ 1

2

)
In Exercises 11 – 20, find the real zeros of the given polyno-
mial and their correspondingmulƟpliciƟes. Use this informa-
Ɵon along with a sign chart to provide a rough sketch of the
graph of the polynomial. Compare your answer with the re-
sult from a graphing uƟlity.

11. a(x) = x(x+ 2)2

12. g(x) = x(x+ 2)3

13. f(x) = −2(x− 2)2(x+ 1)

14. g(x) = (2x+ 1)2(x− 3)

15. F(x) = x3(x+ 2)2

16. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)

17. Q(x) = (x+ 5)2(x− 3)4

18. h(x) = x2(x− 2)2(x+ 2)2

19. H(t) = (3− t)(t2 + 1)

20. Z(b) = b(42− b2)

21. Here are a few other quesƟons for you to discuss with your
classmates.

(a) How many local extrema could a polynomial of de-
gree n have? How few local extrema can it have?

(b) Could a polynomial have two local maxima but no lo-
cal minima?

(c) If a polynomial has two local maxima and two local
minima, can it be of odd degree? Can it be of even
degree?

(d) Can a polynomial have local extrema without having
any real zeros?

(e) Why must every polynomial of odd degree have at
least one real zero?

(f) Can a polynomial have two disƟnct real zeros and no
local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield
an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what
can we say about the degree of the polynomial and
the sign of the leading coefficient?

In Exercises 22 – 36, perform the indicated operaƟons and
simplify.

22. (4− 3x) + (3x2 + 2x+ 7)

23. t2 + 4t− 2(3− t)

24. q(200− 3q)− (5q+ 500)

25. (3y− 1)(2y+ 1)

26.
(
3− x

2

)
(2x+ 5)

27. −(4t+ 3)(t2 − 2)

28. 2w(w3 − 5)(w3 + 5)

29. (5a2 − 3)(25a4 + 15a2 + 9)

30. (x2 − 2x+ 3)(x2 + 2x+ 3)

31. (
√
7− z)(

√
7+ z)

32. (x− 3√5)3

33. (x− 3√5)(x2 + x 3√5+ 3√25)

34. (w− 3)2 − (w2 + 9)

35. (x+ h)2 − 2(x+ h)− (x2 − 2x)

36. (x− [2+
√
5])(x− [2−

√
5])

In Exercises 37 – 48, perform the indicated operaƟons and
simplify.

37. (5x2 − 3x+ 1)÷ (x+ 1)

38. (3y2 + 6y− 7)÷ (y− 3)
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39. (6w− 3)÷ (2w+ 5)

40. (2x+ 1)÷ (3x− 4)

41. (t2 − 4)÷ (2t+ 1)

42. (w3 − 8)÷ (5w− 10)

43. (2x2 − x+ 1)÷ (3x2 + 1)

44. (4y4 + 3y2 + 1)÷ (2y2 − y+ 1)

45. w4 ÷ (w3 − 2)

46. (5t3 − t+ 1)÷ (t2 + 4)

47. (t3 − 4)÷ (t− 3√4)

48. Perfect Cube: (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

In Exercises 49 – 55, verify the given formula by showing the
leŌ hand side of the equaƟon simplifies to the right hand side
of the equaƟon.

49. Perfect Cube: (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

50. Difference of Cubes: (a− b)(a2 + ab+ b2) = a3 − b3

51. Sum of Cubes: (a+ b)(a2 − ab+ b2) = a3 + b3

52. Perfect QuarƟc: (a+b)4 = a4+4a3b+6a2b2+4ab3+b4

53. Difference of QuarƟcs: (a− b)(a+ b)(a2 + b2) = a4 − b4

54. Sum of QuarƟcs: (a2 + ab
√
2 + b2)(a2 − ab

√
2 + b2) =

a4 + b4
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According to DefiniƟon 3.3.1, all polyno-
mial funcƟons are also raƟonal funcƟons,
since we can take q(x) = 1.

3.3 RaƟonal FuncƟons

3.3 RaƟonal FuncƟons

3.3.1 IntroducƟon to RaƟonal FuncƟons

If we add, subtract or mulƟply polynomial funcƟons according to the funcƟon
arithmeƟc rules defined in SecƟon 2.2.1, we will produce another polynomial
funcƟon. If, on the other hand, we divide two polynomial funcƟons, the result
may not be a polynomial. In this chapter we study raƟonal funcƟons - funcƟons
which are raƟos of polynomials.

DefiniƟon 3.3.1 RaƟonal FuncƟon

A raƟonal funcƟon is a funcƟon which is the raƟo of polynomial func-
Ɵons. Said differently, r is a raƟonal funcƟon if it is of the form

r(x) =
p(x)
q(x)

,

where p and q are polynomial funcƟons.

As we recall from SecƟon 2.1, we have domain issues any Ɵme the denomi-
nator of a fracƟon is zero. In the example below, we review this concept as well
as some of the arithmeƟc of raƟonal expressions.

Example 3.3.1 Domain of raƟonal funcƟons
Find the domain of the following raƟonal funcƟons. Write them in the form

p(x)
q(x)

for polynomial funcƟons p and q and simplify.

1. f(x) =
2x− 1
x+ 1

2. g(x) = 2− 3
x+ 1

3. h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

4. r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

SÊ½çã®ÊÄ

1. To find the domain of f, we proceed as we did in SecƟon 2.1: we find
the zeros of the denominator and exclude them from the domain. Seƫng
x+ 1 = 0 results in x = −1. Hence, our domain is (−∞,−1)∪ (−1,∞).
The expression f(x) is already in the form requested and when we check
for common factors among the numerator anddenominatorwefindnone,
so we are done.

2. Proceeding as before, we determine the domain of g by solving x+1 = 0.
As before, we find the domain of g is (−∞,−1)∪ (−1,∞). To write g(x)
in the form requested, we need to get a common denominator
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g(x) = 2− 3
x+ 1

=
2
1
− 3

x+ 1
=

(2)(x+ 1)
(1)(x+ 1)

− 3
x+ 1

=
(2x+ 2)− 3

x+ 1
=

2x− 1
x+ 1

This formula is now completely simplified.

3. The denominators in the formula for h(x) are both x2−1 whose zeros are
x = ±1. As a result, the domain of h is (−∞,−1) ∪ (−1, 1) ∪ (1,∞).
We now proceed to simplify h(x). Since we have the same denominator
in both terms, we subtract the numerators. We then factor the resulƟng
numerator and denominator, and cancel out the common factor.

h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

=

(
2x2 − 1

)
− (3x− 2)

x2 − 1

=
2x2 − 1− 3x+ 2

x2 − 1
=

2x2 − 3x+ 1
x2 − 1

=
(2x− 1)(x− 1)
(x+ 1)(x− 1)

=
(2x− 1)����(x− 1)
(x+ 1)����(x− 1)

=
2x− 1
x+ 1

4. To find the domain of r, it may help to temporarily rewrite r(x) as

r(x) =

2x2 − 1
x2 − 1
3x− 2
x2 − 1

We need to set all of the denominators equal to zero which means we
need to solve not only x2−1 = 0, but also

3x− 2
x2 − 1

= 0. Wefind x = ±1 for

the former and x = 2
3 for the laƩer. Our domain is (−∞,−1)∪

(
−1, 23

)
∪( 2

3 , 1
)
∪(1,∞). We simplify r(x) by rewriƟng the division asmulƟplicaƟon

by the reciprocal and then by cancelling the common factor

r(x) =
2x2 − 1
x2 − 1

÷ 3x− 2
x2 − 1

=
2x2 − 1
x2 − 1

· x
2 − 1
3x− 2

=

(
2x2 − 1

) (
x2 − 1

)
(x2 − 1) (3x− 2)

=

(
2x2 − 1

)
����(
x2 − 1

)
����(
x2 − 1

)
(3x− 2)

=
2x2 − 1
3x− 2

In Example 3.3.1, note that the expressions for f(x), g(x) and h(x) work out
to be the same. However, only two of these funcƟons are actually equal. For
two funcƟons to be equal, they need, among other things, to have the same
domain. Since f(x) = g(x) and f and g have the same domain, they are equal
funcƟons. Even though the formula h(x) is the same as f(x), the domain of h is
different than the domain of f, and thus they are different funcƟons.
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Figure 3.3.1: The graph of f(x) = 2x− 1
x+ 1

x f(x) (x, f(x))
−1.1 32 (−1.1, 32)

−1.01 302 (−1.01, 302)
−1.001 3002 (−1.001, 3002)

−1.0001 30002 (−1.001, 30002)

x f(x) (x, f(x))
−0.9 −28 (−0.9,−28)

−0.99 −298 (−0.99,−298)
−0.999 −2998 (−0.999,−2998)

−0.9999 −29998 (−0.9999,−29998)

Figure 3.3.2: Values of f(x) = 2x−1
x+1 near

x = −1

x f(x) ≈ (x, f(x)) ≈
−10 2.3333 (−10, 2.3333)

−100 2.0303 (−100, 2.0303)
−1000 2.0030 (−1000, 2.0030)

−10000 2.0003 (−10000, 2.0003)

x f(x) ≈ (x, f(x)) ≈
10 1.7273 (10, 1.7273)

100 1.9703 (100, 1.9703)
1000 1.9970 (1000, 1.9970)

10000 1.9997 (10000, 1.9997)

Figure 3.3.3: Values of f(x) = 2x− 1
x+ 1

for
large negaƟve and posiƟve values of x

3.3 RaƟonal FuncƟons

We now turn our aƩenƟon to the graphs of raƟonal funcƟons. Consider the
funcƟon f(x) =

2x− 1
x+ 1

from Example 3.3.1. Using GeoGebra, we obtain the
graph in Figure 3.3.1

Two behaviours of the graph are worthy of further discussion. First, note
that the graph appears to ‘break’ at x = −1. We know from our last example
that x = −1 is not in the domain of f which means f(−1) is undefined. When
we make a table of values to study the behaviour of f near x = −1 we see that
we can get ‘near’ x = −1 from two direcƟons. We can choose values a liƩle
less than−1, for example x = −1.1, x = −1.01, x = −1.001, and so on. These
values are said to ‘approach −1 from the leŌ.’ Similarly, the values x = −0.9,
x = −0.99, x = −0.999, etc., are said to ‘approach −1 from the right.’ If we
make the two tables in Figure 3.3.2, we find that the numerical results confirm
what we see graphically.

As the x values approach−1 from the leŌ, the funcƟon values become larger
and larger posiƟve numbers. (We would need Calculus to confirm this analyƟ-
cally.) We express this symbolically by staƟng as x → −1−, f(x) → ∞. Simi-
larly, using analogous notaƟon, we conclude from the table that as x → −1+,
f(x) → −∞. For this type of unbounded behaviour, we say the graph of y = f(x)
has a verƟcal asymptote of x = −1. Roughly speaking, this means that near
x = −1, the graph looks very much like the verƟcal line x = −1.

The other feature worthy of note about the graph of y = f(x) is that it seems
to ‘level off’ on the leŌ and right hand sides of the screen. This is a statement
about the end behaviour of the funcƟon. As we discussed in SecƟon 3.2.1, the
end behaviour of a funcƟon is its behaviour as x aƩains larger and larger negaƟve
values without bound (here, the word ‘larger’ means larger in absolute value),
x → −∞, and as x becomes large without bound, x → ∞.

From the tables in Figure 3.3.3, we see that as x → −∞, f(x) → 2+ and as
x → ∞, f(x) → 2−. Here the ‘+’ means ‘from above’ and the ‘−’ means ‘from
below’. In this case, we say the graph of y = f(x) has a horizontal asymptote
of y = 2. This means that the end behaviour of f resembles the horizontal line
y = 2, which explains the ‘levelling off’ behaviour we see in Figure 3.3.1. We
formalize the concepts of verƟcal and horizontal asymptotes in the following
definiƟons.

DefiniƟon 3.3.2 VerƟcal Asymptote

The line x = c is called a verƟcal asymptote of the graph of a funcƟon
y = f(x) if as x → c− or as x → c+, either f(x) → ∞ or f(x) → −∞.

DefiniƟon 3.3.3 Horizontal Asymptote

The line y = c is called a horizontal asymptote of the graph of a funcƟon
y = f(x) if as x → −∞ or as x → ∞, f(x) → c.

Note that in DefiniƟon 3.3.3, wewrite f(x) → c (not f(x) → c+ or f(x) → c−)
because we are unconcerned fromwhich direcƟon the values f(x) approach the
value c, just as long as they do so.

In our discussion following Example 3.3.1, we determined that, despite the
fact that the formula for h(x) reduced to the same formula as f(x), the funcƟons
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x h(x) ≈ (x, h(x)) ≈
0.9 0.4210 (0.9, 0.4210)

0.99 0.4925 (0.99, 0.4925)
0.999 0.4992 (0.999, 0.4992)

0.9999 0.4999 (0.9999, 0.4999)

x h(x) ≈ (x, h(x)) ≈
1.1 0.5714 (1.1, 0.5714)

1.01 0.5075 (1.01, 0.5075)
1.001 0.5007 (1.001, 0.5007)

1.0001 0.5001 (1.0001, 0.5001)

Figure 3.3.4: Values of h(x) = 2x2−1
x2−1 −

3x−2
x2−1 near x = 1

In Calculus, we will see how these ‘holes’
in graphs can be ‘plugged’ once we’ve
made a more advanced study of conƟnu-
ity.

x

y

−4−3−2 1 2 3 4−1
−2
−3
−4
−5
−6

1

3
4
5
6
7
8

Figure 3.3.5: The graph y = h(x) showing
asymptotes and the ‘hole’

In English, Theorem 3.3.1 says that if x =
c is not in the domain of r but, when we
simplify r(x), it no longer makes the de-
nominator 0, then we have a hole at x =
c. Otherwise, the line x = c is a verƟcal
asymptote of the graph of y = r(x). In
other words, Theorem 3.3.1 tells us ‘How
to tell your asymptote from a hole in the
graph.’
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f and h are different, since x = 1 is in the domain of f, but x = 1 is not in the

domain of h. If we graph h(x) =
2x2 − 1
x2 − 1

− 3x− 2
x2 − 1

using a graphing calculator,
we are surprised to find that the graph looks idenƟcal to the graph of y = f(x).
There is a verƟcal asymptote at x = −1, but near x = 1, everything seem fine.
Tables of values provide numerical evidence which supports the graphical ob-
servaƟon: see Figure 3.3.4.

We see that as x → 1−, h(x) → 0.5− and as x → 1+, h(x) → 0.5+. In
other words, the points on the graph of y = h(x) are approaching (1, 0.5), but
since x = 1 is not in the domain of h, it would be inaccurate to fill in a point at
(1, 0.5). To indicate this, we put an open circle (also called a hole in this case)
at (1, 0.5). Figure 3.3.5 is a detailed graph of y = h(x), with the verƟcal and
horizontal asymptotes as dashed lines.

Neither x = −1 nor x = 1 are in the domain of h, yet the behaviour of the
graph of y = h(x) is drasƟcally different near these x-values. The reason for
this lies in the second to last step when we simplified the formula for h(x) in

Example 3.3.1, where we had h(x) =
(2x− 1)(x− 1)
(x+ 1)(x− 1)

. The reason x = −1 is

not in the domain of h is because the factor (x+ 1) appears in the denominator
of h(x); similarly, x = 1 is not in the domain of h because of the factor (x − 1)
in the denominator of h(x). The major difference between these two factors is
that (x − 1) cancels with a factor in the numerator whereas (x + 1) does not.
Loosely speaking, the trouble caused by (x− 1) in the denominator is cancelled
away while the factor (x+1) remains to cause mischief. This is why the graph of
y = h(x) has a verƟcal asymptote at x = −1 but only a hole at x = 1. These ob-
servaƟons are generalized and summarized in the theorem below, whose proof
is found in Calculus.

Theorem 3.3.1 LocaƟon of VerƟcal Asymptotes and Holes

Suppose r is a raƟonal funcƟon which can be wriƩen as r(x) =
p(x)
q(x)

where p and q have no common zeros (in other words, r(x) is in lowest
terms). Let c be a real number which is not in the domain of r.

• If q(c) ̸= 0, then the graph of y = r(x) has a hole at
(
c,

p(c)
q(c)

)
.

• If q(c) = 0, then the line x = c is a verƟcal asymptote of the graph
of y = r(x).

Example 3.3.2 Finding verƟcal asymptotes
Find the verƟcal asymptotes of, and/or holes in, the graphs of the following ra-
Ɵonal funcƟons. Verify your answers using soŌware or a graphing calculator,
and describe the behaviour of the graph near them using proper notaƟon.

1. f(x) =
2x

x2 − 3

2. g(x) =
x2 − x− 6
x2 − 9

3. h(x) =
x2 − x− 6
x2 + 9

4. r(x) =
x2 − x− 6
x2 + 4x+ 4

SÊ½çã®ÊÄ
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Figure 3.3.6: The graph y = f(x) in Exam-
ple 3.3.2

Figure 3.3.7: The graph y = g(x) in Exam-
ple 3.3.2

Figure 3.3.8: The graph y = h(x) in Exam-
ple 3.3.2

Figure 3.3.9: The graph y = r(x) in Exam-
ple 3.3.2

3.3 RaƟonal FuncƟons

1. To use Theorem 3.3.1, we first find all of the real numbers which aren’t in
the domain of f. To do so, we solve x2−3 = 0 and get x = ±

√
3. Since the

expression f(x) is in lowest terms, there is no cancellaƟon possible, and
we conclude that the lines x = −

√
3 and x =

√
3 are verƟcal asymptotes

to the graph of y = f(x). Ploƫng the funcƟon in GeoGebra verifies this
claim, and from the graph in Figure 3.3.6, we see that as x → −

√
3−,

f(x) → −∞, as x → −
√
3+, f(x) → ∞, as x →

√
3−, f(x) → −∞, and

finally as x →
√
3+, f(x) → ∞.

2. Solving x2 − 9 = 0 gives x = ±3. In lowest terms g(x) =
x2 − x− 6
x2 − 9

=

(x− 3)(x+ 2)
(x− 3)(x+ 3)

=
x+ 2
x+ 3

. Since x = −3 conƟnues to make trouble in the

denominator, we know the line x = −3 is a verƟcal asymptote of the graph
of y = g(x). Since x = 3 no longer produces a 0 in the denominator, we
have a hole at x = 3. To find the y-coordinate of the hole, we subsƟtute
x = 3 into

x+ 2
x+ 3

and find the hole is at
(
3, 56
)
. When we graph y = g(x)

using GeoGebra, we clearly see the verƟcal asymptote at x = −3, but
everything seems calm near x = 3: see Figure 3.3.7. Hence, as x → −3−,
g(x) → ∞, as x → −3+, g(x) → −∞, as x → 3−, g(x) → 5

6
−, and as

x → 3+, g(x) → 5
6
+.

3. The domain of h is all real numbers, since x2+9 = 0 has no real soluƟons.
Accordingly, the graph of y = h(x) is devoid of both verƟcal asymptotes
and holes, as see in Figure 3.3.8.

4. Seƫng x2 + 4x + 4 = 0 gives us x = −2 as the only real number of

concern. Simplifying, we see r(x) =
x2 − x− 6
x2 + 4x+ 4

=
(x− 3)(x+ 2)

(x+ 2)2
=

x− 3
x+ 2

. Since x = −2 conƟnues to produce a 0 in the denominator of the
reduced funcƟon, we know x = −2 is a verƟcal asymptote to the graph.
The graph in Figure 3.3.9 bears this out, and, moreover, we see that as
x → −2−, r(x) → ∞ and as x → −2+, r(x) → −∞.

Now that we have thoroughly invesƟgated verƟcal asymptotes, we can turn
our aƩenƟon to horizontal asymptotes. The next theorem tells us when to ex-
pect horizontal asymptotes.

Theorem 3.3.2 LocaƟon of Horizontal Asymptotes

Suppose r is a raƟonal funcƟon and r(x) =
p(x)
q(x)

, where p and q are

polynomial funcƟons with leading coefficients a and b, respecƟvely.

• If the degree of p(x) is the same as the degree of q(x), then y = a
b

is the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is less than the degree of q(x), then y = 0 is
the horizontal asymptote of the graph of y = r(x).

• If the degree of p(x) is greater than the degree of q(x), then the
graph of y = r(x) has no horizontal asymptotes.
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More specifically, as x → −∞, f(x) →
2+, and as x → ∞, f(x) → 2−. NoƟce
that the graph gets close to the same y
value as x → −∞ or x → ∞. This means
that the graph can have only one horizon-
tal asymptote if it is going to have one at
all. Thus we were jusƟfied in using ‘the’
in the previous theorem.

y = f(x)

y = g(x)

y = h(x)

Figure 3.3.10: Graphs of the three func-
Ɵons in Example 3.3.3

Chapter 3 EssenƟal FuncƟons

Like Theorem 3.3.1, Theorem 3.3.2 is proved using Calculus. Nevertheless,
we can understand the idea behind it using our example f(x) =

2x− 1
x+ 1

. If we
interpret f(x) as a division problem, (2x−1)÷ (x+1), we find that the quoƟent
is 2 with a remainder of−3. Using what we know about polynomial division, we
get 2x−1 = 2(x+1)−3. Dividing both sides by (x+1) gives

2x− 1
x+ 1

= 2− 3
x+ 1

.

As x becomes unbounded in either direcƟon, the quanƟty
3

x+ 1
gets closer and

closer to 0 so that the values of f(x) become closer and closer (as seen in the
tables in Figure 3.3.3) to 2. In symbols, as x → ±∞, f(x) → 2, and we have the
result.

Example 3.3.3 Finding horizontal asymptotes
List the horizontal asymptotes, if any, of the graphs of the following funcƟons.
Verify your answers using a graphing calculator, and describe the behaviour of
the graph near them using proper notaƟon.

1. f(x) =
5x

x2 + 1

2. g(x) =
x2 − 4
x+ 1

3. h(x) =
6x3 − 3x+ 1

5− 2x3

SÊ½çã®ÊÄ

1. The numerator of f(x) is 5x, which has degree 1. The denominator of f(x) is
x2+1, which has degree 2. Applying Theorem3.3.2, y = 0 is the horizontal
asymptote. Sure enough, we see from the graph that as x → −∞, f(x) →
0− and as x → ∞, f(x) → 0+.

2. The numerator of g(x), x2 − 4, has degree 2, but the degree of the de-
nominator, x + 1, has degree 1. By Theorem 3.3.2, there is no horizontal
asymptote. From the graph, we see that the graph of y = g(x) doesn’t ap-
pear to level off to a constant value, so there is no horizontal asymptote.
(Sit Ɵght! We’ll revisit this funcƟon and its end behaviour shortly.)

3. The degrees of the numerator and denominator of h(x) are both three,
so Theorem 3.3.2 tells us y = 6

−2 = −3 is the horizontal asymptote. We
see from the calculator’s graph that as x → −∞, h(x) → −3+, and as
x → ∞, h(x) → −3−.

78



x g(x) x− 1
−10 ≈ −10.6667 −11

−100 ≈ −100.9697 −101
−1000 ≈ −1000.9970 −1001

−10000 ≈ −10000.9997 −10001

Figure 3.3.11: The graph y =
x2 − 4
x+ 1

as
x → −∞

x g(x) x− 1
10 ≈ 8.7273 9

100 ≈ 98.9703 99
1000 ≈ 998.9970 999

10000 ≈ 9998.9997 9999

Figure 3.3.12: The graph y =
x2 − 4
x+ 1

as
x → +∞

3.3 RaƟonal FuncƟons

We close this secƟonwith a discussion of the third (and final!) kind of asymp-
tote which can be associated with the graphs of raƟonal funcƟons. Let us return

to the funcƟon g(x) =
x2 − 4
x+ 1

in Example 3.3.3. Performing long division, (see

the remarks following Theorem 3.3.2) we get g(x) =
x2 − 4
x+ 1

= x − 1 − 3
x+ 1

.

Since the term
3

x+ 1
→ 0 as x → ±∞, it stands to reason that as x becomes

unbounded, the funcƟon values g(x) = x − 1 − 3
x+ 1

≈ x − 1. Geometri-
cally, this means that the graph of y = g(x) should resemble the line y = x− 1
as x → ±∞. We see this play out both numerically and graphically in Figures
3.3.11 and 3.3.12.

The way we symbolize the relaƟonship between the end behaviour of y =
g(x)with that of the line y = x−1 is to write ‘as x → ±∞, g(x) → x−1.’ In this
case, we say the line y = x − 1 is a slant asymptote (or ‘oblique’ asymptote)
to the graph of y = g(x). Informally, the graph of a raƟonal funcƟon has a slant
asymptote if, as x → ∞ or as x → −∞, the graph resembles a non-horizontal,
or ‘slanted’ line. Formally, we define a slant asymptote as follows.

DefiniƟon 3.3.4 Slant Asymptote

The line y = mx + b where m ̸= 0 is called a slant asymptote of the
graph of a funcƟon y = f(x) if as x → −∞ or as x → ∞, f(x) → mx+ b.

A few remarks are in order. First, note that the sƟpulaƟonm ̸= 0 inDefiniƟon
3.3.4 is what makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when
m = 0 in which case we’d have a horizontal asymptote. Secondly, while we
have moƟvated what me mean intuiƟvely by the notaƟon ‘f(x) → mx+ b,’ like
so many ideas in this secƟon, the formal definiƟon requires Calculus. Another
way to express this senƟment, however, is to rephrase ‘f(x) → mx+b’ as ‘f(x)−
(mx + b) → 0.’ In other words, the graph of y = f(x) has the slant asymptote
y = mx + b if and only if the graph of y = f(x) − (mx + b) has a horizontal
asymptote y = 0.

Our next task is to determine the condiƟons under which the graph of a
raƟonal funcƟon has a slant asymptote, and if it does, how to find it. In the case

of g(x) =
x2 − 4
x+ 1

, the degree of the numerator x2 − 4 is 2, which is exactly
one more than the degree if its denominator x + 1 which is 1. This results in a
linear quoƟent polynomial, and it is this quoƟent polynomial which is the slant
asymptote. Generalizing this situaƟon gives us the following theorem.

Theorem 3.3.3 DeterminaƟon of Slant Asymptotes

Suppose r is a raƟonal funcƟon and r(x) =
p(x)
q(x)

, where the degree of

p is exactly one more than the degree of q. Then the graph of y = r(x)
has the slant asymptote y = L(x)where L(x) is the quoƟent obtained by
dividing p(x) by q(x).

In the same way that Theorem 3.3.2 gives us an easy way to see if the graph

79



Figure 3.3.13: The graph y = f(x) in Ex-
ample 3.3.4

Note that we are purposefully avoiding
notaƟon like ‘as x → ∞, f(x) → (−x +
3)+. While it is possible to define these
noƟons formally with Calculus, it is not
standard to do so. Besides, with the in-
troducƟon of the symbol ‘‽’ in the next
secƟon, the authors feel we are in enough
trouble already.

Figure 3.3.14: The graph y = g(x) in Ex-
ample 3.3.4

Figure 3.3.15: The graph y = h(x) in Ex-
ample 3.3.4

Chapter 3 EssenƟal FuncƟons

of a raƟonal funcƟon r(x) =
p(x)
q(x)

has a horizontal asymptote by comparing

the degrees of the numerator and denominator, Theorem 3.3.3 gives us an easy
way to check for slant asymptotes. Unlike Theorem 3.3.2, which gives us a quick
way to find the horizontal asymptotes (if any exist), Theorem 3.3.3 gives us no
such ‘short-cut’. If a slant asymptote exists, we have no recourse but to use long
division to find it. (That’s OK, though. In the next secƟon, we’ll use long division
to analyze end behaviour and it’s worth the effort!)

Example 3.3.4 Finding slant asymptotes
Find the slant asymptotes of the graphs of the following funcƟons if they exist.
Verify your answers using soŌware or a graphing calculator and describe the
behaviour of the graph near them using proper notaƟon.

1. f(x) =
x2 − 4x+ 2

1− x

2. g(x) =
x2 − 4
x− 2

3. h(x) =
x3 + 1
x2 − 4

SÊ½çã®ÊÄ

1. The degree of the numerator is 2 and the degree of the denominator is 1,
so Theorem 3.3.3 guarantees us a slant asymptote. To find it, we divide
1 − x = −x + 1 into x2 − 4x + 2 and get a quoƟent of −x + 3, so our
slant asymptote is y = −x + 3. We confirm this graphically in Figure
3.3.13, andwe see that as x → −∞, the graph of y = f(x) approaches the
asymptote from below, and as x → ∞, the graph of y = f(x) approaches
the asymptote from above.

2. Aswith the previous example, the degree of the numerator g(x) =
x2 − 4
x− 2

is 2 and the degree of the denominator is 1, so Theorem 3.3.3 applies.

g(x) =
x2 − 4
x− 2

=
(x+ 2)(x− 2)

(x− 2)
=

(x+ 2)����(x− 2)

����: 1
(x− 2)

= x+ 2, x ̸= 2

so we have that the slant asymptote y = x + 2 is idenƟcal to the graph
of y = g(x) except at x = 2 (where the laƩer has a ‘hole’ at (2, 4).) The
graph (using GeoGebra) in Figure 3.3.14 supports this claim.

3. For h(x) =
x3 + 1
x2 − 4

, the degree of the numerator is 3 and the degree of
the denominator is 2 so again, we are guaranteed the existence of a slant
asymptote. The long division

(
x3 + 1

)
÷
(
x2 − 4

)
gives a quoƟent of just

x, so our slant asymptote is the line y = x. The graph confirms this, and
we find that as x → −∞, the graph of y = h(x) approaches the asymp-
tote from below, and as x → ∞, the graph of y = h(x) approaches the
asymptote from above: see Figure 3.3.15.
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− 1
2

0 1

(+) 0 (−) 0 (+) ‽ (+)

Figure 3.3.16: The sign diagram for the in-
equality in Example 3.3.5

3.3 RaƟonal FuncƟons

We end this secƟon by giving a few examples of raƟonal equaƟons and in-
equaliƟes. ParƟcular care must be taken with raƟonal inequaliƟes, since the
sign of both numerator and denominator can affect the soluƟon. (Many are
the students who have gone wrong by aƩempƟng to clear denominators in an
inequality!)

Example 3.3.5 RaƟonal equaƟon and inequality

1. Solve
x3 − 2x+ 1

x− 1
=

1
2
x− 1.

2. Solve
x3 − 2x+ 1

x− 1
≥ 1

2
x− 1.

3. Use your computer or calculator to graphically check your answers to 1
and 2.

SÊ½çã®ÊÄ

1. To solve the equaƟon, we clear denominators

x3 − 2x+ 1
x− 1

=
1
2
x− 1(

x3 − 2x+ 1
x− 1

)
· 2(x− 1) =

(
1
2
x− 1

)
· 2(x− 1)

2x3 − 4x+ 2 = x2 − 3x+ 2 expand
2x3 − x2 − x = 0

x(2x+ 1)(x− 1) = 0 factor
x = − 1

2 , 0, 1

Since we cleared denominators, we need to check for extraneous solu-
Ɵons. Sure enough, we see that x = 1 does not saƟsfy the original equa-
Ɵon and must be discarded. Our soluƟons are x = − 1

2 and x = 0.

2. To solve the inequality, it may be tempƟng to begin as we did with the
equaƟon− namely by mulƟplying both sides by the quanƟty (x− 1). The
problem is that, depending on x, (x − 1) may be posiƟve (which doesn’t
affect the inequality) or (x − 1) could be negaƟve (which would reverse
the inequality). Instead of working by cases, we collect all of the terms on
one side of the inequality with 0 on the other and make a sign diagram.

x3 − 2x+ 1
x− 1

≥ 1
2
x− 1

x3 − 2x+ 1
x− 1

− 1
2
x+ 1 ≥ 0

2
(
x3 − 2x+ 1

)
− x(x− 1) + 1(2(x− 1))
2(x− 1)

≥ 0 get a common denominator

2x3 − x2 − x
2x− 2

≥ 0 expand

Viewing the leŌ hand side as a raƟonal funcƟon r(x) we make a sign dia-
gram. The only value excluded from the domain of r is x = 1 which is the
soluƟon to 2x−2 = 0. The zeros of r are the soluƟons to 2x3−x2−x = 0,
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Figure 3.3.17: The iniƟal plot of f(x) and
g(x)

Figure 3.3.18: Zooming in to find the in-
tersecƟon points

Chapter 3 EssenƟal FuncƟons

which we have already found to be x = 0, x = − 1
2 and x = 1, the laƩer

was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we obtain the sign diagram in Figure 3.3.16.
We are interested in where r(x) ≥ 0. We find r(x) > 0, or (+), on the in-
tervals

(
−∞,− 1

2
)
, (0, 1) and (1,∞). We add to these intervals the zeros

of r,− 1
2 and 0, to get our final soluƟon:

(
−∞,− 1

2
]
∪ [0, 1) ∪ (1,∞).

3. Geometrically, if we set f(x) =
x3 − 2x+ 1

x− 1
and g(x) = 1

2x− 1, the solu-
Ɵons to f(x) = g(x) are the x-coordinates of the points where the graphs
of y = f(x) and y = g(x) intersect. The soluƟon to f(x) ≥ g(x) represents
not only where the graphs meet, but the intervals over which the graph
of y = f(x) is above (>) the graph of g(x). Entering these two funcƟons
into GeoGebra gives us Figure 3.3.17.
Zooming in and using the Intersect tool, we see in Figure 3.3.18 that the
graphs cross when x = − 1

2 and x = 0. It is clear from the calculator that
the graph of y = f(x) is above the graph of y = g(x) on

(
−∞,− 1

2
)
as well

as on (0,∞). According to the calculator, our soluƟon is then
(
−∞,− 1

2
]
∪

[0,∞) which almost matches the answer we found analyƟcally. We have
to remember that f is not defined at x = 1, and, even though it isn’t
shown on the calculator, there is a hole in the graph of y = f(x) when
x = 1 which is why x = 1 is not part of our final answer. (There is no
asymptote at x = 1 since the graph is well behaved near x = 1. According
to Theorem 3.3.1, there must be a hole there.)
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Exercises 3.3
Problems
In Exercises 1 – 18, for the given raƟonal funcƟon f:

• Find the domain of f.
• IdenƟfy any verƟcal asymptotes of the graph of y =

f(x).
• IdenƟfy any holes in the graph.
• Find the horizontal asymptote, if it exists.
• Find the slant asymptote, if it exists.
• Graph the funcƟon using a graphing uƟlity and de-

scribe the behaviour near the asymptotes.

1. f(x) = x
3x− 6

2. f(x) = 3+ 7x
5− 2x

3. f(x) = x
x2 + x− 12

4. f(x) = x
x2 + 1

5. f(x) = x+ 7
(x+ 3)2

6. f(x) = x3 + 1
x2 − 1

7. f(x) = 4x
x2 + 4

8. f(x) = 4x
x2 − 4

9. f(x) = x2 − x− 12
x2 + x− 6

10. f(x) = 3x2 − 5x− 2
x2 − 9

11. f(x) = x3 + 2x2 + x
x2 − x− 2

12. f(x) = x3 − 3x+ 1
x2 + 1

13. f(x) = 2x2 + 5x− 3
3x+ 2

14. f(x) = −x3 + 4x
x2 − 9

15. f(x) = −5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

16. f(x) = x3

1− x

17. f(x) = 18− 2x2

x2 − 9

18. f(x) = x3 − 4x2 − 4x− 5
x2 + x+ 1

In Exercises 19 – 24, solve the raƟonal equaƟon. Be sure to
check for extraneous soluƟons.

19. x
5x+ 4

= 3

20. 3x− 1
x2 + 1

= 1

21. 1
x+ 3

+
1

x− 3
=

x2 − 3
x2 − 9

22. 2x+ 17
x+ 1

= x+ 5

23. x2 − 2x+ 1
x3 + x2 − 2x

= 1

24. −x3 + 4x
x2 − 9

= 4x

In Exercises 25 – 38, solve the raƟonal inequality. Express
your answer using interval notaƟon.

25. 1
x+ 2

≥ 0

26. x− 3
x+ 2

≤ 0

27. x
x2 − 1

> 0

28. 4x
x2 + 4

≥ 0

29. x2 − x− 12
x2 + x− 6

> 0

30. 3x2 − 5x− 2
x2 − 9

< 0

31. x3 + 2x2 + x
x2 − x− 2

≥ 0

32. x2 + 5x+ 6
x2 − 1

> 0

33. 3x− 1
x2 + 1

≤ 1

34. 2x+ 17
x+ 1

> x+ 5
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35. −x3 + 4x
x2 − 9

≥ 4x

36. 1
x2 + 1

< 0

37. x4 − 4x3 + x2 − 2x− 15
x3 − 4x2

≥ x

38. 5x3 − 12x2 + 9x+ 10
x2 − 1

≥ 3x− 1
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ExponenƟal and logarithmic funcƟons
frequently occur in soluƟons to differen-
Ɵal equaƟons, which are used to pro-
duce mathemaƟcal models of phenom-
ena throughout the physical, life, and so-
cial sciences. You’ll see some examples if
you conƟnue on to Calculus I and II, and
evenmore if you takeMath 3600, our first
course in differenƟal equaƟons.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)

x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

Figure 3.4.1: Ploƫng f(x) = 2x

To fully understand the argument we
used to define 2x when x is irraƟonal,
you’ll have to proceed far enough through
the Calculus sequence (Calculus III should
do it) to encounter the topic of conver-
gence of infinite sequences.

3.4 ExponenƟal and Logarithmic FuncƟons

3.4 ExponenƟal and Logarithmic FuncƟons

3.4.1 IntroducƟon to ExponenƟal and Logarithmic FuncƟons

Of all of the funcƟons we study in this text, exponenƟal and logarithmic func-
Ɵons are possibly the ones which impact everyday life the most. This secƟon
introduces us to these funcƟons while the rest of the chapter will more thor-
oughly explore their properƟes. Up to this point, we have dealt with funcƟons
which involve terms like x2 or x2/3, in other words, terms of the form xp where
the base of the term, x, varies but the exponent of each term, p, remains con-
stant. In this chapter, we study funcƟons of the form f(x) = bx where the base
b is a constant and the exponent x is the variable. We start our exploraƟon of
these funcƟons with f(x) = 2x. (Apparently this is a tradiƟon. Every textbook
we have ever read starts with f(x) = 2x.) We make a table of values, plot the
points and connect the dots in a pleasing fashion: see Figure 3.4.1

A few remarks about the graph of f(x) = 2x which we have constructed are
in order. As x → −∞ and aƩains values like x = −100 or x = −1000, the
funcƟon f(x) = 2x takes on values like f(−100) = 2−100 = 1

2100 or f(−1000) =
2−1000 = 1

21000 . In other words, as x → −∞,

2x ≈ 1
very big (+)

≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the
line y = 0) as a horizontal asymptote. On the flip side, as x → ∞, we find
f(100) = 2100, f(1000) = 21000, and so on, thus 2x → ∞. As a result, our graph
suggests the range of f is (0,∞). The graph of f passes the Horizontal Line Test
which means f is one-to-one and hence inverƟble. We also note that when we
‘connected the dots in a pleasing fashion’, we havemade the implicit assumpƟon
that f(x) = 2x is conƟnuous (recall that this means there are no holes or other
kinds of breaks in the graph) and has a domain of all real numbers. In parƟcular,
we have suggested that things like 2

√
3 exist as real numbers. We should take

a moment to discuss what something like 2
√
3 might mean, and refer the inter-

ested reader to a solid course in Calculus for a more rigorous explanaƟon. The
number

√
3 = 1.73205 . . . is an irraƟonal number and as such, its decimal repre-

sentaƟon neither repeats nor terminates. We can, however, approximate
√
3 by

terminaƟng decimals, and it stands to reason (this is where Calculus and conƟ-
nuity come into play) that we can use these to approximate 2

√
3. For example, if

we approximate
√
3 by 1.73, we can approximate 2

√
3 ≈ 21.73 = 2 173

100 =
100
√
2173.

It is not, by anymeans, a pleasant number, but it is at least a number that we un-
derstand in terms of powers and roots. It also stands to reason that beƩer and
beƩer approximaƟons of

√
3 yield beƩer and beƩer approximaƟons of 2

√
3, so

the value of 2
√
3 should be the result of this sequence of approximaƟons.
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(a) y = f(x) = 2x
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(b) y = g(x) = f(−x) = 2−x

Figure 3.4.2: ReflecƟng y = 2x across the
y-axis to obtain the graph y = 2−x

Chapter 3 EssenƟal FuncƟons

Suppose we wish to study the family of funcƟons f(x) = bx. Which bases b
make sense to study? We find that we run into difficulty if b < 0. For example,
if b = −2, then the funcƟon f(x) = (−2)x has trouble, for instance, at x = 1

2
since (−2)1/2 =

√
−2 is not a real number. In general, if x is any raƟonal num-

ber with an even denominator, then (−2)x is not defined, so we must restrict
our aƩenƟon to bases b ≥ 0. What about b = 0? The funcƟon f(x) = 0x is
undefined for x ≤ 0 because we cannot divide by 0 and 00 is an indeterminant
form. For x > 0, 0x = 0 so the funcƟon f(x) = 0x is the same as the funcƟon
f(x) = 0, x > 0. We know everything we can possibly know about this func-
Ɵon, so we exclude it from our invesƟgaƟons. The only other base we exclude
is b = 1, since the funcƟon f(x) = 1x = 1 is, once again, a funcƟon we have
already studied. We are now ready for our definiƟon of exponenƟal funcƟons.

DefiniƟon 3.4.1 ExponenƟal funcƟon

A funcƟon of the form f(x) = bx where b is a fixed real number, b > 0,
b ̸= 1 is called a base b exponenƟal funcƟon.

We leave it to the reader to verify (by graphing somemore examples on your
own) that if b > 1, then the exponenƟal funcƟon f(x) = bx will share the same
basic shape and characterisƟcs as f(x) = 2x. What if 0 < b < 1? Consider
g(x) =

( 1
2
)x. We could certainly build a table of values and connect the points,

or we could take a step back and note that g(x) =
( 1
2
)x

=
(
2−1)x = 2−x =

f(−x), where f(x) = 2x. The graph of f(−x) is obtained from the graph of f(x)
by reflecƟng it across the y-axis. We get the graph in Figure 3.4.2 (b).

We see that the domain and range of gmatch that of f, namely (−∞,∞) and
(0,∞), respecƟvely. Like f, g is also one-to-one. Whereas f is always increasing,
g is always decreasing. As a result, as x → −∞, g(x) → ∞, and on the flip
side, as x → ∞, g(x) → 0+. It shouldn’t be too surprising that for all choices
of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of
g. We summarize the basic properƟes of exponenƟal funcƟons in the following
theorem. (The proof of which, like many things discussed in the text, requires
Calculus.)
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Theorem 3.4.1 ProperƟes of ExponenƟal FuncƟons

Suppose f(x) = bx.

• The domain of f is (−∞,∞) and the range of f is (0,∞).

• (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to
the graph of f.

• f is one-to-one, conƟnuous and smooth (the graph of f has no
sharp turns or corners).

• If b > 1:

– f is always increasing
– As x → −∞, f(x) →
0+

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = bx, b > 1

• If 0 < b < 1:

– f is always decreasing
– As x → −∞, f(x) →
∞

– As x → ∞, f(x) → 0+

– The graph of f resem-
bles:

y = bx, 0 < b < 1

Of all of the bases for exponenƟal funcƟons, two occur the most oŌen in
scienƟfic circles. The first, base 10, is oŌen called the common base. The sec-
ond base is an irraƟonal number, e ≈ 2.718, called the natural base. You may
encounter a more formal discussion of the number e in later Calculus courses.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing ex-
ponenƟal funcƟon. The following examples give us an idea how these funcƟons
are used in the wild.

Example 3.4.1 Modelling vehicle depreciaƟon
The value of a car can be modelled by V(x) = 25

( 4
5
)x, where x ≥ 0 is age of the

car in years and V(x) is the value in thousands of dollars.

1. Find and interpret V(0).

2. Sketch the graph of y = V(x) using transformaƟons.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

SÊ½çã®ÊÄ

1. To find V(0), we replace x with 0 to obtain V(0) = 25
( 4
5
)0

= 25. Since x
represents the age of the car in years, x = 0 corresponds to the car being
brand new. Since V(x) is measured in thousands of dollars, V(0) = 25
corresponds to a value of $25,000. Puƫng it all together, we interpret
V(0) = 25 to mean the purchase price of the car was $25,000.
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(0, 1)

H.A. y = 0

x

y

−3−2−1 1 2 3

2

y = f(x) =
( 4
5

)x
↓

(0, 25)

H.A. y = 0

x

y
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5
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20

30

y = V(x) = 25f(x), x ≥ 0

Figure 3.4.3: The graph y = V(x) in Exam-
ple 3.4.1

Chapter 3 EssenƟal FuncƟons

2. To graph y = 25
( 4
5
)x, we start with the basic exponenƟal funcƟon f(x) =( 4

5
)x. Since the base b = 4

5 is between 0 and 1, the graph of y = f(x) is
decreasing. We plot the y-intercept (0, 1) and two other points,

(
−1, 54

)
and

(
1, 45
)
, and label the horizontal asymptote y = 0. To obtain V(x) =

25
( 4
5
)x, x ≥ 0, we mulƟply the output from f by 25, in other words,

V(x) = 25f(x). This results in a verƟcal stretch by a factor of 25. We
mulƟply all of the y values in the graph by 25 (including the y value of
the horizontal asymptote) and obtain the points

(
−1, 1254

)
, (0, 25) and

(1, 20). The horizontal asymptote remains y = 0. Finally, we restrict the
domain to [0,∞) to fit with the applied domain given to us. We have the
result in Figure 3.4.3.

3. We see from the graph of V that its horizontal asymptote is y = 0. (We
leave it to reader to verify this analyƟcally by thinking aboutwhat happens
as we take larger and larger powers of 4

5 .) This means as the car gets older,
its value diminishes to 0.

The funcƟon in the previous example is oŌen called a ‘decay curve’. Increas-
ing exponenƟal funcƟons are used to model ‘growth curves’ many examples of
which are encountered in applicaƟons of exponenƟal funcƟons. For now, we
present another common decay curve which will serve as the basis for further
study of exponenƟal funcƟons. Although it may lookmore complicated than the
previous example, it is actually just a basic exponenƟal funcƟon which has been
modified by a few transformaƟons.

Example 3.4.2 Newton’s Law of Cooling
According to Newton’s Law of Cooling the temperature of coffee T (in degrees
Fahrenheit) tminutes aŌer it is served can bemodelled by T(t) = 70+90e−0.1t.

1. Find and interpret T(0).

2. Sketch the graph of y = T(t) using transformaƟons.

3. Find and interpret the horizontal asymptote of the graph.

SÊ½çã®ÊÄ

1. To find T(0), we replace every occurrence of the independent variable t
with 0 to obtain T(0) = 70+90e−0.1(0) = 160. Thismeans that the coffee
was served at 160◦F.

2. To graph y = T(t) using transformaƟons, we start with the basic funcƟon,
f(t) = et. As we have already remarked, e ≈ 2.718 > 1 so the graph of f is
an increasing exponenƟalwith y-intercept (0, 1) andhorizontal asymptote
y = 0. The points

(
−1, e−1) ≈ (−1, 0.37) and (1, e) ≈ (1, 2.72) are also

on the graph. We have

T(t) = 70+ 90e−0.1t = 90e−0.1t + 70 = 90f(−0.1t) + 70

MulƟplicaƟon of the input to f, t, by−0.1 results in a horizontal expansion
by a factor of 10 as well as a reflecƟon about the y-axis. We divide each
of the x values of our points by−0.1 (which amounts to mulƟplying them
by −10) to obtain

(
10, e−1), (0, 1), and (−10, e). Since none of these

changes affected the y values, the horizontal asymptote remains y = 0.
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y = T(t)

Figure 3.4.4: Graphing T(t) in Example
3.4.2

The reader is cauƟoned that in more ad-
vanced mathemaƟcs textbooks, the no-
taƟon log(x) is oŌen used to denote the
natural logarithm (or its generalizaƟon to
the complex numbers). In mathemaƟcs,
the natural logarithm is preferred since
it is beƩer behaved with respect to the
operaƟons of Calculus. The base 10 log-
arithm tends to appear in other science
fields.
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Next, we see that the output from f is being mulƟplied by 90. This re-
sults in a verƟcal stretch by a factor of 90. We mulƟply the y-coordinates
by 90 to obtain

(
10, 90e−1), (0, 90), and (−10, 90e). We also mulƟply

the y value of the horizontal asymptote y = 0 by 90, and it remains
y = 0. Finally, we add 70 to all of the y-coordinates, which shiŌs the
graph upwards to obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and

(−10, 90e+ 70) ≈ (−10, 314.64). Adding 70 to the horizontal asymp-
tote shiŌs it upwards as well to y = 70. We connect these three points
using the same shape in the same direcƟon as in the graph of f and, last
but not least, we restrict the domain to match the applied domain [0,∞).
The result is given in Figure 3.4.4.

3. From the graph, we see that the horizontal asymptote is y = 70. It is
worth a moment or two of our Ɵme to see how this happens analyƟcally.
As t → ∞, We get T(t) = 70 + 90e−0.1t ≈ 70 + 90every big (−). Since
e > 1,

every big (−) =
1

every big (+)
≈ 1

very big (+)
≈ very small (+)

The larger t becomes, the smaller e−0.1t becomes, so the term 90e−0.1t ≈
very small (+). Hence, T(t) ≈ 70+very small (+)whichmeans the graph
is approaching the horizontal line y = 70 from above. This means that as
Ɵme goes by, the temperature of the coffee is cooling to 70◦F, presumably
room temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizon-
tal Line Test. Thus the exponenƟal funcƟons are inverƟble. We now turn our
aƩenƟon to these inverses, the logarithmic funcƟons, which are called ‘logs’ for
short.

DefiniƟon 3.4.2 Logarithm funcƟon

The inverse of the exponenƟal funcƟon f(x) = bx is called the base b
logarithm funcƟon, and is denoted f−1(x) = logb(x) We read ‘logb(x)’
as ‘log base b of x.’

We have special notaƟons for the common base, b = 10, and the natural
base, b = e.

DefiniƟon 3.4.3 Common and Natural Logarithms

The common logarithm of a real number x is log10(x) and is usually writ-
ten log(x). The natural logarithm of a real number x is loge(x) and is
usually wriƩen ln(x).

Since logs are defined as the inverses of exponenƟal funcƟons, we can use
Theorems 2.2.1 and 2.2.2 to tell us about logarithmic funcƟons. For example, we
know that the domain of a log funcƟon is the range of an exponenƟal funcƟon,
namely (0,∞), and that the range of a log funcƟon is the domain of an exponen-
Ɵal funcƟon, namely (−∞,∞). Since we know the basic shapes of y = f(x) =
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y = bx, b > 1

y = logb(x), b > 1

y = bx, 0 < b < 1

y = logb(x), 0 < b < 1

Figure 3.4.5: The logarithm is the inverse
of the exponenƟal funcƟon

Chapter 3 EssenƟal FuncƟons

bx for the different cases of b, we can obtain the graph of y = f−1(x) = logb(x)
by reflecƟng the graph of f across the line y = x as shown below. The y-intercept
(0, 1) on the graph of f corresponds to an x-intercept of (1, 0) on the graph of
f−1. The horizontal asymptotes y = 0 on the graphs of the exponenƟal funcƟons
become verƟcal asymptotes x = 0 on the log graphs: see Figure 3.4.5.

On a procedural level, logs undo the exponenƟals. Consider the funcƟon
f(x) = 2x. When we evaluate f(3) = 23 = 8, the input 3 becomes the exponent
on the base 2 to produce the real number 8. The funcƟon f−1(x) = log2(x)
then takes the number 8 as its input and returns the exponent 3 as its output.
In symbols, log2(8) = 3. More generally, log2(x) is the exponent you put on 2 to
get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes
the basic properƟes of logarithmic funcƟons, all ofwhich come from the fact that
they are inverses of exponenƟal funcƟons.

Theorem 3.4.2 ProperƟes of Logarithmic FuncƟons

Suppose f(x) = logb(x).

• The domain of f is (0,∞) and the range of f is (−∞,∞).

• (1, 0) is on the graph of f and x = 0 is a verƟcal asymptote of the
graph of f.

• f is one-to-one, conƟnuous and smooth

• ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you
put on b to obtain c.

• logb (bx) = x for all x and blogb(x) = x for all x > 0

• If b > 1:

– f is always increasing
– As x → 0+, f(x) →
−∞

– As x → ∞, f(x) → ∞
– The graph of f resem-
bles:

y = logb(x), b > 1

• If 0 < b < 1:

– f is always decreasing

– As x → 0+, f(x) → ∞

– As x → ∞, f(x) → −∞

– The graph of f resem-
bles:

y = logb(x), 0 < b < 1

As we have menƟoned, Theorem 3.4.2 is a consequence of Theorems 2.2.1
and 2.2.2. However, it is worth the reader’s Ɵme to understand Theorem 3.4.2
from an exponenƟal perspecƟve. For instance, we know that the domain of
g(x) = log2(x) is (0,∞). Why? Because the range of f(x) = 2x is (0,∞). In a
way, this says everything, but at the same Ɵme, it doesn’t. For example, if we try
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It is worth a moment of your Ɵme to
think your way throughwhy 117log117(6) =
6. By definiƟon, log117(6) is the expo-
nent we put on 117 to get 6. What are
we doing with this exponent? We are
puƫng it on 117. By definiƟon we get 6.
In other words, the exponenƟal funcƟon
f(x) = 117x undoes the logarithmic func-
Ɵon g(x) = log117(x).

3.4 ExponenƟal and Logarithmic FuncƟons

to find log2(−1), we are trying to find the exponent we put on 2 to give us −1.
In other words, we are looking for x that saƟsfies 2x = −1. There is no such real
number, since all powers of 2 are posiƟve. Whilewhatwe have said is exactly the
same thing as saying ‘the domain of g(x) = log2(x) is (0,∞) because the range
of f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand the
statements in Theorem 3.4.2 at this level instead of just merely memorizing the
facts.

Example 3.4.3 Using properƟes of logarithms
Simplify the following.

1. log3(81)

2. log2
(
1
8

)
3. log√5(25)

4. ln
(

3
√
e2
)

5. log(0.001)

6. 2log2(8)

7. 117− log117(6)

SÊ½çã®ÊÄ

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we
want to write 81 as a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2
( 1
8
)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 =

2−3, so log2
( 1
8
)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√
5. We

know 25 = 52, and 5 =
(√

5
)2, so we have 25 =

((√
5
)2)2

=
(√

5
)4.

We get log√5(25) = 4.

4. First, recall that the notaƟon ln
(

3
√
e2
)
means loge

(
3
√
e2
)
, so we are look-

ing for the exponent to put on e to obtain 3
√
e2. RewriƟng 3

√
e2 = e2/3, we

find ln
(

3
√
e2
)
= ln

(
e2/3

)
= 2

3 .

5. RewriƟng log(0.001) as log10(0.001), we see that we need to write 0.001
as a power of 10. Wehave0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) =

log
(
10−3) = −3.

6. We can use Theorem 3.4.2 directly to simplify 2log2(8) = 8. We can also
understand this problem by first finding log2(8). By definiƟon, log2(8) is
the exponent we put on 2 to get 8. Since 8 = 23, we have log2(8) = 3.
We now subsƟtute to find 2log2(8) = 23 = 8.

7. From Theorem 3.4.2, we know 117log117(6) = 6, but we cannot directly
apply this formula to the expression 117− log117(6). (Can you see why?) At
this point, we use a property of exponents followed by Theorem 3.4.2 to
get

117− log117(6) =
1

117log117(6)
=

1
6
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Figure 3.4.6: y = f(x) = 2 log(3− x)− 1

(+)

0

0 (−)
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Figure 3.4.7: Sign diagram for r(x) = x
x−1

Figure 3.4.8: y = g(x) = ln
(

x
x−1

)
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Up unƟl this point, restricƟons on the domains of funcƟons came fromavoid-
ing division by zero and keeping negaƟve numbers from beneath even radicals.
With the introducƟon of logs, we now have another restricƟon. Since the do-
main of f(x) = logb(x) is (0,∞), the argument of the log must be strictly posi-
Ɵve.

Example 3.4.4 Domain for logarithmic funcƟons
Find the domain of the following funcƟons. Check your answers graphically us-
ing the computer or calculator.

1. f(x) = 2 log(3− x)− 1

2. g(x) = ln
(

x
x− 1

)

SÊ½çã®ÊÄ

1. We set 3 − x > 0 to obtain x < 3, or (−∞, 3). The graph in Figure 3.4.6
verifies this. Note thatwe could have graphed fusing transformaƟons. We
rewrite f(x) = 2 log10(−x+ 3)− 1 and find the main funcƟon involved is
y = h(x) = log10(x). We select three points to track,

( 1
10 ,−1

)
, (1, 0) and

(10, 1), along with the verƟcal asymptote x = 0. Since f(x) = 2h(−x +
3)− 1, to obtain the desƟnaƟons of these points, we first subtract 3 from
the x-coordinates (shiŌing the graph leŌ 3 units), then divide (mulƟply)
by the x-coordinates by−1 (causing a reflecƟon across the y-axis). These
transformaƟons apply to the verƟcal asymptote x = 0 aswell. SubtracƟng
3 gives us x = −3 as our asymptote, then mulƟplying by −1 gives us the
verƟcal asymptote x = 3. Next, we mulƟply the y-coordinates by 2 which
results in a verƟcal stretch by a factor of 2, then we finish by subtracƟng 1
from the y-coordinates which shiŌs the graph down 1 unit. We leave it to
the reader to perform the indicated arithmeƟc on the points themselves
and to verify the graph produced by the calculator below.

2. To find the domain of g, we need to solve the inequality x
x−1 > 0. As

usual, we proceed using a sign diagram. If we define r(x) =
x

x− 1
, we

find r is undefined at x = 1 and r(x) = 0 when x = 0. Choosing some test
values, we generate the sign diagram in Figure 3.4.7.

We find x
x−1 > 0 on (−∞, 0)∪(1,∞) to get the domain of g. The graph of

y = g(x) in Figure 3.4.8 confirms this. We can tell from the graph of g that
it is not the result of transformaƟons being applied to the graph y = ln(x),
so barring a more detailed analysis using Calculus, the calculator graph
is the best we can do. One thing worthy of note, however, is the end
behaviour of g. The graph suggests that as x → ±∞, g(x) → 0. We can
verify this analyƟcally. We know that as x → ±∞, x

x−1 ≈ 1. Hence, it

makes sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

While logarithmshave some interesƟng applicaƟons of their ownwhich you’ll
explore in the exercises, their primary use to uswill be to undo exponenƟal func-
Ɵons. (This is, aŌer all, how they were defined.) Our last example solidifies this
and reviews all of the material in the secƟon.
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y = f(x) = 2x−1 − 3

Figure 3.4.9: Graphing f(x) = 2x−1 − 3 in
Example 3.4.5

3.4 ExponenƟal and Logarithmic FuncƟons

Example 3.4.5 InverƟng an exponenƟal funcƟon
Let f(x) = 2x−1 − 3.

1. Graph f using transformaƟons and state the domain and range of f.

2. Explain why f is inverƟble and find a formula for f−1(x).

3. Graph f−1 using transformaƟons and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1) (x) = x

for all x in the domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about
the line y = x.

SÊ½çã®ÊÄ

1. If we idenƟfy g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the
points

(
−1, 12

)
, (0, 1) and (1, 2) on the graph of g along with the hori-

zontal asymptote y = 0 to track through the transformaƟons. We first
add 1 to the x-coordinates of the points on the graph of g (shiŌing g to
the right 1 unit) to get

(
0, 12
)
, (1, 1) and (2, 2). The horizontal asymptote

remains y = 0. Next, we subtract 3 from the y-coordinates, shiŌing the
graph down 3 units. We get the points

(
0,− 5

2
)
, (1,−2) and (2,−1) with

the horizontal asymptote now at y = −3. ConnecƟng the dots in the or-
der and manner as they were on the graph of g, we get the boƩom graph
in Figure 3.4.9. We see that the domain of f is the same as g, namely
(−∞,∞), but that the range of f is (−3,∞).

2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence
inverƟble. To find a formula for f−1(x), we normally set y = f(x), inter-
change the x and y, then proceed to solve for y. Doing so in this situaƟon
leads us to the equaƟon x = 2y−1 − 3. We have yet to discuss how to
solve this kind of equaƟon, so we will aƩempt to find the formula for f−1

from a procedural perspecƟve. If we break f(x) = 2x−1 − 3 into a series
of steps, we find f takes an input x and applies the steps

(a) subtract 1
(b) put as an exponent on 2
(c) subtract 3

Clearly, to undo subtracƟng 1, we will add 1, and similarly we undo sub-
tracƟng 3 by adding 3. How do we undo the second step? The answer is
we use the logarithm. By definiƟon, log2(x) undoes exponenƟaƟon by 2.
Hence, f−1 should

(a) add 3
(b) take the logarithm base 2
(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transformaƟons, we start with
j(x) = log2(x). We track the points

( 1
2 ,−1

)
, (1, 0) and (2, 1) on the graph

of j along with the verƟcal asymptote x = 0 through the transformaƟons.
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Figure 3.4.10: Graphing f−1(x) =
log2(x+ 3) + 1 in Example 3.4.5
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Figure 3.4.11: The graphs of f and f−1 in
Example 3.4.5
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Since f−1(x) = j(x+3)+1, we first subtract 3 fromeach of the x values (in-
cluding the verƟcal asymptote) to obtain

(
− 5

2 ,−1
)
, (−2, 0) and (−1, 1)

with a verƟcal asymptote x = −3. Next, we add 1 to the y values on the
graph and get

(
− 5

2 , 0
)
, (−2, 1) and (−1, 2). If you are experiencing déjà

vu, there is a good reason for it but we leave it to the reader to determine
the source of this uncanny familiarity. We obtain the graph below. The
domain of f−1 is (−3,∞), which matches the range of f, and the range of
f−1 is (−∞,∞), which matches the domain of f.

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x+ 3) + 1 saƟsfy
the composiƟon requirement for inverses. For all real numbers x,

(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1 (2x−1 − 3
)

= log2
([
2x−1 − 3

]
+ 3
)
+ 1

= log2
(
2x−1)+ 1

= (x− 1) + 1
Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have (pay aƩenƟon - can you spot in
which step below we need x > −3?)

(
f ◦ f−1) (x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3
= (x+ 3)− 3

Since 2log2(u) = u for all real numbers u > 0
= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the
same set of axes and see the symmetry about the line y = x in Figure
3.4.11

3.4.2 ProperƟes of Logarithms
In SecƟon 3.4.1, we introduced the logarithmic funcƟons as inverses of expo-
nenƟal funcƟons and discussed a few of their funcƟonal properƟes from that
perspecƟve. In this secƟon, we explore the algebraic properƟes of logarithms.
Historically, these have played a huge role in the scienƟfic development of our
society since, among other things, they were used to develop analog compuƟng
devices called slide rules which enabled scienƟsts and engineers to perform ac-
curate calculaƟons leading to such things as space travel and the moon landing.
As we shall see shortly, logs inherit analogs of all of the properƟes of exponents
you learned in Elementary and Intermediate Algebra. We first extract two prop-
erƟes from Theorem 3.4.2 to remind us of the definiƟon of a logarithm as the
inverse of an exponenƟal funcƟon.
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3.4 ExponenƟal and Logarithmic FuncƟons

Theorem 3.4.3 Inverse ProperƟes of ExponenƟal and Logarithmic
FuncƟons

Let b > 0, b ̸= 1.

• ba = c if and only if logb(c) = a

• logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out what it means for exponenƟal and logarithmic funcƟons
to be one-to-one.

Theorem 3.4.4 One-to-one ProperƟes of ExponenƟal and Logarith-
mic FuncƟons

Let f(x) = bx and g(x) = logb(x) where b > 0, b ̸= 1. Then f and g are
one-to-one and

• bu = bw if and only if u = w for all real numbers u and w.

• logb(u) = logb(w) if and only if u = w for all real numbers u > 0,
w > 0.

We now state the algebraic properƟes of exponenƟal funcƟons which will
serve as a basis for the properƟes of logarithms. While these properƟes may
look idenƟcal to the ones you learned in Elementary and Intermediate Algebra,
they apply to real number exponents, not just raƟonal exponents. Note that
in the theorem that follows, we are interested in the properƟes of exponenƟal
funcƟons, so the base b is restricted to b > 0, b ̸= 1.

Theorem 3.4.5 Algebraic ProperƟes of ExponenƟal FuncƟons

Let f(x) = bx be an exponenƟal funcƟon (b > 0, b ̸= 1) and let u and w
be real numbers.

• Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

• QuoƟent Rule: f(u− w) =
f(u)
f(w)

. In other words, bu−w =
bu

bw

• Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the properƟes listed in Theorem 3.4.5 are certainly believable based
on similar properƟes of integer and raƟonal exponents, the full proofs require
Calculus. To each of these properƟes of exponenƟal funcƟons corresponds an
analogous property of logarithmic funcƟons. We list these below in our next
theorem.
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InteresƟngly enough, expanding loga-
rithms is the exact opposite process
(which we will pracƟce later) that is most
useful in Algebra. The uƟlity of expanding
logarithms becomes apparent in Calculus.

Chapter 3 EssenƟal FuncƟons

Theorem 3.4.6 Algebraic ProperƟes of Logarithmic FuncƟons

Let g(x) = logb(x) be a logarithmic funcƟon (b > 0, b ̸= 1) and let u > 0
and w > 0 be real numbers.

• Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) =
logb(u) + logb(w)

• QuoƟent Rule: g
( u
w

)
= g(u) − g(w). In other words,

logb
( u
w

)
= logb(u)− logb(w)

• Power Rule: g (uw) = wg(u). In other words, logb (uw) =
w logb(u)

There are a couple of different ways to understand why Theorem 3.4.6 is
true. Consider the product rule: logb(uw) = logb(u) + logb(w). Let a =
logb(uw), c = logb(u), and d = logb(w). Then, by definiƟon, ba = uw, bc = u
and bd = w. Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By the
one-to-one property of bx, we have a = c + d. In other words, logb(uw) =
logb(u) + logb(w). The remaining properƟes are proved similarly.

Example 3.4.6 Expanding logarithmic expressions
Expand the following using the properƟes of logarithms and simplify. Assume
when necessary that all quanƟƟes represent posiƟve real numbers.

1. log2
(
8
x

)

2. ln
(

3
ex

)2

3. log 3

√
100x2

yz5

4. log117
(
x2 − 4

)

SÊ½çã®ÊÄ

1. To expand log2
( 8
x

)
, we use the QuoƟent Rule idenƟfying u = 8 andw = x

and simplify.

log2
(
8
x

)
= log2(8)− log2(x) QuoƟent Rule

= 3− log2(x) Since 23 = 8
= − log2(x) + 3

2. We have a power, quoƟent and product occurring in ln
( 3
ex

)2. Since the
exponent 2 applies to the enƟre quanƟty inside the logarithm, we begin
with the Power Rule with u = 3

ex and w = 2. Next, we see the QuoƟent
Rule is applicable, with u = 3 and w = ex, so we replace ln

( 3
ex

)
with the

quanƟty ln(3) − ln(ex). Since ln
( 3
ex

)
is being mulƟplied by 2, the enƟre

quanƟty ln(3)−ln(ex) ismulƟplied by 2. Finally, we apply the Product Rule
with u = e and w = x, and replace ln(ex) with the quanƟty ln(e) + ln(x),
and simplify, keeping in mind that the natural log is log base e.
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At this point in the text, the reader is en-
couraged to carefully read through each
step and think of which quanƟty is play-
ing the role of u and which is playing the
role of w as we apply each property.

3.4 ExponenƟal and Logarithmic FuncƟons

ln
(

3
ex

)2

= 2 ln
(

3
ex

)
Power Rule

= 2 [ln(3)− ln(ex)] QuoƟent Rule
= 2 ln(3)− 2 ln(ex)
= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule
= 2 ln(3)− 2 ln(e)− 2 ln(x)
= 2 ln(3)− 2− 2 ln(x) Since e1 = e
= −2 ln(x) + 2 ln(3)− 2

3. Recalling that a cube root is the same thing as the power 1/3, we begin
by using the Power Rule, and we keep in mind that the common log is log
base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

=
1
3
log
(
100x2

yz5

)
Power Rule

=
1
3
[
log
(
100x2

)
− log

(
yz5
)]

QuoƟent Rule

=
1
3
log
(
100x2

)
− 1

3
log
(
yz5
)

=
1
3
[
log(100) + log

(
x2
)]

− 1
3
[
log(y) + log

(
z5
)]

Product Rule

=
1
3
log(100) +

1
3
log
(
x2
)
− 1

3
log(y)− 1

3
log
(
z5
)

=
1
3
log(100) +

2
3
log(x)− 1

3
log(y)− 5

3
log(z)

Power Rule

=
2
3
+

2
3
log(x)− 1

3
log(y)− 5

3
log(z) Since 102 = 100

=
2
3
log(x)− 1

3
log(y)− 5

3
log(z) +

2
3

4. At first it seems as if we have nomeans of simplifying log117
(
x2 − 4

)
, since

none of the properƟes of logs addresses the issue of expanding a differ-
ence inside the logarithm. However, wemay factor x2−4 = (x+2)(x−2)
thereby introducing a product which gives us license to use the Product
Rule.

log117
(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor
= log117(x+ 2) + log117(x− 2) Product Rule
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Example 3.4.7 Combining logarithmic expressions
Use the properƟes of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1) 2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3 4. − ln(x)− 1
2

SÊ½çã®ÊÄ Whereas in Example 3.4.6 we read the properƟes in Theo-
rem 3.4.6 from leŌ to right to expand logarithms, in this example we read them
from right to leŌ.

1. The difference of logarithms requires the QuoƟent Rule: log3(x − 1) −
log3(x+ 1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x)+2 log(y)−log(z), we have both a sumand differ-
ence of logarithms. However, before we use the product rule to combine
log(x) + 2 log(y), we note that we need to somehow deal with the co-
efficient 2 on log(y). This can be handled using the Power Rule. We can
then apply the Product and QuoƟent Rules as we move from leŌ to right.
Puƫng it all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log
(
xy2

z

)
QuoƟent Rule

3. We can certainly get started rewriƟng 4 log2(x)+3 by applying the Power
Rule to 4 log2(x) to obtain log2

(
x4
)
, but in order to use the Product Rule

to handle the addiƟon, we need to rewrite 3 as a logarithm base 2. From
Theorem 3.4.3, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2
(
x4
)
+ 3 Power Rule

= log2
(
x4
)
+ log2

(
23
)

Since 3 = log2
(
23
)

= log2
(
x4
)
+ log2(8)

= log2
(
8x4
)

Product Rule

4. To get started with− ln(x)− 1
2 , we rewrite− ln(x) as (−1) ln(x). We can

then use the Power Rule to obtain (−1) ln(x) = ln
(
x−1). In order to use

the QuoƟent Rule, we need to write 1
2 as a natural logarithm. Theorem

3.4.3 gives us 1
2 = ln

(
e1/2

)
= ln

(√
e
)
. We have
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− ln(x)− 1
2
= (−1) ln(x)− 1

2

= ln
(
x−1)− 1

2
Power Rule

= ln
(
x−1)− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1)− ln

(√
e
)

= ln
(
x−1
√
e

)
QuoƟent Rule

= ln
(

1
x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the
opposite of what it was for dismantling them. That is, if we are interested in
rewriƟng an expression as a single logarithm, we apply log properƟes following
the usual order of operaƟons: deal with mulƟples of logs first with the Power
Rule, then deal with addiƟon and subtracƟon using the Product and QuoƟent
Rules, respecƟvely. AddiƟonally, we find that using log properƟes in this fash-
ion can increase the domain of the expression. For example, we leave it to the
reader to verify the domain of f(x) = log3(x−1)− log3(x+1) is (1,∞) but the
domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1) ∪ (1,∞).

The two logarithm buƩons commonly found on calculators are the ‘LOG’ and
‘LN’ buƩons which correspond to the common and natural logs, respecƟvely.
Suppose we wanted an approximaƟon to log2(7). The answer should be a liƩle
less than 3, (Can you explain why?) but how do we coerce the calculator into
telling us a more accurate answer? We need the following theorem.

Theorem 3.4.7 Change of Base Formulas

Let a, b > 0, a, b ̸= 1.

• ax = bx logb(a) for all real numbers x.

• loga(x) =
logb(x)
logb(a)

for all real numbers x > 0.

Example 3.4.8 Using change of base formulas
Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a computer or calcu-
lator, as appropriate.

1. 32 to base 10

2. 2x to base e

3. log4(5) to base e

4. ln(x) to base 10

SÊ½çã®ÊÄ

99



Figure 3.4.12: y = f(x) = 2x and y =
g(x) = ex ln(2)

Figure 3.4.13: y = f(x) = 2x and y =
g(x) = ex ln(2)

Chapter 3 EssenƟal FuncƟons

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain
32 = 102 log(3). Typing the laƩer in the calculator produces an answer of
9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our
calculator, we can graph f(x) = 2x (in black) and g(x) = ex ln(2) (in grey).
Their graphs are indisƟnguishable which provides evidence that they are
the same funcƟon: see Figure 3.4.12.

3. Applying the change of base with a = 4 and b = e leads us to write
log4(5) =

ln(5)
ln(4) . EvaluaƟng this in the calculator gives ln(5)

ln(4) ≈ 1.16. How
do we check this really is the value of log4(5)? By definiƟon, log4(5) is the
exponent we put on 4 to get 5. The plot from GeoGebra in Figure 3.4.13
confirms this. (Which means if it is lying to us about the first answer it
gave us, at least it is being consistent.)

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and

g(x) = log(x)
log(e) and find both graphs appear to be idenƟcal.
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Exercises 3.4
Problems
In Exercises 1 – 15, use the property: ba = c if and only if
logb(c) = a fromTheorem3.4.2 to rewrite the given equaƟon
in the other form. That is, rewrite the exponenƟal equaƟons
as logarithmic equaƟons and rewrite the logarithmic equa-
Ɵons as exponenƟal equaƟons.

1. 23 = 8

2. 5−3 = 1
125

3. 45/2 = 32

4.
( 1
3

)−2
= 9

5.
( 4
25

)−1/2
= 5

2

6. 10−3 = 0.001

7. e0 = 1

8. log5(25) = 2

9. log25(5) = 1
2

10. log3
( 1
81

)
= −4

11. log 4
3

( 3
4

)
= −1

12. log(100) = 2

13. log(0.1) = −1

14. ln(e) = 1

15. ln
(

1√
e

)
= − 1

2

In Exercises 16 – 42, evaluate the expression.

16. log3(27)

17. log6(216)

18. log2(32)

19. log6
( 1
36

)
20. log8(4)

21. log36(216)

22. log 1
5
(625)

23. log 1
6
(216)

24. log36(36)

25. log
( 1
1000000

)
26. log(0.01)

27. ln
(
e3
)

28. log4(8)

29. log6(1)

30. log13
(√

13
)

31. log36
( 4√36

)
32. 7log7(3)

33. 36log36(216)

34. log36
(
36216

)
35. ln

(
e5
)

36. log
(

9√1011
)

37. log
(

3√105
)

38. ln
(

1√
e

)
39. log5

(
3log3(5)

)
40. log

(
eln(100)

)
41. log2

(
3− log3(2)

)
42. ln

(
426 log(1)

)
In Exercises 43 – 57, find the domain of the funcƟon.

43. f(x) = ln(x2 + 1)

44. f(x) = log7(4x+ 8)

45. f(x) = ln(4x− 20)

46. f(x) = log
(
x2 + 9x+ 18

)
47. f(x) = log

(
x+ 2
x2 − 1

)

48. f(x) = log
(
x2 + 9x+ 18

4x− 20

)
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49. f(x) = ln(7− x) + ln(x− 4)

50. f(x) = ln(4x− 20) + ln
(
x2 + 9x+ 18

)
51. f(x) = log

(
x2 + x+ 1

)
52. f(x) = 4

√
log4(x)

53. f(x) = log9(|x+ 3| − 4)

54. f(x) = ln(
√
x− 4− 3)

55. f(x) = 1
3− log5(x)

56. f(x) =
√
−1− x
log 1

2
(x)

57. f(x) = ln(−2x3 − x2 + 13x− 6)

In Exercises 58 – 63, sketch the graph of y = g(x) by start-
ing with the graph of y = f(x) and using transformaƟons.
Track at least three points of your choice and the horizontal
asymptote through the transformaƟons. State the domain
and range of g.

58. f(x) = 2x, g(x) = 2x − 1

59. f(x) =
( 1
3

)x, g(x) = ( 13)x−1

60. f(x) = 3x, g(x) = 3−x + 2

61. f(x) = 10x, g(x) = 10
x+1
2 − 20

62. f(x) = ex, g(x) = 8− e−x

63. f(x) = ex, g(x) = 10e−0.1x

In Exercises 64 – 69, sketch the graph of y = g(x) by starƟng
with the graph of y = f(x) and using transformaƟons. Track
at least three points of your choice and the verƟcal asymptote
through the transformaƟons. State the domain and range of
g.

64. f(x) = log2(x), g(x) = log2(x+ 1)

65. f(x) = log 1
3
(x), g(x) = log 1

3
(x) + 1

66. f(x) = log3(x), g(x) = − log3(x− 2)

67. f(x) = log(x), g(x) = 2 log(x+ 20)− 1

68. f(x) = ln(x), g(x) = − ln(8− x)

69. f(x) = ln(x), g(x) = −10 ln
( x
10

)
In Exercises 70 – 84, expand the given logarithm and simplify.
Assumewhen necessary that all quanƟƟes represent posiƟve
real numbers.

70. ln(x3y2)

71. log2
(

128
x2 + 4

)

72. log5
( z
25

)3
73. log(1.23× 1037)

74. ln
(√

z
xy

)

75. log5
(
x2 − 25

)
76. log√2

(
4x3
)

77. log 1
3
(9x(y3 − 8))

78. log
(
1000x3y5

)
79. log3

(
x2

81y4

)

80. ln
(

4

√
xy
ez

)

81. log6
(
216
x3y

)4

82. log
(
100x√y

3√10

)

83. log 1
2

(
4 3√x2

y
√
z

)

84. ln
(

3
√
x

10√yz

)
In Exercises 85 – 98, use the properƟes of logarithms to write
the expression as a single logarithm.

85. 4 ln(x) + 2 ln(y)

86. log2(x) + log2(y)− log2(z)

87. log3(x)− 2 log3(y)

88. 1
2 log3(x)− 2 log3(y)− log3(z)

89. 2 ln(x)− 3 ln(y)− 4 ln(z)

90. log(x)− 1
3 log(z) +

1
2 log(y)

91. − 1
3 ln(x)−

1
3 ln(y) +

1
3 ln(z)

92. log5(x)− 3
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93. 3− log(x)

94. log7(x) + log7(x− 3)− 2

95. ln(x) + 1
2

96. log2(x) + log4(x)

97. log2(x) + log4(x− 1)

98. log2(x) + log 1
2
(x− 1)

In Exercises 99 – 102, use the appropriate change of base for-
mula to convert the given expression to an expression with
the indicated base.

99. 7x−1 to base e

100. log3(x+ 2) to base 10

101.
(
2
3

)x

to base e

102. log(x2 + 1) to base e

In Exercises 103 – 108, use the appropriate change of base
formula to approximate the logarithm.

103. log3(12)

104. log5(80)

105. log6(72)

106. log4
(

1
10

)
107. log 3

5
(1000)

108. log 2
3
(50)
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x

y

1

1

P (cos(θ), sin(θ))

θ

Figure 4.1.2: Defining cos(θ) and sin(θ)

The etymology of the name ‘sine’ is quite
colourful, and the interested reader is in-
vited to research it; the ‘co’ in ‘cosine’ is
explained in SecƟon 4.3.

x

y

1

1

P (−1, 0)

θ = −π

Figure 4.1.3: Finding cos(−π) and
sin(−π)

4: FÊçÄ��ã®ÊÄÝ Ê¥
TÙ®¦ÊÄÊÃ�ãÙù

4.1 The Unit Circle: Sine and Cosine

In this secƟon, we consider the problem of describing the posiƟon of a point
on the unit circle. To that end, consider an angle θ in standard posiƟon and let
P denote the point where the terminal side of θ intersects the Unit Circle, as
in Figure 4.1.2. By associaƟng the point P with the angle θ, we are assigning a
posiƟon on the Unit Circle to the angle θ. The x-coordinate of P is called the
cosine of θ, wriƩen cos(θ), while the y-coordinate of P is called the sine of θ,
wriƩen sin(θ). The reader is encouraged to verify that these rules used tomatch
an angle with its cosine and sine do, in fact, saƟsfy the definiƟon of a funcƟon.
That is, for each angle θ, there is only one associated value of cos(θ) and only
one associated value of sin(θ).

Example 4.1.1 EvaluaƟng cos(θ) and sin(θ)
Find the cosine and sine of the following angles.

1. θ = −π

2. θ = π
4

3. θ = π
6

4. θ = π
3

SÊ½çã®ÊÄ

1. The angle θ = −π represents one half of a clockwise revoluƟon so its
terminal side lies on the negaƟve x-axis. The point on the Unit Circle that
lies on the negaƟve x-axis is (−1, 0) which means cos(−π) = −1 and
sin(−π) = 0.

2. Whenwe sketch θ = π
4 in standard posiƟon, we see in Figure 4.1.1 that its

terminal does not lie along any of the coordinate axes which makes our
job of finding the cosine and sine values a bit more difficult. Let P(x, y)
denote the point on the terminal side of θ which lies on the Unit Circle.
By definiƟon, x = cos

(
π
4
)
and y = sin

(
π
4
)
. If we drop a perpendicular

line segment from P to the x-axis, we obtain a 45◦−45◦−90◦ right triangle
whose legs have lengths x and y units. FromGeometry, we get y = x. (Can
you show this?) Since P(x, y) lies on the Unit Circle, we have x2 + y2 = 1.
SubsƟtuƟng y = x into this equaƟon yields 2x2 = 1, or x = ±

√
1
2 = ±

√
2
2 .

Since P(x, y) lies in the first quadrant, x > 0, so x = cos
(
π
4
)
=

√
2
2 and

with y = x we have y = sin
(
π
4
)
=

√
2
2 .
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x

y

1

1

P (x, y)

θ = 45◦

θ = 45◦

45◦

x

y

P (x, y)

θ = π
4 in standard posiƟon 45◦ − 45◦ − 90◦ triangle

Figure 4.1.1: Finding cos
(
π
4

)
and sin

(
π
4

)

3. As before, the terminal side of θ = π
6 does not lie on any of the coordinate

axes, so we proceed using a triangle approach. Leƫng P(x, y) denote the
point on the terminal side of θ which lies on the Unit Circle, we drop a
perpendicular line segment from P to the x-axis to form a 30◦−60◦−90◦
right triangle: see Figure 4.1.4. AŌer a bit of Geometry (again, can you
show this?) we find y = 1

2 so sin
(
π
6
)
= 1

2 . Since P(x, y) lies on the Unit
Circle, we subsƟtute y = 1

2 into x2 + y2 = 1 to get x2 = 3
4 , or x = ±

√
3
2 .

Here, x > 0 so x = cos
(
π
6
)
=

√
3
2 .

x

y

1

1

P (x, y)

θ = π
6

θ = π
6 = 30◦

60◦

x

y

P (x, y)

θ = π
6 in standard posiƟon 30◦ − 60◦ − 90◦ triangle

Figure 4.1.4: Finding cos
(
π
6

)
and sin

(
π
6

)

4. Ploƫng θ = π
3 in standard posiƟon, wefind it is not a quadrantal angle and

set about using a triangle approach. Once again, we get a 30◦−60◦−90◦
right triangle and, aŌer the usual computaƟons, find x = cos

(
π
3
)
= 1

2 and
y = sin

(
π
3
)
=

√
3
2 .
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x

y

1

1

P (x, y)

θ = 60◦

θ = 60◦

30◦

x

y

P (x, y)

θ = π
3 in standard posiƟon 30◦ − 60◦ − 90◦ triangle

Figure 4.1.5: Finding cos
(
π
3

)
and sin

(
π
3

)
In Example 4.1.1, it was quite easy to find the cosine and sine of the quad-

rantal angles, but for non-quadrantal angles, the task was much more involved.
In these laƩer cases, we made good use of the fact that the point P(x, y) =
(cos(θ), sin(θ)) lies on the Unit Circle, x2 + y2 = 1. If we subsƟtute x = cos(θ)
and y = sin(θ) into x2 + y2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An
unfortunate convenƟon, which the authors are compelled to perpetuate, is to
write (cos(θ))2 as cos2(θ) and (sin(θ))2 as sin2(θ). (This is unfortunate from a
‘funcƟon notaƟon’ perspecƟve, as you will see once you encounter the inverse
trigonometric funcƟons.) RewriƟng the idenƟty using this convenƟon results
in the following theorem, which is without a doubt one of the most important
results in Trigonometry.

Theorem 4.1.1 The Pythagorean IdenƟty

For any angle θ, cos2(θ) + sin2(θ) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from
which both the Distance Formula and the equaƟon for a circle are ulƟmately de-
rived. The word ‘IdenƟty’ reminds us that, regardless of the angle θ, the equa-
Ɵon in Theorem4.1.1 is always true. If one of cos(θ) or sin(θ) is known, Theorem
4.1.1 can be used to determine the other, up to a (±) sign. If, in addiƟon, we
know where the terminal side of θ lies when in standard posiƟon, then we can
remove the ambiguity of the (±) and completely determine the missing value
as the next example illustrates.

Example 4.1.2 Using the Pythagorean IdenƟty
Using the given informaƟon about θ, find the indicated value.

1. If θ is a Quadrant II angle with sin(θ) = 3
5 , find cos(θ).

2. If π < θ < 3π
2 with cos(θ) = −

√
5
5 , find sin(θ).

3. If sin(θ) = 1, find cos(θ).
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x

y

1

1

P = Q

α

Figure 4.1.7: Reference angle α for a
Quadrant I angle

x

y

1

1

P Q

αα

Figure 4.1.8: Reference angle α for a
Quadrant II angle

x

y

1

1

P

Q

α

α

Figure 4.1.9: Reference angle α for a
Quadrant III angle

x

y

1

1

P

Q

α

α

Figure 4.1.10: Reference angle α for a
Quadrant IV angle
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SÊ½çã®ÊÄ

1. When we subsƟtute sin(θ) = 3
5 into The Pythagorean IdenƟty, cos

2(θ) +

sin2(θ) = 1, we obtain cos2(θ) + 9
25 = 1. Solving, we find cos(θ) = ± 4

5 .
Since θ is a Quadrant II angle, its terminal side, when ploƩed in standard
posiƟon, lies in Quadrant II. Since the x-coordinates are negaƟve in Quad-
rant II, cos(θ) is too. Hence, cos(θ) = − 4

5 .

2. SubsƟtuƟng cos(θ) = −
√
5
5 into cos2(θ) + sin2(θ) = 1 gives sin(θ) =

± 2√
5 = ± 2

√
5

5 . Since we are given that π < θ < 3π
2 , we know θ is a

Quadrant III angle. Hence both its sine and cosine are negaƟve and we
conclude sin(θ) = − 2

√
5

5 .

3. When we subsƟtute sin(θ) = 1 into cos2(θ) + sin2(θ) = 1, we find
cos(θ) = 0.

Another tool which helps immensely in determining cosines and sines of an-
gles is the symmetry inherent in the Unit Circle. Suppose, for instance, we wish
to know the cosine and sine of θ = 5π

6 . We plot θ in standard posiƟon be-
low and, as usual, let P(x, y) denote the point on the terminal side of θ which
lies on the Unit Circle. Note that the terminal side of θ lies π

6 radians short of
one half revoluƟon. In Example 4.1.1, we determined that cos

(
π
6
)
=

√
3
2 and

sin
(
π
6
)
= 1

2 . Thismeans that the point on the terminal side of the angle π
6 , when

ploƩed in standard posiƟon, is
(√

3
2 , 12

)
. From Figure 4.1.6, it is clear that the

point P(x, y) we seek can be obtained by reflecƟng that point about the y-axis.
Hence, cos

( 5π
6
)
= −

√
3
2 and sin

( 5π
6
)
= 1

2 .

x

y

1

1

P (x, y) θ = 5π
6

π
6

x

y

1

1

(√
3

2 , 1
2

)
P

(
−

√
3

2 , 1
2

)
π
6

π
6

θ = 5π
6

Figure 4.1.6: RefelcƟng P(x, y) across the y-axis to obtain a Quadrant I angle

In the above scenario, the angle π
6 is called the reference angle for the angle5π

6 . In general, for a non-quadrantal angle θ, the reference angle for θ (usually
denoted α) is the acute angle made between the terminal side of θ and the x-
axis. If θ is a Quadrant I or IV angle, α is the angle between the terminal side
of θ and the posiƟve x-axis; if θ is a Quadrant II or III angle, α is the angle be-
tween the terminal side of θ and the negaƟve x-axis. If we let P denote the point
(cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses
symmetry with respect to the x-axis, y-axis and origin, regardless of where the
terminal side of θ lies, there is a point Q symmetric with Pwhich determines θ’s
reference angle, α as seen below.

We have just outlined the proof of the following theorem.
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Figure 4.1.11: Finding cos
( 5π

4

)
and

sin
( 5π

4

)

x

y

1

1

θ = 11π
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π
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Figure 4.1.12: Finding cos
( 11π

6

)
and

sin
( 11π

6

)
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y
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θ = − 5π
4
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Figure 4.1.13: Finding cos
(
− 5π

4

)
and

sin
(
− 5π

4

)
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1
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θ = 7π
3

π
3

Figure 4.1.14: Finding cos
( 7π

3

)
and

sin
( 7π

3

)

4.1 The Unit Circle: Sine and Cosine

Theorem 4.1.2 Reference Angle Theorem

Suppose α is the reference angle for θ. Then cos(θ) = ± cos(α) and
sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant
in which the terminal side of θ lies.

In light of Theorem 4.1.2, it pays to know the cosine and sine values for cer-
tain common angles. In the table below, we summarize the values which we
consider essenƟal and must be memorized.

Cosine and Sine Values of Common Angles
θ(degrees) θ(radians) cos(θ) sin(θ)

0◦ 0 1 0
30◦ π

6

√
3
2

1
2

45◦ π
4

√
2
2

√
2
2

60◦ π
3

1
2

√
3
2

90◦ π
2 0 1

Example 4.1.3 Using reference angles
Find the cosine and sine of the following angles.

1. θ = 5π
4

2. θ = 11π
6

3. θ = − 5π
4

4. θ = 7π
3

SÊ½çã®ÊÄ

1. We begin by ploƫng θ = 5π
4 in standard posiƟon and find its terminal side

overshoots the negaƟve x-axis to land in Quadrant III. Hence, we obtain
θ’s reference angle α by subtracƟng: α = θ − π = 5π

4 − π = π
4 . Since θ

is a Quadrant III angle, both cos(θ) < 0 and sin(θ) < 0. The Reference
Angle Theorem yields: cos

( 5π
4
)
= − cos

(
π
4
)
= −

√
2
2 and sin

( 5π
4
)
=

− sin
(
π
4
)
= −

√
2
2 .

2. The terminal side of θ = 11π
6 , when ploƩed in standard posiƟon, lies in

Quadrant IV, just shy of the posiƟve x-axis. To find θ’s reference angle α,
we subtract: α = 2π − θ = 2π − 11π

6 = π
6 . Since θ is a Quadrant IV

angle, cos(θ) > 0 and sin(θ) < 0, so the Reference Angle Theorem gives:
cos
( 11π

6
)
= cos

(
π
6
)
=

√
3
2 and sin

( 11π
6
)
= − sin

(
π
6
)
= − 1

2 .

3. To plot θ = − 5π
4 , we rotate clockwise an angle of 5π

4 from the posiƟve x-
axis. The terminal side of θ, therefore, lies in Quadrant II making an angle
of α = 5π

4 − π = π
4 radians with respect to the negaƟve x-axis. Since θ

is a Quadrant II angle, the Reference Angle Theorem gives: cos
(
− 5π

4
)
=

− cos
(
π
4
)
= −

√
2
2 and sin

(
− 5π

4
)
= sin

(
π
4
)
=

√
2
2 .

4. Since the angle θ = 7π
3 measuresmore than 2π = 6π

3 , we find the terminal
side of θ by rotaƟng one full revoluƟon followed by an addiƟonalα = 7π

3 −
2π = π

3 radians. Since θ and α are coterminal, cos
( 7π

3
)
= cos

(
π
3
)
= 1

2
and sin

( 7π
3
)
= sin

(
π
3
)
=

√
3
2 .
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The reader may have noƟced that when expressed in radian measure, the
reference angle is easy to spot. Reduced fracƟon mulƟples of π with a denom-
inator of 6 have π

6 as a reference angle, those with a denominator of 4 have
π
4 as their reference angle, and those with a denominator of 3 have π

3 as their
reference angle. The Reference Angle Theorem in conjuncƟon with the table of
cosine and sine values on Page 109 can be used to generate the following figure,
which the authors feel should be commiƩed to memory. (At the very least, one
should memorize the first quadrant and learn to make use of Theorem 4.1.2.)

x

y

(0, 1)

(1, 0)

(0,−1)

(−1, 0)

(√
2
2 ,

√
2
2

)
(√

3
2 ,

1
2

)

(
1
2 ,

√
3
2

)
(
−

√
2
2 ,

√
2
2

)
(
−

√
3
2 ,

1
2

)

(
− 1

2 ,
√
3
2

)

(√
2
2 ,−

√
2
2

)
(√

3
2 ,−

1
2

)

(
1
2 ,−

√
3
2

)
(
−

√
2
2 ,−

√
2
2

)
(
−

√
3
2 ,−

1
2

)

(
− 1

2 ,−
√
3
2

)

0, 2π

π

2

π

3π

2

π

4

π

6

π

3

3π

4

5π

6

2π

3

5π

4

7π

6

4π

3

7π

4

11π

6

5π

3

Figure 4.1.15: Important Points on the Unit Circle
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Our next example asks us to solve some very basic trigonometric equaƟons.

Example 4.1.4 Solving basic trigonometric equaƟons
Find all of the angles which saƟsfy the given equaƟon.

1. cos(θ) =
1
2

2. sin(θ) = −1
2

3. cos(θ) = 0.

SÊ½çã®ÊÄ

1. If cos(θ) = 1
2 , then the terminal side of θ, when ploƩed in standard posi-

Ɵon, intersects the Unit Circle at x = 1
2 . This means θ is a Quadrant I or IV

angle with reference angle π
3 .

x

y

1
1
2

1

π
3

x

y

1

1
2

1

π
3

Figure 4.1.16: Angles with cos(θ) = 1
2

One soluƟon in Quadrant I is θ = π
3 , and since all other Quadrant I so-

luƟons must be coterminal with π
3 , we find θ = π

3 + 2πk for integers
k. Proceeding similarly for the Quadrant IV case, we find the soluƟon to
cos(θ) = 1

2 here is
5π
3 , so our answer in this Quadrant is θ = 5π

3 + 2πk for
integers k.

2. If sin(θ) = − 1
2 , then when θ is ploƩed in standard posiƟon, its terminal

side intersects the Unit Circle at y = − 1
2 . From this, we determine θ is a

Quadrant III or Quadrant IV angle with reference angle π
6 .

x

y

1

− 1
2

1

π
6

x

y

1

− 1
2

1

π
6

Figure 4.1.17: Angles with sin(θ) = − 1
2

In Quadrant III, one soluƟon is 7π
6 , so we capture all Quadrant III soluƟons

by adding integer mulƟples of 2π: θ = 7π
6 + 2πk. In Quadrant IV, one
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Figure 4.1.19: Defining cos(t) and sin(t)
as funcƟons of a real variable
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soluƟon is 11π
6 so all the soluƟons here are of the form θ = 11π

6 + 2πk for
integers k.

3. The angles with cos(θ) = 0 are quadrantal angles whose terminal sides,
when ploƩed in standard posiƟon, lie along the y-axis.

x

y

1

1

π
2

x

y

1

1

π
2

π
2

π

Figure 4.1.18: Angles with cos(θ) = 0

While, technically speaking, π
2 isn’t a reference angle we can nonetheless

use it to find our answers. If we follow the procedure set forth in the
previous examples, we find θ = π

2 + 2πk and θ = 3π
2 + 2πk for integers,

k. While this soluƟon is correct, it can be shortened to θ = π
2 + πk for

integers k. (Can you see why this works from the diagram?)

One of the key items to take from Example 4.1.4 is that, in general, solu-
Ɵons to trigonometric equaƟons consist of infinitely many answers. The reader
is encouraged write out as many of these answers as necessary to get a feel for
them. This is especially important when checking answers to the exercises. For
example, another Quadrant IV soluƟon to sin(θ) = − 1

2 is θ = − π
6 . Hence, the

family of Quadrant IV answers to number 2 above could just have easily been
wriƩen θ = − π

6 + 2πk for integers k. While on the surface, this family may look
different than the stated soluƟon of θ = 11π

6 + 2πk for integers k, we leave it to
the reader to show they represent the same list of angles.

We close this secƟonby noƟng thatwe can easily extend the funcƟons cosine
and sine to real numbers by idenƟfying a real number t with the angle θ = t ra-
dians. Using this idenƟficaƟon, we define cos(t) = cos(θ) and sin(t) = sin(θ).
In pracƟce this means expressions like cos(π) and sin(2) can be found by re-
garding the inputs as angles in radian measure or real numbers; the choice is
the reader’s.

In the same way we studied polynomial, raƟonal, exponenƟal, and loga-
rithmic funcƟons, we will study the trigonometric funcƟons f(t) = cos(t) and
g(t) = sin(t). The first order of business is to find the domains and ranges of
these funcƟons. Whether we think of idenƟfying the real number twith the an-
gle θ = t radians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and
sine funcƟons are defined for all real numbers t. In other words, the domain of
f(t) = cos(t) and of g(t) = sin(t) is (−∞,∞). Since cos(t) and sin(t) represent
x- and y-coordinates, respecƟvely, of points on the Unit Circle, they both take
on all of the values between −1 an 1, inclusive. In other words, the range of
f(t) = cos(t) and of g(t) = sin(t) is the interval [−1, 1]. To summarize:
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4.1 The Unit Circle: Sine and Cosine

Theorem4.1.3 Domain and Range of the Cosine and Sine FuncƟons

• The funcƟon f(t) = cos(t)

– has domain (−∞,∞)

– has range [−1, 1]

• The funcƟon g(t) = sin(t)

– has domain (−∞,∞)

– has range [−1, 1]

Suppose, as in the Exercises, we are asked to solve an equaƟon such as
sin(t) = − 1

2 . As we have already menƟoned, the disƟncƟon between t as a
real number and as an angle θ = t radians is oŌen blurred. Indeed, we solve
sin(t) = − 1

2 in the exact same manner as we did in Example 4.1.4 number 2.
Our soluƟon is only cosmeƟcally different in that the variable used is t rather
than θ: t = 7π

6 + 2πk or t = 11π
6 + 2πk for integers, k. We will study the co-

sine and sine funcƟons in greater detail in SecƟon 4.4. UnƟl then, keep in mind
that any properƟes of cosine and sine developed in the following secƟons which
regard them as funcƟons of angles in radian measure apply equally well if the
inputs are regarded as real numbers.
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Exercises 4.1
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 30, use the results developed throughout
the secƟon to find the requested value.

21. If sin(θ) = − 7
25

with θ in Quadrant IV, what is cos(θ)?

22. If cos(θ) = 4
9
with θ in Quadrant I, what is sin(θ)?

23. If sin(θ) = 5
13

with θ in Quadrant II, what is cos(θ)?

24. If cos(θ) = − 2
11

with θ in Quadrant III, what is sin(θ)?

25. If sin(θ) = −2
3
with θ in Quadrant III, what is cos(θ)?

26. If cos(θ) = 28
53

with θ in Quadrant IV, what is sin(θ)?

27. If sin(θ) = 2
√
5

5
and π

2
< θ < π, what is cos(θ)?

28. If cos(θ) =
√
10
10

and 2π < θ <
5π
2
, what is sin(θ)?

29. If sin(θ) = −0.42 and π < θ <
3π
2
, what is cos(θ)?

30. If cos(θ) = −0.98 and π

2
< θ < π, what is sin(θ)?

In Exercises 31 – 39, find all of the angles which saƟsfy the
given equaƟon.

31. sin(θ) = 1
2

32. cos(θ) = −
√
3
2

33. sin(θ) = 0

34. cos(θ) =
√
2
2

35. sin(θ) =
√
3
2

36. cos(θ) = −1

37. sin(θ) = −1

38. cos(θ) =
√
3
2

39. cos(θ) = −1.001
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The funcƟons in DefiniƟon 4.2.1 are also
(and perhaps, more commonly) known as
trigonometric funcƟons, owing to the fact
that the can also be defined in terms of
raƟos of the three sides of a right-angle
triangle

θ

x

y

1

O B(1, 0)A(x, 0)

P (x, y)

Q(1, y′) = (1, tan(θ))

Figure 4.2.1: Explaining the tangent and
secant funcƟons

4.2 The Six Circular FuncƟons and Fundamental IdenƟƟes

4.2 The Six Circular FuncƟons and Fundamental Iden-
ƟƟes

In secƟon 4.1, we defined cos(θ) and sin(θ) for angles θ using the coordinate
values of points on the Unit Circle. As such, these funcƟons earn the moniker
circular funcƟons. It turns out that cosine and sine are just two of the six com-
monly used circular funcƟons which we define below.

DefiniƟon 4.2.1 The Circular FuncƟons

Suppose θ is an angle ploƩed in standard posiƟon and P(x, y) is the point
on the terminal side of θ which lies on the Unit Circle.

• The cosine of θ, denoted cos(θ), is defined by cos(θ) = x.

• The sine of θ, denoted sin(θ), is defined by sin(θ) = y.

• The secant of θ, denoted sec(θ), is defined by sec(θ) =
1
x
, pro-

vided x ̸= 0.

• The cosecant of θ, denoted csc(θ), is defined by csc(θ) = 1
y
, pro-

vided y ̸= 0.

• The tangent of θ, denoted tan(θ), is defined by tan(θ) =
y
x
, pro-

vided x ̸= 0.

• The cotangent of θ, denoted cot(θ), is defined by cot(θ) =
x
y
,

provided y ̸= 0.

While we leŌ the history of the name ‘sine’ as an interesƟng research project
in SecƟon 4.1, the names ‘tangent’ and ‘secant’ can be explained using the dia-
gram below. Consider the acute angle θ below in standard posiƟon. Let P(x, y)
denote, as usual, the point on the terminal side of θ which lies on the Unit Cir-
cle and let Q(1, y′) denote the point on the terminal side of θ which lies on the
verƟcal line x = 1, as in Figure 4.2.1.

The word ‘tangent’ comes from the LaƟn meaning ‘to touch,’ and for this
reason, the line x = 1 is called a tangent line to the Unit Circle since it intersects,
or ‘touches’, the circle at only one point, namely (1, 0). Dropping perpendiculars
from P and Q creates a pair of similar triangles∆OPA and∆OQB. Thus y′

y = 1
x

which gives y′ = y
x = tan(θ), where this last equality comes from applying

DefiniƟon 4.2.1. We have just shown that for acute angles θ, tan(θ) is the y-
coordinate of the point on the terminal side of θ which lies on the line x = 1
which is tangent to the Unit Circle. Now the word ‘secant’ means ‘to cut’, so a
secant line is any line that ‘cuts through’ a circle at two points. (Compare this
with the definiƟon given in SecƟon 3.1.1.) The line containing the terminal side
of θ is a secant line since it intersects the Unit Circle in Quadrants I and III. With
the point P lying on the Unit Circle, the length of the hypotenuse of ∆OPA is
1. If we let h denote the length of the hypotenuse of ∆OQB, we have from
similar triangles that h

1 = 1
x , or h = 1

x = sec(θ). Hence for an acute angle θ,
sec(θ) is the length of the line segment which lies on the secant line determined
by the terminal side of θ and ‘cuts off’ the tangent line x = 1. Not only do
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Chapter 4 FoundaƟons of Trigonometry

these observaƟons help explain the names of these funcƟons, they serve as the
basis for a fundamental inequality needed for Calculus whichwe’ll explore in the
Exercises.

Of the six circular funcƟons, only cosine and sine are defined for all angles.
Since cos(θ) = x and sin(θ) = y in DefiniƟon 4.2.1, it is customary to rephrase
the remaining four circular funcƟons in terms of cosine and sine. The following
theorem is a result of simply replacing x with cos(θ) and y with sin(θ) in Defini-
Ɵon 4.2.1.

Theorem 4.2.1 Reciprocal and QuoƟent IdenƟƟes

• sec(θ) =
1

cos(θ)
, provided cos(θ) ̸= 0; if cos(θ) = 0, sec(θ) is

undefined.

• csc(θ) =
1

sin(θ)
, provided sin(θ) ̸= 0; if sin(θ) = 0, csc(θ) is

undefined.

• tan(θ) =
sin(θ)
cos(θ)

, provided cos(θ) ̸= 0; if cos(θ) = 0, tan(θ) is

undefined.

• cot(θ) =
cos(θ)
sin(θ)

, provided sin(θ) ̸= 0; if sin(θ) = 0, cot(θ) is

undefined.

Example 4.2.1 EvaluaƟng circular funcƟons
Find the indicated value, if it exists.

1. csc
( 7π

4
)

2. cot(3)

3. tan (θ), where θ is any angle coterminal with 3π
2 .

4. cos (θ), where csc(θ) = −
√
5 and θ is a Quadrant IV angle.

5. sin (θ), where tan(θ) = 3 and π < θ < 3π
2 .

SÊ½çã®ÊÄ

1. Since sin
( 7π

4
)
= −

√
2
2 , csc

( 7π
4
)
= 1

sin( 7π
4 )

= 1
−
√
2/2 = − 2√

2 = −
√
2.

2. Since θ = 3 radians is not one of the ‘common angles’ from SecƟon 4.1,
we resort to the calculator for a decimal approximaƟon. Ensuring that the
calculator is in radian mode, we find cot(3) = cos(3)

sin(3) ≈ −7.015.

3. If θ is coterminal with 3π
2 , then cos(θ) = cos

( 3π
2
)
= 0 and sin(θ) =

sin
( 3π

2
)
= −1. AƩempƟng to compute tan(θ) = sin(θ)

cos(θ) results in
−1
0 , so

tan(θ) is undefined.

4. We are given that csc(θ) = 1
sin(θ) = −

√
5 so sin(θ) = − 1√

5 = −
√
5
5 .

As we saw in SecƟon 4.1, we can use the Pythagorean IdenƟty, cos2(θ) +
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4.2 The Six Circular FuncƟons and Fundamental IdenƟƟes

sin2(θ) = 1, to find cos(θ)by knowing sin(θ). SubsƟtuƟng, we get cos2(θ)+(
−

√
5
5

)2
= 1, which gives cos2(θ) = 4

5 , or cos(θ) = ± 2
√
5

5 . Since θ is a

Quadrant IV angle, cos(θ) > 0, so cos(θ) = 2
√
5

5 .

5. If tan(θ) = 3, then sin(θ)
cos(θ) = 3. Be careful - this does NOT mean we

can take sin(θ) = 3 and cos(θ) = 1. Instead, from sin(θ)
cos(θ) = 3 we get:

sin(θ) = 3 cos(θ). To relate cos(θ) and sin(θ), we once again employ the
Pythagorean IdenƟty, cos2(θ)+sin2(θ) = 1. Solving sin(θ) = 3 cos(θ) for
cos(θ), we find cos(θ) = 1

3 sin(θ). SubsƟtuƟng this into the Pythagorean
IdenƟty, we find sin2(θ) +

( 1
3 sin(θ)

)2
= 1. Solving, we get sin2(θ) = 9

10
so sin(θ) = ± 3

√
10

10 . Since π < θ < 3π
2 , θ is a Quadrant III angle. This

means sin(θ) < 0, so our final answer is sin(θ) = − 3
√
10

10 .

Our next step is to provide versions of the idenƟty cos2(θ) + sin2(θ) = 1
for the remaining circular funcƟons. Assuming cos(θ) ̸= 0, we may start with
cos2(θ) + sin2(θ) = 1 and divide both sides by cos2(θ) to obtain 1 + sin2(θ)

cos2(θ) =
1

cos2(θ) . Using properƟes of exponents along with the Reciprocal and QuoƟent
IdenƟƟes, this reduces to 1 + tan2(θ) = sec2(θ). If sin(θ) ̸= 0, we can divide
both sides of the idenƟty cos2(θ)+ sin2(θ) = 1 by sin2(θ), apply Theorem 4.2.1
once again, and obtain cot2(θ) + 1 = csc2(θ). These three Pythagorean Iden-
ƟƟes are worth memorizing and they, along with some of their other common
forms, are summarized in the following theorem.

Theorem 4.2.2 The Pythagorean IdenƟƟes

1. cos2(θ) + sin2(θ) = 1.
Common Alternate Forms:

• 1− sin2(θ) = cos2(θ)
• 1− cos2(θ) = sin2(θ)

2. 1+ tan2(θ) = sec2(θ), provided cos(θ) ̸= 0.
Common Alternate Forms:

• sec2(θ)− tan2(θ) = 1
• sec2(θ)− 1 = tan2(θ)

3. 1+ cot2(θ) = csc2(θ), provided sin(θ) ̸= 0.
Common Alternate Forms:

• csc2(θ)− cot2(θ) = 1
• csc2(θ)− 1 = cot2(θ)
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Example 4.2.2 Verifying trigonometric idenƟƟes
Verify the following idenƟƟes. Assume that all quanƟƟes are defined.

1.
1

csc(θ)
= sin(θ) 2. tan(θ) = sin(θ) sec(θ)

3. (sec(θ) − tan(θ))(sec(θ) +
tan(θ)) = 1

4.
sec(θ)

1− tan(θ)
=

1
cos(θ)− sin(θ)

SÊ½çã®ÊÄ In verifying idenƟƟes, we typically start with the more com-
plicated side of the equaƟon and use known idenƟƟes to transform it into the
other side of the equaƟon.

1. To verify 1
csc(θ) = sin(θ), we start with the leŌ side. Using csc(θ) = 1

sin(θ) ,
we get:

1
csc(θ)

=
1
1

sin(θ)
= sin(θ),

which is what we were trying to prove.

2. StarƟngwith the right hand side of tan(θ) = sin(θ) sec(θ), weuse sec(θ) =
1

cos(θ) and find:

sin(θ) sec(θ) = sin(θ)
1

cos(θ)
=

sin(θ)
cos(θ)

= tan(θ),

where the last equality is courtesy of Theorem 4.2.1.

3. Expanding the leŌhand side of the equaƟon gives: (sec(θ)−tan(θ))(sec(θ)+
tan(θ)) = sec2(θ) − tan2(θ). According to Theorem 4.2.2, sec2(θ) −
tan2(θ) = 1. Puƫng it all together,

(sec(θ)− tan(θ))(sec(θ) + tan(θ)) = sec2(θ)− tan2(θ) = 1.

4. While both sides of our last idenƟty contain fracƟons, the leŌ side affords
us more opportuniƟes to use our idenƟƟes. SubsƟtuƟng sec(θ) = 1

cos(θ)

and tan(θ) = sin(θ)
cos(θ) , we get:

sec(θ)
1− tan(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

=

1
cos(θ)

1− sin(θ)
cos(θ)

· cos(θ)
cos(θ)

=

(
1

cos(θ)

)
(cos(θ))(

1− sin(θ)
cos(θ)

)
(cos(θ))

=
1

(1)(cos(θ))−
(
sin(θ)
cos(θ)

)
(cos(θ))

=
1

cos(θ)− sin(θ)
,

which is exactly what we had set out to show.
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Verifying trigonometric idenƟƟes requires a healthy mix of tenacity and in-
spiraƟon. You will need to spend many hours struggling with them just to be-
come proficient in the basics. Like many things in life, there is no short-cut here
– there is no complete algorithm for verifying idenƟƟes. Nevertheless, a sum-
mary of some strategies which may be helpful (depending on the situaƟon) is
provided below and ample pracƟce is provided for you in the Exercises.

Key Idea 4.2.1 Strategies for Verifying IdenƟƟes

• Try working on the more complicated side of the idenƟty.

• Use the Reciprocal and QuoƟent IdenƟƟes in Theorem 4.2.1 to
write funcƟons on one side of the idenƟty in terms of the func-
Ɵons on the other side of the idenƟty. Simplify the resulƟng com-
plex fracƟons.

• Add raƟonal expressions with unlike denominators by obtaining
common denominators.

• Use the Pythagorean IdenƟƟes in Theorem 4.2.2 to ‘exchange’
sines and cosines, secants and tangents, cosecants and cotan-
gents, and simplify sums or differences of squares to one term.

• MulƟply numerator and denominator by Pythagorean Conjugates
in order to take advantage of the Pythagorean IdenƟƟes in Theo-
rem 4.2.2.

• If you find yourself stuck working with one side of the idenƟty, try
starƟng with the other side of the idenƟty and see if you can find
a way to bridge the two parts of your work.
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Exercises 4.2
Problems
In Exercises 1 – 20, find the exact value of the cosine and sine
of the given angle.

1. θ = 0

2. θ =
π

4

3. θ =
π

3

4. θ =
π

2

5. θ =
2π
3

6. θ =
3π
4

7. θ = π

8. θ =
7π
6

9. θ =
5π
4

10. θ =
4π
3

11. θ =
3π
2

12. θ =
5π
3

13. θ =
7π
4

14. θ =
23π
6

15. θ = −13π
2

16. θ = −43π
6

17. θ = −3π
4

18. θ = −π

6

19. θ =
10π
3

20. θ = 117π

In Exercises 21 – 34, use the given the informaƟon to find the
exact values of the remaining circular funcƟons of θ.

21. sin(θ) = 3
5
with θ in Quadrant II

22. tan(θ) = 12
5

with θ in Quadrant III

23. csc(θ) = 25
24

with θ in Quadrant I

24. sec(θ) = 7 with θ in Quadrant IV

25. csc(θ) = −10
√
91

91
with θ in Quadrant III

26. cot(θ) = −23 with θ in Quadrant II

27. tan(θ) = −2 with θ in Quadrant IV.

28. sec(θ) = −4 with θ in Quadrant II.

29. cot(θ) =
√
5 with θ in Quadrant III.

30. cos(θ) = 1
3
with θ in Quadrant I.

31. cot(θ) = 2 with 0 < θ <
π

2
.

32. csc(θ) = 5 with π

2
< θ < π.

33. tan(θ) =
√
10 with π < θ <

3π
2
.

34. sec(θ) = 2
√
5 with 3π

2
< θ < 2π.

In Exercises 35 – 49, find all of the angles which saƟsfy the
equaƟon.

35. tan(θ) =
√
3

36. sec(θ) = 2

37. csc(θ) = −1

38. cot(θ) =
√
3
3

39. tan(θ) = 0

40. sec(θ) = 1

41. csc(θ) = 2

42. cot(θ) = 0
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43. tan(θ) = −1

44. sec(θ) = 0

45. csc(θ) = −1
2

46. sec(θ) = −1

47. tan(θ) = −
√
3

48. csc(θ) = −2

49. cot(θ) = −1

In Exercises 50 – 57, solve the equaƟon for t. Give exact val-
ues.

50. cot(t) = 1

51. tan(t) =
√
3
3

52. sec(t) = −2
√
3

3

53. csc(t) = 0

54. cot(t) = −
√
3

55. tan(t) = −
√
3
3

56. sec(t) = 2
√
3

3

57. csc(t) = 2
√
3

3

In Exercises 58 – 104, verify the idenƟty. Assume that all
quanƟƟes are defined.

58. cos(θ) sec(θ) = 1

59. tan(θ) cos(θ) = sin(θ)

60. sin(θ) csc(θ) = 1

61. tan(θ) cot(θ) = 1

62. csc(θ) cos(θ) = cot(θ)

63. sin(θ)
cos2(θ)

= sec(θ) tan(θ)

64. cos(θ)
sin2(θ)

= csc(θ) cot(θ)

65. 1+ sin(θ)
cos(θ)

= sec(θ) + tan(θ)

66. 1− cos(θ)
sin(θ)

= csc(θ)− cot(θ)

67. cos(θ)
1− sin2(θ)

= sec(θ)

68. sin(θ)
1− cos2(θ)

= csc(θ)

69. sec(θ)
1+ tan2(θ)

= cos(θ)

70. csc(θ)
1+ cot2(θ)

= sin(θ)

71. tan(θ)
sec2(θ)− 1

= cot(θ)

72. cot(θ)
csc2(θ)− 1

= tan(θ)

73. 4 cos2(θ) + 4 sin2(θ) = 4

74. 9− cos2(θ)− sin2(θ) = 8

75. tan3(θ) = tan(θ) sec2(θ)− tan(θ)

76. sin5(θ) =
(
1− cos2(θ)

)2 sin(θ)
77. sec10(θ) =

(
1+ tan2(θ)

)4 sec2(θ)
78. cos2(θ) tan3(θ) = tan(θ)− sin(θ) cos(θ)

79. sec4(θ)− sec2(θ) = tan2(θ) + tan4(θ)

80. cos(θ) + 1
cos(θ)− 1

=
1+ sec(θ)
1− sec(θ)

81. sin(θ) + 1
sin(θ)− 1

=
1+ csc(θ)
1− csc(θ)

82. 1− cot(θ)
1+ cot(θ)

=
tan(θ)− 1
tan(θ) + 1

83. 1− tan(θ)
1+ tan(θ)

=
cos(θ)− sin(θ)
cos(θ) + sin(θ)

84. tan(θ) + cot(θ) = sec(θ) csc(θ)

85. csc(θ)− sin(θ) = cot(θ) cos(θ)

86. cos(θ)− sec(θ) = − tan(θ) sin(θ)

87. cos(θ)(tan(θ) + cot(θ)) = csc(θ)

88. sin(θ)(tan(θ) + cot(θ)) = sec(θ)

89. 1
1− cos(θ)

+
1

1+ cos(θ)
= 2 csc2(θ)
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90. 1
sec(θ) + 1

+
1

sec(θ)− 1
= 2 csc(θ) cot(θ)

91. 1
csc(θ) + 1

+
1

csc(θ)− 1
= 2 sec(θ) tan(θ)

92. 1
csc(θ)− cot(θ)

− 1
csc(θ) + cot(θ)

= 2 cot(θ)

93. cos(θ)
1− tan(θ)

+
sin(θ)

1− cot(θ)
= sin(θ) + cos(θ)

94. 1
sec(θ) + tan(θ)

= sec(θ)− tan(θ)

95. 1
sec(θ)− tan(θ)

= sec(θ) + tan(θ)

96. 1
csc(θ)− cot(θ)

= csc(θ) + cot(θ)

97. 1
csc(θ) + cot(θ)

= csc(θ)− cot(θ)

98. 1
1− sin(θ)

= sec2(θ) + sec(θ) tan(θ)

99. 1
1+ sin(θ)

= sec2(θ)− sec(θ) tan(θ)

100. 1
1− cos(θ)

= csc2(θ) + csc(θ) cot(θ)

101. 1
1+ cos(θ)

= csc2(θ)− csc(θ) cot(θ)

102. cos(θ)
1+ sin(θ)

=
1− sin(θ)
cos(θ)

103. csc(θ)− cot(θ) = sin(θ)
1+ cos(θ)

104. 1− sin(θ)
1+ sin(θ)

= (sec(θ)− tan(θ))2
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As menƟoned at the end of SecƟon 4.1,
properƟes of the circular funcƟons when
thought of as funcƟons of angles in ra-
dian measure hold equally well if we view
these funcƟons as funcƟons of real num-
bers. Not surprisingly, the Even / Odd
properƟes of the circular funcƟons are so
named because they idenƟfy cosine and
secant as even funcƟons, while the re-
maining four circular funcƟons are odd.

x

y

1

1

θ

θ0

x

y

1

1

θ0

−θ0

P (cos(θ0), sin(θ0))

Q(cos(−θ0), sin(−θ0))

Figure 4.3.1: Establishing Theorem 4.3.1

4.3 Trigonometric IdenƟƟes

4.3 Trigonometric IdenƟƟes

In SecƟon 4.2, we saw the uƟlity of the Pythagorean IdenƟƟes in Theorem 4.2.2
alongwith the QuoƟent and Reciprocal IdenƟƟes in Theorem 4.2.1. Not only did
these idenƟƟes help us compute the values of the circular funcƟons for angles,
they were also useful in simplifying expressions involving the circular funcƟons.
In this secƟon, we introduce several collecƟons of idenƟƟes which have uses in
this course and beyond. Our first set of idenƟƟes is the ‘Even / Odd’ idenƟƟes.

Theorem 4.3.1 Even / Odd IdenƟƟes

For all applicable angles θ,

• cos(−θ) = cos(θ)

• sin(−θ) = − sin(θ)

• tan(−θ) = − tan(θ)

• sec(−θ) = sec(θ)

• csc(−θ) = − csc(θ)

• cot(−θ) = − cot(θ)

In light of the QuoƟent and Reciprocal IdenƟƟes, Theorem 4.2.1, it suffices
to show cos(−θ) = cos(θ) and sin(−θ) = − sin(θ). The remaining four circular
funcƟons can be expressed in terms of cos(θ) and sin(θ) so the proofs of their
Even / Odd IdenƟƟes are leŌ as exercises.

By adding the appropriate mulƟple of 2π, we may replace θ by the cotermi-
nal angle θ0 with 0 ≤ θ0 < 2π; the reader can verify that the angles −θ and
−θ0 are then also coterminal. The Evan / Odd idenƟƟes then follow by observ-
ing that the points P = (cos(θ0), sin(θ0)) and Q = (cos(−θ0), sin(−θ0)) lie on
opposite sides of the x-axis, as shown in Figure 4.3.1.

The Even / Odd IdenƟƟes are readily demonstrated using any of the ‘com-
mon angles’ noted in SecƟon 4.1. Their true uƟlity, however, lies not in com-
putaƟon, but in simplifying expressions involving the circular funcƟons. In fact,
our next batch of idenƟƟes makes heavy use of the Even / Odd IdenƟƟes.

Theorem 4.3.2 Sum and Difference IdenƟƟes for Cosine

For all angles α and β,

• cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

• cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

We first prove the result for differences. As in the proof of the Even / Odd
IdenƟƟes, we can reduce the proof for general angles α and β to angles α0 and
β0, coterminal withα and β, respecƟvely, each ofwhichmeasure between 0 and
2π radians. Since α and α0 are coterminal, as are β and β0, it follows that α−β
is coterminal with α0 − β0. Consider the case in Figure 4.3.2 where α0 ≥ β0.

Since the angles POQ and AOB are congruent, the distance between P andQ
is equal to the distance between A and B. The distance formula, EquaƟon 1.2.3,
yields
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α0

β0

x

y

1O

P (cos(α0), sin(α0))

Q(cos(β0), sin(β0))α0 − β0

x

y

1

O

A(cos(α0 − β0), sin(α0 − β0))

B(1, 0)

α0 − β0

Figure 4.3.2: Establishing Theorem 4.3.2

In Figure 4.3.2, the triangles POQ and
AOB are congruent, which is even beƩer.
However, α0 − β0 could be 0 or it could
be π, neither of whichmakes a triangle. It
could also be larger than π, which makes
a triangle, just not the one we’ve drawn.
You should think about those three cases.

Chapter 4 FoundaƟons of Trigonometry

√
(cos(α0)− cos(β0))

2 + (sin(α0)− sin(β0))
2

=
√
(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2

Squaring both sides, we expand the leŌ hand side of this equaƟon as

(cos(α0)− cos(β0))
2 + (sin(α0)− sin(β0))

2

= cos2(α0)− 2 cos(α0) cos(β0) + cos2(β0)

+ sin2(α0)− 2 sin(α0) sin(β0) + sin2(β0)

= cos2(α0) + sin2(α0) + cos2(β0) + sin2(β0)

− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

From the Pythagorean IdenƟƟes we have cos2(α0) + sin2(α0) = 1 and
cos2(β0) + sin2(β0) = 1, so

(cos(α0)− cos(β0))
2+(sin(α0)− sin(β0))

2

= 2− 2 cos(α0) cos(β0)− 2 sin(α0) sin(β0)

Turning our aƩenƟon to the right hand side of our equaƟon, we find

(cos(α0 − β0)− 1)2+(sin(α0 − β0)− 0)2

= cos2(α0 − β0)− 2 cos(α0 − β0) + 1+ sin2(α0 − β0)

= 1+ cos2(α0 − β0) + sin2(α0 − β0)− 2 cos(α0 − β0)

Once again, we simplify cos2(α0 − β0) + sin2(α0 − β0) = 1, so that

(cos(α0 − β0)− 1)2 + (sin(α0 − β0)− 0)2 = 2− 2 cos(α0 − β0)

Puƫng it all together, we get 2 − 2 cos(α0) cos(β0) − 2 sin(α0) sin(β0) =
2 − 2 cos(α0 − β0), which simplifies to: cos(α0 − β0) = cos(α0) cos(β0) +
sin(α0) sin(β0). Sinceα andα0, β andβ0 andα−β andα0−β0 are all coterminal
pairs of angles, we have cos(α − β) = cos(α) cos(β) + sin(α) sin(β). For the
case where α0 ≤ β0, we can apply the above argument to the angle β0 − α0 to
obtain the idenƟty cos(β0−α0) = cos(β0) cos(α0)+ sin(β0) sin(α0). Applying
the Even IdenƟty of cosine, we get cos(β0−α0) = cos(−(α0−β0)) = cos(α0−
β0), and we get the idenƟty in this case, too.

To get the sum idenƟty for cosine, we use the difference formula along with
the Even/Odd IdenƟƟes

cos(α+ β) = cos(α− (−β)) = cos(α) cos(−β) + sin(α) sin(−β)

= cos(α) cos(β)− sin(α) sin(β)
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Example 4.3.1 Using Theorem 4.3.2

1. Find the exact value of cos (15◦).

2. Verify the idenƟty: cos
(
π
2 − θ

)
= sin(θ).

SÊ½çã®ÊÄ

1. In order to use Theorem 4.3.2 to find cos (15◦), we need to write 15◦ as
a sum or difference of angles whose cosines and sines we know. One way
to do so is to write 15◦ = 45◦ − 30◦.

cos (15◦) = cos (45◦ − 30◦)
= cos (45◦) cos (30◦) + sin (45◦) sin (30◦)

=

(√
2
2

)(√
3
2

)
+

(√
2
2

)(
1
2

)

=

√
6+

√
2

4

2. In a straighƞorward applicaƟon of Theorem 4.3.2, we find

cos
(π
2
− θ
)

= cos
(π
2

)
cos (θ) + sin

(π
2

)
sin (θ)

= (0) (cos(θ)) + (1) (sin(θ))
= sin(θ)

The idenƟty verified in Example 4.3.1, namely, cos
(
π
2 − θ

)
= sin(θ), is the

first of what are called the ‘cofuncƟon’ idenƟƟes. From sin(θ) = cos
(
π
2 − θ

)
,

we get:

sin
(π
2
− θ
)
= cos

(π
2
−
[π
2
− θ
])

= cos(θ),

which says, inwords, that the ‘co’sine of an angle is the sine of its ‘co’mplement.
Now that these idenƟƟes have been established for cosine and sine, the remain-
ing circular funcƟons follow suit. The remaining proofs are leŌ as exercises.

Theorem 4.3.3 CofuncƟon IdenƟƟes

For all applicable angles θ,

• cos
(π
2
− θ
)
= sin(θ)

• sin
(π
2
− θ
)
= cos(θ)

• sec
(π
2
− θ
)
= csc(θ)

• csc
(π
2
− θ
)
= sec(θ)

• tan
(π
2
− θ
)
= cot(θ)

• cot
(π
2
− θ
)
= tan(θ)

With the CofuncƟon IdenƟƟes in place, we are now in the posiƟon to derive
the sum and difference formulas for sine. To derive the sum formula for sine, we
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convert to cosines using a cofuncƟon idenƟty, then expand using the difference
formula for cosine

sin(α+ β) = cos
(π
2
− (α+ β)

)
= cos

([π
2
− α

]
− β

)
= cos

(π
2
− α

)
cos(β) + sin

(π
2
− α

)
sin(β)

= sin(α) cos(β) + cos(α) sin(β)

We can derive the difference formula for sine by rewriƟng sin(α − β) as
sin(α+ (−β)) and using the sum formula and the Even / Odd IdenƟƟes. Again,
we leave the details to the reader.

Theorem 4.3.4 Sum and Difference IdenƟƟes for Sine

For all angles α and β,

• sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

• sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

Example 4.3.2 Using Theorem 4.3.4

1. Find the exact value of sin
( 19π

12
)

2. If α is a Quadrant II angle with sin(α) = 5
13 , and β is a Quadrant III angle

with tan(β) = 2, find sin(α− β).

3. Derive a formula for tan(α+ β) in terms of tan(α) and tan(β).

SÊ½çã®ÊÄ

1. As in Example 4.3.1, we need to write the angle 19π
12 as a sum or difference

of common angles. The denominator of 12 suggests a combinaƟon of an-
gles with denominators 3 and 4. One such combinaƟon is 19π

12 = 4π
3 + π

4 .
Applying Theorem 4.3.4, we get

sin
(
19π
12

)
= sin

(
4π
3

+
π

4

)
= sin

(
4π
3

)
cos
(π
4

)
+ cos

(
4π
3

)
sin
(π
4

)
=

(
−
√
3
2

)(√
2
2

)
+

(
−1
2

)(√
2
2

)

=
−
√
6−

√
2

4

2. In order to find sin(α−β)using Theorem4.3.4, weneed to find cos(α) and
both cos(β) and sin(β). To find cos(α), we use the Pythagorean IdenƟty
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Note: As with any trigonometric iden-
Ɵty, this formula is limited to those cases
where all of the tangents are defined.

4.3 Trigonometric IdenƟƟes

cos2(α)+ sin2(α) = 1. Since sin(α) = 5
13 , we have cos

2(α)+
( 5
13
)2

= 1,
or cos(α) = ± 12

13 . Since α is a Quadrant II angle, cos(α) = − 12
13 . We now

set about finding cos(β) and sin(β). We have several ways to proceed,
but the Pythagorean IdenƟty 1+ tan2(β) = sec2(β) is a quick way to get
sec(β), and hence, cos(β). With tan(β) = 2, we get 1+ 22 = sec2(β) so
that sec(β) = ±

√
5. Since β is a Quadrant III angle, we choose sec(β) =

−
√
5 so cos(β) = 1

sec(β) = 1
−
√
5 = −

√
5
5 . We now need to determine

sin(β). We could use The Pythagorean IdenƟty cos2(β) + sin2(β) = 1,
but we opt instead to use a quoƟent idenƟty. From tan(β) = sin(β)

cos(β) , we

have sin(β) = tan(β) cos(β) so we get sin(β) = (2)
(
−

√
5
5

)
= − 2

√
5

5 .
We now have all the pieces needed to find sin(α− β):

sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

=

(
5
13

)(
−
√
5
5

)
−
(
−12
13

)(
−2

√
5

5

)
= −29

√
5

65

3. We can start expanding tan(α+ β) using a quoƟent idenƟty and our sum
formulas

tan(α+ β) =
sin(α+ β)

cos(α+ β)

=
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

Since tan(α) = sin(α)
cos(α) and tan(β) =

sin(β)
cos(β) , it looks as though if we divide

both numerator and denominator by cos(α) cos(β)wewill have what we
want

tan(α+ β) =
sin(α) cos(β) + cos(α) sin(β)
cos(α) cos(β)− sin(α) sin(β)

·

1
cos(α) cos(β)

1
cos(α) cos(β)

=

sin(α) cos(β)
cos(α) cos(β)

+
cos(α) sin(β)
cos(α) cos(β)

cos(α) cos(β)
cos(α) cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=

sin(α)���cos(β)
cos(α)���cos(β)

+
���cos(α) sin(β)
���cos(α) cos(β)

���cos(α)���cos(β)
���cos(α)���cos(β)

− sin(α) sin(β)
cos(α) cos(β)

=
tan(α) + tan(β)
1− tan(α) tan(β)

The formula developed in Exercise 4.3.2 for tan(α + β) can be used to find
a formula for tan(α − β) by rewriƟng the difference as a sum, tan(α + (−β)),
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and the reader is encouraged to fill in the details. Below we summarize all of
the sum and difference formulas for cosine, sine and tangent.

Theorem 4.3.5 Sum and Difference IdenƟƟes

For all applicable angles α and β,

• cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

• sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• tan(α± β) =
tan(α)± tan(β)
1∓ tan(α) tan(β)

In the statement of Theorem 4.3.5, we have combined the cases for the sum
‘+’ and difference ‘−’ of angles into one formula. The convenƟon here is that if
you want the formula for the sum ‘+’ of two angles, you use the top sign in the
formula; for the difference, ‘−’, use the boƩom sign. For example,

tan(α− β) =
tan(α)− tan(β)
1+ tan(α) tan(β)

If we specialize the sum formulas in Theorem 4.3.5 to the case when α = β,
we obtain the following ‘Double Angle’ IdenƟƟes.

Theorem 4.3.6 Double Angle IdenƟƟes

For all applicable angles θ,

• cos(2θ) =


cos2(θ)− sin2(θ)

2 cos2(θ)− 1

1− 2 sin2(θ)

• sin(2θ) = 2 sin(θ) cos(θ)

• tan(2θ) =
2 tan(θ)

1− tan2(θ)

The three different forms for cos(2θ) can be explained by our ability to ‘ex-
change’ squares of cosine and sine via the Pythagorean IdenƟty cos2(θ)+sin2(θ) =
1 and we leave the details to the reader. It is interesƟng to note that to de-
termine the value of cos(2θ), only one piece of informaƟon is required: either
cos(θ) or sin(θ). To determine sin(2θ), however, it appears that we must know
both sin(θ) and cos(θ). In the next example, we show how we can find sin(2θ)
knowing just one piece of informaƟon, namely tan(θ).
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Example 4.3.3 Using Theorem 4.3.6

1. Suppose P(−3, 4) lies on the terminal side of θ when θ is ploƩed in stan-
dard posiƟon. Find cos(2θ) and sin(2θ) and determine the quadrant in
which the terminal side of the angle 2θ lies when it is ploƩed in standard
posiƟon.

2. If sin(θ) = x for− π
2 ≤ θ ≤ π

2 , find an expression for sin(2θ) in terms of x.

3. Verify the idenƟty: sin(2θ) =
2 tan(θ)

1+ tan2(θ)
.

4. Express cos(3θ) as a polynomial in terms of cos(θ).

SÊ½çã®ÊÄ

1. The point (−3, 4) lies on a circle of radius r =
√

x2 + y2 = 5. Hence,
cos(θ) = − 3

5 and sin(θ) =
4
5 . Applying Theorem 4.3.6, we get cos(2θ) =

cos2(θ)−sin2(θ) =
(
− 3

5
)2−( 45)2 = − 7

25 , and sin(2θ) = 2 sin(θ) cos(θ) =
2
( 4
5
) (

− 3
5
)
= − 24

25 . Since both cosine and sine of 2θ are negaƟve, the ter-
minal side of 2θ, when ploƩed in standard posiƟon, lies in Quadrant III.

2. If your first reacƟon to ‘sin(θ) = x’ is ‘No it’s not, cos(θ) = x!’ then you
have indeed learned something, and we take comfort in that. However,
context is everything. Here, ‘x’ is just a variable - it does not necessarily
represent the x-coordinate of the point on The Unit Circle which lies on
the terminal side of θ, assuming θ is drawn in standard posiƟon. Here,
x represents the quanƟty sin(θ), and what we wish to know is how to
express sin(2θ) in terms of x. Since sin(2θ) = 2 sin(θ) cos(θ), we need to
write cos(θ) in terms of x to finish the problem. We subsƟtute x = sin(θ)
into the Pythagorean IdenƟty, cos2(θ) + sin2(θ) = 1, to get cos2(θ) +
x2 = 1, or cos(θ) = ±

√
1− x2. Since − π

2 ≤ θ ≤ π
2 , cos(θ) ≥ 0, and

thus cos(θ) =
√
1− x2. Our final answer is sin(2θ) = 2 sin(θ) cos(θ) =

2x
√
1− x2.

3. We startwith the right hand side of the idenƟty andnote that 1+tan2(θ) =
sec2(θ). From this point, we use the Reciprocal and QuoƟent IdenƟƟes to
rewrite tan(θ) and sec(θ) in terms of cos(θ) and sin(θ):

2 tan(θ)
1+ tan2(θ)

=
2 tan(θ)
sec2(θ)

=

2
(
sin(θ)
cos(θ)

)
1

cos2(θ)

= 2
(
sin(θ)
cos(θ)

)
cos2(θ)

= 2
(
sin(θ)
���cos(θ)

)
���cos(θ) cos(θ) = 2 sin(θ) cos(θ) = sin(2θ)

4. In Theorem 4.3.6, the formula cos(2θ) = 2 cos2(θ)− 1 expresses cos(2θ)
as a polynomial in terms of cos(θ). We are now asked to find such an
idenƟty for cos(3θ). Using the sum formula for cosine, we begin with

cos(3θ) = cos(2θ + θ)

= cos(2θ) cos(θ)− sin(2θ) sin(θ)
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Our ulƟmate goal is to express the right hand side in terms of cos(θ) only.
We subsƟtute cos(2θ) = 2 cos2(θ) − 1 and sin(2θ) = 2 sin(θ) cos(θ)
which yields

cos(3θ) = cos(2θ) cos(θ)− sin(2θ) sin(θ)
=

(
2 cos2(θ)− 1

)
cos(θ)− (2 sin(θ) cos(θ)) sin(θ)

= 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)

Finally, we exchange sin2(θ) for 1 − cos2(θ) courtesy of the Pythagorean
IdenƟty, and get

cos(3θ) = 2 cos3(θ)− cos(θ)− 2 sin2(θ) cos(θ)
= 2 cos3(θ)− cos(θ)− 2

(
1− cos2(θ)

)
cos(θ)

= 2 cos3(θ)− cos(θ)− 2 cos(θ) + 2 cos3(θ)
= 4 cos3(θ)− 3 cos(θ)

and we are done.

In the last problem in Example 4.3.3, we saw how we could rewrite cos(3θ)
as sums of powers of cos(θ). In Calculus, we have occasion to do the reverse;
that is, reduce the power of cosine and sine. Solving the idenƟty cos(2θ) =
2 cos2(θ) − 1 for cos2(θ) and the idenƟty cos(2θ) = 1 − 2 sin2(θ) for sin2(θ)
results in the aptly-named ‘Power ReducƟon’ formulas below.

Theorem 4.3.7 Power ReducƟon Formulas

For all angles θ,

• cos2(θ) =
1+ cos(2θ)

2

• sin2(θ) =
1− cos(2θ)

2

Example 4.3.4 Using Theorem 4.3.7
Rewrite sin2(θ) cos2(θ) as a sum and difference of cosines to the first power.

SÊ½çã®ÊÄ Webeginwith a straighƞorward applicaƟonof Theorem4.3.7

sin2(θ) cos2(θ) =

(
1− cos(2θ)

2

)(
1+ cos(2θ)

2

)
=

1
4
(
1− cos2(2θ)

)
=

1
4
− 1

4
cos2(2θ)

Next, we apply the power reducƟon formula to cos2(2θ) to finish the reduc-
Ɵon
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sin2(θ) cos2(θ) =
1
4
− 1

4
cos2(2θ)

=
1
4
− 1

4

(
1+ cos(2(2θ))

2

)
=

1
4
− 1

8
− 1

8
cos(4θ)

=
1
8
− 1

8
cos(4θ)

Another applicaƟon of the Power ReducƟon Formulas is the Half Angle For-
mulas. To start, we apply the Power ReducƟon Formula to cos2

(
θ
2
)

cos2
(
θ

2

)
=

1+ cos
(
2
(
θ
2
))

2
=

1+ cos(θ)
2

.

We can obtain a formula for cos
(
θ
2
)
by extracƟng square roots. In a similar

fashion, we may obtain a half angle formula for sine, and by using a quoƟent
formula, obtain a half angle formula for tangent. We summarize these formulas
below.

Theorem 4.3.8 Half Angle Formulas

For all applicable angles θ,

• cos
(
θ

2

)
= ±

√
1+ cos(θ)

2

• sin
(
θ

2

)
= ±

√
1− cos(θ)

2

• tan
(
θ

2

)
= ±

√
1− cos(θ)
1+ cos(θ)

where the choice of ± depends on the quadrant in which the terminal
side of

θ

2
lies.

Example 4.3.5 Using Theorem 4.3.8

1. Use a half angle formula to find the exact value of cos (15◦).

2. Suppose−π ≤ θ ≤ 0 with cos(θ) = − 3
5 . Find sin

(
θ
2
)
.

3. Use the idenƟty given in number 3 of Example 4.3.3 to derive the idenƟty

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)
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Note: Back in Example 4.3.1, we found
cos (15◦) by using the difference formula
for cosine. In that case, we determined
cos (15◦) =

√
6+

√
2

4 . The reader is en-
couraged to prove that these two expres-
sions are equal.

Chapter 4 FoundaƟons of Trigonometry

SÊ½çã®ÊÄ

1. To use the half angle formula, we note that 15◦ = 30◦
2 and since 15◦ is a

Quadrant I angle, its cosine is posiƟve. Thus we have

cos (15◦) = +

√
1+ cos (30◦)

2
=

√
1+

√
3
2

2

=

√
1+

√
3
2

2
· 2
2
=

√
2+

√
3

4
=

√
2+

√
3

2

2. If −π ≤ θ ≤ 0, then − π
2 ≤ θ

2 ≤ 0, which means sin
(
θ
2
)
< 0. Theorem

4.3.8 gives

sin
(
θ

2

)
= −

√
1− cos (θ)

2
= −

√
1−

(
− 3

5
)

2

= −
√

1+ 3
5

2
· 5
5
= −

√
8
10

= −2
√
5

5

3. Instead of our usual approach to verifying idenƟƟes, namely starƟng with
one side of the equaƟon and trying to transform it into the other, we will
start with the idenƟty we proved in number 3 of Example 4.3.3 and ma-
nipulate it into the idenƟty we are asked to prove. The idenƟty we are
asked to start with is sin(2θ) = 2 tan(θ)

1+tan2(θ) . If we are to use this to derive
an idenƟty for tan

(
θ
2
)
, it seems reasonable to proceed by replacing each

occurrence of θ with θ
2

sin
(
2
(
θ
2
))

=
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

We now have the sin(θ) we need, but we somehow need to get a factor
of 1+ cos(θ) involved. To get cosines involved, recall that 1+ tan2

(
θ
2
)
=

sec2
(
θ
2
)
. We conƟnue to manipulate our given idenƟty by converƟng se-

cants to cosines and using a power reducƟon formula

sin(θ) =
2 tan

(
θ
2
)

1+ tan2
(
θ
2
)

sin(θ) =
2 tan

(
θ
2
)

sec2
(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)
cos2

(
θ
2
)

sin(θ) = 2 tan
(
θ
2
)(1+ cos

(
2
(
θ
2
))

2

)
sin(θ) = tan

(
θ
2
)
(1+ cos(θ))

tan
(
θ

2

)
=

sin(θ)
1+ cos(θ)
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The idenƟƟes in Theorem 4.3.9 are also
known as the Prosthaphaeresis Formulas
and have a rich history. The authors rec-
ommend that you conduct some research
on them as your schedule allows.

4.3 Trigonometric IdenƟƟes

Our next batch of idenƟƟes, the Product to Sum Formulas, are easily verified
by expanding each of the right hand sides in accordance with Theorem 4.3.5
and as you should expect by now we leave the details as exercises. They are of
parƟcular use in Calculus, and we list them here for reference.

Theorem 4.3.9 Product to Sum Formulas

For all angles α and β,

• cos(α) cos(β) = 1
2 [cos(α− β) + cos(α+ β)]

• sin(α) sin(β) = 1
2 [cos(α− β)− cos(α+ β)]

• sin(α) cos(β) = 1
2 [sin(α− β) + sin(α+ β)]

Related to the Product to Sum Formulas are the Sum to Product Formulas,
which come in handy when aƩempƟng to solve equaƟons involving trigonomet-
ric funcƟons. These are easily verified using the Product to Sum Formulas, and
as such, their proofs are leŌ as exercises.

Theorem 4.3.10 Sum to Product Formulas

For all angles α and β,

• cos(α) + cos(β) = 2 cos
(
α+ β

2

)
cos
(
α− β

2

)

• cos(α)− cos(β) = −2 sin
(
α+ β

2

)
sin
(
α− β

2

)

• sin(α)± sin(β) = 2 sin
(
α± β

2

)
cos
(
α∓ β

2

)

Example 4.3.6 Using Theorems 4.3.9 and 4.3.10

1. Write cos(2θ) cos(6θ) as a sum.

2. Write sin(θ)− sin(3θ) as a product.

SÊ½çã®ÊÄ

1. IdenƟfying α = 2θ and β = 6θ, we find

cos(2θ) cos(6θ) = 1
2 [cos(2θ − 6θ) + cos(2θ + 6θ)]

= 1
2 cos(−4θ) + 1

2 cos(8θ)
= 1

2 cos(4θ) +
1
2 cos(8θ),

where the last equality is courtesy of the even idenƟty for cosine, cos(−4θ) =
cos(4θ).
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Chapter 4 FoundaƟons of Trigonometry

2. IdenƟfying α = θ and β = 3θ yields

sin(θ)− sin(3θ) = 2 sin
(
θ − 3θ

2

)
cos
(
θ + 3θ

2

)
= 2 sin (−θ) cos (2θ)
= −2 sin (θ) cos (2θ) ,

where the last equality is courtesy of the odd idenƟty for sine, sin(−θ) =
− sin(θ).

This secƟon and the one before it present a rather large volume of trigono-
metric idenƟƟes, leading to a very common student quesƟon: “Do I have to
memorize all of these?” The answer, of course, is no. The indispensable iden-
ƟƟes are the Pythagorean idenƟƟes (Theorem 4.1.1), and the sum/difference
idenƟƟes (Theorems 4.3.2 and 4.3.4). They are the most common, and all other
idenƟƟes can be derived from them. That said, there are a number of topics
in Calculus (trig integraƟon comes to mind) where having other idenƟƟes like
the power reducƟon formulas in Theorem 4.3.7 at your fingerƟps will come in
handy.

The reader is reminded that all of the idenƟƟes presented in this secƟon
which regard the circular funcƟons as funcƟons of angles (in radian measure)
apply equally well to the circular (trigonometric) funcƟons regarded as funcƟons
of real numbers. In Exercises 36 - 41 in SecƟon 4.4, we see how some of these
idenƟƟesmanifest themselves geometrically aswe study the graphs of the these
funcƟons. In the upcoming Exercises, however, you need to do all of your work
analyƟcally without graphs.
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Exercises 4.3
Problems
In Exercises 1 – 6, use the Even / Odd IdenƟƟes to verify the
idenƟty. Assume all quanƟƟes are defined.

1. sin(3π − 2θ) = − sin(2θ − 3π)

2. cos
(
−π

4
− 5t

)
= cos

(
5t+ π

4

)
3. tan(−t2 + 1) = − tan(t2 − 1)

4. csc(−θ − 5) = − csc(θ + 5)

5. sec(−6t) = sec(6t)

6. cot(9− 7θ) = − cot(7θ − 9)

In Exercises 7 – 21, use the Sum and Difference IdenƟƟes to
find the exact value. You may have need of the QuoƟent, Re-
ciprocal or Even / Odd IdenƟƟes as well.

7. cos(75◦)

8. sec(165◦)

9. sin(105◦)

10. csc(195◦)

11. cot(255◦)

12. tan(375◦)

13. cos
(
13π
12

)

14. sin
(
11π
12

)

15. tan
(
13π
12

)

16. cos
(
7π
12

)

17. tan
(
17π
12

)

18. sin
( π

12

)

19. cot
(
11π
12

)

20. csc
(
5π
12

)

21. sec
(
− π

12

)

22. If α is a Quadrant IV angle with cos(α) =

√
5
5

, and

sin(β) =
√
10
10

, where π

2
< β < π, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

23. If csc(α) = 3, where 0 < α <
π

2
, and β is a Quadrant II

angle with tan(β) = −7, find

(a) cos(α+ β)

(b) sin(α+ β)

(c) tan(α+ β)

(d) cos(α− β)

(e) sin(α− β)

(f) tan(α− β)

24. If sin(α) = 3
5
, where 0 < α <

π

2
, and cos(β) = 12

13
where

3π
2

< β < 2π, find

(a) sin(α+ β)

(b) cos(α− β)

(c) tan(α− β)

25. If sec(α) = −5
3
, where π

2
< α < π, and tan(β) =

24
7
,

where π < β <
3π
2
, find

(a) csc(α− β)

(b) sec(α+ β)

(c) cot(α+ β)

In Exercises 26 – 38, verify the idenƟty.

26. cos(θ − π) = − cos(θ)

27. sin(π − θ) = sin(θ)

28. tan
(
θ +

π

2

)
= − cot(θ)

29. sin(α+ β) + sin(α− β) = 2 sin(α) cos(β)

30. sin(α+ β)− sin(α− β) = 2 cos(α) sin(β)

31. cos(α+ β) + cos(α− β) = 2 cos(α) cos(β)

32. cos(α+ β)− cos(α− β) = −2 sin(α) sin(β)

33. sin(α+ β)

sin(α− β)
=

1+ cot(α) tan(β)
1− cot(α) tan(β)

34. cos(α+ β)

cos(α− β)
=

1− tan(α) tan(β)
1+ tan(α) tan(β)

135



35. tan(α+ β)

tan(α− β)
=

sin(α) cos(α) + sin(β) cos(β)
sin(α) cos(α)− sin(β) cos(β)

36. sin(t+ h)− sin(t)
h

= cos(t)
(
sin(h)
h

)
+

sin(t)
(
cos(h)− 1

h

)

37. cos(t+ h)− cos(t)
h

= cos(t)
(
cos(h)− 1

h

)
−

sin(t)
(
sin(h)
h

)

38. tan(t+ h)− tan(t)
h

=

(
tan(h)

h

)(
sec2(t)

1− tan(t) tan(h)

)
In Exercises 39 – 48, use the Half Angle Formulas to find the
exact value. You may have need of the QuoƟent, Reciprocal
or Even / Odd IdenƟƟes as well.

39. cos(75◦) (compare with Exercise 7)

40. sin(105◦) (compare with Exercise 9)

41. cos(67.5◦)

42. sin(157.5◦)

43. tan(112.5◦)

44. cos
(
7π
12

)
(compare with Exercise 16)

45. sin
( π

12

)
(compare with Exercise 18)

46. cos
(π
8

)

47. sin
(
5π
8

)

48. tan
(
7π
8

)
In Exercises 49 – 58, use the given informaƟon about θ to find
the exact values of

• sin(2θ)

• sin
(
θ

2

) • cos(2θ)

• cos
(
θ

2

) • tan(2θ)

• tan
(
θ

2

)

49. sin(θ) = − 7
25

where 3π
2

< θ < 2π

50. cos(θ) = 28
53

where 0 < θ <
π

2

51. tan(θ) = 12
5

where π < θ <
3π
2

52. csc(θ) = 4 where π

2
< θ < π

53. cos(θ) = 3
5
where 0 < θ <

π

2

54. sin(θ) = −4
5
where π < θ <

3π
2

55. cos(θ) = 12
13

where 3π
2

< θ < 2π

56. sin(θ) = 5
13

where π

2
< θ < π

57. sec(θ) =
√
5 where 3π

2
< θ < 2π

58. tan(θ) = −2 where π

2
< θ < π

In Exercises 59 – 73, verify the idenƟty. Assume all quanƟƟes
are defined.

59. (cos(θ) + sin(θ))2 = 1+ sin(2θ)

60. (cos(θ)− sin(θ))2 = 1− sin(2θ)

61. tan(2θ) = 1
1− tan(θ)

− 1
1+ tan(θ)

62. csc(2θ) = cot(θ) + tan(θ)
2

63. 8 sin4(θ) = cos(4θ)− 4 cos(2θ) + 3

64. 8 cos4(θ) = cos(4θ) + 4 cos(2θ) + 3

65. sin(3θ) = 3 sin(θ)− 4 sin3(θ)

66. sin(4θ) = 4 sin(θ) cos3(θ)− 4 sin3(θ) cos(θ)

67. 32 sin2(θ) cos4(θ) = 2+ cos(2θ)− 2 cos(4θ)− cos(6θ)

68. 32 sin4(θ) cos2(θ) = 2− cos(2θ)− 2 cos(4θ) + cos(6θ)

69. cos(4θ) = 8 cos4(θ)− 8 cos2(θ) + 1

70. cos(8θ) = 128 cos8(θ) − 256 cos6(θ) + 160 cos4(θ) −
32 cos2(θ) + 1 (HINT: Use the result to 69.)

71. sec(2θ) = cos(θ)
cos(θ) + sin(θ)

+
sin(θ)

cos(θ)− sin(θ)

72. 1
cos(θ)− sin(θ)

+
1

cos(θ) + sin(θ)
=

2 cos(θ)
cos(2θ)

73. 1
cos(θ)− sin(θ)

− 1
cos(θ) + sin(θ)

=
2 sin(θ)
cos(2θ)

In Exercises 74 – 79, write the given product as a sum. You
may need to use an Even/Odd IdenƟty.

74. cos(3θ) cos(5θ)
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75. sin(2θ) sin(7θ)

76. sin(9θ) cos(θ)

77. cos(2θ) cos(6θ)

78. sin(3θ) sin(2θ)

79. cos(θ) sin(3θ)

In Exercises 80 – 85, write the given sum as a product. You
may need to use an Even/Odd or CofuncƟon IdenƟty.

80. cos(3θ) + cos(5θ)

81. sin(2θ)− sin(7θ)

82. cos(5θ)− cos(6θ)

83. sin(9θ)− sin(−θ)

84. sin(θ) + cos(θ)

85. cos(θ)− sin(θ)

86. Suppose θ is a Quadrant I angle with sin(θ) = x. Verify the
following formulas

(a) cos(θ) =
√
1− x2

(b) sin(2θ) = 2x
√
1− x2

(c) cos(2θ) = 1− 2x2

87. Discuss with your classmates how each of the formulas, if
any, in Exercise 86 change if we change assume θ is a Quad-
rant II, III, or IV angle.

88. Suppose θ is a Quadrant I angle with tan(θ) = x. Verify the
following formulas

(a) cos(θ) = 1√
x2 + 1

(b) sin(θ) = x√
x2 + 1

(c) sin(2θ) = 2x
x2 + 1

(d) cos(2θ) = 1− x2

x2 + 1

89. Discuss with your classmates how each of the formulas, if
any, in Exercise 88 change if we change assume θ is a Quad-
rant II, III, or IV angle.

90. If sin(θ) =
x
2
for −π

2
< θ <

π

2
, find an expression for

cos(2θ) in terms of x.

91. If tan(θ) =
x
7
for −π

2
< θ <

π

2
, find an expression for

sin(2θ) in terms of x.

92. If sec(θ) =
x
4
for 0 < θ <

π

2
, find an expression for

ln | sec(θ) + tan(θ)| in terms of x.

93. Show that cos2(θ)−sin2(θ) = 2 cos2(θ)−1 = 1−2 sin2(θ)
for all θ.

94. Let θ be a Quadrant III angle with cos(θ) = −1
5
. Show

that this is not enough informaƟon to determine the sign of

sin
(
θ

2

)
by first assuming 3π < θ <

7π
2

and then assum-

ing π < θ <
3π
2

and compuƟng sin
(
θ

2

)
in both cases.

95. Without using your calculator, show that
√

2+
√
3

2
=

√
6+

√
2

4

96. In part 4 of Example 4.3.3, we wrote cos(3θ) as a polyno-
mial in terms of cos(θ). In Exercise 69, we had you verify an
idenƟty which expresses cos(4θ) as a polynomial in terms
of cos(θ). Can you find a polynomial in terms of cos(θ) for
cos(5θ)? cos(6θ)? Can you find a paƩern so that cos(nθ)
could be wriƩen as a polynomial in cosine for any natural
number n?

97. In Exercise 65, we has you verify an idenƟty which ex-
presses sin(3θ) as a polynomial in terms of sin(θ). Can you
do the same for sin(5θ)? What about for sin(4θ)? If not,
what goes wrong?

98. Verify the Even / Odd IdenƟƟes for tangent, secant, cose-
cant and cotangent.

99. Verify the CofuncƟon IdenƟƟes for tangent, secant, cose-
cant and cotangent.

100. Verify the Difference IdenƟƟes for sine and tangent.

101. Verify the Product to Sum IdenƟƟes.

102. Verify the Sum to Product IdenƟƟes.
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To see that p = 2π is the smallest value
such that cos(t + p) = cos(t), noƟce
that when t = 0, we would need to have
cos(p) = cos(0) = 1, and we know that
there are no numbers p between 0 and 2π
such that cos(p) = 1.

Technically, we should study the interval
[0, 2π), since whatever happens at t =
2π is the same as what happens at t = 0.
As we will see shortly, t = 2π gives us an
extra ‘check’ when we go to graph these
funcƟons. In some texts, the interval of
choice is [−π, π).

Chapter 4 FoundaƟons of Trigonometry

4.4 Graphs of the Trigonometric FuncƟons

4.4.1 Graphs of the Cosine and Sine FuncƟons
Since radian measure allows us to idenƟfy angles with real numbers, and the
sine and cosine funcƟons are defined for any angle, we know that the domain
of f(t) = cos(t) and of g(t) = sin(t) is all real numbers, (−∞,∞), and the
range of both funcƟons is [−1, 1]. The Even / Odd IdenƟƟes in Theorem 4.3.1
tell us cos(−t) = cos(t) for all real numbers t and sin(−t) = − sin(t) for all
real numbers t. This means f(t) = cos(t) is an even funcƟon, while g(t) =
sin(t) is an odd funcƟon. Another important property of these funcƟons is that
cos(t+ 2πk) = cos(t) and sin(t+ 2πk) = sin(t) for all real numbers t and any
integer k. This last property is given a special name.

DefiniƟon 4.4.1 Periodic FuncƟon

A funcƟon f is said to be periodic if there is a real number c so that f(t+
c) = f(t) for all real numbers t in the domain of f. The smallest posiƟve
number p for which f(t + p) = f(t) for all real numbers t in the domain
of f, if it exists, is called the period of f.

We have already seen a family of periodic funcƟons in SecƟon 3.1.1: the
constant funcƟons. However, despite being periodic, a constant funcƟon has
no period. (We’ll leave that odd gem as an exercise for you.) Returning to the
circular funcƟons, we see that by DefiniƟon 4.4.1, f(t) = cos(t) is periodic with
period 2π, since cos(t+ 2πk) = cos(t) for any integer k, in parƟcular, for k = 1.
Similarly, we can show g(t) = sin(t) is also periodic with 2π as its period. Hav-
ing period 2π essenƟally means that we can completely understand everything
about the funcƟons f(t) = cos(t) and g(t) = sin(t) by studying one interval of
length 2π, say [0, 2π].

One last property of the funcƟons f(t) = cos(t) and g(t) = sin(t) is worth
poinƟng out: both of these funcƟons are conƟnuous and smooth. Recall from
SecƟon 3.2.1 that geometrically this means the graphs of the cosine and sine
funcƟons have no jumps, gaps, holes in the graph, asymptotes, corners or cusps.
As we shall see, the graphs of both f(t) = cos(t) and g(t) = sin(t) meander
nicely and don’t cause any trouble. We summarize these facts in the following
theorem.

Theorem 4.4.1 ProperƟes of the Cosine and Sine FuncƟons

• The funcƟon f(x) = cos(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is conƟnuous and
smooth

– is even
– has period 2π

• The funcƟon f(x) = sin(x)

– has domain (−∞,∞)

– has range [−1, 1]
– is conƟnuous and
smooth

– is odd
– has period 2π
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x cos(x) (x, cos(x))
0 1 (0, 1)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 0

(
π
2 , 0
)

3π
4 −

√
2
2

(
3π
4 ,−

√
2
2

)
π −1 (π,−1)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 0

( 3π
2 , 0

)
7π
4

√
2
2

(
7π
4 ,

√
2
2

)
2π 1 (2π, 1)

Values of f(x) = cos(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = cos(x).

Figure 4.4.3: Graphing y = cos(x)

x sin(x) (x, sin(x))
0 0 (0, 0)
π
4

√
2
2

(
π
4 ,

√
2
2

)
π
2 1

(
π
2 , 1
)

3π
4

√
2
2

(
3π
4 ,

√
2
2

)
π 0 (π, 0)
5π
4 −

√
2
2

(
5π
4 ,−

√
2
2

)
3π
2 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2

(
7π
4 ,−

√
2
2

)
2π 0 (2π, 0)

Values of f(x) = sin(x) on [0, 2π]

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

The ‘fundamental cycle’ of y = sin(x)

Figure 4.4.4: Graphing y = sin(x)

4.4 Graphs of the Trigonometric FuncƟons

In this secƟon, we follow the usual graphing convenƟon and use x as the
independent variable and y as the dependent variable. This allows us to turn
our aƩenƟon to graphing the cosine and sine funcƟons in the Cartesian Plane.
(CauƟon: the use of x and y in this context is not to be confused with the x- and
y-coordinates of points on the Unit Circle which define cosine and sine. Using
the term ‘trigonometric funcƟon’ as opposed to ‘circular funcƟon’ can help with
that, but one could then ask, “Hey, where’s the triangle?”) To graph y = cos(x),
we make a table using some of the ‘common values’ of x in the interval [0, 2π].
This generates a porƟon of the cosine graph, which we call the ‘fundamental
cycle’ of y = cos(x).

A few things about the graph above are worth menƟoning. First, this graph
represents only part of the graph of y = cos(x). To get the enƟre graph, we
imagine ‘copying and pasƟng’ this graph end to end infinitely in both direcƟons
(leŌ and right) on the x-axis. Secondly, the verƟcal scale here has been greatly
exaggerated for clarity and aestheƟcs. Below is an accurate-to-scale graph of
y = cos(x) showing several cycles with the ‘fundamental cycle’ ploƩed thicker
than the others. The graph of y = cos(x) is usually described as ‘wavelike’ –
indeed, many of the applicaƟons involving the cosine and sine funcƟons feature
modelling wavelike phenomena.

x

y

Figure 4.4.1: An accurately scaled graph of y = cos(x).

We can plot the fundamental cycle of the graph of y = sin(x) similarly, with
similar results.

As with the graph of y = cos(x), we provide an accurately scaled graph of
y = sin(x) below with the fundamental cycle highlighted.

x

y

Figure 4.4.2: An accurately scaled graph of y = sin(x).

It is no accident that the graphs of y = cos(x) and y = sin(x) are so similar.
Using a cofuncƟon idenƟty along with the even property of cosine, we have

sin(x) = cos
(π
2
− x
)
= cos

(
−
(
x− π

2

))
= cos

(
x− π

2

)
,

so that the graph of y = sin(x) is the result of shiŌing the graph of y = cos(x)
to the right π

2 units. A visual inspecƟon confirms this.
Now that we know the basic shapes of the graphs of y = cos(x) and y =

sin(x), we can graph transformaƟons to graph more complicated curves. To do
so, we need to keep track of the movement of some key points on the original
graphs. We choose to track the values x = 0, π

2 , π,
3π
2 and 2π. These ‘quarter

marks’ correspond to quadrantal angles, and as such, mark the locaƟon of the
zeros and the local extrema of these funcƟons over exactly one period. Before
we begin our next example, we need to review the concept of the ‘argument’
of a funcƟon as first introduced in SecƟon 2.1. For the funcƟon f(x) = 1 −
5 cos(2x− π), the argument of f is x. We shall have occasion, however, to refer
to the argument of the cosine, which in this case is 2x − π. Loosely stated, the
argument of a trigonometric funcƟon is the expression ‘inside’ the funcƟon.
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a πx−π
2 = a x

0 πx−π
2 = 0 1

π
2

πx−π
2 = π

2 2

π πx−π
2 = π 3

3π
2

πx−π
2 = 3π

2 4

2π πx−π
2 = 2π 5

Figure 4.4.7: Reference points for f(x) in
Example 4.4.1

a π − 2x = a x

0 π − 2x = 0 π
2

π
2 π − 2x = π

2
π
4

π π − 2x = π 0
3π
2 π − 2x = 3π

2 − π
4

2π π − 2x = 2π − π
2

Figure 4.4.8: Reference points for g(x) in
Example 4.4.1

Chapter 4 FoundaƟons of Trigonometry

Example 4.4.1 Ploƫng cosine and sine funcƟons
Graph one cycle of the following funcƟons. State the period of each.

1. f(x) = 3 cos
(
πx−π
2
)
+ 1

2. g(x) = 1
2 sin(π − 2x) + 3

2

SÊ½çã®ÊÄ

1. We set the argument of the cosine, πx−π
2 , equal to each of the values: 0,

π
2 , π,

3π
2 , 2π and solve for x. We summarize the results in Figure 4.4.7.

Next, we subsƟtute each of these x values into f(x) = 3 cos
(
πx−π
2
)
+ 1 to

determine the corresponding y-values and connect the dots in a pleasing
wavelike fashion.

x f(x) (x, f(x))

1 4 (1, 4)
2 1 (2, 1)
3 −2 (3,−2)
4 1 (4, 1)
5 4 (5, 4)

x

y

1 2 3 4 5

−2

−1

1

2

3

4

Figure 4.4.5: Ploƫng one cycle of y = f(x) in Example 4.4.1

One cycle is graphed on [1, 5] so the period is the length of that interval
which is 4.

2. Proceeding as above, we set the argument of the sine, π − 2x, equal to
each of our quarter marks and solve for x in Figure 4.4.8.
We nowfind the corresponding y-values on the graph by subsƟtuƟng each
of these x-values into g(x) = 1

2 sin(π − 2x) + 3
2 . Once again, we connect

the dots in a wavelike fashion.

x g(x) (x, g(x))
π
2

3
2

(
π
2 ,

3
2
)

π
4 2

(
π
4 , 2
)

0 3
2

(
0, 32
)

− π
4 1

(
− π

4 , 1
)

− π
2

3
2
(
− π

2 ,
3
2
)

x

y

−
π

2
−

π

4

π

4

π

2

1

2

Figure 4.4.6: Ploƫng one cycle of y = g(x) in Example 4.4.1
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We have already seen how the Even/Odd
and CofuncƟon IdenƟƟes can be used to
rewrite g(x) = sin(x) as a transformed
version of f(x) = cos(x), so of course, the
reverse is true: f(x) = cos(x) can be writ-
ten as a transformed version of g(x) =
sin(x). The authors have seen some in-
stances where sinusoids are always con-
verted to cosine funcƟons while in other
disciplines, the sinusoids are always writ-
ten in terms of sine funcƟons.

amplitude

baseline

period

Figure 4.4.9: ProperƟes of sinusoids

4.4 Graphs of the Trigonometric FuncƟons

One cyclewas graphedon the interval
[
− π

2 ,
π
2
]
so the period is π

2−
(
− π

2
)
=

π.

The funcƟons in Example 4.4.1 are examples of sinusoids. Sinusoids can
be characterized by four properƟes: period, amplitude, phase shiŌ and verƟ-
cal shiŌ. We have already discussed period, that is, how long it takes for the
sinusoid to complete one cycle. The standard period of both f(x) = cos(x) and
g(x) = sin(x) is 2π, but horizontal scalings will change the period of the result-
ing sinusoid. The amplitude of the sinusoid is a measure of how ‘tall’ the wave
is, as indicated in the figure below. The amplitude of the standard cosine and
sine funcƟons is 1, but verƟcal scalings can alter this: see Figure 4.4.9.

The phase shiŌ of the sinusoid is the horizontal shiŌ experienced by the
fundamental cycle. We have seen that a phase (horizontal) shiŌ of π

2 to the right
takes f(x) = cos(x) to g(x) = sin(x) since cos

(
x− π

2
)
= sin(x). As the reader

can verify, a phase shiŌ of π
2 to the leŌ takes g(x) = sin(x) to f(x) = cos(x). In

most contexts, the verƟcal shiŌ of a sinusoid is assumed to be 0, but we state
the more general case below. The following theorem shows how to find these
four fundamental quanƟƟes from the formula of the given sinusoid.

Theorem 4.4.2 Standard form of sinusoids

For ω > 0, the funcƟons

C(x) = A cos(ωx+ ϕ) + B and S(x) = A sin(ωx+ ϕ) + B

• have period
2π
ω

• have amplitude |A|

• have phase shiŌ−ϕ

ω

• have verƟcal shiŌ B

We note that in some scienƟfic and engineering circles, the quanƟty ϕmen-
Ɵoned in Theorem 4.4.2 is called the phase of the sinusoid. Since our interest
in this book is primarily with graphing sinusoids, we focus our aƩenƟon on the
horizontal shiŌ− ϕ

ω induced by ϕ.
The parameter ω, which is sƟpulated to be posiƟve, is called the (angular)

frequency of the sinusoid and is the number of cycles the sinusoid completes
over a 2π interval. We can always ensure ω > 0 using the Even/Odd IdenƟƟes.
(Try using the formulas in Theorem 4.4.2 applied to C(x) = cos(−x+ π) to see
why we need ω > 0.)

Example 4.4.2 ConverƟng a sinusoid to standard form
Consider the funcƟon f(x) = cos(2x)−

√
3 sin(2x). Find a formula for f(x):

1. in the form C(x) = A cos(ωx+ ϕ) + B for ω > 0

2. in the form S(x) = A sin(ωx+ ϕ) + B for ω > 0

SÊ½çã®ÊÄ

1. The key to this problem is to use the expanded forms of the sinusoid for-
mulas andmatchup corresponding coefficients. EquaƟng f(x) = cos(2x)−√
3 sin(2x) with the expanded form of C(x) = A cos(ωx+ ϕ) + B, we get

cos(2x)−
√
3 sin(2x) = A cos(ωx) cos(ϕ)− A sin(ωx) sin(ϕ) + B
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It should be clear that we can take ω = 2 and B = 0 to get

cos(2x)−
√
3 sin(2x) = A cos(2x) cos(ϕ)− A sin(2x) sin(ϕ)

To determine A and ϕ, a bit more work is involved. We get started by
equaƟng the coefficients of the trigonometric funcƟons on either side of
the equaƟon. On the leŌ hand side, the coefficient of cos(2x) is 1, while
on the right hand side, it is A cos(ϕ). Since this equaƟon is to hold for
all real numbers, we must have that A cos(ϕ) = 1. Similarly, we find by
equaƟng the coefficients of sin(2x) that A sin(ϕ) =

√
3. What we have

here is a systemof nonlinear equaƟons! We can temporarily eliminate the
dependence on ϕ by using the Pythagorean IdenƟty. We know cos2(ϕ) +
sin2(ϕ) = 1, so mulƟplying this by A2 gives A2 cos2(ϕ)+A2 sin2(ϕ) = A2.
Since A cos(ϕ) = 1 and A sin(ϕ) =

√
3, we get A2 = 12 + (

√
3)2 = 4 or

A = ±2. Choosing A = 2, we have 2 cos(ϕ) = 1 and 2 sin(ϕ) =
√
3 or,

aŌer some rearrangement, cos(ϕ) = 1
2 and sin(ϕ) =

√
3
2 . One such angle

ϕ which saƟsfies this criteria is ϕ = π
3 . Hence, one way to write f(x) as a

sinusoid is f(x) = 2 cos
(
2x+ π

3
)
. We can easily check our answer using

the sum formula for cosine

f(x) = 2 cos
(
2x+ π

3
)

= 2
[
cos(2x) cos

(
π
3
)
− sin(2x) sin

(
π
3
)]

= 2
[
cos(2x)

( 1
2
)
− sin(2x)

(√
3
2

)]
= cos(2x)−

√
3 sin(2x)

2. Proceeding as before, we equate f(x) = cos(2x) −
√
3 sin(2x) with the

expanded form of S(x) = A sin(ωx+ ϕ) + B to get

cos(2x)−
√
3 sin(2x) = A sin(ωx) cos(ϕ) + A cos(ωx) sin(ϕ) + B

Once again, we may take ω = 2 and B = 0 so that

cos(2x)−
√
3 sin(2x) = A sin(2x) cos(ϕ) + A cos(2x) sin(ϕ)

Weequate (be careful here!) the coefficients of cos(2x) on either side and
get A sin(ϕ) = 1 and A cos(ϕ) = −

√
3. Using A2 cos2(ϕ) + A2 sin2(ϕ) =

A2 as before, we get A = ±2, and again we choose A = 2. This means
2 sin(ϕ) = 1, or sin(ϕ) = 1

2 , and 2 cos(ϕ) = −
√
3, whichmeans cos(ϕ) =

−
√
3
2 . One such angle which meets these criteria is ϕ = 5π

6 . Hence, we
have f(x) = 2 sin

(
2x+ 5π

6
)
. Checking our work analyƟcally, we have

f(x) = 2 sin
(
2x+ 5π

6
)

= 2
[
sin(2x) cos

( 5π
6
)
+ cos(2x) sin

( 5π
6
)]

= 2
[
sin(2x)

(
−

√
3
2

)
+ cos(2x)

( 1
2
)]

= cos(2x)−
√
3 sin(2x)

It is important to note that in order for the technique presented in Example
4.4.2 to fit a funcƟon into one of the forms in Theorem 4.4.2, the arguments
of the cosine and sine funcƟon much match. That is, while f(x) = cos(2x) −√
3 sin(2x) is a sinusoid, g(x) = cos(2x) −

√
3 sin(3x) is not.(This graph does,

however, exhibit sinusoid-like characterisƟcs! Check it out!) It is also worth
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Note: provided that sec(α) and sec(β)
are defined, sec(α) = sec(β) if and only
if cos(α) = cos(β). Hence, sec(x) inher-
its its period from cos(x).

4.4 Graphs of the Trigonometric FuncƟons

menƟoning that, hadwe chosen A = −2 instead ofA = 2 asweworked through
Example 4.4.2, our final answers would have looked different. The reader is
encouraged to rework Example 4.4.2 using A = −2 to see what these differ-
ences are, and then for a challenging exercise, use idenƟƟes to show that the
formulas are all equivalent. The general equaƟons to fit a funcƟon of the form
f(x) = a cos(ωx) + b sin(ωx) + B into one of the forms in Theorem 4.4.2 are
explored in Exercise 35.

4.4.2 Graphs of the Secant and Cosecant FuncƟons
Wenow turn our aƩenƟon to graphing y = sec(x). Since sec(x) = 1

cos(x) , we can
use our table of values for the graph of y = cos(x) and take reciprocals. We run
into trouble at odd mulƟples of π

2 such as x = π
2 and x = 3π

2 since cos(x) = 0
at these values. This results in verƟcal asymptotes at x = π

2 and x = 3π
2 . Since

cos(x) is periodic with period 2π, it follows that sec(x) is also. Below we graph
a fundamental cycle of y = sec(x) along with a more complete graph obtained
by the usual ‘copying and pasƟng.’

x cos(x) sec(x) (x, sec(x))
0 1 1 (0, 1)
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 0 undefined

3π
4 −

√
2
2 −

√
2
( 3π

4 ,−
√
2
)

π −1 −1 (π,−1)
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 0 undefined
7π
4

√
2
2

√
2

( 7π
4 ,

√
2
)

2π 1 1 (2π, 1)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 4.4.10: The ‘fundamental cycle’ of y = sec(x).

x

y

Figure 4.4.11: The graph of y = sec x

As one would expect, to graph y = csc(x) we begin with y = sin(x) and
take reciprocals of the corresponding y-values. Here, we encounter issues at
x = 0, x = π and x = 2π. Proceeding with the usual analysis, we graph the
fundamental cycle of y = csc(x) below alongwith the doƩed graph of y = sin(x)
for reference. Since y = sin(x) and y = cos(x) are merely phase shiŌs of each
other, so too are y = csc(x) and y = sec(x).
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x sin(x) csc(x) (x, csc(x))
0 0 undefined
π
4

√
2
2

√
2

(
π
4 ,
√
2
)

π
2 1 1

(
π
2 , 1
)

3π
4

√
2
2

√
2

( 3π
4 ,

√
2
)

π 0 undefined
5π
4 −

√
2
2 −

√
2
( 5π

4 ,−
√
2
)

3π
2 −1 −1

( 3π
2 ,−1

)
7π
4 −

√
2
2 −

√
2
( 7π

4 ,−
√
2
)

2π 0 undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−3

−2

−1

1

2

3

Figure 4.4.12: The ‘fundamental cycle’ of y = csc(x).

x

y

Figure 4.4.13: The graph of y = csc x

Note that, on the intervals between the verƟcal asymptotes, both F(x) =
sec(x) and G(x) = csc(x) are conƟnuous and smooth. In other words, they
are conƟnuous and smooth on their domains. The following theorem summa-
rizes the properƟes of the secant and cosecant funcƟons. Note that all of these
properƟes are direct results of them being reciprocals of the cosine and sine
funcƟons, respecƟvely.
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a 2x = a x

0 2x = 0 0
π
2 2x = π

2
π
4

π 2x = π π
2

3π
2 2x = 3π

2
3π
4

2π 2x = 2π π

Figure 4.4.15: Reference points for f(x) in
Example 4.4.3

4.4 Graphs of the Trigonometric FuncƟons

Theorem 4.4.3 ProperƟes of the Secant and Cosecant FuncƟons

• The funcƟon F(x) = sec(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is conƟnuous and smooth on its domain
– is even
– has period 2π

• The funcƟon G(x) = csc(x)

– has domain {x : x ̸= πk, k is an integer} =

∞∪
k=−∞

(kπ, (k+ 1)π)

– has range {y : |y| ≥ 1} = (−∞,−1] ∪ [1,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period 2π

In the next example, we discuss graphing more general secant and cosecant
curves.
Example 4.4.3 Graphing secant and cosecant curves
Graph one cycle of the following funcƟons. State the period of each.

1. f(x) = 1− 2 sec(2x)

2. g(x) =
csc(π − πx)− 5

3

SÊ½çã®ÊÄ

1. To graph y = 1− 2 sec(2x), we follow the same procedure as in Example
4.4.1. First, we set the argument of secant, 2x, equal to the ‘quartermarks’
0, π

2 , π,
3π
2 and 2π and solve for x in Figure 4.4.15.

Next, we subsƟtute these x values into f(x). If f(x) exists, we have a point
on the graph; otherwise, we have found a verƟcal asymptote. In addiƟon
to these points and asymptotes, we have graphed the associated cosine
curve – in this case y = 1− 2 cos(2x) – doƩed in the picture below. Since
one cycle is graphed over the interval [0, π], the period is π − 0 = π.
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a π − πx = a x

0 π − πx = 0 1
π
2 π − πx = π

2
1
2

π π − πx = π 0
3π
2 π − πx = 3π

2 − 1
2

2π π − πx = 2π −1

Figure 4.4.18: Reference points for g(x) in
Example 4.4.3

Chapter 4 FoundaƟons of Trigonometry

x f(x) (x, f(x))
0 −1 (0,−1)
π
4 undefined
π
2 3

(
π
2 , 3
)

3π
4 undefined
π −1 (π,−1)

x

y

π
4

π
2

3π
4

π−1

1

2

3

Figure 4.4.14: Ploƫng one cycle of y = f(x) in Example 4.4.3

2. Proceeding as before, we set the argument of cosecant ing(x) = csc(π−πx)−5
3

equal to the quarter marks and solve for x in Figure 4.4.18.
SubsƟtuƟng these x-values into g(x), we generate the graph below and
find the period to be 1 − (−1) = 2. The associated sine curve, y =
sin(π−πx)−5

3 , is doƩed in as a reference.

x g(x) (x, g(x))
1 undefined
1
2 − 4

3
( 1
2 ,−

4
3
)

0 undefined
− 1

2 −2
(
− 1

2 ,−2
)

−1 undefined

x

y

−1 − 1
2

1
2

1

−2

−1

Figure 4.4.16: Ploƫng one cycle of y = g(x) in Example 4.4.3

Before moving on, we note that it is possible to speak of the period, phase
shiŌ and verƟcal shiŌ of secant and cosecant graphs and use even/odd idenƟƟes
to put them in a form similar to the sinusoid formsmenƟoned in Theorem 4.4.2.
Since these quanƟƟesmatch those of the corresponding cosine and sine curves,
we do not spell this out explicitly. Finally, since the ranges of secant and cosecant
are unbounded, there is no amplitude associated with these curves.

4.4.3 Graphs of the Tangent and Cotangent FuncƟons
Finally, we turn our aƩenƟon to the graphs of the tangent and cotangent func-
Ɵons. When construcƟng a table of values for the tangent funcƟon, we see that
J(x) = tan(x) is undefined at x = π

2 and x = 3π
2 , and we have verƟcal asymp-

totes at these points. Ploƫng this informaƟon and performing the usual ‘copy
and paste’ produces Figures 4.4.17 and 4.4.19 below.
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x tan(x) (x, tan(x))
0 0 (0, 0)
π
4 1

(
π
4 , 1
)

π
2 undefined

3π
4 −1

( 3π
4 ,−1

)
π 0 (π, 0)
5π
4 1

( 5π
4 , 1

)
3π
2 undefined
7π
4 −1

( 7π
4 ,−1

)
2π 0 (2π, 0)

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 4.4.17: The graph of y = tan(x) over [0, 2π]

x

y

Figure 4.4.19: The graph of y = tan(x)

From the graph, it appears as if the tangent funcƟon is periodic with period
π. To prove that this is the case, we appeal to the sum formula for tangents. We
have:

tan(x+ π) =
tan(x) + tan(π)
1− tan(x) tan(π)

=
tan(x) + 0

1− (tan(x))(0)
= tan(x),

which tells us the period of tan(x) is at most π. To show that it is exactly
π, suppose p is a posiƟve real number so that tan(x + p) = tan(x) for all real
numbers x. For x = 0, we have tan(p) = tan(0 + p) = tan(0) = 0, which
means p is a mulƟple of π. The smallest posiƟve mulƟple of π is π itself, so we
have established the result. We take as our fundamental cycle for y = tan(x)
the interval

(
− π

2 ,
π
2
)
, and use as our ‘quarter marks’ x = − π

2 ,−
π
4 , 0,

π
4 and π

2 .

It should be no surprise that K(x) = cot(x) behaves similarly to J(x) =
tan(x). Ploƫng cot(x) over the interval [0, 2π] results in the graph in Figure
4.4.20 below.
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x cot(x) (x, cot(x))
0 undefined
π
4 1

(
π
4 , 1
)

π
2 0

(
π
2 , 0
)

3π
4 −1

( 3π
4 ,−1

)
π undefined
5π
4 1

( 5π
4 , 1

)
3π
2 0

( 3π
2 , 0

)
7π
4 −1

( 7π
4 ,−1

)
2π undefined

x

y

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

−1

1

Figure 4.4.20: The graph of y = cot(x) over [0, 2π]

From these data, it clearly appears as if the period of cot(x) is π, and we
leave it to the reader to prove this. (Certainly, mimicking the proof that the
period of tan(x) is an opƟon; for another approach, consider transforming tan(x)
to cot(x) using idenƟƟes.) We take as one fundamental cycle the interval (0, π)
with quartermarks: x = 0, π4 ,

π
2 ,

3π
4 and π. Amore complete graph of y = cot(x)

is below, along with the fundamental cycle highlighted as usual.

x

y

Figure 4.4.21: The graph of y = cot(x)

The properƟes of the tangent and cotangent funcƟons are summarized be-
low. As with Theorem 4.4.3, each of the results below can be traced back to
properƟes of the cosine and sine funcƟons and the definiƟon of the tangent
and cotangent funcƟons as quoƟents thereof.
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a x
2 = a x

− π
2

x
2 = − π

2 −π

− π
4

x
2 = − π

4 − π
2

0 x
2 = 0 0

π
4

x
2 = π

4
π
2

π
2

x
2 = π

2 π

Figure 4.4.23: Reference points for f(x) in
Example 4.4.4

4.4 Graphs of the Trigonometric FuncƟons

Theorem 4.4.4 ProperƟes of the Tangent and Cotangent FuncƟons

• The funcƟon J(x) = tan(x)

– has domain
{
x : x ̸= π

2 + πk, k is an integer
}
=

∞∪
k=−∞

(
(2k+ 1)π

2
,
(2k+ 3)π

2

)
– has range (−∞,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period π

• The funcƟon K(x) = cot(x)

– has domain {x : x ̸= πk, k is an integer} =

∞∪
k=−∞

(kπ, (k+ 1)π)

– has range (−∞,∞)

– is conƟnuous and smooth on its domain
– is odd
– has period π

Example 4.4.4 Ploƫng tangent and cotangent curves
Graph one cycle of the following funcƟons. Find the period.

1. f(x) = 1− tan
( x
2
)
.

2. g(x) = 2 cot
(
π
2 x+ π

)
+ 1.

SÊ½çã®ÊÄ

1. We proceed as we have in all of the previous graphing examples by seƫng
the argument of tangent in f(x) = 1 − tan

( x
2
)
, namely x

2 , equal to each
of the ‘quarter marks’ − π

2 , −
π
4 , 0,

π
4 and π

2 , and solving for x: see Figure
4.4.23.

SubsƟtuƟng these x-values into f(x), we find points on the graph and the
verƟcal asymptotes.
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a π
2 x+ π = a x

0 π
2 x+ π = 0 −2

π
4

π
2 x+ π = π

4 − 3
2

π
2

π
2 x+ π = π

2 −1
3π
4

π
2 x+ π = 3π

4 − 1
2

π π
2 x+ π = π 0

Figure 4.4.25: Reference points for g(x) in
Example 4.4.4
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x f(x) (x, f(x))
−π undefined
− π

2 2
(
− π

2 , 2
)

0 1 (0, 1)
π
2 0

(
π
2 , 0
)

π undefined

x

y

−π −π
2

π
2

π

−2

−1

1

2

Figure 4.4.22: Ploƫng one cycle of y = f(x) in Example 4.4.4

We see that the period is π − (−π) = 2π.

2. The ‘quarter marks’ for the fundamental cycle of the cotangent curve are
0, π

4 ,
π
2 ,

3π
4 and π. To graph g(x) = 2 cot

(
π
2 x+ π

)
+1, we begin by seƫng

π
2 x+ π equal to each quarter mark and solving for x in Figure 4.4.25.
We now use these x-values to generate our graph.

x g(x) (x, g(x))
−2 undefined
− 3

2 3
(
− 3

2 , 3
)

−1 1 (−1, 1)
− 1

2 −1
(
− 1

2 ,−1
)

0 undefined

x

y

−2 −1

−1

1

2

3

Figure 4.4.24: Ploƫng one cycle of y = g(x) in Example 4.4.4

We find the period to be 0− (−2) = 2.

As with the secant and cosecant funcƟons, it is possible to extend the noƟon
of period, phase shiŌ and verƟcal shiŌ to the tangent and cotangent funcƟons
as we did for the cosine and sine funcƟons in Theorem 4.4.2. Since the number
of classical applicaƟons involving sinusoids far outnumber those involving tan-
gent and cotangent funcƟons, we omit this. The ambiƟous reader is invited to
formulate such a theorem, however.
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Exercises 4.4
Problems
In Exercises 1 – 12, graph one cycle of the given funcƟon.
State the period, amplitude, phase shiŌ and verƟcal shiŌ of
the funcƟon.

1. y = 3 sin(x)

2. y = sin(3x)

3. y = −2 cos(x)

4. y = cos
(
x− π

2

)
5. y = − sin

(
x+ π

3

)
6. y = sin(2x− π)

7. y = −1
3
cos
(
1
2
x+ π

3

)
8. y = cos(3x− 2π) + 4

9. y = sin
(
−x− π

4

)
− 2

10. y = 2
3
cos
(π
2
− 4x

)
+ 1

11. y = −3
2
cos
(
2x+ π

3

)
− 1

2

12. y = 4 sin(−2πx+ π)

In Exercises 13 – 24, graph one cycle of the given funcƟon.
State the period of the funcƟon.

13. y = tan
(
x− π

3

)

14. y = 2 tan
(
1
4
x
)
− 3

15. y = 1
3
tan(−2x− π) + 1

16. y = sec
(
x− π

2

)
17. y = − csc

(
x+ π

3

)

18. y = −1
3
sec
(
1
2
x+ π

3

)
19. y = csc(2x− π)

20. y = sec(3x− 2π) + 4

21. y = csc
(
−x− π

4

)
− 2

22. y = cot
(
x+ π

6

)

23. y = −11 cot
(
1
5
x
)

24. y = 1
3
cot
(
2x+ 3π

2

)
+ 1

In Exercises 25 – 34, use Example 4.4.2 as a guide to show
that the funcƟon is a sinusoid by rewriƟng it in the forms
C(x) = A cos(ωx + ϕ) + B and S(x) = A sin(ωx + ϕ) + B
for ω > 0 and 0 ≤ ϕ < 2π.

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1

26. f(x) = 3
√
3 sin(3x)− 3 cos(3x)

27. f(x) = − sin(x) + cos(x)− 2

28. f(x) = −1
2
sin(2x)−

√
3
2

cos(2x)

29. f(x) = 2
√
3 cos(x)− 2 sin(x)

30. f(x) = 3
2
cos(2x)− 3

√
3

2
sin(2x) + 6

31. f(x) = −1
2
cos(5x)−

√
3
2

sin(5x)

32. f(x) = −6
√
3 cos(3x)− 6 sin(3x)− 3

33. f(x) = 5
√
2

2
sin(x)− 5

√
2

2
cos(x)

34. f(x) = 3 sin
( x
6

)
− 3

√
3 cos

( x
6

)
35. you should have noƟced a relaƟonship between the phases

ϕ for the S(x) and C(x). Show that if f(x) = A sin(ωx+α)+

B, then f(x) = A cos(ωx+ β) + B where β = α− π

2
.

In Exercises 36 – 41, verify the idenƟty by graphing the right
and leŌ hand sides on a computer or calculator.

36. sin2(x) + cos2(x) = 1

37. sec2(x)− tan2(x) = 1

38. cos(x) = sin
(π
2
− x
)

39. tan(x+ π) = tan(x)

40. sin(2x) = 2 sin(x) cos(x)
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41. tan
( x
2

)
=

sin(x)
1+ cos(x)

In Exercises 42 – 48, graph the funcƟon with the help of your
computer or calculator and discuss the given quesƟons with
your classmates.

42. f(x) = cos(3x) + sin(x). Is this funcƟon periodic? If so,
what is the period?

43. f(x) = sin(x)
x . What appears to be the horizontal asymptote

of the graph?

44. f(x) = x sin(x). Graph y = ±x on the same set of axes and
describe the behaviour of f.

45. f(x) = sin
( 1
x

)
. What’s happening as x → 0?

46. f(x) = x− tan(x). Graph y = x on the same set of axes and
describe the behaviour of f.

47. f(x) = e−0.1x (cos(2x) + sin(2x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

48. f(x) = e−0.1x (cos(2x) + 2 sin(x)). Graph y = ±e−0.1x on
the same set of axes and describe the behaviour of f.

49. Show that a constant funcƟon f is periodic by showing that
f(x + 117) = f(x) for all real numbers x. Then show that
f has no period by showing that you cannot find a smallest
number p such that f(x + p) = f(x) for all real numbers
x. Said another way, show that f(x + p) = f(x) for all real
numbers x for ALL values of p > 0, so no smallest value
exists to saƟsfy the definiƟon of ‘period’.
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x

y

π
2

π

−1

1

f(x) = cos(x), 0 ≤ x ≤ π

x

y

π
2

π

−1 1

f−1(x) = arccos(x)

Figure 4.5.3: ReflecƟng y = cos(x) across
y = x yields y = arccos(x)

4.5 Inverse Trigonometric FuncƟons

4.5 Inverse Trigonometric FuncƟons

As theƟtle indicates, in this secƟonwe concern ourselveswith finding inverses of
the (circular) trigonometric funcƟons. Our immediate problem is that, owing to
their periodic nature, none of the six circular funcƟons is one-to-one. To remedy
this, we restrict the domains of the circular funcƟons to obtain a one-to-one
funcƟon. We first consider f(x) = cos(x). Choosing the interval [0, π] allows
us to keep the range as [−1, 1] as well as the properƟes of being smooth and
conƟnuous.

x

y

Figure 4.5.1: RestricƟng the domain of f(x) = cos(x) to [0, π].

Recall from SecƟon 2.2.3 that the inverse of a funcƟon f is typically denoted
f−1. For this reason, some textbooks use the notaƟon f−1(x) = cos−1(x) for the
inverse of f(x) = cos(x). The obvious piƞall here is our convenƟon of wriƟng
(cos(x))2 as cos2(x), (cos(x))3 as cos3(x) and so on. It is far too easy to confuse
cos−1(x)with 1

cos(x) = sec(x) so wewill not use this notaƟon in our text. (But be
aware that many books do! As always, be sure to check the context!) Instead,
we use the notaƟon f−1(x) = arccos(x), read ‘arc-cosine of x’. To understand
the ‘arc’ in ‘arccosine’, recall that an inverse funcƟon, by definiƟon, reverses the
process of the original funcƟon. The funcƟon f(t) = cos(t) takes a real number
input t, associates it with the angle θ = t radians, and returns the value cos(θ).
Digging deeper, we have that cos(θ) = cos(t) is the x-coordinate of the termi-
nal point on the Unit Circle of an oriented arc of length |t| whose iniƟal point is
(1, 0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and the
outputs as x-coordinates on the Unit Circle. The funcƟon f−1, then, would take
x-coordinates on the Unit Circle and return oriented arcs, hence the ‘arc’ in arc-
cosine. Figure 4.5.3 shows the graphs of f(x) = cos(x) and f−1(x) = arccos(x),
where we obtain the laƩer from the former by reflecƟng it across the line y = x,
in accordance with Theorem 2.2.2.

We restrict g(x) = sin(x) in a similar manner, although the interval of choice
is
[
− π

2 ,
π
2
]
.

x

y

Figure 4.5.2: RestricƟng the domain of f(x) = sin(x) to
[
− π

2 ,
π
2

]
.

It should be no surprise that we call g−1(x) = arcsin(x), which is read ‘arc-
sine of x’.

We list some important facts about the arccosine and arcsine funcƟons in
the following theorem.
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x

y

−π
2

π
2

−1

1

g(x) = sin(x),− π
2 ≤ x ≤ π

2

x

y

−π
2

π
2

−1 1

g−1(x) = arcsin(x)

Figure 4.5.4: ReflecƟng y = sin(x) across
y = x yields y = arcsin(x)

Chapter 4 FoundaƟons of Trigonometry

Theorem 4.5.1 ProperƟes of the Arccosine and Arcsine FuncƟons

• ProperƟes of F(x) = arccos(x)

– Domain: [−1, 1]
– Range: [0, π]
– arccos(x) = t if and only if 0 ≤ t ≤ π and cos(t) = x
– cos(arccos(x)) = x provided−1 ≤ x ≤ 1
– arccos(cos(x)) = x provided 0 ≤ x ≤ π

• ProperƟes of G(x) = arcsin(x)

– Domain: [−1, 1]
– Range:

[
− π

2 ,
π
2
]

– arcsin(x) = t if and only if− π
2 ≤ t ≤ π

2 and sin(t) = x
– sin(arcsin(x)) = x provided−1 ≤ x ≤ 1
– arcsin(sin(x)) = x provided− π

2 ≤ x ≤ π
2

– addiƟonally, arcsine is odd

Everything in Theorem 4.5.1 is a direct consequence of the facts that f(x) =
cos(x) for 0 ≤ x ≤ π and F(x) = arccos(x) are inverses of each other as are
g(x) = sin(x) for − π

2 ≤ x ≤ π
2 and G(x) = arcsin(x). It’s about Ɵme for an

example.

Example 4.5.1 EvaluaƟng the arcsine and arccosine funcƟons

1. Find the exact values of the following.

(a) arccos
( 1
2
)

(b) arcsin
(√

2
2

)
(c) arccos

(
−

√
2
2

)
(d) arcsin

(
− 1

2
)

(e) arccos
(
cos
(
π
6
))

(f) arccos
(
cos
( 11π

6
))

(g) cos
(
arccos

(
− 3

5
))

(h) sin
(
arccos

(
− 3

5
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan (arccos (x)) (b) cos (2 arcsin(x))

SÊ½çã®ÊÄ

1. (a) To find arccos
( 1
2
)
, we need to find the real number t (or, equiva-

lently, an anglemeasuring t radians) which lies between 0 and πwith
cos(t) = 1

2 . We know t = π
3 meets these criteria, so arccos

( 1
2
)
= π

3 .

(b) The value of arcsin
(√

2
2

)
is a real number t between− π

2 and
π
2 with

sin(t) =
√
2
2 . The number we seek is t = π

4 . Hence, arcsin
(√

2
2

)
=

π
4 .
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An alternaƟve approach to finding tan(t)
is to use the idenƟty 1 + tan2(t) =
sec2(t). Since x = cos(t), sec(t) =

1
cos(t) = 1

x . The reader is invited to work
through this approach to see what, if any,
difficulƟes arise.

4.5 Inverse Trigonometric FuncƟons

(c) Thenumber t = arccos
(
−

√
2
2

)
lies in the interval [0, π]with cos(t) =

−
√
2
2 . Our answer is arccos

(
−

√
2
2

)
= 3π

4 .

(d) To find arcsin
(
− 1

2
)
, we seek the number t in the interval

[
− π

2 ,
π
2
]

with sin(t) = − 1
2 . The answer is t = − π

6 so that arcsin
(
− 1

2
)
= − π

6 .
(e) Since 0 ≤ π

6 ≤ π, one opƟon would be to simply invoke Theorem
4.5.1 to get arccos

(
cos
(
π
6
))

= π
6 . However, in order to make sure

we understandwhy this is the case, we choose to work the example
through using the definiƟon of arccosine. Working from the inside
out, arccos

(
cos
(
π
6
))

= arccos
(√

3
2

)
. Now, arccos

(√
3
2

)
is the real

number t with 0 ≤ t ≤ π and cos(t) =
√
3
2 . We find t = π

6 , so that
arccos

(
cos
(
π
6
))

= π
6 .

(f) Since 11π
6 does not fall between 0 and π, Theorem 4.5.1 does not ap-

ply. We are forced to work through from the inside out starƟng with
arccos

(
cos
( 11π

6
))

= arccos
(√

3
2

)
. From the previous problem, we

know arccos
(√

3
2

)
= π

6 . Hence, arccos
(
cos
( 11π

6
))

= π
6 .

(g) One way to simplify cos
(
arccos

(
− 3

5
))

is to use Theorem 4.5.1 di-
rectly. Since− 3

5 is between−1 and1, wehave that cos
(
arccos

(
− 3

5
))

=
− 3

5 and we are done. However, as before, to really understand why
this cancellaƟon occurs, we let t = arccos

(
− 3

5
)
. Then, by defini-

Ɵon, cos(t) = − 3
5 . Hence, cos

(
arccos

(
− 3

5
))

= cos(t) = − 3
5 , and

we are finished in (nearly) the same amount of Ɵme.
(h) As in the previous example, we let t = arccos

(
− 3

5
)
so that cos(t) =

− 3
5 for some t where 0 ≤ t ≤ π. Since cos(t) < 0, we can nar-

row this down a bit and conclude that π
2 < t < π, so that t cor-

responds to an angle in Quadrant II. In terms of t, then, we need
to find sin

(
arccos

(
− 3

5
))

= sin(t). Using the Pythagorean IdenƟty
cos2(t) + sin2(t) = 1, we get

(
− 3

5
)2

+ sin2(t) = 1 or sin(t) = ± 4
5 .

Since t corresponds to a Quadrants II angle, we choose sin(t) = 4
5 .

Hence, sin
(
arccos

(
− 3

5
))

= 4
5 .

2. (a) We begin this problem in the same manner we began the previous
two problems. To help us see the forest for the trees, we let t =
arccos(x), so our goal is to find a way to express tan (arccos (x)) =
tan(t) in terms of x. Since t = arccos(x), we know cos(t) = xwhere
0 ≤ t ≤ π, but since we are aŌer an expression for tan(t), we know
we need to throw out t = π

2 from consideraƟon. Hence, either
0 ≤ t < π

2 or π
2 < t ≤ π so that, geometrically, t corresponds

to an angle in Quadrant I or Quadrant II. One approach to finding
tan(t) is to use the quoƟent idenƟty tan(t) = sin(t)

cos(t) . SubsƟtuƟng
cos(t) = x into the Pythagorean IdenƟty cos2(t) + sin2(t) = 1 gives
x2+ sin2(t) = 1, from which we get sin(t) = ±

√
1− x2. Since t cor-

responds to angles in Quadrants I and II, sin(t) ≥ 0, so we choose
sin(t) =

√
1− x2. Thus,

tan(t) =
sin(t)
cos(t)

=

√
1− x2

x

To determine the values of x for which this equivalence is valid, we
consider our subsƟtuƟon t = arccos(x). Since thedomain of arccos(x)

155



x

y

−π
4−π

2
π
4

π
2

−1

1

f(x) = tan(x),− π
2 < x < π

2

x

y

−π
4

−π
2

π
4

π
2

−1 1

f−1(x) = arctan(x)

Figure 4.5.5: ReflecƟng y = tan(x) across
y = x yields y = arctan(x)
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is [−1, 1], we knowwemust restrict−1 ≤ x ≤ 1. AddiƟonally, since
we had to discard t = π

2 , we need to discard x = cos
(
π
2
)
= 0.

Hence, tan (arccos (x)) =
√
1−x2
x is valid for x in [−1, 0) ∪ (0, 1].

(b) We proceed as in the previous problem by wriƟng t = arcsin(x) so
that t lies in the interval

[
− π

2 ,
π
2
]
with sin(t) = x. We aim to ex-

press cos (2 arcsin(x)) = cos(2t) in terms of x. Since cos(2t) is de-
fined everywhere, we get no addiƟonal restricƟons on t as we did in
the previous problem. We have three choices for rewriƟng cos(2t):
cos2(t) − sin2(t), 2 cos2(t) − 1 and 1 − 2 sin2(t). Since we know
x = sin(t), it is easiest to use the last form:

cos (2 arcsin(x)) = cos(2t) = 1− 2 sin2(t) = 1− 2x2

To find the restricƟons on x, we once again appeal to our subsƟtuƟon
t = arcsin(x). Since arcsin(x) is defined only for −1 ≤ x ≤ 1, the
equivalence cos (2 arcsin(x)) = 1− 2x2 is valid only on [−1, 1].

A few remarks about Example 4.5.1 are in order. Most of the common errors
encountered in dealing with the inverse circular funcƟons come from the need
to restrict the domains of the original funcƟons so that they are one-to-one. One
instance of this phenomenon is the fact that arccos

(
cos
( 11π

6
))

= π
6 as opposed

to 11π
6 . This is the exact same phenomenon discussed in SecƟon 2.2.3 when we

saw
√
(−2)2 = 2 as opposed to −2. AddiƟonally, even though the expression

we arrived at in part 2b above, namely 1 − 2x2, is defined for all real numbers,
the equivalence cos (2 arcsin(x)) = 1 − 2x2 is valid for only −1 ≤ x ≤ 1. This
is akin to the fact that while the expression x is defined for all real numbers, the
equivalence

(√
x
)2

= x is valid only for x ≥ 0. For this reason, it pays to be
careful when we determine the intervals where such equivalences are valid.

The next pair of funcƟons we wish to discuss are the inverses of tangent and
cotangent, which are named arctangent and arccotangent, respecƟvely. First,
we restrict f(x) = tan(x) to its fundamental cycle on

(
− π

2 ,
π
2
)
to obtain f−1(x) =

arctan(x). Among other things, note that the verƟcal asymptotes x = − π
2 and

x = π
2 of the graph of f(x) = tan(x) become the horizontal asymptotes y = − π

2
and y = π

2 of the graph of f−1(x) = arctan(x): see Figure 4.5.5.

Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, π) to obtain
g−1(x) = arccot(x). Once again, the verƟcal asymptotes x = 0 and x = π of
the graph of g(x) = cot(x) become the horizontal asymptotes y = 0 and y = π
of the graph of g−1(x) = arccot(x). We show these graphs in Figure 4.5.6; the
basic properƟes of the arctangent and arccotangent funcƟons are given in the
following theorem.
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g(x) = cot(x), 0 < x < π
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π
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π
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g−1(x) = arccot(x)

Figure 4.5.6: ReflecƟng y = cot(x) across
y = x yields y = arccot(x)

4.5 Inverse Trigonometric FuncƟons

Theorem 4.5.2 ProperƟes of the Arctangent and Arccotangent
FuncƟons

• ProperƟes of F(x) = arctan(x)

– Domain: (−∞,∞)

– Range:
(
− π

2 ,
π
2
)

– as x → −∞, arctan(x) → − π
2
+; as x → ∞, arctan(x) → π

2
−

– arctan(x) = t if and only if− π
2 < t < π

2 and tan(t) = x
– arctan(x) = arccot

( 1
x

)
for x > 0

– tan (arctan(x)) = x for all real numbers x
– arctan(tan(x)) = x provided− π

2 < x < π
2

– addiƟonally, arctangent is odd

• ProperƟes of G(x) = arccot(x)

– Domain: (−∞,∞)

– Range: (0, π)
– as x → −∞, arccot(x) → π−; as x → ∞, arccot(x) → 0+

– arccot(x) = t if and only if 0 < t < π and cot(t) = x
– arccot(x) = arctan

( 1
x

)
for x > 0

– cot (arccot(x)) = x for all real numbers x
– arccot(cot(x)) = x provided 0 < x < π

Example 4.5.2 EvaluaƟng the arctangent and arccotangent funcƟons

1. Find the exact values of the following.

(a) arctan(
√
3) (b) arccot(−

√
3)

(c) cot(arccot(−5)) (d) sin
(
arctan

(
− 3

4
))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(2 arctan(x)) (b) cos(arccot(2x))

SÊ½çã®ÊÄ

1. (a) We know arctan(
√
3) is the real number t between − π

2 and π
2 with

tan(t) =
√
3. We find t = π

3 , so arctan(
√
3) = π

3 .

(b) The real number t = arccot(−
√
3) lies in the interval (0, π) with

cot(t) = −
√
3. We get arccot(−

√
3) = 5π

6 .
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It’s always a good idea to make sure
the idenƟƟes used in these situaƟons are
valid for all values t under consideraƟon.
Check our work back in Example 4.5.1.
Were the idenƟƟes we used there valid
for all t under consideraƟon? A pedanƟc
point, to be sure, but what else do you ex-
pect from this book?

Chapter 4 FoundaƟons of Trigonometry

(c) We can apply Theorem 4.5.2 directly and obtain cot(arccot(−5)) =
−5. However, working it through provides us with yet another op-
portunity to understandwhy this is the case. Leƫng t = arccot(−5),
wehave that tbelongs to the interval (0, π) and cot(t) = −5. Hence,
cot(arccot(−5)) = cot(t) = −5.

(d) We start simplifying sin
(
arctan

(
− 3

4
))

by leƫng t = arctan
(
− 3

4
)
.

Then tan(t) = − 3
4 for some − π

2 < t < π
2 . Since tan(t) < 0, we

know, in fact, − π
2 < t < 0. One way to proceed is to use The

Pythagorean IdenƟty, 1 + cot2(t) = csc2(t), since this relates the
reciprocals of tan(t) and sin(t) and is valid for all t under considera-
Ɵon. From tan(t) = − 3

4 , we get cot(t) = − 4
3 . SubsƟtuƟng, we get

1 +
(
− 4

3
)2

= csc2(t) so that csc(t) = ± 5
3 . Since − π

2 < t < 0, we
choose csc(t) = − 5

3 , so sin(t) = − 3
5 . Hence, sin

(
arctan

(
− 3

4
))

=
− 3

5 .

2. (a) If we let t = arctan(x), then − π
2 < t < π

2 and tan(t) = x. We look
for a way to express tan(2 arctan(x)) = tan(2t) in terms of x. Before
we get started using idenƟƟes, we note that tan(2t) is undefined
when 2t = π

2 +πk for integers k. Dividing both sides of this equaƟon
by 2 tells us we need to exclude values of twhere t = π

4 +
π
2 k, where

k is an integer. The only members of this family which lie in
(
− π

2 ,
π
2
)

are t = ± π
4 , which means the values of t under consideraƟon are(

− π
2 ,−

π
4
)
∪
(
− π

4 ,
π
4
)
∪
(
π
4 ,

π
2
)
. Returning to arctan(2t), we note the

double angle idenƟty tan(2t) = 2 tan(t)
1−tan2(t) , is valid for all the values of

t under consideraƟon, hence we get

tan(2 arctan(x)) = tan(2t) =
2 tan(t)

1− tan2(t)
=

2x
1− x2

To findwhere this equivalence is valid we check backwith our subsƟ-
tuƟon t = arctan(x). Since the domain of arctan(x) is all real num-
bers, the only exclusions come from the values of t we discarded
earlier, t = ± π

4 . Since x = tan(t), this means we exclude x =
tan
(
± π

4
)
= ±1. Hence, the equivalence tan(2 arctan(x)) = 2x

1−x2
holds for all x in (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) To get started, we let t = arccot(2x) so that cot(t) = 2x where
0 < t < π. In terms of t, cos(arccot(2x)) = cos(t), and our goal is to
express the laƩer in terms of x. Since cos(t) is always defined, there
are no addiƟonal restricƟons on t, so we can begin using idenƟƟes
to relate cot(t) to cos(t). The idenƟty cot(t) = cos(t)

sin(t) is valid for t in
(0, π), so our strategy is to obtain sin(t) in terms of x, then write
cos(t) = cot(t) sin(t). The idenƟty 1 + cot2(t) = csc2(t) holds
for all t in (0, π) and relates cot(t) and csc(t) = 1

sin(t) . SubsƟtuƟng
cot(t) = 2x, we get 1 + (2x)2 = csc2(t), or csc(t) = ±

√
4x2 + 1.

Since t is between 0 and π, csc(t) > 0, so csc(t) =
√
4x2 + 1 which

gives sin(t) = 1√
4x2+1 . Hence,

cos(arccot(2x)) = cos(t) = cot(t) sin(t) =
2x√

4x2 + 1

Since arccot(2x) is defined for all real numbers x and we encoun-
tered no addiƟonal restricƟons on t, we have cos (arccot(2x)) =

2x√
4x2+1 for all real numbers x.
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4.5 Inverse Trigonometric FuncƟons

The last two funcƟons to invert are secant and cosecant. A porƟon of each of
their graphs, which were first discussed in SubsecƟon 4.4.2, are given in Figure
4.5.7 below with the fundamental cycles highlighted.

x

y

x

y

The graph y = sec(x) The graph y = csc(x)

Figure 4.5.7: The fundamental cycles of f(x) = sec(x) and g(x) = csc(x)

It is clear from the graph of secant that we cannot find one single conƟnu-
ous piece of its graph which covers its enƟre range of (−∞,−1] ∪ [1,∞) and
restricts the domain of the funcƟon so that it is one-to-one. The same is true for
cosecant. Thus in order to define the arcsecant and arccosecant funcƟons, we
must seƩle for a piecewise approach wherein we choose one piece to cover the
top of the range, namely [1,∞), and another piece to cover the boƩom, namely
(−∞,−1]. There are two generally acceptedwaysmake these choiceswhich re-
strict the domains of these funcƟons so that they are one-to-one. One approach
simplifies the Trigonometry associated with the inverse funcƟons, but compli-
cates the Calculus; the other makes the Calculus easier, but the Trigonometry
less so. We present both points of view.

4.5.1 Inverses of Secant and Cosecant: Trigonometry Friendly
Approach

In this subsecƟon, we restrict the secant and cosecant funcƟons to coincide with
the restricƟons on cosine and sine, respecƟvely. For f(x) = sec(x), we restrict
the domain to

[
0, π

2
)
∪
(
π
2 , π
]
(Figure 4.5.8) and we restrict g(x) = csc(x) to[

− π
2 , 0
)
∪
(
0, π

2
]
(Figure 4.5.9.

Note that for both arcsecant and arccosecant, the domain is (−∞,−1] ∪
[1,∞). Taking a page from SecƟon 3.1.2, we can rewrite this as {x : |x| ≥ 1}.
This is oŌen done in Calculus textbooks, so we include it here for completeness.
Using these definiƟons, we get the following properƟes of the arcsecant and
arccosecant funcƟons.
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x

y

π
2

π

−1

1

f(x) = sec(x) on
[
0, π

2

)
∪
(
π
2 , π
]

x

y

π
2

π

−1 1

f−1(x) = arcsec(x)

Figure 4.5.8: The “Trigonometry Friendly”
definiƟon of arcsec(x)

x

y

−π
2

π
2

−1

1

g(x) = csc(x) on
[
− π

2 , 0
)
∪
(
0, π

2

]

x

y

−π
2

π
2

−1 1

g−1(x) = arccsc(x)

Figure 4.5.9: The “Trigonometry Friendly”
definiƟon of arccsc(x)

Chapter 4 FoundaƟons of Trigonometry

Theorem 4.5.3 ProperƟes of the Arcsecant and Arccosecant Func-
Ɵons (“Trigonometry Friendly” version)

• ProperƟes of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
(
π
2 , π
]

– as x → −∞, arcsec(x) → π
2
+; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π

2 < t ≤ π and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
provided |x| ≥ 1

– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π
2 < x ≤ π

• ProperƟes of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
− π

2 , 0
)
∪
(
0, π

2
]

– as x → −∞, arccsc(x) → 0−; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if − π
2 ≤ t < 0 or 0 < t ≤ π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
provided |x| ≥ 1

– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided− π

2 ≤ x < 0 or 0 < x ≤ π
2

– addiƟonally, arccosecant is odd

Example 4.5.3 EvaluaƟng the arcsecant and arccosecant funcƟons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

SÊ½çã®ÊÄ

1. (a) Using Theorem 4.5.3, we have arcsec(2) = arccos
( 1
2
)
= π

3 .
(b) Once again, Theorem 4.5.3 gives us arccsc(−2) = arcsin

(
− 1

2
)
=

− π
6 .

(c) Since 5π
4 doesn’t fall between 0 and π

2 or π
2 and π, we cannot use

the inverse property stated in Theorem 4.5.3. We can, neverthe-
less, begin by working ‘inside out’ which yields arcsec

(
sec
( 5π

4
))

=

arcsec(−
√
2) = arccos

(
−

√
2
2

)
= 3π

4 .
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4.5 Inverse Trigonometric FuncƟons

(d) Oneway to begin to simplify cot (arccsc (−3)) is to let t = arccsc(−3).
Then, csc(t) = −3 and, since this is negaƟve, we have that t lies in
the interval

[
− π

2 , 0
)
. We are aŌer cot (arccsc (−3)) = cot(t), so we

use the Pythagorean IdenƟty 1 + cot2(t) = csc2(t). SubsƟtuƟng,
we have 1 + cot2(t) = (−3)2, or cot(t) = ±

√
8 = ±2

√
2. Since

− π
2 ≤ t < 0, cot(t) < 0, so we get cot (arccsc (−3)) = −2

√
2.

2. (a) We begin simplifying tan(arcsec(x)) by leƫng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
(
π
2 , π
]
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under consideraƟon, we have
no addiƟonal restricƟons on t. To relate sec(t) to tan(t), we use
the idenƟty 1 + tan2(t) = sec2(t). This is valid for all values of t
under consideraƟon, and when we subsƟtute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. If t belongs to

[
0, π

2
)

then tan(t) ≥ 0; if, on the the other hand, t belongs to
(
π
2 , π
]
then

tan(t) ≤ 0. As a result, we get a piecewise defined funcƟon for
tan(t)

tan(t) =

{ √
x2 − 1, if 0 ≤ t < π

2

−
√
x2 − 1, if π

2 < t ≤ π

Now we need to determine what these condiƟons on t mean for x.
Since x = sec(t), when 0 ≤ t < π

2 , x ≥ 1, and when π
2 < t ≤

π, x ≤ −1. Since we encountered no further restricƟons on t, the
equivalence below holds for all x in (−∞,−1] ∪ [1,∞).

tan(arcsec(x)) =

{ √
x2 − 1, if x ≥ 1

−
√
x2 − 1, if x ≤ −1

(b) To simplify cos(arccsc(4x)), we start by leƫng t = arccsc(4x). Then
csc(t) = 4x for t in

[
− π

2 , 0
)
∪
(
0, π

2
]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addiƟonal restricƟons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the idenƟty cos2(t) + sin2(t) = 1. SubsƟtuƟng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

Since t belongs to
[
− π

2 , 0
)
∪
(
0, π

2
]
, we know cos(t) ≥ 0, so we

choose cos(t) =
√
16−x2
4|x| . (The absolute values here are necessary,

since x could be negaƟve.) To find the values for which this equiva-
lence is valid, we look back at our original substuƟon, t = arccsc(4x).
Since the domain of arccsc(x) requires its argument x to saƟsfy |x| ≥
1, the domain of arccsc(4x) requires |4x| ≥ 1. We rewrite this in-
equality and solve to get x ≤ − 1

4 or x ≥ 1
4 . Since we had no addi-

Ɵonal restricƟons on t, the equivalence cos(arccsc(4x)) =
√
16x2−1
4|x|

holds for all x in
(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)
.
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f(x) = sec(x) on
[
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π, 3π
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y

π
2

π

3π
2

−1 1

f−1(x) = arcsec(x)

Figure 4.5.10: The “Calculus Friendly”
definiƟon of arcsec(x)
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y

π
2

π 3π
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1

g(x) = csc(x) on
(
0, π

2

]
∪
(
π, 3π

2

]

x

y

π
2

π

3π
2

−1 1

g−1(x) = arccsc(x)

Figure 4.5.11: The “Calculus Friendly def-
iniƟon of arccsc(x)

Chapter 4 FoundaƟons of Trigonometry

4.5.2 Inverses of Secant and Cosecant: Calculus Friendly Ap-
proach

In this subsecƟon, we restrict f(x) = sec(x) to
[
0, π

2
)
∪
[
π, 3π2

)
, and we restrict

g(x) = csc(x) to
(
0, π

2
]
∪
(
π, 3π2

]
.

Using these definiƟons, we get the following result.

Theorem 4.5.4 ProperƟes of the Arcsecant and Arccosecant Func-
Ɵons (“Calculus Friendly” version)

• ProperƟes of F(x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π

2
)
∪
[
π, 3π2

)
– as x → −∞, arcsec(x) → 3π

2
−; as x → ∞, arcsec(x) → π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π ≤ t < 3π

2 and
sec(t) = x

– arcsec(x) = arccos
( 1
x

)
for x ≥ 1 only (Compare this with

the similar result in Theorem 4.5.3.)
– sec (arcsec(x)) = x provided |x| ≥ 1
– arcsec(sec(x)) = x provided 0 ≤ x < π

2 or π ≤ x < 3π
2

• ProperƟes of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
(
0, π

2
]
∪
(
π, 3π2

]
– as x → −∞, arccsc(x) → π+; as x → ∞, arccsc(x) → 0+

– arccsc(x) = t if and only if 0 < t ≤ π
2 or π < t ≤ 3π

2 and
csc(t) = x

– arccsc(x) = arcsin
( 1
x

)
for x ≥ 1 only (Compare this with the

similar result in Theorem 4.5.3.)
– csc (arccsc(x)) = x provided |x| ≥ 1
– arccsc(csc(x)) = x provided 0 < x ≤ π

2 or π < x ≤ 3π
2

Our next example is a duplicate of Example 4.5.3. The interested reader is
invited to compare and contrast the soluƟon to each.

Example 4.5.4 EvaluaƟng the arcsecant and arccosecant funcƟons

1. Find the exact values of the following.

(a) arcsec(2)
(b) arccsc(−2)

(c) arcsec
(
sec
( 5π

4
))

(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

162



4.5 Inverse Trigonometric FuncƟons

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

SÊ½çã®ÊÄ

1. (a) Since 2 ≥ 1, we canuse Theorem4.5.4 to get arcsec(2) = arccos
( 1
2
)
=

π
3 .

(b) Unfortunately, −2 is not greater to or equal to 1, so we cannot ap-
ply Theorem 4.5.4 to arccsc(−2) and convert this into an arcsine
problem. Instead, we appeal to the definiƟon. The real number
t = arccsc(−2) lies in

(
0, π

2
]
∪
(
π, 3π2

]
and saƟsfies csc(t) = −2.

The t we’re aŌer is t = 7π
6 , so arccsc(−2) = 7π

6 .

(c) Since 5π
4 lies between π and 3π

2 , we may apply Theorem 4.5.4 di-
rectly to simplify arcsec

(
sec
( 5π

4
))

= 5π
4 . We encourage the reader

to work this through using the definiƟon as we have done in the pre-
vious examples to see how it goes.

(d) To help simplify cot (arccsc (−3)) we define t = arccsc (−3) so that
cot (arccsc (−3)) = cot(t). We know csc(t) = −3, and since this is
negaƟve, t lies in

(
π, 3π2

]
. Using the idenƟty 1 + cot2(t) = csc2(t),

we find 1 + cot2(t) = (−3)2 so that cot(t) = ±
√
8 = ±2

√
2.

Since t is in the interval
(
π, 3π2

]
, we know cot(t) > 0. Our answer is

cot (arccsc (−3)) = 2
√
2.

2. (a) We begin simplifying tan(arcsec(x)) by leƫng t = arcsec(x). Then,
sec(t) = x for t in

[
0, π

2
)
∪
[
π, 3π2

)
, and we seek a formula for tan(t).

Since tan(t) is defined for all t values under consideraƟon, we have
no addiƟonal restricƟons on t. To relate sec(t) to tan(t), we use
the idenƟty 1 + tan2(t) = sec2(t). This is valid for all values of t
under consideraƟon, and when we subsƟtute sec(t) = x, we get
1+ tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1. Since t lies in

[
0, π

2
)
∪[

π, 3π2
)
, tan(t) ≥ 0, sowe choose tan(t) =

√
x2 − 1. Sincewe found

no addiƟonal restricƟons on t, the equivalence tan(arcsec(x)) =√
x2 − 1holds for all x in the domain of t = arcsec(x), namely (−∞,−1]∪

[1,∞).

(b) To simplify cos(arccsc(4x)), we start by leƫng t = arccsc(4x). Then
csc(t) = 4x for t in

(
0, π

2
]
∪
(
π, 3π2

]
, and we now set about finding

an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any addiƟonal restricƟons on t. From
csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use
if the idenƟty cos2(t) + sin2(t) = 1. SubsƟtuƟng sin(t) = 1

4x gives
cos2(t) +

( 1
4x
)2

= 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√
16x2 − 1
4|x|

If t lies in
(
0, π

2
]
, then cos(t) ≥ 0, and we choose cos(t) =

√
16x2−1
4|x| .

Otherwise, t belongs to
(
π, 3π2

]
in which case cos(t) ≤ 0, so, we

choose cos(t) = −
√
16x2−1
4|x| This leads us to a (momentarily) piece-

wise defined funcƟon for cos(t)
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cos(t) =


√
16x2 − 1
4|x|

, if 0 ≤ t ≤ π
2

−
√
16x2 − 1
4|x|

, if π < t ≤ 3π
2

We now see what these restricƟons mean in terms of x. Since 4x =
csc(t), we get that for 0 ≤ t ≤ π

2 , 4x ≥ 1, or x ≥ 1
4 . In this case, we

can simplify |x| = x so

cos(t) =
√
16x2 − 1
4|x|

=

√
16x2 − 1
4x

Similarly, for π < t ≤ 3π
2 , we get 4x ≤ −1, or x ≤ − 1

4 . In this case,
|x| = −x, so we also get

cos(t) = −
√
16x2 − 1
4|x|

= −
√
16x2 − 1
4(−x)

=

√
16x2 − 1
4x

Hence, in all cases, cos(arccsc(4x)) =
√
16x2−1
4x , and this equivalence

is valid for all x in the domain of t = arccsc(4x), namely(
−∞,− 1

4
]
∪
[ 1
4 ,∞

)
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Exercises 4.5
Problems
In Exercises 1 – 40, find the exact value.

1. arcsin (−1)

2. arcsin
(
−
√
3
2

)

3. arcsin
(
−
√
2
2

)

4. arcsin
(
−1
2

)
5. arcsin (0)

6. arcsin
(
1
2

)

7. arcsin
(√

2
2

)

8. arcsin
(√

3
2

)
9. arcsin (1)

10. arccos (−1)

11. arccos
(
−
√
3
2

)

12. arccos
(
−
√
2
2

)

13. arccos
(
−1
2

)
14. arccos (0)

15. arccos
(
1
2

)

16. arccos
(√

2
2

)

17. arccos
(√

3
2

)
18. arccos (1)

19. arctan
(
−
√
3
)

20. arctan (−1)

21. arctan
(
−
√
3
3

)
22. arctan (0)

23. arctan
(√

3
3

)
24. arctan (1)

25. arctan
(√

3
)

26. arccot
(
−
√
3
)

27. arccot (−1)

28. arccot
(
−
√
3
3

)
29. arccot (0)

30. arccot
(√

3
3

)
31. arccot (1)

32. arccot
(√

3
)

33. arcsec (2)

34. arccsc (2)

35. arcsec
(√

2
)

36. arccsc
(√

2
)

37. arcsec
(
2
√
3

3

)

38. arccsc
(
2
√
3

3

)
39. arcsec (1)

40. arccsc (1)

In Exercises 41 – 48, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

41. arcsec (−2)

42. arcsec
(
−
√
2
)

43. arcsec
(
−2

√
3

3

)
44. arcsec (−1)
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45. arccsc (−2)

46. arccsc
(
−
√
2
)

47. arccsc
(
−2

√
3

3

)
48. arccsc (−1)

In Exercises 49 – 56, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

49. arcsec (−2)

50. arcsec
(
−
√
2
)

51. arcsec
(
−2

√
3

3

)
52. arcsec (−1)

53. arccsc (−2)

54. arccsc
(
−
√
2
)

55. arccsc
(
−2

√
3

3

)
56. arccsc (−1)

In Exercises 57 – 86, find the exact value or state that it is
undefined.

57. sin
(
arcsin

(
1
2

))

58. sin
(
arcsin

(
−
√
2
2

))

59. sin
(
arcsin

(
3
5

))
60. sin (arcsin (−0.42))

61. sin
(
arcsin

(
5
4

))

62. cos
(
arccos

(√
2
2

))

63. cos
(
arccos

(
−1
2

))

64. cos
(
arccos

(
5
13

))
65. cos (arccos (−0.998))

66. cos (arccos (π))

67. tan (arctan (−1))

68. tan
(
arctan

(√
3
))

69. tan
(
arctan

(
5
12

))
70. tan (arctan (0.965))

71. tan (arctan (3π))

72. cot (arccot (1))

73. cot
(
arccot

(
−
√
3
))

74. cot
(
arccot

(
− 7
24

))
75. cot (arccot (−0.001))

76. cot
(
arccot

(
17π
4

))
77. sec (arcsec (2))

78. sec (arcsec (−1))

79. sec
(
arcsec

(
1
2

))
80. sec (arcsec (0.75))

81. sec (arcsec (117π))

82. csc
(
arccsc

(√
2
))

83. csc
(
arccsc

(
−2

√
3

3

))

84. csc
(
arccsc

(√
2
2

))
85. csc (arccsc (1.0001))

86. csc
(
arccsc

(π
4

))
In Exercises 87 – 106, find the exact value or state that it is
undefined.

87. arcsin
(
sin
(π
6

))
88. arcsin

(
sin
(
−π

3

))

89. arcsin
(
sin
(
3π
4

))
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90. arcsin
(
sin
(
11π
6

))

91. arcsin
(
sin
(
4π
3

))

92. arccos
(
cos
(π
4

))
93. arccos

(
cos
(
2π
3

))

94. arccos
(
cos
(
3π
2

))

95. arccos
(
cos
(
−π

6

))
96. arccos

(
cos
(
5π
4

))

97. arctan
(
tan
(π
3

))
98. arctan

(
tan
(
−π

4

))
99. arctan (tan (π))

100. arctan
(
tan
(π
2

))
101. arctan

(
tan
(
2π
3

))

102. arccot
(
cot
(π
3

))
103. arccot

(
cot
(
−π

4

))
104. arccot (cot (π))

105. arccot
(
cot
(π
2

))
106. arccot

(
cot
(
2π
3

))
In Exercises 107 – 118, assume that the range of arcsecant is[
0, π

2

)
∪
[
π, 3π

2

)
and that the range of arccosecant is

(
0, π

2

]
∪(

π, 3π
2

]
when finding the exact value.

107. arcsec
(
sec
(π
4

))
108. arcsec

(
sec
(
4π
3

))

109. arcsec
(
sec
(
5π
6

))

110. arcsec
(
sec
(
−π

2

))

111. arcsec
(
sec
(
5π
3

))

112. arccsc
(
csc
(π
6

))

113. arccsc
(
csc
(
5π
4

))

114. arccsc
(
csc
(
2π
3

))

115. arccsc
(
csc
(
−π

2

))

116. arccsc
(
csc
(
11π
6

))

117. arcsec
(
sec
(
11π
12

))

118. arccsc
(
csc
(
9π
8

))
In Exercises 119 – 130, assume that the range of arcsecant is[
0, π

2

)
∪
(
π
2 , π
]
and that the range of arccosecant is

[
− π

2 , 0
)
∪(

0, π
2

]
when finding the exact value.

119. arcsec
(
sec
(π
4

))

120. arcsec
(
sec
(
4π
3

))

121. arcsec
(
sec
(
5π
6

))

122. arcsec
(
sec
(
−π

2

))

123. arcsec
(
sec
(
5π
3

))

124. arccsc
(
csc
(π
6

))

125. arccsc
(
csc
(
5π
4

))

126. arccsc
(
csc
(
2π
3

))

127. arccsc
(
csc
(
−π

2

))

128. arccsc
(
csc
(
11π
6

))

129. arcsec
(
sec
(
11π
12

))
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130. arccsc
(
csc
(
9π
8

))
In Exercises 131 – 154, find the exact value or state that it is
undefined.

131. sin
(
arccos

(
−1
2

))

132. sin
(
arccos

(
3
5

))
133. sin (arctan (−2))

134. sin
(
arccot

(√
5
))

135. sin (arccsc (−3))

136. cos
(
arcsin

(
− 5
13

))

137. cos
(
arctan

(√
7
))

138. cos (arccot (3))

139. cos (arcsec (5))

140. tan
(
arcsin

(
−2

√
5

5

))

141. tan
(
arccos

(
−1
2

))

142. tan
(
arcsec

(
5
3

))
143. tan (arccot (12))

144. cot
(
arcsin

(
12
13

))

145. cot
(
arccos

(√
3
2

))

146. cot
(
arccsc

(√
5
))

147. cot (arctan (0.25))

148. sec
(
arccos

(√
3
2

))

149. sec
(
arcsin

(
−12
13

))
150. sec (arctan (10))

151. sec
(
arccot

(
−
√
10
10

))

152. csc (arccot (9))

153. csc
(
arcsin

(
3
5

))

154. csc
(
arctan

(
−2
3

))
In Exercises 155 – 164, find the exact value or state that it is
undefined.

155. sin
(
arcsin

(
5
13

)
+

π

4

)
156. cos (arcsec(3) + arctan(2))

157. tan
(
arctan(3) + arccos

(
−3
5

))

158. sin
(
2 arcsin

(
−4
5

))

159. sin
(
2 arccsc

(
13
5

))
160. sin (2 arctan (2))

161. cos
(
2 arcsin

(
3
5

))

162. cos
(
2 arcsec

(
25
7

))

163. cos
(
2 arccot

(
−
√
5
))

164. sin
(
arctan(2)

2

)
In Exercises 165 – 184, rewrite the quanƟty as algebraic ex-
pressions of x and state the domain onwhich the equivalence
is valid.

165. sin (arccos (x))

166. cos (arctan (x))

167. tan (arcsin (x))

168. sec (arctan (x))

169. csc (arccos (x))

170. sin (2 arctan (x))

171. sin (2 arccos (x))

172. cos (2 arctan (x))

173. sin(arccos(2x))
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174. sin
(
arccos

( x
5

))

175. cos
(
arcsin

( x
2

))
176. cos (arctan (3x))

177. sin(2 arcsin(7x))

178. sin
(
2 arcsin

(
x
√
3

3

))

179. cos(2 arcsin(4x))

180. sec(arctan(2x)) tan(arctan(2x))

181. sin (arcsin(x) + arccos(x))

182. cos (arcsin(x) + arctan(x))

183. tan (2 arcsin(x))

184. sin
(
1
2
arctan(x)

)

169





.....
0.5

.
1

.
1.5

.

0.6

.

0.8

.

1

.... x.

y

Figure 5.1.1: sin(x)/x near x = 1.
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Figure 5.1.2: sin(x)/x near x = 0.

5: L®Ã®ãÝ
Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the 17th century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
– can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behaviour of a funcƟon. This chapter begins our study of the limit by
approximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

5.1 An IntroducƟon To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the funcƟon y =
sin x
x

. When x is near the value 1, what value (if
any) is y near?

While our quesƟon is not precisely formed (what consƟtutes “near the value
1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this funcƟon to approximate the appropriate y values. Consider Figure
5.1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 5.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives



x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 5.1.3: Approximate values of
sin(x)/x with x near 1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 5.1.4: Approximate values of
sin(x)/x with x near 0.
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Figure 5.1.5: Graphically approximaƟng a
limit in Example 5.1.1.

Chapter 5 Limits

no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = 0 for this funcƟon simply by leƫng x = 0.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches 1” describes a number, oŌen referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definiƟon; this is a pseudo-definiƟon that will allow us
to explore the idea of a limit. A more detailed, but sƟll informal, definiƟon of
the limit is given in DefiniƟon 5.1.1 at the end of this secƟon. A more precise
definiƟon is beyond the scope of this text.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

In the next secƟon, we will find limits analyƟcally; that is, exactly using a
variety of mathemaƟcal tools. For now, we will approximate limits both graph-
ically and numerically. Graphing a funcƟon can provide a good approximaƟon,
though oŌen not very precise. Numerical methods can provide a more accurate
approximaƟon. We have already approximated limits graphically, so we now
turn our aƩenƟon to numerical approximaƟons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
5.1.3.

NoƟce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 5.1.2. The table in Figure 5.1.4
shows the value of sin(x)/x for values of x near 0. Ten places aŌer the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concernedwith the value of our funcƟon at x = 0, only on the behaviour
of the funcƟon near 0.

This numerical method gives confidence to say that 1 is a good approxima-
Ɵon of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 5.1.1 ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.
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x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 5.1.6: Numerically approximaƟng
a limit in Example 5.1.1.
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Figure 5.1.7: Graphically approximaƟng a
limit in Example 5.1.2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 5.1.8: Numerically approximaƟng
a limit in Example 5.1.2.

5.1 An IntroducƟon To Limits

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 5.1.5 and
5.1.6, respecƟvely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a beƩer approximaƟon.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximaƟon?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example 5.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do beƩer. Using values “on both sides of 3” helps us idenƟfy trends.

Example 5.1.2 ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of 0. Figure 5.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 5.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.
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Figure 5.1.9: Observing no limit as x → 1
in Example 5.1.3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 5.1.10: Values of f(x) near x = 1 in
Example 5.1.3.
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Figure 5.1.11: Observing no limit as x →
1 in Example 5.1.4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 5.1.12: Values of f(x) near x = 1 in
Example 5.1.4.

Chapter 5 Limits

IdenƟfying When Limits Do Not Exist

A funcƟon may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The funcƟon f(x)may approach different values on either side of c.

2. The funcƟon may grow without upper or lower bound as x approaches c.

3. The funcƟon may oscillate as x approaches c without approaching a spe-
cific value.

We’ll explore each of these in turn.

Example 5.1.3 Different Values Approached From LeŌ and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given in Figures
5.1.9 and 5.1.10, respecƟvely. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the leŌ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 5.1.4 The FuncƟon Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x − 1)2 are given in Figures
5.1.11 and 5.1.12, respecƟvely. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.

174



.....
2

.
4

.
6

.

10

.

20

. x.

f

Figure 5.1.14: InterpreƟng a difference
quoƟent as the slope of a secant line.

5.1 An IntroducƟon To Limits

Example 5.1.5 The FuncƟon Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figures 5.1.13.
Figure 5.1.13(a) shows f(x) on the interval [−1, 1]; noƟce how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillaƟon, as x approaches
0, f(x) approaches 0. However, Figure 5.1.13(b) zooms in on sin(1/x), on the
interval [−0.1, 0.1]. Here the oscillaƟon is even more pronounced. Finally, in
the table in Figure 5.1.13(c), we see sin(1/x) evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many Ɵmes! Because of this oscillaƟon,

lim
x→0

sin(1/x) does not exist.
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Figure 5.1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 5.1.5.

Limits of Difference QuoƟents

We have approximated limits of funcƟons as x approached a parƟcular num-
ber. We will consider another important kind of limit aŌer explaining a few key
ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the parƟcle is at posiƟon 10 Ō., and when x = 5, the parƟcle is at 20 Ō. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the parƟcle travelled 10 feet in 4 seconds, we can say the parƟcle’s average
velocity was 2.5 Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(5)− f(1)
5− 1

=
10
4

= 2.5Ō/s.

This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 5.1.14.

Now consider finding the average speed on another Ɵme interval. We again
start at x = 1, but consider the posiƟon of the parƟcle h seconds later. That is,
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Figure 5.1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 5.1.16: The difference quoƟent
evaluated at values of h near 0.

Chapter 5 Limits

consider the posiƟons of the parƟcle when x = 1 and when x = 1 + h. The
difference quoƟent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
Figure 5.1.15. This leads us to wonder what the limit of the difference quoƟent
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure 5.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

Despite the importance of limits to calculus, we oŌen seƩle for an impre-
cise, intuiƟve understanding of what the limit of a funcƟon means. The precise
definiƟon of the limit omiƩed from a course like Math 1560, and leŌ for later
courses, such as Math 3500. For this course, we will use the following informal
definiƟon.

DefiniƟon 5.1.1 Informal DefiniƟon of the Limit

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim
x→c

f(x) = L,

if we can make the value of f(x) arbitrarily close to L by choosing x ̸= c
sufficiently close to c.

The formal definiƟon of the limit makes precise the meaning of the phrases
“arbitrarily close” and “sufficiently close”. The problem with the definiƟon we
have given is that, while it gives an intuiƟve understanding of themeaning of the
limit, it’s of no use for proving theorems about limits. In SecƟon 5.2 wewill state
(but not prove) several theorems about limits which will allow use to compute
their values analyƟcally, without recourse to tables of values.176



Exercises 5.1
Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situaƟons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quoƟent?

6. When x is near 0, sin x
x

is near what value?

Problems
In Exercises 7 – 16, approximate the given limits both numer-
ically and graphically.

7. lim
x→1

x2 + 3x− 5

8. lim
x→0

x3 − 3x2 + x− 5

9. lim
x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

14. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

15. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

16. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 17 – 24, a funcƟon f and a value a are
given. Approximate the limit of the difference quoƟent,
lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π
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The rigorous definiƟon of limits is of-
ten known as the “ε, δ” definiƟon of the
limit. You might have a few brief encoun-
ters with this definiƟon as you make your
way through the calculus sequence, but a
careful treatment of limits is usually not
encountered unƟl a course in Analysis.

Chapter 5 Limits

5.2 Finding Limits AnalyƟcally

In SecƟon 5.1 we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. We ended with what we called
an “informal” definiƟon of the limit. This definiƟon allows us to make intuiƟve
sense of limits, but it does not allow us to prove theorems about limits.

Since we will not discuss how to formally define limits in this course, we will
have to take the results in this secƟon on faith. However, we will see that the
algebraic rules given below for manipulaƟng limits make the process of calculat-
ing limits much more straighƞorward.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? IntuiƟon tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 5.2.1 Basic Limit ProperƟes
Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f and g be
funcƟons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. IdenƟty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar MulƟples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L
(If n is even then require f(x) ≥ 0 on I.)

9. ComposiƟons: Adjust our previously given limit situaƟon to:

lim
x→c

f(x) = L, lim
x→L

g(x) = K and g(L) = K.

Then lim
x→c

g(f(x)) = K.

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 5.2.1 Using basic limit properƟes
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:
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5.2 Finding Limits AnalyƟcally

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMulƟple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem 5.2.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Theorem 5.2.2 Limits of Polynomial and RaƟonal FuncƟons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 5.2.2 Finding a limit of a raƟonal funcƟon
Using Theorem 5.2.2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 5.2.2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.
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Chapter 5 Limits

Using approximaƟons (or worse – the rigorous definiƟon) to deal with limits
such as

lim
x→2

x2 = 4

can be frustraƟng, since the result seems fairly obvious. The previous theorems
state thatmany funcƟons behave in such an “obvious” fashion, as demonstrated
by the raƟonal funcƟon in Example 5.2.2.

Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behaviour is parƟcularly “nice” in terms of limits. In the next secƟon, we will
give a formal name to these funcƟons that behave “nicely.”

Theorem 5.2.3 Special Limits

Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Example 5.2.3 EvaluaƟng limits analyƟcally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straighƞorward applicaƟonof Theorem5.2.3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 5.2.3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 5.2.1 and Theorem 5.2.3 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.
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5.2 Finding Limits AnalyƟcally

4. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the limit ComposiƟon Rule of Theorem 5.2.1. Using The-
orem 5.2.3, we have lim

x→1
ln x = ln 1 = 0. Applying the ComposiƟon rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

5. We encountered this limit in SecƟon 5.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condiƟon of Theorem 5.2.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are sƟll unable to eval-
uate this limit with tools we currently have at hand.

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 5.2.4 Squeeze Theorem

Let f, g and h be funcƟons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
the given funcƟon of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluaƟng
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.
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Figure 5.2.1: The unit circle and related
triangles.

Chapter 5 Limits

Example 5.2.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
5.2.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

Figure 5.2.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

MulƟply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequaliƟes hold for all values of θ near 0, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
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Figure 5.2.2: Graphing f in Example 5.2.5
to understand a limit.

5.2 Finding Limits AnalyƟcally

will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the raƟo of x and sin x
approaches 1, meaning that they are approaching 0 in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 5.2.5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the laƩer three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equalling 1), and we know that 1 raised to any power
is sƟll 1. At the same Ɵme, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulƟng in a limit of 1.

Our final theorem for this secƟon will be moƟvated by the following exam-
ple.

Example 5.2.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SÊ½çã®ÊÄ We begin by aƩempƟng to apply Theorem 5.2.2 and subsƟ-
tuƟng 1 for x in the quoƟent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the theorem.
By graphing the funcƟon, as in Figure 5.2.2, we see that the funcƟon seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.
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Chapter 5 Limits

The funcƟon is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the funcƟon at 1, only the value the funcƟon approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.

The key to the above example is that the funcƟons y = (x2− 1)/(x− 1) and
y = x+1 are idenƟcal except at x = 1. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Theorem 5.2.6 Limits of FuncƟons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 5.2.6. We demon-
strate this once more.

Example 5.2.6 EvaluaƟng a limit using Theorem 5.2.6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SÊ½çã®ÊÄ We aƩempt to apply Theorem 5.2.2 by subsƟtuƟng 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, syntheƟc division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x − 3) terms as long as x ̸= 3. Using Theorem 5.2.6 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.
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5.2 Finding Limits AnalyƟcally

We end this secƟon by revisiƟng a limit first seen in SecƟon 5.1, a limit of
a difference quoƟent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Example 5.2.7 EvaluaƟng the limit of a difference quoƟent
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-
ploy Theorem 5.2.2 and subsƟtute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a raƟonal funcƟon hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 5.2.6, as h ̸= 0)

= 8.5 (using Theorem 5.2.3)

This matches our previous approximaƟon.

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem 5.2.3; it states that many funcƟons that
we use regularly behave in a very nice, predictable way. In SecƟon 5.5 we give
a name to this nice behaviour; we label such funcƟons as conƟnuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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Exercises 5.2
Terms and Concepts
1. What does the text mean when it says that certain func-

Ɵons’ “behaviour is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

2. Sketch a graph that visually demonstrates the Squeeze The-
orem.

3. You are given the following informaƟon:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches 1?

4. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
In Exercises 5 – 12, use the following informaƟon to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

• lim
x→9

f(x) = 6, lim
x→6

f(x) = 9, f(9) = 6

• lim
x→9

g(x) = 3, lim
x→6

g(x) = 3, g(6) = 9

5. lim
x→9

(f(x) + g(x))

6. lim
x→9

(3f(x)/g(x))

7. lim
x→9

(
f(x)− 2g(x)

g(x)

)

8. lim
x→6

(
f(x)

3− g(x)

)
9. lim

x→9
g
(
f(x)
)

10. lim
x→6

f
(
g(x)

)
11. lim

x→6
g
(
f(f(x))

)
12. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

In Exercises 13 – 16, use the following informaƟon to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

• lim
x→1

f(x) = 2, lim
x→10

f(x) = 1, f(1) = 1/5

• lim
x→1

g(x) = 0, lim
x→10

g(x) = π, g(10) = π

13. lim
x→1

f(x)g(x)

14. lim
x→10

cos
(
g(x)

)
15. lim

x→1
f(x)g(x)

16. lim
x→1

g
(
5f(x)

)
In Exercises 17 – 32, evaluate the given limit.

17. lim
x→3

x2 − 3x+ 7

18. lim
x→π

(
x− 3
x− 5

)7

19. lim
x→π/4

cos x sin x

20. lim
x→1

2x− 2
x+ 4

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 33 – 36, where appro-
priate, to evaluate the given limit.
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33. lim
x→0

x sin
(
1
x

)

34. lim
x→0

sin x cos
(

1
x2

)
35. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

36. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

Exercises 37 – 41 challenge your understanding of limits but
can be evaluated using the knowledge gained in this secƟon.

37. lim
x→0

sin 3x
x

38. lim
x→0

sin 5x
8x

39. lim
x→0

ln(1+ x)
x

40. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

41. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)
)
does not exist.

(d) Show why the answer to part (c) does not violate the
ComposiƟon Rule of Theorem 5.2.1.
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Chapter 5 Limits

5.3 One Sided Limits
We introduced the concept of a limit gently, approximaƟng their values graphi-
cally and numerically. Next came the rigorous definiƟon of the limit, along with
an admiƩedly tediousmethod for evaluaƟng them. The previous secƟon gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and raƟonal, trigono-
metric, exponenƟal and logarithmic funcƟons (and their sums, products, etc.) all
behave “nicely.” In this secƟon we rigorously define what we mean by “nicely.”

In SecƟon 5.1 we saw three ways in which limits of funcƟons failed to exist:

1. The funcƟon approached different values from the leŌ and right,

2. The funcƟon grows without bound, and

3. The funcƟon oscillates.

In this secƟonwe explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with definiƟons that are very similar to the definiƟon
of the limit given in SecƟon 5.1, but the notaƟon is slightly different and “x ̸= c”
is replaced with either “x < c” or “x > c.”

DefiniƟon 5.3.1 One Sided Limits: LeŌ- and Right-Hand Limits

LeŌ-Hand Limit
Let f be a funcƟon defined on (a, c) for some a < c and let L be a real
number.
We say that the limit of f(x), as x approaches c from the leŌ, is L, or, the
leŌ–hand limit of f at c is L, and write

lim
x→c−

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x < c sufficiently
close to c.

Right-Hand Limit
Let f be a funcƟon defined on (c, b) for some b > c and let L be a real
number. We say that the limit of f(x), as x approaches c from the right,
is L, or, the right–hand limit of f at c is L, and write

lim
x→c+

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x > c sufficiently
close to c.

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar
statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

We pracƟce evaluaƟng leŌ- and right-hand limits through a series of exam-
ples.
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Figure 5.3.1: A graphof f in Example 5.3.1.

5.3 One Sided Limits

Example 5.3.1 EvaluaƟng one sided limits
Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 5.3.1. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

1. As x goes to 1 from the leŌ, we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

4. Using the definiƟon and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a leŌ-hand limit at 0 as f is

not defined for values of x < 0.

6. Using the definiƟon and the graph, f(0) = 0.

7. As x goes to 2 from the leŌ, we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the definiƟon of the funcƟon show that f(2) is not defined.

Note how the leŌ and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuiƟve: the limit exists precisely when the leŌ and right-hand limits are equal.

Theorem 5.3.1 Limits and One Sided Limits

Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.
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5.3.2

Chapter 5 Limits

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 5.3.1 – 5.3.4 is that the value of the func-
Ɵonmay/may not be equal to the value(s) of its leŌ/right-hand limits, evenwhen
these limits agree.

Example 5.3.2 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 . Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ In this example, we evaluate each expression using just the
definiƟon of f, without using a graph as we did in the previous example.

1. As x approaches 1 from the leŌ, we consider a limit where all x-values are
less than 1. Thismeansweuse the 2−xpiece of the piecewise funcƟon f as
the domain for that piece is (0, 1). As the x-values near 1, 2−x approaches
1; that is, f(x) approaches 1. Therefore lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we consider a limit where all x-values
are greater than 1. Thismeanswe use the (x−2)2 piece of f as the domain
for that piece is (1, 2). As the x-values near 1, (x− 2)2 approaches 1; that
is, we see that again f(x) approaches 1. Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and leŌ. Therefore lim

x→1
f(x) = 1.

4. Neither piece of f is defined for the x-value of 1; in other words, 1 is not
in the domain of f. Therefore f(1) is not defined.

5. As x approaches 0 from the right, we consider a limit where all x-values
are greater than 0. This means we use the 2− x piece of f. As the x-values
near 0, 2− x approaches 2; that is, f(x) approaches 2. So lim

x→0+
f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x approaches 2 from the leŌ, we consider a limit where all x-values are
less than 2. This means we use the (x − 2)2 piece of f. As the x-values
near 2, (x− 2)2 nears 0; that is, f(x) approaches 0. So lim

x→2−
f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

We can confirm our analyƟc result by consulƟng the graph of f shown in Figure
5.3.2. Note the open circles on the graph at x = 0, 1 and 2, where f is not de-
fined.
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Figure 5.3.4: Graphing f in Example 5.3.4

5.3 One Sided Limits

Example 5.3.3 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 5.3.3. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 5.3.4 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 5.3.4. Evaluate the fol-

lowing.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear from the definiƟon of the funcƟon and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 5.3.1 – 5.3.4 we were asked to find both lim
x→1

f(x) and f(1). Con-
sider the following table:

lim
x→1

f(x) f(1)

Example 5.3.1 does not exist 1
Example 5.3.2 1 not defined
Example 5.3.3 0 1
Example 5.3.4 1 1

Only in Example 5.3.4 do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in the next secƟon, enƟtled “ConƟnuity.” In short, a conƟnu-
ous funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.
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Exercises 5.3
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→0−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→2+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

10.

.....

−4

.

−3

.

−2

.

−1

.

1

.

2

.

3

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined funcƟons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 5.4.1: Graphing f(x) = 1/x2 for
values of x near 0.

Chapter 5 Limits

5.4 Limits Involving Infinity

In DefiniƟon 5.1.1 we stated that in the equaƟon lim
x→c

f(x) = L, both c and Lwere
numbers. In this secƟon we relax that definiƟon a bit by considering situaƟons
when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = 1/x2, as shown in Figure 5.4.1.
Note how, as x approaches 0, f(x) grows very, very large – in fact, it growswithout
bound. It seems appropriate, and descripƟve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

DefiniƟon 5.4.1 Limit of Infinity,∞

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x ̸=
c sufficiently close to c.

• The limit of f(x), as x approaches c, is negaƟve infinity, denoted
by

lim
x→c

f(x) = −∞,

if we can obtain any arbitrarily large negaƟve value for f(x) by
choosing x ̸= c sufficiently close to c.

This is once again an informal definiƟon, like DefiniƟon 5.1.1: we say that if
we get close enough to c, then we can make f(x) as large as we want, without
giving precise answers to the quesƟons “How close?” or “How large?”

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly staƟng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descripƟve.

We define one-sided limits that approach infinity in a similar way.
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5.4 Limits Involving Infinity

DefiniƟon 5.4.2 One-Sided Limits of Infinity

• Let f be a funcƟon defined on (a, c) for some a < c.
The limit of f(x), as x approaches c from the leŌ, is infinity, or, the
leŌ-hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where a < x < c.

• Let f be a funcƟon defined on (c, b) for some b > c.
The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where c < x < b.

• The term leŌ- (or, right-) hand limit of f at c is negaƟve infinity is
defined in a manner similar to DefiniƟon 5.4.1.

Example 5.4.1 EvaluaƟng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 5.4.2.

SÊ½çã®ÊÄ In Example 5.1.4 of SecƟon 5.1, by inspecƟng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
Ɵon does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general, we
can see that as the difference |x − 1| gets smaller, the value of f(x) gets larger
and larger, so we may say lim

x→1
1/(x− 1)2 = ∞.

Example 5.4.2 EvaluaƟng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 5.4.3.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
0, but it does so in differentways on different sides of 0. Since its behaviour is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.
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Chapter 5 Limits

VerƟcal asymptotes
The graphs in the two previous examples demonstrate that if a funcƟon f has a
limit (or, leŌ- or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a verƟcal line near x = c. This observaƟon leads to a definiƟon.

DefiniƟon 5.4.3 VerƟcal Asymptote

Let I be an interval that either contains c or has c as an endpoint, and let
f be a funcƟon defined on I, except possibly at c.
If the limit of f(x) as x approaches c from either the leŌ or right (or both)
is∞ or−∞, then the line x = c is a verƟcal asymptote of f.

Example 5.4.3 Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ VerƟcal asymptotes occurwhere the funcƟon growswithout
bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the funcƟon take on
large values. In the case of the given funcƟon, the denominator is 0 at x = ±2.
SubsƟtuƟng in values of x close to 2 and−2 seems to indicate that the funcƟon
tends toward ∞ or −∞ at those points. We can graphically confirm this by
looking at Figure 5.4.4. Thus the verƟcal asymptotes are at x = ±2.

When a raƟonal funcƟon has a verƟcal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a verƟcal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a verƟcal asymptote at x = 1,
as shown in Figure 5.4.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Cancelling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this

funcƟon several Ɵmes in the previous secƟons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no verƟcal asymptote. No simple algebraic cancellaƟon makes this
fact obvious; we used the Squeeze Theorem in SecƟon 5.2 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.
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5.4 Limits Involving Infinity

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respecƟvely. However, 0/0 is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are 1 and 2.

With a liƩle cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That workmay be algebraic (such as factoring and cancelling)
or it may require a tool such as the Squeeze Theorem. In a later secƟon we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞.

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. In each, the funcƟon is growing
without bound, indicaƟng that the limit will be∞,−∞, or simply not exist if the
leŌ- and right-hand limits do not match.
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Figure 5.4.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 5.4.4.

Chapter 5 Limits

Limits at Infinity and Horizontal Asymptotes

At the beginning of this secƟonwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behaviour of the funcƟon
to the “far right” of the graph. Wemake this noƟonmore explicit in the following
definiƟon.

DefiniƟon 5.4.4 Limits at Infinity and Horizontal Asymptote

Let L be a real number.

1. Let f be a funcƟon defined on (a,∞) for some number a. The
limit of f at infinity is L, denoted lim

x→∞
f(x) = L, if we can make the

value of f(x) arbitrarily close to L by choosing a sufficiently large
posiƟve value of x.

2. Let f be a funcƟon defined on (−∞, b) for some number b. The
limit of f at negaƟve infinity is L, denoted lim

x→−∞
f(x) = L, if we

can make the value of f(x) arbitrarily close to L by choosing a
sufficiently large negaƟve value of x.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the line y = L is a
horizontal asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definiƟon
with DefiniƟon 5.4.1.

Example 5.4.4 ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 5.4.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1. Later, we will show how to deter-
mine this analyƟcally.

Horizontal asymptotes can take on a variety of forms. Figure 5.4.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 5.4.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 5.4.7(c) shows that f(x) = (sin x)/x has even more interesƟng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 5.4.7: Considering different types of horizontal asymptotes.

We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we
understand lim

x→∞
1/x. As x gets larger and larger, 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x.

It is now not much of a jump to conclude the following: for any posiƟve
integer n, we have

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence mulƟplying by 1), which is the largest power of x to appear
in the funcƟon. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing theorem.
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Chapter 5 Limits

Theorem 5.4.1 Limits of RaƟonal FuncƟons at Infinity

Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situaƟon like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then aŌer dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indicaƟve of some sort of infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward 0. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
funcƟons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

, graphed in Figure 5.4.7(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posiƟve and−1 when x is negaƟve. Hence we get
asymptotes of y = 1 and y = −1, respecƟvely.

Example 5.4.5 Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 5.4.4.

SÊ½çã®ÊÄ Before using Theorem 5.4.1, let’s use the technique of eval-
uaƟng limits at infinity of raƟonal funcƟons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
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Figure 5.4.8: Visualizing the funcƟons in
Example 5.4.6.

5.4 Limits Involving Infinity

take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 5.4.1 directly; in this case n = m so the limit is the
raƟo of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 5.4.6 Finding limits of raƟonal funcƟons
Use Theorem 5.4.1 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

SÊ½çã®ÊÄ

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 5.4.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the raƟo of the coefficients of x2, which
is−1/3. See Figure 5.4.8(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 5.4.8(c).
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Exercises 5.4
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly staƟng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly staƟng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a verƟcal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a funcƟon with a verƟcal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the funcƟon.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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. −1.
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.

1

.
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.
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

.....
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.
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.

5

.

10

. −100.

−50

.

50

.

100

.

x

.

y
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

..... −1.
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.
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.
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y

14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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.
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.

5
.

50

.

100

.

150

. x.

y

In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, idenƟfy the horizontal and verƟcal
asymptotes, if any, of the given funcƟon.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f conƟnuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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Figure 5.5.1: A graphof f in Example 5.5.1.
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Figure 5.5.2: A graph of the step funcƟon
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Chapter 5 Limits

5.5 ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problemaƟc; funcƟons can tend to one
value but aƩain another. This secƟon focuses on funcƟons that do not exhibit
such behaviour.

DefiniƟon 5.5.1 ConƟnuous FuncƟon

Let f be a funcƟon defined on an open interval I containing c.

1. f is conƟnuous at c if lim
x→c

f(x) = f(c).

2. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If f
is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 5.5.1 Finding intervals of conƟnuity
Let f be defined as shown in Figure 5.5.1. Give the interval(s) on which f is con-
Ɵnuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be conƟnuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is conƟnuous at every point of (0, 3) except at x = 1.
Therefore f is conƟnuous on (0, 1) and (1, 3).

Our definiƟon of conƟnuity (currently) only applies to open intervals. AŌer
DefiniƟon 5.5.2, we’ll be able to say that f is conƟnuous on [0, 1) and (1, 3].

Example 5.5.2 Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than, or equal
to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 5.5.2
demonstrates why this is oŌen called a “step funcƟon.”

Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.
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1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The funcƟon is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. We can extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

DefiniƟon 5.5.2 ConƟnuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a < b.
f is conƟnuous on [a, b] if:

1. f is conƟnuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Using this new definiƟon, we can adjust our answer in Example 5.5.1 by stat-
ing that f is conƟnuous on [0, 1) and (1, 3], as menƟoned in that example. We
can also revisit Example 5.5.2 and state that the floor funcƟon is conƟnuous on
the following half–open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is conƟnuous everywhere; aŌer all, if f is
conƟnuous on [0, 1) and [1, 2), isn’t f also conƟnuous on [0, 2)? Of course, the
answer is no, and the graph of the floor funcƟon immediately confirms this.

ConƟnuous funcƟons are important as they behave in a predictable fashion:
funcƟons aƩain the value they approach. Because conƟnuity is so important,
most of the funcƟons you have likely seen in the past are conƟnuous on their
domains. This is demonstrated in the following example where we examine the
intervals of conƟnuity of a variety of common funcƟons.

Example 5.5.3 Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|
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SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a raƟonal func-
Ɵon, we apply Theorem 5.2.2 to recognize that f is conƟnuous on all of its
domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 5.2.3 shows that sin x is conƟnuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 5.2.3 shows that

f(x) =
√
x is conƟnuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 5.2.1 and

5.2.3 shows that f is conƟnuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is conƟnuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transiƟons from one “piece” of its definiƟon to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is conƟnuous everywhere.

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems 5.2.1 and 5.2.2 apply to conƟnuity aswell.
Further, now knowing the definiƟon of conƟnuity we can re–read Theorem 5.2.3
as giving a list of funcƟons that are conƟnuous on their domains. The following
theorem states how conƟnuous funcƟons can be combined to form other con-
Ɵnuous funcƟons, followed by a theorem which formally lists funcƟons that we
know are conƟnuous on their domains.

Theorem 5.5.1 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous funcƟons on an interval I, let c be a real number
and let n be a posiƟve integer. The following funcƟons are conƟnuous on
I.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (If n is even then require f(x) ≥ 0 on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on I, where the range of f on I is J,
and let g be conƟnuous on J. Then g ◦ f, i.e.,
g(f(x)), is conƟnuous on I.
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Figure 5.5.3: A graph of f in Example
5.5.4(1).

5.5 ConƟnuity

Theorem 5.5.2 ConƟnuous FuncƟons

Let n be a posiƟve integer. The following funcƟons are conƟnuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = csc x

5. f(x) = sec x

6. f(x) = cot x

7. f(x) = ax (a > 0)

8. f(x) = ln x

9. f(x) = n
√
x

We apply these theorems in the following Example.

Example 5.5.4 Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ Weexamine each in turn, applying Theorems 5.5.1 and 5.5.2
as appropriate.

1. The square–root terms are conƟnuous on the intervals [1,∞) and (−∞, 5],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [1, 5], the intersecƟon of these two intervals. A graph of f
is given in Figure 5.5.3.

2. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

3. Theorem 5.5.2 states that f(x) = tan x is conƟnuous “on its domain.” Its
domain includes all real numbers except odd mulƟples of π/2. Thus the
intervals on which f(x) = tan x is conƟnuous are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricƟng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

Classifying disconƟnuiƟes
We now know what it means for a funcƟon to be conƟnuous, so of course we
can easily say what it means for a funcƟon to be disconƟnuous; namely, not
conƟnuous. However, to beƩer understand conƟnuity it is worth our Ɵme to
discuss the different ways in which a funcƟon can fail to be disconƟnuous. By
definiƟon, a funcƟon f is conƟnuous at a point a in its domain if lim

x→a
f(x) = f(a).

If this equality fails to hold, then f is not conƟnuous. We note, however, that
there are a number of different things that can go wrong with this equaƟon.
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Figure 5.5.4: The graph of a funcƟon with
a removable disconƟnuity at x = 0

Figure 5.5.5: The graph of a funcƟon with
a jump disconƟnuity at x = 1

Figure 5.5.6: The graph of a funcƟon with
an infinite disconƟnuity at x = 2

Chapter 5 Limits

1. lim
x→a

f(x) = L exists, but L ̸= f(a), or f(a) is undefined. Such a disconƟnuity
is called a removable disconƟnuity.
A removable disconƟnuity can be pictured as a “hole” in the graph of f.
The term “removable” refers to the fact that by simply redefining f(a) to
equal L (that is, changing the value of f at a single point), we can create a
new funcƟon that is conƟnuous at x = a, and agrees with f at all x ̸= a.

2. lim
x→a+

f(x) = L and lim
x→a−

f(x) = M exist, but L ̸= M. In this case the leŌ and
right hand limits both exist, but since they are not equal, the limit of f as
x → a does not exist. Such a disconƟnuity is called a jump disconƟnuity.
The phrase “jump disconƟnuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The funcƟon f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negaƟve) as x approaches a. Such
a disconƟnuity is called an infinite disconƟnuity.
Infinite disconƟnuiƟes are most easily understood in terms of infinite lim-
its, which we will discuss in the next secƟon.

4. limx→a f(x) does not exist, for reasons other than the above. Such discon-
ƟnuiƟes are called essenƟal disconƟnuiƟes . With jump and infinite dis-
conƟnuiƟes, the limit fails to exist, but in ways that can sƟll be described
or even quanƟfied. EssenƟal disconƟnuiƟes include examples such as
f(x) = sin(1/x) as x → 0, where the funcƟon oscillates infinitely oŌen, or
is otherwise so badly-behaved that the limit does not exist.

Consequences of conƟnuity
A common way of thinking of a conƟnuous funcƟon is that “its graph can be
sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is conƟnuous on [1, 2] (i.e., its graph can be sketched as a conƟnu-
ous curve from (1,−10) to (2, 5)) then we know intuiƟvely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some Ɵme, for instance, but we are guaranteed all
values between−10 and 5.

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 5.5.3 Intermediate Value Theorem

Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value c in (a, b) such that f(c) = y.
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Figure 5.5.7: Graphing a root of f(x) =
x− cos x.

IteraƟon Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 5.5.8: IteraƟons of the BisecƟon
Method of Root Finding

5.5 ConƟnuity

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
Ɵons can be found through successive applicaƟons of this theorem. Suppose
through direct computaƟon we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

3. f(d) > 0: Thenwe know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

Example 5.5.5 Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure 5.5.7.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
BisecƟonMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

IteraƟon 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

IteraƟon 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
Ɵnue to check the endpoints, just the midpoint. Thus we put the rest of
the iteraƟons in Figure 5.5.8.

NoƟce that in the 12th iteraƟon we have the endpoints of the interval each
starƟng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximaƟon of where f is 0. The
IntermediateValue Theoremstates that the actual zero is sƟllwithin this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places aŌer the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a 209
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second for the program to run the necessary 35 iteraƟons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iteraƟons).

It is a simplemaƩer to extend theBisecƟonMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new funcƟon gwhere g(x) = f(x)−1. Then
use the BisecƟon Method to solve g(x) = 0.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined conƟnuity and explored properƟes of conƟnuous funcƟons, and

• considered limits that involved infinity.

Why? MathemaƟcs is famous for building on itself and calculus proves to be
no excepƟon. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quanƟty by a smaller and smaller number and see
what value the quoƟent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posiƟon informaƟon.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum oŌen is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over Ɵme an
appreciaƟon is oŌen formed based on the scope of its applicability.
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Exercises 5.5
Terms and Concepts
1. In your own words, describe what it means for a funcƟon

to be conƟnuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a funcƟon?

4. Given funcƟons f and g on an interval I, how can the Bisec-
Ɵon Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is conƟnuous at c.

6. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is conƟnuous on [0, 1) and [1, 2), then f is conƟnu-
ous on [0, 2).

10. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises 11 – 18, a graph of a funcƟon f is given along with
a value a. Determine if f is conƟnuous at a; if it is not, state
why it is not.
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17. (a) a = −2

(b) a = 0
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18. a = 3π/2

0.5
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In Exercises 19 – 22, determine if f is conƟnuous at the indi-
cated values. If not, explain why.

19. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

20. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 23 – 34, give the intervals on which the given
funcƟon is conƟnuous.

23. f(x) = x2 − 3x+ 9

24. g(x) =
√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s

32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

Exercises 35 – 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be conƟnuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

36. Let g be conƟnuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be conƟnuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a funcƟon on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 – 42, use the BisecƟon Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given funcƟon in the given interval.

39. f(x) = x2 + 2x− 4 on [1, 1.5].

40. f(x) = sin x− 1/2 on [0.5, 0.55]

41. f(x) = ex − 2 on [0.65, 0.7].

42. f(x) = cos x− sin x on [0.7, 0.8].

Review

43. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

44. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

45. Give an example of funcƟon f(x) forwhich lim
x→0

f(x) does not
exist.
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6: D�Ù®ò�ã®ò�Ý
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

6.1 Instantaneous Rates of Change: The DerivaƟve
A common amusement park ride liŌs riders to a height then allows them to free-
fall a certain distance before safely stopping them. Suppose such a ride drops
riders from a height of 150 feet. Students of physics may recall that the height
(in feet) of the riders, t seconds aŌer free-fall (and ignoring air resistance, etc.)
can be accurately modelled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall aŌer 2 seconds (corresponding
to a height of 86 Ō.). How fast will the riders be travelling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in SecƟon 5.1 when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some Ɵme period containing t = 2. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 Ō/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 Ō/s.



h
Average Velocity

Ō/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 6.1.2: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.
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Over a Ɵme span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compuƟng

f(2+ h)− f(2)
h

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0”
indeterminate form. So we employ a limit, as we did in SecƟon 5.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 6.1.2. It looks as though the velocity is approaching−64 Ō/s.
CompuƟng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2+ h, f(2+ h)). In Figure 6.1.1, the secant line corresponding to h = 1 is
shown in three contexts. Figure 6.1.1(a) shows a “zoomed out” version of fwith
its secant line. In (b), we zoom in around the points of intersecƟon between
f and the secant line. NoƟce how well this secant line approximates f between
those twopoints – it is a commonpracƟce to approximate funcƟonswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 6.1.1, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 6.1.1: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

DefiniƟon 6.1.1 DerivaƟve at a Point

Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differenƟable
at c; if the limit does not exist, then f is not differenƟable at c. If f is
differenƟable at every point in I, then f is differenƟable on I.

DefiniƟon 6.1.2 Tangent Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivaƟve of f at c.

Some examples will help us understand these definiƟons.
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Figure 6.1.3: A graph of f(x) = 3x2+5x−
7 and its tangent lines at x = 1 and x = 3.
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Example 6.1.1 Finding derivaƟves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equaƟon of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equaƟon of the tangent line
to the graph f at x = 3.

SÊ½çã®ÊÄ

1. We compute this directly using DefiniƟon 6.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equaƟon, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definiƟon,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equaƟon y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 6.1.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing informaƟon from thederiva-
Ɵve is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.
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DefiniƟon 6.1.3 Normal Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The normal line to the graph of f at c is the line with equaƟon

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the verƟcal line
through

(
c, f(c)

)
; that is, x = c.

Example 6.1.2 Finding equaƟons of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 6.1.1. Find the equaƟons of the normal
lines to the graph of f at x = 1 and x = 3.

SÊ½çã®ÊÄ In Example 6.1.1, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope−1/11. An equaƟon for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is ploƩed with y = f(x) in Figure 6.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” MathemaƟcally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect raƟo of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equaƟon for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common pracƟce
in mathemaƟcal problem solving is to approximate difficult funcƟons with not–
so–difficult funcƟons. Lines are a common choice. It turns out that at any given
point on the graph of a differenƟable funcƟon f, the best linear approximaƟon
to f is its tangent line. That is one reason we’ll spend considerable Ɵme finding
tangent lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example 6.1.3 Finding the derivaƟve of a linear funcƟon
Consider f(x) = 3x + 5. Find the equaƟon of the tangent line to f at x = 1 and
x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon
6.1.1.
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f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 6.1.4 Numerical approximaƟon of the tangent line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximaƟon of the equaƟon of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 6.1.5. The graph seems to imply the
approximaƟon is rather good.

Recall from SecƟon 5.2 that lim
x→0

sin x
x

= 1, meaning for values of x near 0,
sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 6.1.1. To find the derivaƟve of f at x = 1, we needed
to evaluate a limit. To find the derivaƟve of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific
number c

do something
to f and c

return
number f ′(c)
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This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

DefiniƟon 6.1.4 DerivaƟve FuncƟon

Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟons all represent the derivaƟve of f:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

Example 6.1.5 Finding the derivaƟve of a funcƟon
Let f(x) = 3x2 + 5x− 7 as in Example 6.1.1. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 6.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computaƟon of f ′(x) affirm these facts.
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Example 6.1.6 Finding the derivaƟve of a funcƟon
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 6.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

So f ′(x) =
−1

(x+ 1)2
. To pracƟce using our notaƟon, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 6.1.7 Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applyingDefiniƟon 6.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we seƩled
for an approximaƟon in Example 6.1.4.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig idenƟty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fracƟons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine funcƟon is a nice
funcƟon. Then again, perhaps this is not enƟrely surprising. The sine funcƟon
is periodic – it repeats itself on regular intervals. Therefore its rate of change
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also repeats itself on the same regular intervals. We should have known the
derivaƟve would be periodic; we now know exactly which periodic funcƟon it is.

Thinking back to Example 6.1.4, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivaƟve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 6.1.8 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 6.1.6.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computaƟon shows that
d
dx
(
x
)
= 1.

We need to also find the derivaƟve at x = 0. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our funcƟon’s definiƟon switches from one piece
to other, we need to consider leŌ and right-hand limits. Consider the following,
where we compute the leŌ and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the leŌ and right hand limits are
not equal. Therefore the limit does not exist at 0, and f is not differenƟable at 0.
So we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump disconƟnuity at 0; see Figure 6.1.7.
So f(x) = |x| is differenƟable everywhere except at 0.

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
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.....
π
2

.

0.5

.

1

.

x

.

y

Figure 6.1.9: A graph of f ′(x) in Example
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does not always cause trouble.

Example 6.1.9 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2 . See Figure 6.1.8.

SÊ½çã®ÊÄ Using Example 6.1.7, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We sƟll need to find f ′(π/2). NoƟce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/2, uƟlizing again leŌ and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0.

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0.

Since both the leŌ and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 6.1.9 for a graph of this funcƟon.

Recall we pseudo–defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure 6.1.6. Even though the func-
Ɵon f in Example 6.1.9 is piecewise–defined, the transiƟon is “smooth” hence it
is differenƟable. Note how in the graph of f in Figure 6.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”
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Exercises 6.1
Terms and Concepts
1. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
Ɵons 6.1.1 and 6.1.4.

5. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems
In Exercises 7 – 14, use the definiƟon of the derivaƟve to com-
pute the derivaƟve of the given funcƟon.

7. f(x) = 6

8. f(x) = 2x

9. f(t) = 4− 3t

10. g(x) = x2

11. h(x) = x3

12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x

14. r(s) = 1
s− 2

In Exercises 15 – 22, a funcƟon and an x–value c are given.
(Note: these funcƟons are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equaƟon of the tangent line at x = c.
(b) Give the equaƟon of the normal line at x = c.

15. f(x) = 6, at x = −2.

16. f(x) = 2x, at x = 3.

17. f(x) = 4− 3x, at x = 7.

18. g(x) = x2, at x = 2.

19. h(x) = x3, at x = 4.

20. f(x) = 3x2 − x+ 4, at x = −1.

21. r(x) = 1
x
, at x = −2.

22. r(x) = 1
x− 2

, at x = 3.

In Exercises 23 – 26, a funcƟon f and an x–value a are given.
Approximate the equaƟon of the tangent line to the graph of
f at x = a by numerically approximaƟng f ′(a), using h = 0.1.

23. f(x) = x2 + 2x+ 1, x = 3

24. f(x) = 10
x+ 1

, x = 9

25. f(x) = ex, x = 2

26. f(x) = cos x, x = 0

27. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definiƟon, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).
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28. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definiƟon, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).
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In Exercises 29 – 32, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).
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In Exercises 33 – 34, a graph of a funcƟon g(x) is given. Using
the graph, answer the following quesƟons.

1. Where is g(x) > 0?
2. Where is g(x) < 0?
3. Where is g(x) = 0?

1. Where is g′(x) < 0?
2. Where is g′(x) > 0?
3. Where is g′(x) = 0?
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In Exercises 35 – 36, a funcƟon f(x) is given, along with its do-
main and derivaƟve. Determine if f(x) is differenƟable on its
domain.

35. f(x) =
√

x5(1− x), domain = [0, 1], f ′(x) = (5− 6x)x3/2

2
√
1− x

36. f(x) = cos
(√

x
)
, domain = [0,∞), f ′(x) = −

sin
(√

x
)

2
√
x

Review

37. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

38. Use the BisecƟon Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

39. Give intervals on which each of the following funcƟons are
conƟnuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

40. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f conƟnu-
ous?
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Note: The original textbook, having been
wriƩen in the USA, used primarily impe-
rial units. We considered converƟng ev-
erything to metric, including the amuse-
ment park example, but this would have
involved a fair amount of work, including
replacing several of the diagrams in the
previous secƟon. We feel confident that
the typical Canadian student is capable
of working in either system of measure-
ment.

6.2 InterpretaƟons of the DerivaƟve

6.2 InterpretaƟons of the DerivaƟve
The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #1: Instantaneous Rate of Change

The previous secƟon started with an example of using the posiƟon of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is oŌen used when introducing the derivaƟve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posiƟon. In general, if f is a funcƟon of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
Ɵve answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When Ɵme changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “90
km/h.” Fiveminutes later, youwonder how far you have travelled. Certainly, lots
of things could have happened in those 5 minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to 30 km/h as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximaƟon of
the distance travelled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of 90 km/h with a Ɵme of 5/60 hours. Hence we would approxi-
mate the distance travelled as 7.5 km.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 Ō/s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were
acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon
of x, i.e., y = f(x) for some funcƟon f, and y is measured in metres and x in
seconds, then the units of y′ = f ′ are “metres per second,” commonly wriƩen
as “m/s.” In general, if y is measured in units P and x is measured in unitsQ, then
y′ will be measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like
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behaviour of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

Example 6.2.1 The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the populaƟon of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the populaƟon grew by about 28, 800 ·156 = 4, 492, 800 people.

Example 6.2.2 The meaning of the derivaƟve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
iƟve) profit making just one widget; the start–up costs will likely exceed $10.
MathemaƟcally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

SÊ½çã®ÊÄ The equaƟon P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other informaƟon to use, our best approximaƟon
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance travelled assumed the rate of change was constant.
In Examples 6.2.1 and 6.2.2 we made similar approximaƟons. We were given
rate of change informaƟon which we used to approximate total change. Nota-
Ɵonally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon

One of the most fundamental applicaƟons of the derivaƟve is the study of
moƟon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s couldmeasure the height of a projecƟle or the distance an object has
travelled.

Let’s let s(t)measure the distance travelled, in feet, of an object aŌer t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v ′(t), gives the instantaneous rate of226
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Figure 6.2.1: A graph of f(x) = x2.

6.2 InterpretaƟons of the DerivaƟve

velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v ′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = 32 Ō/s2 or g = 9.8 m/s2. What do these numbers mean?

A constant acceleraƟon of 32( Ō/s)/s means that the velocity changes by 32
Ō/s each second. For instance, let v(t) measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while travelling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −32 Ō/s2. If v(1) = 20 Ō/s, then
when t = 2, the velocity will have decreased by 32 Ō/s; that is, v(2) = −12 Ō/s.
We can conƟnue: v(3) = −44 Ō/s, and we can also figure that v(0) = 42 Ō/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 6.2.1 The DerivaƟve and MoƟon

1. Let s(t) be the posiƟon funcƟon of an object. Then s ′(t) is the
velocity funcƟon of the object.

2. Let v(t) be the velocity funcƟon of an object. Then v ′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #2: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 6.2.3 Understanding the derivaƟve: the rate of change
Consider f(x) = x2 as shown in Figure 6.2.1. It is clear that at x = 3 the funcƟon
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
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Figure 6.2.3: Graphs of f and f ′ in Example
6.2.4, along with tangent lines in (b).
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Figure 6.2.4: Zooming in on f and its tan-
gent line at x = 3 for the funcƟon given
in Examples 6.2.4 and 6.2.5.
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we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at a
parƟcular point. In Figure 6.2.2, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three Ɵmes as fast.

Example 6.2.4 Understanding the graph of the derivaƟve
Consider the graph of f(x) and its derivaƟve, f ′(x), in Figure 6.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 6.2.3(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help beƩer visualize the y value of f ′ at those points.

Example 6.2.5 ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example 6.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 6.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. NoƟce that near x = 3, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 6.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is oŌen useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example 6.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computaƟon. In reality, we oŌen only know two things:

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.
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6.2 InterpretaƟons of the DerivaƟve

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example 6.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 6.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding thederivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.
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Exercises 6.2
Terms and Concepts

1. What is the instantaneous rate of change of posiƟon
called?

2. Given a funcƟon y = f(x), in your own words describe how
to find the units of f ′(x).

3. What funcƟons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours aŌermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of funcƟons f(x) and g(x) are
given. IdenƟfy which funcƟon is the derivaƟve of the other.
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Review
In Exercises 19 – 20, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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6.3 Basic DifferenƟaƟon Rules

6.3 Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+b. What is y ′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y ′, gives the instan-
taneous rate of change; with a linear funcƟon, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = ax2 + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

(ah+ 2ax+ b)

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

Theorem 6.3.1 DerivaƟves of Common FuncƟons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

2. Power Rule:
d
dx
(
xn
)
= nxn−1, where n is an

integer, n > 0.

5.
d
dx

(sin x) = cos x

6.
d
dx

(cos x) = − sin x

7.
d
dx

(ex) = ex

8.
d
dx

(ln x) =
1
x

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have no
rate of change as they are constant. Therefore their derivaƟve is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivaƟves of Power FuncƟons (of the form y = xn) are very
straighƞorward: mulƟply by the power, then subtract 1 from the power. We see
something incredible about the funcƟon y = ex: it is its own derivaƟve. We also
see a new connecƟon between the sine and cosine funcƟons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.
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Figure 6.3.1: A graph of f(x) = x3, along
with its derivaƟve f ′(x) = 3x2 and its tan-
gent line at x = −1.

You may recall from high school that the
binomial coefficients are the numbers
that appear in Pascal’s Triange. Ifwenum-
ber the rows of Pascal’s triangle begin-
ning from the top at row zero, then the
numbers in row n are given by

(n
k

)
, for

k = 0, 1, 2, . . . , n.
In parƟcular, note that:(

n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
=

n(n− 1)
2

,

· · · ,

(
n

n− 1

)
= n,

(
n
n

)
= 1.

Chapter 6 DerivaƟves

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s pracƟce using this theorem.

Example 6.3.1 Using Theorem 6.3.1 to find, and use, derivaƟves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equaƟon of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equaƟon of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equaƟon y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 6.3.1.

It is easy to use DefiniƟon 6.1.4 to verify the Constant Rule, and with a bit of
work we can confirm the Power Rule for small values of n. But how do we know
that the Power Rule holds in general? One way to tackle this problem relies on
a famous result from Algebra: the Binomial Theorem.

Theorem 6.3.2 Binomial Theorem

For any real numbers a and b, and any posiƟve integer n, we have

(a+ b)n = an +
(
n
1

)
an−1b+

(
n
2

)
an−2b2 + · · ·+

(
n

n− 1

)
abn−1 + bn,

where
(n
k

)
(read, “n choose k”) is the binomial coefficient given by(

n
k

)
=

n!
k!(n− k)!

=
n(n− 1) · · · (n− k+ 1)

1 · 2 · · · k
.

With Theorem 6.3.2 in hand, we can quickly establish the Power Rule using
the definiƟon of the derivaƟve. Given f(x) = xn, where n is a posiƟve integer,232
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Figure 6.3.2: The graph y = ax, for three
values of a > 1

6.3 Basic DifferenƟaƟon Rules

we have:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)n − xn

h

= lim
h→0

(xn + nxn−1h+ · · ·+ hn)− xn

h
(Using Theorem 6.3.2)

= lim
h→0

nxn−1h
(n
2
)
xn−2h2 + · · ·+ hn

h
(Cancelling the xn terms)

= lim
h→0

(nxn−1 +

(
n
2

)
xn−2h+ · · ·+ nxhn−2 + hn−1) (Dividing by h)

= nxn−1 (Seƫng h = 0)

The fact that the derivaƟve of sin(x) is cos(x) was established in Example
6.1.7; the fact that the derivaƟve of cos(x) is − sin(x) is established similarly,
and leŌ as an exercise. We aren’t yet in a posiƟon to rigorously establish the
derivaƟve formulas for ex and ln(x), but we can show that it’s at least plausible
that the exponenƟal funcƟon is its own derivaƟve. For f(x) = ex, DefiniƟon 6.1.4
tells us:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

ex · eh − ex

h
(Laws of exponents)

= lim
h→0

ex(eh − 1)
h

(Factoring)

= ex lim
h→0

eh − 1
h

.

It seems we are stuck on this last limit. But noƟce that

lim
h→0

eh − 1
h

= lim
h→0

e0+h − e0

h
= f′(0),

so f ′(x) = f ′(0)ex, where f ′(0) is simply the slope of the tangent line to the
graph y = ex at x = 0. Looking at the graph of y = ax for several values of
a > 1, we see that this slope depends on the value of a. One way of defining
the number e used as the base of the natural exponenƟal is that this is the value
of a such that the slope of the tangent line at x = 0 is exactly one; that is, such
that f′(0) = 1. With this definiƟon, we immediately find that f ′(x) = ex, as
expected.

The derivaƟve of ln(x) can be obtained using the Chain Rule (SecƟon 6.5,
and the fact that eln(x) = x. We will state the result here without proof.

Theorem 6.3.1 gives useful informaƟon, but we will need much more. For
instance, using the theorem, we can easily find the derivaƟve of y = x3, but
it does not tell how to compute the derivaƟve of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next secƟon).
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Chapter 6 DerivaƟves

Theorem 6.3.3 ProperƟes of the DerivaƟve

Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant MulƟple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 6.3.3 allows us to find the derivaƟves of awide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example 6.1.5 that we found, using the limit definiƟon,
the derivaƟve of f(x) = 3x2 + 5x − 7. We can now find its derivaƟve without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedanƟc here, showing every step. Normally we would do all
the arithmeƟc and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Both rules in Theorem 6.3.3 are easily established using the definiƟon of the
derivaƟve. We will leave the Constant MulƟple Rule as an exercise, and demon-
strate that the Sum Rule is true. Suppose that we are given two differenƟable
funcƟons f and g. Recalling how the sum f + g is defined, and using DefiniƟon
6.1.4, we have:

(f+ g)′(x) = lim
h→0

(f+ g)(x+ h)− (f+ g)(x)
h

= lim
h→0

(f(x+ h) + g(x+ h))− (f(x) + g(x))
h

= lim
h→0

(f(x+ h)− f(x)) + (g(x+ h)− g(x))
h

= lim
h→0

f(x+ h)− f(x)
h

+ lim
h→0

g(x+ h)− g(x)
h

= f′(x) + g′(x).

Example 6.3.2 Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
One must make a judgment using whatever seems reasonable. In this example,
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Note: DefiniƟon 6.3.1 comes with the
caveat “Where the corresponding limits
exist.” With f differenƟable on I, it is pos-
sible that f ′ is not differenƟable on all of
I, and so on.

6.3 Basic DifferenƟaƟon Rules

the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 6.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximaƟon is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places aŌer the decimal:
f(3) = 7.1411. Our iniƟal guesswas 7; our tangent line approximaƟonwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate.

Higher Order DerivaƟves

The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its
derivaƟve. The following definiƟon gives a name to this concept and introduces
its notaƟon.

DefiniƟon 6.3.1 Higher Order DerivaƟves

Let y = f(x) be a differenƟable funcƟon on I. The following are defined,
provided the corresponding limits exist.

1. The second derivaƟve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

In general, when finding the fourth derivaƟve and on, we resort to the f (4)(x)
notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is confusing.

Let’s pracƟce using this new concept.

Example 6.3.3 Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

235



Chapter 6 DerivaƟves

SÊ½çã®ÊÄ

1. Using the Power and Constant MulƟple Rules, we have: f ′(x) = 8x. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

NoƟce how all successive derivaƟves will also be 0.

2. We employ Theorem 6.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 6.3.1 and the ConstantMulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

InterpreƟng Higher Order DerivaƟves

What do higher order derivaƟves mean? What is the pracƟcal interpreta-
Ɵon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a posiƟon funcƟon. Then,
as stated in Key Idea 6.2.1, f ′ describes the rate of posiƟon change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t Ō/s and
f ′′(t) = −32 (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.
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Exercises 6.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a funcƟon f(x) where f ′(x) = f(x).

4. Give an example of a funcƟon f(x) where f ′(x) = 0.

5. The derivaƟve rules introduced in this secƟon explain how
to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

7. Give an example of a funcƟonwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second derivaƟve
“means.”

9. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

10. Let f(x) be a funcƟon measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 26, compute the derivaƟve of the given func-
Ɵon.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this idenƟty when b = e, i.e., using loge x =
ln x, with a = 10.

(b) Use part (a) to find the derivaƟve of y = log10 x.
(c) Use part (b) to find the derivaƟve of y = loga x, for

any a > 0, ̸= 1.

In Exercises 27 – 32, compute the first four derivaƟves of the
given funcƟon.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equaƟons of the tangent and
normal lines to the graph of the funcƟon at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
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Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)!

While this answer is simpler than the
Product Rule, it is wrong. If it were true,
then we’d have

d
dx

(x2) = d
dx

(x) · d
dx

(x) = 1 · 1 = 1!

In fact, we’d have d
dx

(xn) = 1 for ev-
ery posiƟve integer n, contradicƟng the
Power Rule.
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Figure 6.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.
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6.4 The Product and QuoƟent Rules
The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = 5x2+ sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

Theorem 6.4.1 Product Rule

Let f and g be differenƟable funcƟons on an open interval I. Then fg is a
differenƟable funcƟon on I, and

(fg) ′(x) = f ′(x)g(x) + f(x)g ′(x).

In the Leibniz notaƟon, the Product Rule is wriƩen

d
dx

(
f(x)g(x)

)
=

(
d
dx

f(x)
)
g(x) + f(x)

(
d
dx

g(x)
)
.

We pracƟce using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 6.4.1 Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = 5x2 sin x. Evaluate the
derivaƟve at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 10x sin x+ 5x2 cos x.

At x = π/2, we have

y ′(π/2) = 10
π

2
sin
(π
2

)
+ 5

(π
2

)2
cos
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
6.4.1. While this does not prove that the Produce Rule is the correct way to han-
dle derivaƟves of products, it helps validate its truth.

We now invesƟgate why the Product Rule is true.

Example 6.4.2 A proof of the Product Rule
Use the definiƟon of the derivaƟve to prove Theorem 6.4.1.

SÊ½çã®ÊÄ By the limit definiƟon, we have

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.
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6.4 The Product and QuoƟent Rules

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x)g(x+h)+f(x)g(x+h), then do some regrouping
as shown.

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x)g(x+ h)

)
+
(
f(x)g(x+ h)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)
h

+ lim
h→0

f(x)g(x+ h)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)− f(x)
h

g(x+ h) + lim
h→0

f(x)g(x+ h)− g(x)
h

(apply limits)

= f ′(x)g(x) + f(x)g ′(x)

NoƟce that when we applied the limit in the last step, we relied on the fact that
since g is assumed to be differenƟable at x, it is conƟnuous at x, and therefore,
lim
h→0

g(x+ h) = g(x).

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

Example 6.4.3 Exploring alternate derivaƟve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′:

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (2x+ 3)(2x2 − 3x+ 1) + (x2 + 3x+ 1)(4x− 3)
=
(
4x3 − 7x+ 3

)
+
(
4x3 + 9x2 − 5x− 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivaƟve of the product is the prod-
uct of the derivaƟves.” Thus we are tempted to say that y ′ = (2x+3)(4x−3) =
8x2 + 6x− 9. Obviously this is not correct.

Example 6.4.4 Using the Product Rule with a product of three funcƟons
Let y = x3 ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three funcƟonswhile the Product Rule
only specifies how to handle a product of two funcƟons. Ourmethod of handling
this problem is to simply group the laƩer two funcƟons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = 3x2
(
ln x cos x

)
+ (x3)

d
dx
(
ln x cos x

)
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The QuoƟent Rule is not hard to use, al-
though it might be a bit tricky to remem-
ber. A useful mnemonic works as follows.
Consider a fracƟon’s numerator and de-
nominator as “HI” and “LO”, respecƟvely.
Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low,
over low low.” Said fast, that phrase
can roll off the tongue, making it easy to
memorize. The “dee high” and “dee low”
parts refer to the derivaƟves of the nu-
merator and denominator, respecƟvely.
As an unexpected side benefit, you will
also have an opportunity to pracƟce your
yodelling.

Chapter 6 DerivaƟves

To evaluate
(
ln x cos x

)′, we apply the Product Rule again:
= 3x2

(
ln x cos x

)
+ (x3)

(1
x
cos x+ ln x(− sin x)

)
= 3x2 ln x cos x+ x3

1
x
cos x+ x3 ln x(− sin x)

Recognize the paƩern in our answer above: when applying the Product Rule to
a product of three funcƟons, there are three terms added together in the final
derivaƟve. Each term contains only one derivaƟve of one of the original func-
Ɵons, and each funcƟon’s derivaƟve shows up in only one term. It is straighƞor-
ward to extend this paƩern to finding the derivaƟve of a product of 4 or more
funcƟons.

We consider one more example before discussing another derivaƟve rule.

Example 6.4.5 Using the Product Rule
Find the derivaƟves of the following funcƟons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= 1 · ln x+ x · 1/x = ln x+ 1.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= ln x+ 1− 1 = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Theorem 6.4.2 QuoƟent Rule

Let f and g be differenƟable funcƟons defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differenƟable on I, and(

f
g

)
′(x) =

f ′(x)g(x)− f(x)g ′(x)
g(x)2

.

Let’s pracƟce using the QuoƟent Rule.
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Figure 6.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

6.4 The Product and QuoƟent Rules

Example 6.4.6 Using the QuoƟent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
5x2

sin x

)
=

10x · sin x− 5x2 · cos x
sin2 x

.

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

Example 6.4.7 Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.
But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beauƟful result. To confirm its truth, we can find the equaƟon of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 6.4.2.

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Example
6.1.7 and stated the derivaƟve of the cosine funcƟon in Theorem 6.3.1. The
derivaƟves of the cotangent, cosecant and secant funcƟons can all be computed
directly using Theorem 6.3.1 and the QuoƟent Rule.

Theorem 6.4.3 DerivaƟves of Trigonometric FuncƟons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
Ɵves of the trigonometric funcƟons that start with “c” have aminus sign in them.
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The only Ɵmes it is really necessary – that
is, worthwhile – to simplify a product or
quoƟent rule derivaƟve on a test is if you
are trying to determine the values of x
at which the derivaƟve is zero (there will
be plenty of that to come!) or in some
cases, if a second derivaƟve is required,
and simplifying first makes that computa-
Ɵon easier. (Also keep in mind that the
person grading your test will be looking
for the product or quoƟent rule paƩern,
so the unsimplified answer is someƟmes
the easiest to idenƟfy as the correct one.)
However, for wriƩen assignments where
you have the luxury of taking your Ɵme
to perfect your presentaƟon, a simplified
answer is usually preferable.

Chapter 6 DerivaƟves

Example 6.4.8 Exploring alternate derivaƟve methods

In Example 6.4.6 the derivaƟve of f(x) =
5x2

sin x
was found using the QuoƟent

Rule. RewriƟng f as f(x) = 5x2 csc x, find f ′ using Theorem 6.4.3 and verify the
two answers are the same.

SÊ½çã®ÊÄ We found in Example 6.4.6 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 10x csc x+ 5x2(− csc x cot x) (now rewrite trig funcƟons)

=
10x
sin x

+ 5x2 · −1
sin x

· cos x
sin x

=
10x
sin x

+
−5x2 cos x

sin2 x
(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. It is up to you if you wish to work to “simplify” your results into a form
that is most readable and useful to you.

The QuoƟent Rule gives other useful results, as shown in the next example.

Example 6.4.9 Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

1. f ′(x) =
0 · x− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
0 · xn − 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivaƟve of y =
1
xn

turned out to be rather nice. It gets beƩer. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 6.4.9)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.
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This is reminiscent of the Power Rule: mulƟply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stricƟon of n > 0.

Theorem 6.4.4 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivaƟve. We demonstrate this concept in an example.

Example 6.4.10 Exploring alternate derivaƟve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the QuoƟent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the QuoƟent Rule gives:

f ′(x) =
(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2

=
2x− 3

x
− x2 − 3x+ 1

x2

=
2x2 − 3x

x2
− x2 − 3x+ 1

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.

f ′(x) = 1− 1
x2
,

the same result as before.

243



Chapter 6 DerivaƟves

Example 6.4.10 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=

(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next secƟon we conƟnue to learn rules that allow us to more easily
compute derivaƟves than using the limit definiƟon directly. We have to memo-
rize the derivaƟves of a certain set of funcƟons, such as “the derivaƟve of sin x
is cos x.” The Sum/Difference, Constant MulƟple, Power, Product and QuoƟent
Rules show us how to find the derivaƟves of certain combinaƟons of these func-
Ɵons. The next secƟon shows how to find the derivaƟves when we compose
these funcƟons together.
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Exercises 6.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the derivaƟve of the given func-
Ɵon.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x
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In Exercises 37 – 40, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π2 ,−
3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested derivaƟve.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 52, use the graph of f(x) to sketch f ′(x).
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6.5 The Chain Rule

6.5 The Chain Rule
We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(x2). We currently
do not know how to compute this derivaƟve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivaƟve of cos x
and 2x as the derivaƟve of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 6.5.4 we’ll see the correct answer, which employs the new rule this
secƟon introduces, the Chain Rule.

Before we define this new rule, recall the notaƟon for composiƟon of func-
Ɵons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differenƟaƟon rule, we note that the rule extends to
mulƟple composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

Example 6.5.1 Exploring similar derivaƟves
Find the derivaƟves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interesƟng fact is that these can be rewriƩen as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A paƩernmight jump out at you; note how the we end upmulƟplying by the old
power and the new power is reduced by 1. We also always mulƟply by (−1).

Recognize that each of these funcƟons is a composiƟon, leƫng g(x) = 1−x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern.

When composing funcƟons, we need to make sure that the new funcƟon is
actually defined. For instance, consider f(x) =

√
x and g(x) = −x2 − 1. The

domain of f excludes all negaƟve numbers, but the range of g is only negaƟve
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numbers. Therefore the composiƟon f
(
g(x)

)
=

√
−x2 − 1 is not defined for

any x, and hence is not differenƟable.
The following definiƟon takes care to ensure this problem does not arise.

We’ll focus more on the derivaƟve result than on the domain/range condiƟons.

Theorem 6.5.1 The Chain Rule

Let g be a differenƟable funcƟon on an interval I, let the range of g be a
subset of the interval J, and let f be a differenƟable funcƟon on J. Then
y = f(g(x)) is a differenƟable funcƟon on I, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 6.5.1.

Example 6.5.2 Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the following funcƟons, as given in
Example 6.5.1.

SÊ½çã®ÊÄ Example 6.5.1 ended with the recogniƟon that each of the
given funcƟons was actually a composiƟon of funcƟons. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the

equaƟon for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 6.5.2 demonstrated a parƟcular paƩern: when f(x) = xn, then
y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.
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Figure 6.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

6.5 The Chain Rule

Theorem 6.5.2 Generalized Power Rule

Let g(x) be a differenƟable funcƟon and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the derivaƟve of funcƟons like y = (3x2− 5x+
7 + sin x)20. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

We now consider more examples that employ the Chain Rule.

Example 6.5.3 Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 6.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 6.5.1.
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The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

Example 6.5.5 Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.
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6.5 The Chain Rule

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerward.

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Example 6.5.6 Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(6x3 − 7x) funcƟon
“inside” the f(x) = x5 funcƟon; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

It is a tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrarily
complicated funcƟons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 6.5.7 Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It
employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.

f ′(x) =
ln(x2 + 5x4)·

[(
x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)

)
−2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2)− sin2(e4x)

)
· 2x+ 20x3

x2 + 5x4


(
ln(x2 + 5x4)

)2 .
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The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that derivaƟves can be computed systemaƟ-
cally, no maƩer how arbitrarily complicated the funcƟon is.

The Chain Rule also has theoreƟc value. That is, it can be used to find the
derivaƟves of funcƟons that we have not yet learned as we do in the following
example.

Example 6.5.8 The Chain Rule and exponenƟal funcƟons
Use the Chain Rule to find the derivaƟve of y = 2x.

SÊ½çã®ÊÄ We only know how to find the derivaƟve of one exponenƟal
funcƟon, y = ex. We can accomplish our goal by rewriƟng 2 in terms of e.
Recalling that ex and ln x are inverse funcƟons, we can write

2 = eln 2 and so y = 2x =
(
eln 2
)x

= ex(ln 2).

The funcƟon is now the composiƟon y = f(g(x)), with f(x) = ex and g(x) =
x(ln 2). Since f ′(x) = ex and g ′(x) = ln 2, the Chain Rule gives

y ′ = ex(ln 2) · ln 2.

Recall that the ex(ln 2) term on the right hand side is just 2x, our original funcƟon.
Thus, the derivaƟve contains the original funcƟon itself. We have

y ′ = y · ln 2 = 2x · ln 2.

We can extend this process to use any base a, where a > 0 and a ̸= 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the derivaƟve rule of ex, allows us to find the derivaƟves of all exponenƟal
funcƟons.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 6.5.3 DerivaƟves of ExponenƟal FuncƟons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differenƟable for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule NotaƟon

It is instrucƟve to understand what the Chain Rule “looks like” using “ dydx” no-
taƟon instead of y ′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where
u = g(x) is a funcƟon of x, as stated in Theorem 6.5.1. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:
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6.5 The Chain Rule

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not cancelling these terms; the derivaƟve
notaƟon of dy

du is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behaviour. It makes applying the Chain
Rule easy with mulƟple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 6.5.2. The gears have 36, 18, and 6 teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revoluƟon is twice as fast
as the rate at which the x gear makes a revoluƟon. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revoluƟon of u causes 3 revoluƟons of y: dy

du = 3. How does
y change with respect to x? For each revoluƟon of x, y revolves 6 Ɵmes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So oŌen the
funcƟons that we deal with are composiƟons of two or more funcƟons, requir-
ing us to use this rule to compute derivaƟves. It is also oŌen used in real life
when actual funcƟons are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the Chain Rule, we can find

dy
dx .

In the next secƟon, we use the Chain Rule to jusƟfy another differenƟaƟon
technique. There are many curves that we can draw in the plane that fail the
“verƟcal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay sƟll be interested in finding slopes of tangent lines to the circle at
various points. The next secƟon shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situaƟons, implicit differenƟaƟon is indispensable.
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Exercises 6.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the derivaƟve of the given func-
Ɵon.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1t )e
5t2

35. f(x) =
sin
(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equaƟons of tangent and normal
lines to the graph of the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.
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42. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the derivaƟve.

Review
43. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

44. Find the derivaƟves of the following funcƟons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Note: The extreme values of a funcƟon
are “y” values, values the funcƟon aƩains,
not the input values.

Note: While Theorem 7.1.1 is intuiƟvely
plausible, a rigorous proof is actually
quite technical, and beyond the scope of
this text.
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Figure 7.1.1: Graphs of funcƟonswith and
without extreme values.
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Our study of limits led to conƟnuous funcƟons, a certain class of funcƟons that
behave in a parƟcularly nice way. Limits then gave us an even nicer class of
funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

7.1 Extreme Values
Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object travelled. If a funcƟon describes the value of a stock, we might want
to know the highest/lowest values the stock aƩained over the past year. We call
such values extreme values.

DefiniƟon 7.1.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 7.1.1. The funcƟon displayed in (a) has a maximum, but
no minimum, as the interval over which the funcƟon is defined is open. In (b),
the funcƟon has a minimum, but no maximum; there is a disconƟnuity in the
“natural” place for the maximum to occur. Finally, the funcƟon shown in (c) has
both a maximum and a minimum; note that the funcƟon is conƟnuous and the
interval on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.

Theorem 7.1.1 The Extreme Value Theorem

Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. AŌer the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.
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Chapter 7 The Graphical Behaviour of FuncƟons

Example 7.1.1 ApproximaƟng extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 7.1.2. Approxi-
mate the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximaƟon, we
approximate the extreme values to be 25 and−27.

NoƟce how theminimum value came at “the boƩom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the locaƟon of an extreme value for some interval is important, leading us to
a definiƟon of a relaƟve maximum. In short, a “relaƟve max” is a y-value that’s
the largest y-value “nearby.”

DefiniƟon 7.1.2 RelaƟve Minimum and RelaƟve Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a relaƟve minimum of f. We also say that
f has a relaƟve minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maxi-
mum value, then f(c) is a relaƟve maximum of f. We also say that
f has a relaƟve maximum at (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve ex-
trema of f.

We briefly pracƟce using these definiƟons.

Example 7.1.2 ApproximaƟng relaƟve extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 7.1.3. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relaƟve maximum at the point (0, 1).

We approximate the relaƟve minima to be 0 and−5.4; we approximate the
relaƟve maximum to be 1.

It is straighƞorward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 7.1.3 ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x−1)2/3+2, shown in Figure 7.1.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (1, 2). In fact, the graph suggests that not only
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7.1 Extreme Values

is this point a relaƟve minimum, y = f(1) = 2 is the minimum value of the
funcƟon.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either 0 or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

DefiniƟon 7.1.3 CriƟcal Numbers and CriƟcal Points

Let f be defined at c. The value c is a criƟcal number of f if f ′(c) = 0 or
f ′(c) is not defined. The value f(c) is then referred to as a criƟcal value
of f.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of f.

Theorem 7.1.2 RelaƟve Extrema and CriƟcal Points

Let a funcƟon f be defined on an open interval I containing c, and let f
have a relaƟve extremumat the point (c, f(c)). Then c is a criƟcal number
of f.

Be careful to understand that this theorem states “RelaƟve extrema on open
intervals occur at criƟcal points.” It does not say “All criƟcal numbers produce
relaƟve extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straighƞorward to determine that x = 0 is a criƟcal number of f. However, f has
no relaƟve extrema, as illustrated in Figure 7.1.5.

Let us pause briefly to try to understand why Theorem 7.1.2 is true. To be-
gin, suppose that our funcƟon f has a relaƟve maximum at the point (c, f(c)).
(The argument for a relaƟve minimum is similar.) If f′(c) is undefined, then c is a
criƟcal number, and there is nothing to prove, so we suppose that f is differen-
Ɵable at c, and try to see why it must be that f′(c) = 0. Consider the difference
quoƟent

f′(c) = lim
h→0

f(c+ h)− f(c)
h

.

Since f has a relaƟve maximum at c, we know that f(c) ≥ f(c+h) for sufficiently
small values of h, so f(c + h) − f(c) ≤ 0. Since f′(c) exists, we know that the
above limitmust exist; in parƟcular, the leŌ-hand limitmust equal the right hand
limit. On the other hand, since f(c+ h)− f(c) ≤ 0, we have

lim
h→0−

f(c+ h)− f(c)
h

≥ 0,

since h < 0 in the leŌ-hand limit, while

lim
h→0+

f(c+ h)− f(c)
h

≤ 0,

since h > 0 for the right-hand limit. The only way these two limits can agree is
if both limits are equal to zero which proves that f′(c) = 0.
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Chapter 7 The Graphical Behaviour of FuncƟons

Theorem7.1.1 states that a conƟnuous funcƟonon a closed intervalwill have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at criƟcal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea 7.1.1 Finding Extrema on a Closed Interval

Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the criƟcal numbers of f in [a, b].

3. Evaluate f at each criƟcal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

Example 7.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
7.1.6(a).

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 7.1.1. We first eval-
uate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the criƟcal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 =
6(x + 2)(x − 1); therefore the criƟcal values of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only
criƟcal number in our interval gives: f(1) = −7.

The table in Figure 7.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analyƟc algorithm and did not depend on any visualizaƟon. Figure 7.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

Example 7.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
7.1.1. EvaluaƟng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.
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7.1 Extreme Values

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise man-
ner; it is

f ′(x) =

{
2(x− 1) x < 0
1 x > 0

.

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f does
not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from the
right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0, so we find no criƟcal values from seƫng f ′(x) = 0.

So we have three important x values to consider: x = −4, 2 and 0. Evaluat-
ing f at each gives, respecƟvely, 25, 3 and 1, shown in Figure 7.1.7(b). Thus the
absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the
graph of f.

Example 7.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 7.1.8(a).

SÊ½çã®ÊÄ We again use Key Idea 7.1.1. EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posiƟve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 7.1.8(b). In this

example we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 7.1.8 confirms our results.

We consider one more example.

Example 7.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2, graphed in Figure 7.1.9(a).

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. EvaluaƟng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 7.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter 2). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 7.1
Terms and Concepts

1. Describe what an “extreme value” of a funcƟon is in your
own words.

2. Sketch the graph of a funcƟon f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relaƟve
maxima in your own words.

4. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

6. Fill in the blanks: The criƟcal points of a funcƟon f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, idenƟfy each of the marked points as being
an absolute maximum or minimum, a relaƟve maximum or
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1
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14. f(x) = 3√x4 − 2x+ 1
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16. f(x) =
{

x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the funcƟon
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x
2y− y2x = 1.

28. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Figure 7.2.1: A graph of a funcƟon f used
to illustrate the concepts of increasing
and decreasing.

Note: Some authors define a funcƟon to
be increasing if f(a) ≤ f(b) whenever
a < b (with a similar definiƟon for de-
creasing), and say that a funcƟon f sat-
isfying our definiƟon is strictly increasing
(similarly, strictly decreasing). This is a
perfectly reasonable definiƟon, although
it does have the odd consequence that,
with this definiƟon, a constant funcƟon
would be simultaneously increasing and
decreasing.
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Figure 7.2.2: Examining the secant line of
an increasing funcƟon.

Chapter 7 The Graphical Behaviour of FuncƟons

7.2 Increasing and Decreasing FuncƟons
Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure 7.2.1, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

DefiniƟon 7.2.1 Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

A funcƟon is nonincreasing when a < b in I implies f(a) ≥ f(b), with a
similar definiƟon holding for nondecreasing.

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differenƟable funcƟon on an open interval I, such as the one shown in Figure
7.2.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posiƟve.” Theorem 7.2.1 below turns this around by staƟng “If f ′ is posiƟve,
then f is increasing.” This leads us to a method for finding when funcƟons are
increasing and decreasing.
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Note: Parts 1 & 2 of Theorem 7.2.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

Note: Recall that not all points c where
f ′(c) is undefined are criƟcal points. It
could be that f ′(c) is undefined because
c is not in the domain of f; for example, at
a verƟcal asymptote. Even though these
points are not criƟcal points, we sƟll in-
clude them in our sign diagram, since it’s
possible that f ′ changes sign at such a
point.

7.2 Increasing and Decreasing FuncƟons

Theorem 7.2.1 Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differenƟable on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is conƟnuous on [a, b], it follows from the Intermediate Value
Theorem that theremust be some value c between a and bwhere f ′(c) = 0. If f ′
is not conƟnuous on [a, b], it can happen that f ′ changes sign at a point cwhere
f ′(c) is undefined, so we should account for these points as well. This leads us
to the following method for finding intervals on which a funcƟon is increasing or
decreasing.

Key Idea 7.2.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

To implement Key Idea 7.2.1, we use a visual aid called a sign diagram for f ′.
A sign diagram for a funcƟon g consists of the following:

• A number line represenƟng the domain of the funcƟon g.

• A solid dot marking each point x where g(x) = 0.

• A hollow dot marking each point where g(x) is undefined.

• Between each pair of dots, either a + sign or − sign to indicate whether
the funcƟon is posiƟve or negaƟve on that interval.

We demonstrate using this process in the following example.

Example 7.2.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 7.2.1, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
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Figure 7.2.4: A graph of f(x) in Example
7.2.1, showing where f is increasing and
decreasing.

Chapter 7 The Graphical Behaviour of FuncƟons

three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 7.2.3.

−1 1
3f ′ > 0 incr f ′ < 0 decr f ′ > 0 incr

+ − +

Figure 7.2.3: Sign diagram for f ′ in Example 7.2.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculaƟons by considering Figure 7.2.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”266



7.2 Increasing and Decreasing FuncƟons

In SecƟon 7.1 we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

Theorem 7.2.2 First DerivaƟve Test

Let f be differenƟable on an interval I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is
a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is
a relaƟve minimum of f.

3. If f ′ is posiƟve (or, negaƟve) before and aŌer c, then f(c) is not a
relaƟve extrema of f.

Example 7.2.2 Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 7.2.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 7.2.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Using the QuoƟent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two criƟcal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).
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Figure 7.2.6: A graph of f(x) in Example
7.2.2, showing where f is increasing and
decreasing.

Note: with a bit of pracƟce, you might
find that you can fill out sign diagrams
quickly, without needing to use test val-
ues in each interval. One strategy is the
following: start on the far leŌ (or far
right). Determine the sign in the first in-
terval, and work leŌ-to-right (or right-to-
leŌ). Each Ɵme you pass a point where f ′
is zero or undefined, check the factored
expression for f ′. Did this point come
from an even power, or an odd power?
If the power is even, leave the sign un-
changed. If the power is odd, change
the sign. In Example 7.2.2, the criƟcal
numbers −1 and 3 come from odd pow-
ers. (Recall (x + 1) = (x + 1)1.) The
verƟcal asymptote contributes the even
power (x−1)2 in the denominator. Thus,
we see sign changes at−1 and 3, but the
sign is the same on either side of 1.

Chapter 7 The Graphical Behaviour of FuncƟons

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1) ∪ (3,∞) and is decreasing
on the set (−1, 1)∪(1, 3). Since at x = −1, the sign of f ′ switched from posiƟve
to negaƟve, Theorem 7.2.2 states that f(−1) is a relaƟve maximum of f. At x =
3, the sign of f ′ switched from negaƟve to posiƟve, meaning f(3) is a relaƟve
minimum. At x = 1, f is not defined, so there is no relaƟve extrema at x = 1.

−1 31

f ′ > 0 incr

+

f ′ < 0 decr

−

f ′ < 0 decr

−

f ′ > 0 incr

+

rel.
max

rel.
min

Figure 7.2.5: Sign diagram for f ′ in Example 7.2.2.

This is summarized in the number line shown in Figure 7.2.5. Also, Figure
7.2.6 shows a graph of f, confirming our calculaƟons. This figure also shows
f ′, again demonstraƟng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 7.2.3 Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking a derivaƟve. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking the derivaƟve.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).
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Figure 7.2.8: A graph of f(x) in Example
7.2.3, showing where f is increasing and
decreasing.

7.2 Increasing and Decreasing FuncƟons

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 criƟcal values, breaking the number line into
4 subintervals as shown in Figure 7.2.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.

−1 10

f ′ < 0 incr

−

f ′ > 0 decr

+

f ′ < 0 decr

−

f ′ > 0 incr

+
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min

rel.
min

rel.
max

Figure 7.2.7: Sign diagram for f′ in Example 7.2.3.

Weconclude by staƟng that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from negaƟve to posiƟve around
x = −1 and x = 1, meaning by Theorem 7.2.2 that f(−1) and f(1) are relaƟve
minima of f. As the sign of f ′ changes from posiƟve to negaƟve at x = 0, we
have a relaƟve maximum at f(0). Figure 7.2.8 shows a graph of f, confirming our
result. We also graph f ′, highlighƟng once more that f is increasing when f ′ > 0
and is decreasing when f ′ < 0.

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.

269



Exercises 7.2
Terms and Concepts

1. In your own words describe what it means for a funcƟon to
be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: FuncƟons always switch from increasing to decreasing,
or decreasing to increasing, at criƟcal points.

6. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises 7 – 14, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem 7.2.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a funcƟon f(x) is given.
(a) Give the domain of f.
(b) Find the criƟcal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First DerivaƟve Test to determine whether

each criƟcal point is a relaƟve maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

Review
25. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

26. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 7.3.1: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.
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Figure 7.3.2: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.

7.3 Concavity and the Second DerivaƟve

7.3 Concavity and the Second DerivaƟve
Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = 0 or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

DefiniƟon 7.3.1 Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from leŌ to right, the slopes of the tangent lines
will be increasing. Consider Figure 7.3.1, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “levelling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 7.3.2, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “levelling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.

Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 7.3.1 Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.
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Figure 7.3.5: A sign diagram for f ′′ deter-
mining the concavity of f in Example 7.3.1.
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If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon 7.3.2 Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 7.3.4 shows a graph of a funcƟon with inflecƟon points labelled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem 7.3.2 Points of InflecƟon

If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′(c) = 0
or f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.

Example 7.3.1 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x3 − 3x+ 1. Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflecƟon points, we use Theorem 7.3.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 7.3.5 illustrates the process of determining con-
cavity; Figure 7.3.6 shows a graph of f and f ′′, confirming our results. NoƟce how
f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 7.3.2 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(x2 − 1). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.
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Figure 7.3.8: A graph of f(x) and f ′′(x) in
Example 7.3.2.
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Figure 7.3.9: A graph of S(t) in Example
7.3.3,modelling the sale of a product over
Ɵme.

7.3 Concavity and the Second DerivaƟve

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflecƟon at x = ±1 as
they are not part of the domain, but we must sƟll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
7.3.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (c2 + 3) will be posiƟve and the 2c term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negaƟve, the term (c2 + 3) in the numerator will be posiƟve, and
the term (c2 − 1)3 in the denominator will be negaƟve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).

−1 10

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

Figure 7.3.7: Sign diagram for f ′′ in Example 7.3.2.

We conclude that f is concave up on (−1, 0)∪ (1,∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflecƟon, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 7.3.8. NoƟce how
f is concave upwhenever f ′′ is posiƟve, and concave downwhen f ′′ is negaƟve.

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest negaƟvely–sloped tangent
line.

We uƟlize this concept in the next example.

Example 7.3.3 Understanding inflecƟon points
The sales of a certain product over a three-year span are modelled by S(t) =
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 7.3.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.
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Figure 7.3.11: A graph of f(x) = x4.
Clearly f is always concave up, despite the
fact that f ′′(x) = 0 when x = 0. It this
example, the possible point of inflecƟon
(0, 0) is not a point of inflecƟon.
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SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Seƫng S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the negaƟve value of t since it does not lie in

the domain of our funcƟon S).
This is both the inflecƟon point and the point of maximum decrease. This

is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 7.3.10. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “levelling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 7.3.11.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure 7.3.12 for a visual-
izaƟon of this.

Theorem 7.3.3 The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.

Example 7.3.4 Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
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Figure 7.3.13: A graph of f(x) in Example
7.3.4. The second derivaƟve is evaluated
at each criƟcal point. When the graph is
concave up, the criƟcal point represents
a local minimum; when the graph is con-
cave down, the criƟcal point represents a
local maximum.

7.3 Concavity and the Second DerivaƟve

are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 7.3.13.

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter
5 we saw how limits explained asymptoƟc behaviour. In the next secƟon we
combine all of this informaƟon to produce accurate sketches of funcƟons.
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Exercises 7.3
Terms and Concepts

1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems

In Exercises 5 – 14, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem 7.3.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a funcƟon f(x) is given.
(a) Find the possible points of inflecƟon of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)

276



37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a relaƟve maximum or minimum. (Note:
these are the same funcƟons as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2
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Chapter 7 The Graphical Behaviour of FuncƟons

7.4 Curve Sketching

We have been learning how we can understand the behaviour of a funcƟon
based on its first and second derivaƟves. While we have been treaƟng the prop-
erƟes of a funcƟon separately (increasing and decreasing, concave up and con-
cave down, etc.), we combine them here to produce an accurate graph of the
funcƟon without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We are aƩempƟng to understand the behaviour of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behaviour we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to staƟng that one understands howan engineworks aŌer looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea 7.4.1 Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is 0 or where negaƟves appear under the radical.

2. Find the x- and y-intercepts of f, if possible; construct a sign dia-
gram for f.

3. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item 2 above). Use your sign diagram to deter-
mine whether f(x) is approaching∞ or infty on either side of each
verƟcal asymptote.

4. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behaviour of the funcƟon.

5. Compute f ′, and find the criƟcal points of f.

(conƟnued)
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7.4 Curve Sketching

Key Idea 7.4.1 Curve Sketching – ConƟnued

6. Construct a sign diagram for f ′; classify the criƟcal points using the
first derivaƟve test. Determine the intervals on which f is increas-
ing or decreasing.

7. Compute f ′′ and find the possible points of inflecƟon of f.

8. Construct a sign diagram for f ′′, and determine the intervals on
which the graph of f is concave up or concave down.

9. Plot the intercepts and asymptotes of f on a set of coordinate axes.
Roughly sketch the behaviour of f near the asymptotes. Then plot
the criƟcal points and inflecƟon points.

10. Sketch the graph of f by connecƟng the points ploƩed so far with
curves exhibiƟng the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.

Example 7.4.1 Curve sketching
Use Key Idea 7.4.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. The y-intercept is given by f(0) = 5. Determining the x-intercepts would
involve finding the (quite likely irraƟonal) zeros of a cubic polynomial, so
we skip this step for now. (We may have to seƩle for approximate ze-
ros later.) Since we don’t know the zeros of f, we can’t construct a sign
diagram for f.

3. There are no verƟcal asymptotes, since the domain of f is R.

4. We determine the end behaviour using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes. (But it is sƟll useful to know
the direcƟon in which the graph is headed at either end.)

5. Find the criƟcal points of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
QuadraƟc Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

6. Construct a sign diagram for f ′. We found that the criƟcal points of f are

c1 =
10−

√
37

9
<

10+
√
37

9
= c2.

With f ′(x) = 9(x− c1)(x− c2)we quickly see that f ′(x) > 0 for x < c1 or
x > c2, and f ′(x) < 0 for c1 < x < c2.
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Figure 7.4.4: Sketching f in Example 7.4.1.
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The sign diagram for f ′ is given by:

c1 c2

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 7.4.1: Sign diagram for f ′ in Example 7.4.1.

From the sign diagram, we see that f is increasing on (−∞, c1) ∪ (c2,∞)
(where f ′(x) > 0, and f is decreasing on (c1, c2) (where f ′(x) < 0).
Since f ′ changes from posiƟve to negaƟve at c1, we know that (c1, f(c1))
is a local maximum, and since f ′ changes from negaƟve to posiƟve at c2,
we know that (c2, f(c2)) is a local minimum.

7. Find the possible points of inflecƟon of f. We compute f ′′(x) = 18x− 20.
We have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

8. Construct a sign diagram for f ′′. We have only one zero for f ′′, and we
easily see that f ′′(x) > 0 for x > 10/9, and f ′′(x) < 0 for x < 10/9. The
sign diagram for f ′′ is given below, with the criƟcal points also indicated
for reference:

c1c2 10
9

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.2: Sign diagram for f ′′ in Example 7.4.1.

9. We plot the appropriate points on axes as shown in Figure 7.4.4(a) and
connect the points with straight lines. In Figure 7.4.4(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 7.4.4(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 7.4.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 7.4.1.

1. In determining the domain, we assume it is all real numbers and look for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. The numerator of f factors as (x − 2)(x + 1), so f(x) = 0 for x = −1
and x = 2; these are the x-intercepts of f. The y-intercept is given by
f(0) = 1/3.
Our funcƟon has two zeros and two points at which it is undefined. Note
that f(x) changes sign at each of these points, so we need to indicate each
of them in our sign diagram. We use hollow dots to indicate the points at
which f is undefined, giving us the following sign diagram:
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7.4 Curve Sketching

−2 3−1 2

+

f > 0

+

f > 0

+

f > 0

−

f < 0

−

f < 0

Figure 7.4.3: Sign diagram for f in Example 7.4.2.

3. We see from the sign diagram for f in Figure 7.4.3 that f has verƟcal asymp-
totes at x = −2 and x = 3; moreover, we can deduce the following
asymptoƟc behaviour: at x = −2

lim
x→−2−

f(x) = +∞ and lim
x→−2+

f(x) = −∞,

and at x = 3

lim
x→3−

f(x) = −∞ and lim
x→3+

f(x) = +∞.

4. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

5. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

,

so f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2. The sign diagram for f ′ is given as follows:

−2 1
2

3

+

f ′ > 0 incr

+

f ′ > 0 incr

−

f ′ < 0 decr

−

f ′ < 0 decr

Figure 7.4.5: Sign diagram for f ′ in Example 7.4.2.

From the sign diagram for f ′, we see that f ′(x) changes from posiƟve to
negaƟve at x = 1/2, so we have a local maximum at (1/2, f(1/2)). We
also see that f is increasing on (−∞,−2) ∪ (−2, 1/2) and decreasing on
(1/2, 3) ∪ (3,∞).

6. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

7. We find that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3. The sign diagram is given by:

−2 3

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.6: Sign diagram for f ′′ in Example 7.4.2.
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Figure 7.4.9: Sketching f in Example 7.4.2.

Chapter 7 The Graphical Behaviour of FuncƟons

From the sign diagramwe see that the graphof f is concaveupon (−∞,−2)∪
(3,∞) and concave down on (−2, 3)

8. In Figure 7.4.9(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure 7.4.9(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 7.4.9(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 7.4.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 7.4.1.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. The x-intercepts of f are (−1, 0), and (2, 0), and the y-intercept is (0,−5/2).
The sign diagram of f is given below:

−1 2

+

f > 0

−

f < 0

+

f > 0

Figure 7.4.7: Sign diagram for f in Example 7.4.3.

3. Since the domain of f is R, there are no verƟcal asymptotes.

4. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

5. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

6. The sign diagram for f ′ is given by:

−4 0

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 7.4.8: Sign diagram for f ′ in Example 7.4.3.

From the sign diagram,we see that f ′(x) changes fromposiƟve to negaƟve
at x = −4, so (−4, f(−4)) is a relaƟve maximum, and f ′(x) changes from
negaƟve to posiƟve at x = 0, so (0, f(0)) is a relaƟve minimum. We also
see that f is increasing on (−∞,−4)∪ (0,∞), and decreasing on (−4, 0).
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Figure 7.4.12: Sketching f in Example
7.4.3.

7.4 Curve Sketching

7. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead
approximate the roots (with the help of a computer) at c1 = −5.759,
c2 = −1.305 and c3 = 1.064. The sign diagram for f ′′ is given by:

c1 c2 c3

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 7.4.10: Sign diagram for f ′′ in Example 7.4.3.

8. In Figure 7.4.12(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
7.4.12(b), we add concavity. Figure 7.4.12(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 7.4.11, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x
is relaƟvely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behaviour” is accurate.) In fact, in the interval of
length 0.2 centered around π/2, MathemaƟca plots 72 of the 431 points plot-
ted; that is, it plots about 17% of its points in a subinterval that accounts for
about 3% of the total interval length.
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1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 7.4.11: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behaviour of the
funcƟon at a fewkey places.” In Example 7.4.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.
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Exercises 7.4
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

4. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

5. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

6. T/F: When sketching graphs of funcƟons, one need not plot
any points at all.

Problems
In Exercises 7 – 12, pracƟce using Key Idea 7.4.1 by applying
the principles to the given funcƟons with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given funcƟon us-
ing Key Idea 7.4.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2 . Use this informaƟon to jusƟfy the sketch of the

unit circle.
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Chapter 7 The Graphical Behaviour of FuncƟons

We have spent considerable Ɵme considering the derivaƟves of a funcƟon
and their applicaƟons. In this secƟon, we are going to starƟng thinking in “the
other direcƟon.” That is, given a funcƟon f(x), we are going to consider funcƟons
F(x) such that F ′(x) = f(x). Here, wewill only consider very basic examples, and
leave most of the heavy liŌing to later courses. The importance of anƟderiva-
Ɵves becomes apparent in Math 1560, once integraƟon and the Fundamental
Theorem of Calculus have been introduced. More advanced techniques for find-
ing anƟderivaƟves are taught in Math 2560.

7.5 AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

DefiniƟon 7.5.1 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
We oŌen use upper-case leƩers to denote anƟderivaƟves.

Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem 7.5.1 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.
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7.5 AnƟderivaƟves and Indefinite IntegraƟon

Given a funcƟon f defined on an interval I and one of its anƟderivaƟves F,
we know all anƟderivaƟves of f on I have the form F(x) + C for some constant
C. Using DefiniƟon 7.5.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 7.5.1: Understanding the indefinite integral notaƟon.

Figure 7.5.1 shows the typical notaƟon of the indefinite integral. The inte-
graƟon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.”

We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Example 7.5.1 EvaluaƟng indefinite integrals
Evaluate

∫
sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

287



Chapter 7 The Graphical Behaviour of FuncƟons

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Example 7.5.2 EvaluaƟng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

For ease of reference, and to stress the relaƟonship between derivaƟves and
anƟderivaƟves, we include below a list of many of the common differenƟaƟon
rules we have learned, along with the corresponding anƟdifferenƟaƟon rules.
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Theorem 7.5.2 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 7.5.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by
5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
7.5.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C
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In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 6.3we saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟon describes acceleraƟon. We
can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives
a velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon,
there are infinitely many anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 7.5.3 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86
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7.5 AnƟderivaƟves and Indefinite IntegraƟon

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 7.5.4 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫
(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a velocity funcƟon given an acceleraƟon func-
Ɵon.

If you conƟnue on to Math 1560, you will see how posiƟon and velocity are
unexpectedly related by the areas of certain regions on a graph of the velocity
funcƟon, and how the Fundamental Theoremof Calculus Ɵes together areas and
anƟderivaƟves.
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Exercises 7.5
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

8. If F(x) is an anƟderivaƟve of f(x), and G(x) is an anƟderiva-
Ɵve of g(x), give an anƟderivaƟve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem invesƟgates why Theorem 7.5.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given iniƟal
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
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36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informaƟon gained from the first and second deriva-
Ɵves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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A: AÄÝó�ÙÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 1

SecƟon 1.1

1.

Set of Real Interval Region on the
Numbers NotaƟon Real Number Line

{x | − 1 ≤ x < 5} [−1, 5) −1 5

{x | 0 ≤ x < 3} [0, 3) 0 3

{x | 2 < x ≤ 7} (2, 7] 2 7

{x | − 5 < x ≤ 0} (−5, 0] −5 0

{x | − 3 < x < 3} (−3, 3) −3 3

{x | 5 ≤ x ≤ 7} [5, 7] 5 7

{x | x ≤ 3} (−∞, 3] 3

{x | x < 9} (−∞, 9) 9

{x | x > 4} (4,∞) 4

{x | x ≥ −3} [−3,∞) −3

3. (−1, 1) ∪ [0, 6] = (−1, 6]

5. (−∞, 0) ∩ [1, 5] = ∅

7. (−∞, 5] ∩ [5, 8) = {5}

9. (−∞,−1) ∪ (−1,∞)

11. (−∞, 0) ∪ (0, 2) ∪ (2,∞)

13. (−∞,−4) ∪ (−4, 0) ∪ (0, 4) ∪ (4,∞)

15. (−∞,∞)

17. (−∞, 5] ∪ {6}

19. (−3, 3) ∪ {4}

SecƟon 1.2

1. The required points A(−3,−7), B(1.3,−2), C(π,
√
10),

D(0, 8), E(−5.5, 0), F(−8, 4), G(9.2,−7.8), and H(7, 5) are
ploƩed in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√
10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

3. d = 5,M =
(
−1, 7

2
)

5. d =
√
26,M =

(
1, 3

2
)

7. d =
√
74,M =

( 13
10 ,−

13
10
)

9. d =
√
83,M =

(
4
√
5, 5

√
3

2

)
11. (3+

√
7,−1), (3−

√
7,−1)

13. (−1+
√
3, 0), (−1−

√
3, 0)

15. (−3,−4), 5 miles, (4,−4)

17.

19.

21.

Chapter 2
SecƟon 2.1

1. For f(x) = 2x+ 1

• f(3) = 7
• f(−1) = −1
• f
( 3
2
)
= 4

• f(4x) = 8x+ 1
• 4f(x) = 8x+ 4

• f(−x) = −2x+ 1

• f(x− 4) = 2x− 7

• f(x)− 4 = 2x− 3

• f
(
x2
)
= 2x2 + 1

3. For f(x) = 2− x2

• f(3) = −7
• f(−1) = 1
• f
( 3
2
)
= − 1

4

• f(4x) = 2− 16x2

• 4f(x) = 8− 4x2

• f(−x) = 2− x2

• f(x− 4) =
−x2 + 8x− 14

• f(x)− 4 = −x2 − 2

• f
(
x2
)
= 2− x4

5. For f(x) =
x

x− 1



• f(3) =
3
2

• f(−1) =
1
2

• f
(
3
2

)
= 3

• f(4x) =
4x

4x− 1

• 4f(x) =
4x

x− 1

• f(−x) =
x

x+ 1

• f(x− 4) =
x− 4
x− 5

• f(x)− 4 =
x

x− 1
− 4 = 4−3x

x−1

• f
(
x2
)
=

x2

x2 − 1

7. For f(x) = 6

• f(3) = 6
• f(−1) = 6
• f
( 3
2
)
= 6

• f(4x) = 6
• 4f(x) = 24

• f(−x) = 6

• f(x− 4) = 6

• f(x)− 4 = 2

• f
(
x2
)
= 6

9. For f(x) = 2x− 5

• f(2) = −1
• f(−2) = −9
• f(2a) = 4a− 5
• 2f(a) = 4a− 10
• f(a+ 2) = 2a− 1
• f(a) + f(2) = 2a− 6
• f
( 2
a
)
= 4

a − 5 = 4−5a
a

• f(a)
2 = 2a−5

2

• f(a+ h) = 2a+ 2h− 5

11. For f(x) = 2x2 − 1

• f(2) = 7
• f(−2) = 7
• f(2a) = 8a2 − 1
• 2f(a) = 4a2 − 2
• f(a+ 2) = 2a2 + 8a+ 7
• f(a) + f(2) = 2a2 + 6

• f
( 2
a
)
= 8

a2 − 1 = 8−a2
a2

• f(a)
2 = 2a2−1

2

• f(a+ h) = 2a2 + 4ah+ 2h2 − 1

13. For f(x) =
√
2x+ 1

• f(2) =
√
5

• f(−2) is not real
• f(2a) =

√
4a+ 1

• 2f(a) = 2
√
2a+ 1

• f(a+ 2) =
√
2a+ 5

• f(a) + f(2) =
√
2a+ 1+

√
5

• f
( 2
a
)
=
√

4
a + 1 =

√
a+4
a

• f(a)
2 =

√
2a+1
2

• f(a+ h) =
√
2a+ 2h+ 1

15. For f(x) = x
2

• f(2) = 1

• f(−2) = −1
• f(2a) = a
• 2f(a) = a
• f(a+ 2) = a+2

2

• f(a) + f(2) = a
2 + 1 = a+2

2

• f
( 2
a
)
= 1

a

• f(a)
2 = a

4

• f(a+ h) = a+h
2

17. For f(x) = 2x− 1, f(0) = −1 and f(x) = 0 when x = 1
2

19. For f(x) = 2x2 − 6, f(0) = −6 and f(x) = 0 when x = ±
√
3

21. For f(x) =
√
x+ 4, f(0) = 2 and f(x) = 0 when x = −4

23. For f(x) = 3
4−x , f(0) =

3
4 and f(x) is never equal to 0

25. (a) f(−4) = 1
(b) f(−3) = 2
(c) f(3) = 0
(d) f(3.001) = 1.999
(e) f(−3.001) = 1.999
(f) f(2) =

√
5

27. (−∞,∞)

29. (−∞,−1) ∪ (−1,∞)

31. (−∞,∞)

33. (−∞,−6) ∪ (−6, 6) ∪ (6,∞)

35. (−∞, 3]

37. [−3,∞)

39.
[ 1
3 ,∞

)
41. (−∞,∞)

43.
[ 1
3 , 6
)
∪ (6,∞)

45. (−∞, 8) ∪ (8,∞)

47. (8,∞)

49. (−∞, 8) ∪ (8,∞)

51. [0, 5) ∪ (5,∞)

SecƟon 2.2

1. For f(x) = 3x+ 1 and g(x) = 4− x

• (f+ g)(2) = 9
• (f− g)(−1) = −7
• (g− f)(1) = −1
• (fg)

( 1
2
)
= 35

4

•
(

f
g

)
(0) = 1

4

•
(

g
f

)
(−2) = − 6

5

3. For f(x) = x2 − x and g(x) = 12− x2

• (f+ g)(2) = 10
• (f− g)(−1) = −9
• (g− f)(1) = 11
• (fg)

( 1
2
)
= − 47

16

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 4

3

5. For f(x) =
√
x+ 3 and g(x) = 2x− 1

• (f+ g)(2) = 3+
√
5

• (f−g)(−1) = 3+
√
2

• (g− f)(1) = −1
• (fg)

( 1
2
)
= 0

•
(

f
g

)
(0) = −

√
3

•
(

g
f

)
(−2) = −5
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7. For f(x) = 2x and g(x) =
1

2x+ 1

• (f+ g)(2) = 21
5

• (f− g)(−1) = −1
• (g− f)(1) = − 5

3

• (fg)
( 1
2
)
= 1

2

•
(

f
g

)
(0) = 0

•
(

g
f

)
(−2) = 1

12

9. For f(x) = x2 and g(x) =
1
x2

• (f+ g)(2) = 17
4

• (f− g)(−1) = 0
• (g− f)(1) = 0
• (fg)

( 1
2
)
= 1

•
(

f
g

)
(0) is undefined.

•
(

g
f

)
(−2) = 1

16

11. For f(x) = 2x+ 1 and g(x) = x− 2

• (f+ g)(x) = 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x+ 3 Domain: (−∞,∞)

• (fg)(x) = 2x2 − 3x− 2 Domain: (−∞,∞)

•
(

f
g

)
(x) = 2x+1

x−2 Domain: (−∞, 2) ∪ (2,∞)

13. For f(x) = x2 and g(x) = 3x− 1

• (f+ g)(x) = x2 + 3x− 1 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x+ 1 Domain: (−∞,∞)

• (fg)(x) = 3x3 − x2 Domain: (−∞,∞)

•
(

f
g

)
(x) = x2

3x−1 Domain:
(
−∞, 1

3
)
∪
( 1
3 ,∞

)
15. For f(x) = x2 − 4 and g(x) = 3x+ 6

• (f+ g)(x) = x2 + 3x+ 2 Domain: (−∞,∞)

• (f− g)(x) = x2 − 3x− 10 Domain: (−∞,∞)

• (fg)(x) = 3x3 + 6x2 − 12x− 24 Domain: (−∞,∞)

•
(

f
g

)
(x) = x−2

3 Domain: (−∞,−2) ∪ (−2,∞)

17. For f(x) = x
2 and g(x) = 2

x

• (f+ g)(x) = x2+4
2x Domain: (−∞, 0) ∪ (0,∞)

• (f− g)(x) = x2−4
2x Domain: (−∞, 0) ∪ (0,∞)

• (fg)(x) = 1 Domain: (−∞, 0) ∪ (0,∞)

•
(

f
g

)
(x) = x2

4 Domain: (−∞, 0) ∪ (0,∞)

19. For f(x) = x and g(x) =
√
x+ 1

• (f+ g)(x) = x+
√
x+ 1 Domain: [−1,∞)

• (f− g)(x) = x−
√
x+ 1 Domain: [−1,∞)

• (fg)(x) = x
√
x+ 1 Domain: [−1,∞)

•
(

f
g

)
(x) = x√

x+1 Domain: (−1,∞)

21. (f+ g)(−3) = 2

23. (fg)(−1) = 0

25. (g− f)(3) = 3

27.
(

f
g

)
(−2) does not exist

29.
(

f
g

)
(2) = 4

31.
(
g
f

)
(3) = −2

33. For f(x) = x2 and g(x) = 2x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 16

• (g ◦ f)(−3) = 19

• (f ◦ g)
( 1
2
)
= 4

• (f ◦ f)(−2) = 16

35. For f(x) = 4− 3x and g(x) = |x|,

• (g ◦ f)(0) = 4

• (f ◦ g)(−1) = 1

• (f ◦ f)(2) = 10

• (g ◦ f)(−3) = 13

• (f ◦ g)
( 1
2
)
= 5

2

• (f ◦ f)(−2) = −26

37. For f(x) = 4x+ 5 and g(x) =
√
x,

• (g ◦ f)(0) =
√
5

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = 57

• (g ◦ f)(−3) is not real

• (f ◦ g)
( 1
2
)
= 5+ 2

√
2

• (f ◦ f)(−2) = −7

39. For f(x) = 6− x− x2 and g(x) = x
√
x+ 10,

• (g ◦ f)(0) = 24

• (f ◦ g)(−1) = 0

• (f ◦ f)(2) = 6

• (g ◦ f)(−3) = 0

• (f◦g)
( 1
2
)
= 27−2

√
42

8

• (f ◦ f)(−2) = −14

41. For f(x) = 3
1−x and g(x) = 4x

x2+1 ,

• (g ◦ f)(0) = 6
5

• (f ◦ g)(−1) = 1
• (f ◦ f)(2) = 3

4

• (g ◦ f)(−3) = 48
25

• (f ◦ g)
( 1
2
)
= −5

• (f ◦ f)(−2) is
undefined

43. For f(x) = 2x
5−x2 and g(x) =

√
4x+ 1,

• (g ◦ f)(0) = 1

• (f ◦ g)(−1) is not real

• (f ◦ f)(2) = − 8
11

• (g ◦ f)(−3) =
√
7

• (f ◦ g)
( 1
2
)
=

√
3

• (f ◦ f)(−2) = 8
11

45. For f(x) = 2x+ 3 and g(x) = x2 − 9

• (g ◦ f)(x) = 4x2 + 12x, domain: (−∞,∞)

• (f ◦ g)(x) = 2x2 − 15, domain: (−∞,∞)

• (f ◦ f)(x) = 4x+ 9, domain: (−∞,∞)

47. For f(x) = x2 − 4 and g(x) = |x|

• (g ◦ f)(x) = |x2 − 4|, domain: (−∞,∞)

• (f ◦ g)(x) = |x|2 − 4 = x2 − 4, domain: (−∞,∞)

• (f ◦ f)(x) = x4 − 8x2 + 12, domain: (−∞,∞)

49. For f(x) = |x+ 1| and g(x) =
√
x

• (g ◦ f)(x) =
√

|x+ 1|, domain: (−∞,∞)

• (f ◦ g)(x) = |
√
x+ 1| =

√
x+ 1, domain: [0,∞)

• (f ◦ f)(x) = ||x+ 1|+ 1| = |x+ 1|+ 1, domain: (−∞,∞)

51. For f(x) = |x| and g(x) =
√
4− x

• (g ◦ f)(x) =
√

4− |x|, domain: [−4, 4]
• (f ◦ g)(x) = |

√
4− x| =

√
4− x, domain: (−∞, 4]
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• (f ◦ f)(x) = ||x|| = |x|, domain: (−∞,∞)

53. For f(x) = 3x− 1 and g(x) = 1
x+3

• (g ◦ f)(x) = 1
3x+2 , domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

• (f ◦ g)(x) = − x
x+3 , domain: (−∞,−3) ∪ (−3,∞)

• (f ◦ f)(x) = 9x− 4, domain: (−∞,∞)

55. For f(x) = x
2x+1 and g(x) = 2x+1

x

• (g ◦ f)(x) = 4x+1
x , domain:(

−∞,− 1
2
)
∪
(
− 1

2 , 0),∪(0,∞
)

• (f ◦ g)(x) = 2x+1
5x+2 , domain:(

−∞,− 2
5
)
∪
(
− 2

5 , 0
)
∪ (0,∞)

• (f ◦ f)(x) = x
4x+1 , domain:(

−∞,− 1
2
)
∪
(
− 1

2 ,−
1
4
)
∪
(
− 1

4 ,∞
)

57. (h ◦ g ◦ f)(x) = |
√
−2x| =

√
−2x, domain: (−∞, 0]

59. (g ◦ f ◦ h)(x) =
√

−2|x|, domain: {0}

61. (f ◦ h ◦ g)(x) = −2|
√
x| = −2

√
x, domain: [0,∞)

63. Let f(x) = 2x+ 3 and g(x) = x3, then p(x) = (g ◦ f)(x).

65. Let f(x) = 2x− 1 and g(x) =
√
x, then h(x) = (g ◦ f)(x).

67. Let f(x) = 5x+ 1 and g(x) = 2
x , then r(x) = (g ◦ f)(x).

69. Let f(x) = |x| and g(x) = x+1
x−1 , then q(x) = (g ◦ f)(x).

71. Let f(x) = 2x and g(x) = x+1
3−2x , then v(x) = (g ◦ f)(x).

73. f−1(x) =
x+ 2
6

75. f−1(x) = 3x− 10

77. f−1(x) = 1
3 (x− 5)2 + 1

3 , x ≥ 5

79. f−1(x) = 1
9 (x+ 4)2 + 1, x ≥ −4

81. f−1(x) = 1
3 x

5 + 1
3

83. f−1(x) = 5+
√
x+ 25

85. f−1(x) = 3−
√
x+ 4

87. f−1(x) =
4x− 3

x

89. f−1(x) =
4x+ 1
2− 3x

91. f−1(x) =
−3x− 2
x+ 3

Chapter 3
SecƟon 3.1

1. y+ 1 = 3(x− 3)
y = 3x− 10

3. y+ 1 = −(x+ 7)
y = −x− 8

5. y− 4 = − 1
5 (x− 10)

y = − 1
5 x+ 6

7. y− 117 = 0
y = 117

9. y− 2
√
3 = −5(x−

√
3)

y = −5x+ 7
√
3

11. y = − 5
3 x

13. y = 8
5 x− 8

15. y = 5

17. y = − 5
4 x+

11
8

19. y = −x

21. f(x) = 2x− 1
slope: m = 2
y-intercept: (0,−1)
x-intercept:

( 1
2 , 0
)

x

y

−2−1 1 2

−3

−2

−1

1

2

3

23. f(x) = 3
slope: m = 0
y-intercept: (0, 3)
x-intercept: none

x

y

−2−1 1 2

1

2

3

4

25. f(x) = 2
3 x+

1
3

slope: m = 2
3

y-intercept:
(
0, 1

3
)

x-intercept:
(
− 1

2 , 0
)

x

y

−2 1 2
−1

1

2

27. x = −6 or x = 6

29. x = −3 or x = 11

31. x = − 1
2 or x = 1

10

33. x = −3 or x = 3

35. x = − 3
2

37. x = 1

39. x = −1, x = 0 or x = 1

41. x = −2 or x = 2

43. x = − 1
7 or x = 1

45. x = 1

47. x = 1
5 or x = 5
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49. f(x) = |x|+ 4
No zeros
No x-intercepts
y-intercept (0, 4)
Domain (−∞,∞)
Range [4,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
RelaƟve and absolute minimum at (0, 4)
No relaƟve or absolute maximum

x

y

−4−3−2−1 1 2 3 4

1

2

3

4

5

6

7

8

51. f(x) = −3|x|
f(0) = 0
x-intercept (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range (−∞, 0]
Increasing on (−∞, 0]
Decreasing on [0,∞)
RelaƟve and absolute maximum at (0, 0)
No relaƟve or absolute minimum

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

53. f(x) = 1
3 |2x− 1|

f
( 1
2
)
= 0

x-intercepts
( 1
2 , 0
)

y-intercept
(
0, 1

3
)

Domain (−∞,∞)
Range [0,∞)
Decreasing on

(
−∞, 1

2
]

Increasing on
[ 1
2 ,∞

)
RelaƟve and absolute min. at

( 1
2 , 0
)

No relaƟve or absolute maximum

x

y

−3−2−1 1 2 3 4

1

2

55. f(x) =
|2− x|
2− x

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞, 2) ∪ (2,∞)
Range {−1, 1}
Constant on (−∞, 2)
Constant on (2,∞)
Absolute minimum at every point (x,−1) where x > 2
Absolute maximum at every point (x, 1) where x < 2
RelaƟve maximum AND minimum at every point on the graph

x

y

−3−2−1 1 2 3 4 5−1

1

57. Re-write f(x) = |x+ 2| − x as

f(x) =
{

−2x− 2 if x < −2
2 if x ≥ −2

No zeros
No x-intercepts
y-intercept (0, 2)
Domain (−∞,∞)
Range [2,∞)
Decreasing on (−∞,−2]
Constant on [−2,∞)
Absolute minimum at every point (x, 2) where x ≥ −2
No absolute maximum
RelaƟve minimum at every point (x, 2) where x ≥ −2
RelaƟve maximum at every point (x, 2) where x > −2

x

y

−3−2−1 1 2

1

2

3

59. Re-write f(x) = |x+ 4|+ |x− 2| as

f(x) =

 −2x− 2 if x < −4
6 if −4 ≤ x < 2

2x+ 2 if x ≥ 2
No zeros
No x-intercept
y-intercept (0, 6)
Domain (−∞,∞)
Range [6,∞)
Decreasing on (−∞,−4]
Constant on [−4, 2]
Increasing on [2,∞)
Absolute minimum at every point (x, 6) where−4 ≤ x ≤ 2
No absolute maximum
RelaƟve minimum at every point (x, 6) where−4 ≤ x ≤ 2
RelaƟve maximum at every point (x, 6) where−4 < x < 2
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x

y

−5−4−3−2−1 1 2 3

1

2

3

4

5

6

7

8

61. f(x) = −(x+ 2)2 = −x2 − 4x− 4
x-intercept (−2, 0)
y-intercept (0,−4)
Domain: (−∞,∞)
Range: (−∞, 0]
Increasing on (−∞,−2]
Decreasing on [−2,∞)
Vertex (−2, 0) is a maximum
Axis of symmetry x = −2

x

y

−4−3−2−1

−8
−7
−6
−5
−4
−3
−2
−1

63. f(x) = −2(x+ 1)2 + 4 = −2x2 − 4x+ 2
x-intercepts (−1−

√
2, 0) and (−1+

√
2, 0)

y-intercept (0, 2)
Domain: (−∞,∞)
Range: (−∞, 4]
Increasing on (−∞,−1]
Decreasing on [−1,∞)
Vertex (−1, 4) is a maximum
Axis of symmetry x = −1

x

y

−3 −2 −1 1

−4
−3
−2
−1

1
2
3
4

65. f(x) = −3x2 + 4x− 7 = −3
(
x− 2

3
)2 − 17

3
No x-intercepts
y-intercept (0,−7)
Domain: (−∞,∞)
Range:

(
−∞,− 17

3
]

Increasing on
(
−∞, 2

3
]

Decreasing on
[ 2
3 ,∞

)
Vertex

( 2
3 ,−

17
3
)
is a maximum

Axis of symmetry x = 2
3

x

y

1 2

−14
−13
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

67. f(x) = −3x2 + 5x+ 4 = −3
(
x− 5

6
)2

+ 73
12

x-intercepts
(

5−
√
73

6 , 0
)
and

(
5+

√
73

6 , 0
)

y-intercept (0, 4)
Domain: (−∞,∞)
Range:

(
−∞, 73

12
]

Increasing on
(
−∞, 5

6
]

Decreasing on
[ 5
6 ,∞

)
Vertex

( 5
6 ,

73
12
)
is a maximum

Axis of symmetry x = 5
6

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

5

6

69.
(
−∞,− 12

7
)
∪
( 8
7 ,∞

)
71. (−∞, 1] ∪ [3,∞)

73. (−∞,∞)

75. [3, 4) ∪ (5, 6]
77. (−∞,−4) ∪

( 2
3 ,∞

)
79. (−∞,−5)
81.

[
−7, 5

3
]

83. (−∞,∞)

85.
(
−∞,− 1

4
)
∪
(
− 1

4 ,∞
)

87. (−∞,∞)

89. No soluƟon
91. (0, 1)

93.
(
−∞, 5−

√
73

6

]
∪
[
5+

√
73

6 ,∞
)

95.
[
−2−

√
7,−2+

√
7
]
∪ [1, 3]

97. (−∞,−1] ∪ {0} ∪ [1,∞)

99. (−∞, 1) ∪
(
2, 3+

√
17

2

)
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SecƟon 3.2

1. f(x) = 4− x− 3x2
Degree 2
Leading term−3x2
Leading coefficient−3
Constant term 4
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

3. q(r) = 1− 16r4
Degree 4
Leading term−16r4
Leading coefficient−16
Constant term 1
As r → −∞, q(r) → −∞
As r → ∞, q(r) → −∞

5. f(x) =
√
3x17 + 22.5x10 − πx7 + 1

3
Degree 17
Leading term

√
3x17

Leading coefficient
√
3

Constant term 1
3

As x → −∞, f(x) → −∞
As x → ∞, f(x) → ∞

7. P(x) = (x− 1)(x− 2)(x− 3)(x− 4)
Degree 4
Leading term x4
Leading coefficient 1
Constant term 24
As x → −∞, P(x) → ∞
As x → ∞, P(x) → ∞

9. f(x) = −2x3(x+ 1)(x+ 2)2
Degree 6
Leading term−2x6
Leading coefficient−2
Constant term 0
As x → −∞, f(x) → −∞
As x → ∞, f(x) → −∞

11. a(x) = x(x+ 2)2
x = 0 mulƟplicity 1
x = −2 mulƟplicity 2

x

y

−2 −1

13. f(x) = −2(x− 2)2(x+ 1)
x = 2 mulƟplicity 2
x = −1 mulƟplicity 1

x

y

−2 −1 1 2

15. F(x) = x3(x+ 2)2
x = 0 mulƟplicity 3
x = −2 mulƟplicity 2

x

y

−2 −1

17. Q(x) = (x+ 5)2(x− 3)4
x = −5 mulƟplicity 2
x = 3 mulƟplicity 4

x

y

−5−4−3−2−1 1 2 3 4 5

19. H(t) = (3− t)
(
t2 + 1

)
x = 3 mulƟplicity 1

t

y

1 2 3

21.

23. t2 + 6t− 6

25. 6y2 + y− 1

27. −4t3 − 3t2 + 8t+ 6

29. 125a6 − 27

31. 7− z2

33. x3 − 5

35. h2 + 2xh− 2h

37. quoƟent: 5x− 8, remainder: 9

39. quoƟent: 3, remainder: 18

41. quoƟent:
t
2
−

1
4
, remainder: −

15
4

43. quoƟent:
2
3
, remainder: −x+

1
3

45. quoƟent: w, remainder: 2w

47. quoƟent:1 t2 + t 3√4+ 2 3√2, remainder: 0

49.

51.

53.

SecƟon 3.3
1Note: 3√16 = 2 3√2.
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1. f(x) =
x

3x− 6
Domain: (−∞, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 1

3
As x → −∞, f(x) → 1

3
−

As x → ∞, f(x) → 1
3
+

3. f(x) =
x

x2 + x− 12
=

x
(x+ 4)(x− 3)

Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
VerƟcal asymptotes: x = −4, x = 3
As x → −4−, f(x) → −∞
As x → −4+, f(x) → ∞
As x → 3−, f(x) → −∞
As x → 3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

5. f(x) =
x+ 7

(x+ 3)2
Domain: (−∞,−3) ∪ (−3,∞)
VerƟcal asymptote: x = −3
As x → −3−, f(x) → ∞
As x → −3+, f(x) → ∞
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
No verƟcal asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x → −∞, f(x) → 0−
As x → ∞, f(x) → 0+

9. f(x) =
x2 − x− 12
x2 + x− 6

=
x− 4
x− 2

Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → ∞
As x → 2+, f(x) → −∞
Hole at

(
−3, 7

5
)

Horizontal asymptote: y = 1
As x → −∞, f(x) → 1+
As x → ∞, f(x) → 1−

11. f(x) =
x3 + 2x2 + x
x2 − x− 2

=
x(x+ 1)
x− 2

Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
VerƟcal asymptote: x = 2
As x → 2−, f(x) → −∞
As x → 2+, f(x) → ∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x → −∞, the graph is below y = x+ 3
As x → ∞, the graph is above y = x+ 3

13. f(x) =
2x2 + 5x− 3

3x+ 2
Domain:

(
−∞,− 2

3
)
∪
(
− 2

3 ,∞
)

VerƟcal asymptote: x = − 2
3

As x → − 2
3
−
, f(x) → ∞

As x → − 2
3
+
, f(x) → −∞

No holes in the graph
Slant asymptote: y = 2

3 x+
11
9

As x → −∞, the graph is above y = 2
3 x+

11
9

As x → ∞, the graph is below y = 2
3 x+

11
9

15. f(x) =
−5x4 − 3x3 + x2 − 10
x3 − 3x2 + 3x− 1

=
−5x4 − 3x3 + x2 − 10

(x− 1)3
Domain: (−∞, 1) ∪ (1,∞)
VerƟcal asymptotes: x = 1
As x → 1−, f(x) → ∞
As x → 1+, f(x) → −∞
No holes in the graph
Slant asymptote: y = −5x− 18
As x → −∞, the graph is above y = −5x− 18
As x → ∞, the graph is below y = −5x− 18

17. f(x) =
18− 2x2

x2 − 9
= −2

Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
No verƟcal asymptotes
Holes in the graph at (−3,−2) and (3,−2)
Horizontal asymptote y = −2
As x → ±∞, f(x) = −2

19. x = − 6
7

21. x = −1

23. No soluƟon

25. (−2,∞)

27. (−1, 0) ∪ (1,∞)

29. (−∞,−3) ∪ (−3, 2) ∪ (4,∞)

31. (−1, 0] ∪ (2,∞)

33. (−∞, 1] ∪ [2,∞)

35. (−∞,−3) ∪
[
−2

√
2, 0
]
∪
[
2
√
2, 3
)

37. [−3, 0) ∪ (0, 4) ∪ [5,∞)

SecƟon 3.4

1. log2(8) = 3

3. log4(32) = 5
2

5. log 4
25

( 5
2
)
= − 1

2

7. ln(1) = 0

9. (25)
1
2 = 5

11.
( 4
3
)−1

= 3
4

13. 10−1 = 0.1

15. e−
1
2 = 1√

e

17. log6(216) = 3

19. log6
( 1
36
)
= −2

21. log36(216) = 3
2

23. log 1
6
(216) = −3

25. log 1
1000000 = −6

27. ln
(
e3
)
= 3

29. log6(1) = 0

31. log36
( 4√36

)
= 1

4

33. 36log36(216) = 216

35. ln(e5) = 5
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37. log
(

3√105
)
= 5

3

39. log5
(
3log3 5

)
= 1

41. log2
(
3− log3(2)

)
= −1

43. (−∞,∞)

45. (5,∞)

47. (−2,−1) ∪ (1,∞)

49. (4, 7)

51. (−∞,∞)

53. (−∞,−7) ∪ (1,∞)

55. (0, 125) ∪ (125,∞)

57. (−∞,−3) ∪
( 1
2 , 2
)

59. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

61. Domain of g: (−∞,∞)
Range of g: (−20,∞)

x

y

H.A. y = −20

−3−2 1 2 3
−10

10

20

30

40

50

60

70

80

63. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−10 10 20 30

10

20

30

40

50

60

70

80

65. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9

67. Domain of g: (−20,∞)
Range of g: (−∞,∞)

y

x

V.A.x = −20−3

−2

1

2

3

−10 10 20 30 40 50 60 70 80 90 100

69. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x
−10

10

20

30

10 20 30 40 50 60 70 80

71. 7− log2(x2 + 4)

73. log(1.23) + 37

75. log5(x− 5) + log5(x+ 5)

77. l−2+ log 1
3
(x) + log 1

3
(y− 2) + log 1

3
(y2 + 2y+ 4)

79. 2 log3(x)− 4− 4 log3(y)

81. 12− 12 log6(x)− 4 log6(y)

83. −2+ 2
3 log 1

2
(x)− log 1

2
(y)− 1

2 log 1
2
(z)

85. ln(x4y2)

87. log3
(

x
y2

)
89. ln

(
x2
y3z4

)
91. ln

(
3
√

z
xy

)
93. log

( 1000
x
)

95. ln
(
x
√
e
)

97. log2
(
x
√
x− 1

)
99. 7x−1 = e(x−1) ln(7)

101.
( 2
3
)x

= ex ln(
2
3 )

103. log3(12) ≈ 2.26186

105. log6(72) ≈ 2.38685

107. log 3
5
(1000) ≈ −13.52273

Chapter 4
SecƟon 4.1
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1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2

21. If sin(θ) = −
7
25

with θ in Quadrant IV, then cos(θ) =
24
25

.

23. If sin(θ) =
5
13

with θ in Quadrant II, then cos(θ) = −
12
13

.

25. If sin(θ) = −
2
3
with θ in Quadrant III, then cos(θ) = −

√
5
3

.

27. If sin(θ) =
2
√
5

5
and

π

2
< θ < π, then cos(θ) = −

√
5
5

.

29. If sin(θ) = −0.42 and π < θ <
3π
2
, then

cos(θ) = −
√
0.8236 ≈ −0.9075.

31. sin(θ) =
1
2
when θ =

π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

33. sin(θ) = 0 when θ = πk for any integer k.

35. sin(θ) =
√
3
2

when θ =
π

3
+ 2πk or θ =

2π
3

+ 2πk for any
integer k.

37. sin(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

39. cos(θ) = −1.001 never happens

SecƟon 4.2

1. cos(0) = 1, sin(0) = 0

3. cos
(
π

3

)
=

1
2
, sin

(
π

3

)
=

√
3
2

5. cos
(
2π
3

)
= −

1
2
, sin

(
2π
3

)
=

√
3
2

7. cos(π) = −1, sin(π) = 0

9. cos
(
5π
4

)
= −

√
2
2

, sin
(
5π
4

)
= −

√
2
2

11. cos
(
3π
2

)
= 0, sin

(
3π
2

)
= −1

13. cos
(
7π
4

)
=

√
2
2

, sin
(
7π
4

)
= −

√
2
2

15. cos
(
−
13π
2

)
= 0, sin

(
−
13π
2

)
= −1

17. cos
(
−
3π
4

)
= −

√
2
2

, sin
(
−
3π
4

)
= −

√
2
2

19. cos
(
10π
3

)
= −

1
2
, sin

(
10π
3

)
= −

√
3
2
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21. sin(θ) = 3
5 , cos(θ) = − 4

5 , tan(θ) = − 3
4 , csc(θ) =

5
3 , sec(θ) =

− 5
4 , cot(θ) = − 4

3

23. sin(θ) = 24
25 , cos(θ) =

7
25 , tan(θ) =

24
7 , csc(θ) = 25

24 , sec(θ) =
25
7 , cot(θ) = 7

24

25. sin(θ) = −
√
91
10 , cos(θ) = − 3

10 , tan(θ) =
√
91
3 , csc(θ) =

− 10
√
91

91 , sec(θ) = − 10
3 , cot(θ) = 3

√
91

91

27. sin(θ) = − 2
√
5

5 , cos(θ) =
√
5
5 , tan(θ) = −2, csc(θ) =

−
√
5
2 , sec(θ) =

√
5, cot(θ) = − 1

2

29. sin(θ) = −
√
6
6 , cos(θ) = −

√
30
6 , tan(θ) =

√
5
5 , csc(θ) =

−
√
6, sec(θ) = −

√
30
5 , cot(θ) =

√
5

31. sin(θ) =
√
5
5 , cos(θ) = 2

√
5

5 , tan(θ) = 1
2 , csc(θ) =√

5, sec(θ) =
√
5
2 , cot(θ) = 2

33. sin(θ) = −
√
110
11 , cos(θ) = −

√
11
11 , tan(θ) =

√
10, csc(θ) =

−
√
110
10 , sec(θ) = −

√
11, cot(θ) =

√
10
10

35. tan(θ) =
√
3 when θ =

π

3
+ πk for any integer k

37. csc(θ) = −1 when θ =
3π
2

+ 2πk for any integer k.

39. tan(θ) = 0 when θ = πk for any integer k

41. csc(θ) = 2 when θ =
π

6
+ 2πk or θ =

5π
6

+ 2πk for any integer
k.

43. tan(θ) = −1 when θ =
3π
4

+ πk for any integer k

45. csc(θ) = −
1
2
never happens

47. tan(θ) = −
√
3 when θ =

2π
3

+ πk for any integer k

49. cot(θ) = −1 when θ =
3π
4

+ πk for any integer k

51. tan(t) =
√
3
3

when t =
π

6
+ πk for any integer k

53. csc(t) = 0 never happens

55. tan(t) = −
√
3
3

when t =
5π
6

+ πk for any integer k

57. csc(t) =
2
√
3

3
when t =

π

3
+ 2πk or t =

2π
3

+ 2πk for any
integer k

59.

61.

63.

65.

67.

69.

71.

73.

75.

77.

79.

81.

83.

85.

87.

89.

91.

93.

95.

97.

99.

101.

103.

SecƟon 4.3

1.

3.

5.

7. cos(75◦) =
√
6−

√
2

4

9. sin(105◦) =
√
6+

√
2

4

11. cot(255◦) =
√
3− 1

√
3+ 1

= 2−
√
3

13. cos
(
13π
12

)
= −

√
6+

√
2

4

15. tan
(
13π
12

)
=

3−
√
3

3+
√
3
= 2−

√
3

17. tan
(
17π
12

)
= 2+

√
3

19. cot
(
11π
12

)
= −(2+

√
3)

21. sec
(
−

π

12

)
=

√
6−

√
2

23. (a) cos(α+ β) = −
4+ 7

√
2

30

(b) sin(α+ β) =
28−

√
2

30

(c) tan(α+ β) =
−28+

√
2

4+ 7
√
2

=
63− 100

√
2

41

(d) cos(α− β) =
−4+ 7

√
2

30

(e) sin(α− β) = −
28+

√
2

30

(f) tan(α− β) =
28+

√
2

4− 7
√
2
= −

63+ 100
√
2

41

25. (a) csc(α− β) = −
5
4

(b) sec(α+ β) =
125
117

(c) cot(α+ β) =
117
44

27.

29.

31.

33.

35.

37.
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39. cos(75◦) =

√
2−

√
3

2

41. cos(67.5◦) =

√
2−

√
2

2

43. tan(112.5◦) = −

√
2+

√
2

2−
√
2
= −1−

√
2

45. sin
( π

12

)
=

√
2−

√
3

2

47. sin
(
5π
8

)
=

√
2+

√
2

2

49. • sin(2θ) = −
336
625

• sin
(

θ
2

)
=

√
2

10

• cos(2θ) =
527
625

• cos
(

θ
2

)
= −

7
√
2

10

• tan(2θ) = −
336
527

• tan
(

θ
2

)
= −

1
7

51. • sin(2θ) =
120
169

• sin
(

θ
2

)
=

3
√
13

13

• cos(2θ) = −
119
169

• cos
(

θ
2

)
= −

2
√
13

13

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

3
2

53. • sin(2θ) =
24
25

• sin
(

θ
2

)
=

√
5
5

• cos(2θ) = −
7
25

• cos
(

θ
2

)
=

2
√
5

5

• tan(2θ) = −
24
7

• tan
(

θ
2

)
=

1
2

55. • sin(2θ) = −
120
169

• sin
(

θ
2

)
=

√
26
26

• cos(2θ) =
119
169

• cos
(

θ
2

)
= −

5
√
26

26

• tan(2θ) = −
120
119

• tan
(

θ
2

)
= −

1
5

57. • sin(2θ) = −
4
5

• sin
(

θ
2

)
=

√
50− 10

√
5

10

• cos(2θ) = −
3
5

• cos
(

θ
2

)
= −

√
50+ 10

√
5

10

• tan(2θ) =
4
3

• tan
(

θ
2

)
= −

√
5−

√
5

5+
√
5
=

5− 5
√
5

10
59.

61.

63.

65.

67.

69.

71.

73.

75.
cos(5θ)− cos(9θ)

2

77.
cos(4θ) + cos(8θ)

2

79.
sin(2θ) + sin(4θ)

2

81. −2 cos
(
9
2
θ

)
sin
(
5
2
θ

)
83. 2 cos(4θ) sin(5θ)

85. −
√
2 sin

(
θ −

π

4

)
87.

89.

91.
14x

x2 + 49
93.

95.

97.

99.

101.

SecƟon 4.4

1. y = 3 sin(x)
Period: 2π
Amplitude: 3
Phase ShiŌ: 0
VerƟcal ShiŌ: 0

x

y

π
2

π 3π
2

2π

−3

3
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3. y = −2 cos(x)
Period: 2π
Amplitude: 2
Phase ShiŌ: 0
VerƟcal ShiŌ: 0

x

y

π
2

π 3π
2

2π

−2

2

5. y = − sin
(
x+

π

3

)
Period: 2π
Amplitude: 1
Phase ShiŌ: −

π

3
VerƟcal ShiŌ: 0

x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

7. y = −
1
3
cos
(
1
2
x+

π

3

)
Period: 4π
Amplitude:

1
3

Phase ShiŌ: −
2π
3

VerƟcal ShiŌ: 0

x

y

− 2π
3

π
3

4π
3

7π
3

10π
3

− 1
3

1
3

9. y = sin
(
−x−

π

4

)
− 2

Period: 2π
Amplitude: 1
Phase ShiŌ: −

π

4
(You need to use

y = − sin
(
x+

π

4

)
− 2 to find this.)

VerƟcal ShiŌ: −2

x

y

− 9π
4 − 7π

4 − 5π
4 − 3π

4
−π

4
π
4

3π
4

5π
4

7π
4

−3

−2

−1

11. y = −
3
2
cos
(
2x+

π

3

)
−

1
2

Period: π
Amplitude:

3
2

Phase ShiŌ: −
π

6
VerƟcal ShiŌ: −

1
2

x

y

−π
6

π
12

π
3

7π
12

5π
6

−2

− 1
2

1

13. y = tan
(
x−

π

3

)
Period: π

x

y

−π
6

π
12

π
3

7π
12

5π
6−1

1

15. y =
1
3
tan(−2x− π) + 1

is equivalent to
y = −

1
3
tan(2x+ π) + 1

via the Even / Odd idenƟty for tangent.
Period:

π

2
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x

y

− 3π
4 − 5π

8
−π

2 − 3π
8

−π
4

4
3

1
2
3

17. y = − csc
(
x+

π

3

)
Start with y = − sin

(
x+

π

3

)
Period: 2π

x

y

−π
3

π
6

2π
3

7π
6

5π
3

−1

1

19. y = csc(2x− π)
Start with y = sin(2x− π)
Period: π

x

y

π
2

3π
4

π 5π
4

3π
2

−1

1

21. y = csc
(
−x−

π

4

)
− 2

Start with y = sin
(
−x−

π

4

)
− 2

Period: 2π

x

y

−π
4

π
4

3π
4

5π
4

7π
4

−3

−2

−1

23. y = −11 cot
(
1
5
x
)

Period: 5π

x

y

5π
4

5π
2

15π
4

5π
−11

11

25. f(x) =
√
2 sin(x) +

√
2 cos(x) + 1 = 2 sin

(
x+

π

4

)
+ 1 =

2 cos
(
x+

7π
4

)
+ 1

27. f(x) = − sin(x) + cos(x)− 2 =
√
2 sin

(
x+

3π
4

)
− 2 =

√
2 cos

(
x+

π

4

)
− 2

29. f(x) = 2
√
3 cos(x)− 2 sin(x) = 4 sin

(
x+

2π
3

)
=

4 cos
(
x+

π

6

)
31. f(x) = −

1
2
cos(5x)−

√
3
2

sin(5x) = sin
(
5x+

7π
6

)
=

cos
(
5x+

2π
3

)
33. f(x) =

5
√
2

2
sin(x)−

5
√
2

2
cos(x) = 5 sin

(
x+

7π
4

)
=

5 cos
(
x+

5π
4

)
35.
37.
39.
41.
43.
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45.

47.

49.

SecƟon 4.5

1. arcsin (−1) = −
π

2

3. arcsin

(
−
√
2
2

)
= −

π

4

5. arcsin (0) = 0

7. arcsin

(√
2
2

)
=

π

4

9. arcsin (1) =
π

2

11. arccos

(
−
√
3
2

)
=

5π
6

13. arccos
(
−
1
2

)
=

2π
3

15. arccos
(
1
2

)
=

π

3

17. arccos

(√
3
2

)
=

π

6

19. arctan
(
−
√
3
)
= −

π

3

21. arctan

(
−
√
3
3

)
= −

π

6

23. arctan

(√
3
3

)
=

π

6

25. arctan
(√

3
)
=

π

3

27. arccot (−1) =
3π
4

29. arccot (0) =
π

2

31. arccot (1) =
π

4

33. arcsec (2) =
π

3

35. arcsec
(√

2
)
=

π

4

37. arcsec

(
2
√
3

3

)
=

π

6

39. arcsec (1) = 0

41. arcsec (−2) =
4π
3

43. arcsec

(
−
2
√
3

3

)
=

7π
6

45. arccsc (−2) =
7π
6

47. arccsc

(
−
2
√
3

3

)
=

4π
3

49. arcsec (−2) =
2π
3

51. arcsec

(
−
2
√
3

3

)
=

5π
6

53. arccsc (−2) = −
π

6

55. arccsc

(
−
2
√
3

3

)
= −

π

3

57. sin
(
arcsin

(
1
2

))
=

1
2

59. sin
(
arcsin

(
3
5

))
=

3
5

61. sin
(
arcsin

(
5
4

))
is undefined.

63. cos
(
arccos

(
−
1
2

))
= −

1
2

65. cos (arccos (−0.998)) = −0.998

67. tan (arctan (−1)) = −1

69. tan
(
arctan

(
5
12

))
=

5
12

71. tan (arctan (3π)) = 3π

73. cot
(
arccot

(
−
√
3
))

= −
√
3

75. cot (arccot (−0.001)) = −0.001

77. sec (arcsec (2)) = 2

79. sec
(
arcsec

(
1
2

))
is undefined.

81. sec (arcsec (117π)) = 117π

83. csc

(
arccsc

(
−
2
√
3

3

))
= −

2
√
3

3

85. csc (arccsc (1.0001)) = 1.0001

87. arcsin
(
sin
(
π

6

))
=

π

6

89. arcsin
(
sin
(
3π
4

))
=

π

4

91. arcsin
(
sin
(
4π
3

))
= −

π

3

93. arccos
(
cos
(
2π
3

))
=

2π
3

95. arccos
(
cos
(
−
π

6

))
=

π

6

97. arctan
(
tan
(
π

3

))
=

π

3
99. arctan (tan (π)) = 0

101. arctan
(
tan
(
2π
3

))
= −

π

3

103. arccot
(
cot
(
−
π

4

))
=

3π
4

105. arccot
(
cot
(
3π
2

))
=

π

2

107. arcsec
(
sec
(
π

4

))
=

π

4

109. arcsec
(
sec
(
5π
6

))
=

7π
6

111. arcsec
(
sec
(
5π
3

))
=

π

3
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113. arccsc
(
csc
(
5π
4

))
=

5π
4

115. arccsc
(
csc
(
−
π

2

))
=

3π
2

117. arcsec
(
sec
(
11π
12

))
=

13π
12

119. arcsec
(
sec
(
π

4

))
=

π

4

121. arcsec
(
sec
(
5π
6

))
=

5π
6

123. arcsec
(
sec
(
5π
3

))
=

π

3

125. arccsc
(
csc
(
5π
4

))
= −

π

4

127. arccsc
(
csc
(
−
π

2

))
= −

π

2

129. arcsec
(
sec
(
11π
12

))
=

11π
12

131. sin
(
arccos

(
−
1
2

))
=

√
3
2

133. sin (arctan (−2)) = −
2
√
5

5

135. sin (arccsc (−3)) = −
1
3

137. cos
(
arctan

(√
7
))

=

√
2
4

139. cos (arcsec (5)) =
1
5

141. tan
(
arccos

(
−
1
2

))
= −

√
3

143. tan (arccot (12)) =
1
12

145. cot

(
arccos

(√
3
2

))
=

√
3

147. cot (arctan (0.25)) = 4

149. sec
(
arcsin

(
−
12
13

))
=

13
5

151. sec

(
arccot

(
−
√
10
10

))
= −

√
11

153. csc
(
arcsin

(
3
5

))
=

5
3

155. sin
(
arcsin

(
5
13

)
+

π

4

)
=

17
√
2

26

157. tan
(
arctan(3) + arccos

(
−
3
5

))
=

1
3

159. sin
(
2 arccsc

(
13
5

))
=

120
169

161. cos
(
2 arcsin

(
3
5

))
=

7
25

163. cos
(
2 arccot

(
−
√
5
))

=
2
3

165. sin (arccos (x)) =
√
1− x2 for−1 ≤ x ≤ 1

167. tan (arcsin (x)) =
x

√
1− x2

for−1 < x < 1

169. csc (arccos (x)) =
1

√
1− x2

for−1 < x < 1

171. sin (2 arccos (x)) = 2x
√
1− x2 for−1 ≤ x ≤ 1

173. sin(arccos(2x)) =
√
1− 4x2 for− 1

2 ≤ x ≤ 1
2

175. cos
(
arcsin

( x
2

))
=

√
4− x2

2
for−2 ≤ x ≤ 2

177. sin(2 arcsin(7x)) = 14x
√
1− 49x2 for−

1
7
≤ x ≤

1
7

179. cos(2 arcsin(4x)) = 1− 32x2 for−
1
4
≤ x ≤

1
4

181. sin (arcsin(x) + arccos(x)) = 1 for−1 ≤ x ≤ 1

183. tan (2 arcsin(x)) =
2x
√
1− x2

1− 2x2
for x in(

−1,−
√
2
2

)
∪
(
−
√
2
2

,

√
2
2

)
∪
(√

2
2

, 1

)
2

Chapter 5
SecƟon 5.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −1

9. Limit does not exist

11. 1.5

13. Limit does not exist.

15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly 7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx. −1.

SecƟon 5.2

1. Answers will vary.
2The equivalence for x = ±1 can be verified independently of the derivaƟon of the formula, but Calculus is required to fully understand what is

happening at those x values. You’ll see what we mean when you work through the details of the idenƟty for tan(2t). For now, we exclude x = ±1
from our answer.
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3. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

5. 9

7. 0

9. 3

11. 3

13. 1

15. 0

17. 7

19. 1/2

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 0

35. 1

37. 3

39. 1

41. (a) Apply Part 1 of Theorem 5.2.1.
(b) Apply Theorem 5.2.6; g(x) = x

x is the same as g(x) = 1
everywhere except at x = 0. Thus lim

x→0
g(x) = lim

x→0
1 = 1.

(c) The funcƟon f(x) is always 0, so g
(
f(x)
)
is never defined as

g(x) is not defined at x = 0. Therefore the limit does not
exist.

(d) The ComposiƟon Rule requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the condiƟons of the
ComposiƟon Rule are not saƟsfied, and hence the rule is
not violated.

SecƟon 5.3

1. The funcƟon approaches different values from the leŌ and right;
the funcƟon grows without bound; the funcƟon oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) Not defined

13. (a) 2

(b) −4

(c) Does not exist.

(d) 2

15. (a) 0

(b) 0

(c) 0

(d) 0

(e) 2

(f) 2

(g) 2

(h) 2

17. (a) 1− cos2 a = sin2 a

(b) sin2 a

(c) sin2 a

(d) sin2 a

19. (a) 4

(b) 4

(c) 4

(d) 3

21. (a) −1

(b) 1

(c) Does not exist

(d) 0

23. 2/3

25. −9

SecƟon 5.4

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.
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(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; verƟcal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; verƟcal asymptotes at x = −1, 0.

23. No horizontal or verƟcal asymptotes.

25. ∞

27. −∞

29. SoluƟon omiƩed.

31. Yes. The only “quesƟonable” place is at x = 3, but the leŌ and
right limits agree.

SecƟon 5.5

1. Answers will vary.

3. A root of a funcƟon f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] and [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. Yes, by the Intermediate Value Theorem.

37. We cannot say; the Intermediate Value Theorem only applies to
funcƟon values between−10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

41. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

43. (a) 20
(b) 25
(c) Limit does not exist
(d) 25

45. Answers will vary.

Chapter 6
SecƟon 6.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 0

9. f ′(t) = −3

11. h′(x) = 3x2

13. r ′(x) = −1
x2

15. (a) y = 6
(b) x = −2

17. (a) y = −3x+ 4
(b) y = 1/3(x− 7)− 17

19. (a) y = 48(x− 4) + 64
(b) y = − 1

48 (x− 4) + 64

21. (a) y = −1/4(x+ 2)− 1/2
(b) y = 4(x+ 2)− 1/2

23. y = 8.1(x− 3) + 16

25. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.

27. (a) ApproximaƟons will vary; they should match (c) closely.
(b) f ′(x) = 2x
(c) At (−1, 0), slope is−2. At (0,−1), slope is 0. At (2, 3),

slope is 4.
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33. (a) Approximately on (−2, 0) and (2,∞).
(b) Approximately on (−∞,−2) and (0, 2).
(c) Approximately at x = 0, ±2.
(d) Approximately on (−∞,−1) and (1,∞).
(e) Approximately on (−1, 1).
(f) Approximately at x = ±1.

35. limh→0+
f(0+h)−f(0)

h = 0; note also that limx→0+ f ′(x) = 0. So f
is differenƟable at x = 0.
limh→0−

f(1+h)−f(1)
h = −∞; note also that

limx→1− f ′(x) = −∞. So f is not differenƟable at x = 1.
f is differenƟable on [0, 1), not its enƟre domain.

37. Approximately 24.

39. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]
(d) [−

√
5,
√
5]

SecƟon 6.2

1. Velocity

3. Linear funcƟons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. Ō/s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, negaƟve profit for not

producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

SecƟon 6.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2(x− π

4 )−
√
2

Normal line: y = −1√
2
(x− π

4 )−
√
2

39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

SecƟon 6.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. f ′(x) = sin x+ x cos x

17. f ′(x) = ex ln x+ ex 1x

19. g′(x) = −12
(x−5)2

21. h′(x) = − csc2 x− ex

23. h′(t) = 14t+ 6

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

27. f ′(x) = 7

29. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

31. f ′(x) = −x sin x−cos x
x2 + tan x−x sec2 x

tan2 x

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

39. Tangent line: y = 4
Normal line: x = 2

41. x = 3/2

43. f ′(x) is never 0.

45. f ′′(x) = 2 cos x− x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x

A.19



49. .....

−2

.

−1

.

1

.

2

.

−3

.

3

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

51. .....

−2

.

−1

.

1

.

2

.

3

.

4

.

5

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

SecƟon 6.5

1. T

3. F

5. T

7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

11. f ′(x) = 3
(
ln x+ x2

)
2( 1x + 2x)

13. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

15. g′(x) = 5 sec2(5x)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − 1
t3

)
19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)

21. f ′(x) = 2/x

23. g′(r) = ln 4 · 4r

25. g′(t) = 0

27. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

35. f ′(x) = 4(5x−9)3 cos(4x+1)−15 sin(4x+1)(5x−9)2
(5x−9)6

37. Tangent line: y = 0
Normal line: x = 0

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

41. In both cases the derivaƟve is the same: 1/x.

43. (a) ◦ F/mph
(b) The sign would be negaƟve; when the wind is blowing at

10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Chapter 7
SecƟon 7.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; the funcƟon isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the funcƟon isn’t defined here. E: none F: rel.
min G: rel. max

9. f ′(0) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

13. f ′(2) is not defined f ′(6) = 0

15. f ′(0) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)

23. min: (π,−eπ)

max: (π/4,
√
2eπ/4
2 )

25. min: (1, 0)
max: (e, 1/e)

27. dy
dx =

y(y−2x)
x(x−2y)

29. 3x2 + 1

SecƟon 7.2

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.

5. False; for instance, y = x3 is always increasing though it has a
criƟcal point at x = 0.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

17. domain=(−∞,∞)

c.p. at c = 1
6 (−1±

√
7);

decreasing on ( 16 (−1−
√
7), 1

6 (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

√
7)) ∪ ( 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on enƟre domain, (−∞,−2) ∪ (−2, 4) ∪ (4,∞)
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23. domain=(−∞,∞)

c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on (−3π/4,−π/4) ∪ (π/4, 3π/4);
increasing on (−π,−3π/4) ∪ (−π/4, π/4) ∪ (3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

25. c = 1/2

SecƟon 7.3

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Possible points of inflecƟon: none; concave up on (−∞,∞)

17. Possible points of inflecƟon: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

19. Possible points of inflecƟon: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) ∪ (0,∞)

21. Possible points of inflecƟon: x = 1; concave up on (−∞,∞)

23. Possible points of inflecƟon: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflecƟon: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflecƟon: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. max: x = 0

39. max: x = π/4; min: x = −3π/4

41. min: x = 1/
√
e

43. f ′ has no maximal or minimal value.

45. f ′ has a minimal value at x = 0

47. Possible points of inflecƟon: x = −2/3, 0; f ′ has a relaƟve min
at: x = 0 ; relaƟve max at: x = −2/3

49. f ′ has no relaƟve extrema

51. f ′ has a relaƟve max at x = −1/
√
3; relaƟve min at x = 1/

√
3

53. f ′ has a relaƟve min at x = 3π/4; relaƟve max at x = −π/4

55. f ′ has a relaƟve min at x = 1/
√
e3 = e−3/2

SecƟon 7.4

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts and draw the
appropriate line.

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. CriƟcal point: x = 0 Points of inflecƟon: ±b/
√
3

29. CriƟcal points: x = nπ/2−b
a , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

31. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posiƟve when y < 0 and is
negaƟve when y > 0. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

SecƟon 7.5

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx
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Index

∈, 2
/∈, 2
x-axis, 10
x-coordinate, 10
y-axis, 10
y-coordinate, 10

abscissa, 10
absolute maximum, 257
absolute minimum, 257
absolute value

definiƟon of, 46
properƟes of, 47

acceleraƟon, 227
amplitude, 141
angle

reference, 108
anƟderivaƟve, 286
arccosecant

calculus friendly
definiƟon of, 162
graph of, 162
properƟes of, 162

trigonometry friendly
definiƟon of, 160
graph of, 159
properƟes of, 160

arccosine
definiƟon of, 154
graph of, 153
properƟes of, 154

arccotangent
definiƟon of, 157
graph of, 156
properƟes of, 157

arcsecant
calculus friendly
definiƟon of, 162
graph of, 162
properƟes of, 162

trigonometry friendly
definiƟon of, 160
graph of, 159
properƟes of, 160

arcsine
definiƟon of, 154
graph of, 153
properƟes of, 154

arctangent
definiƟon of, 157
graph of, 156

properƟes of, 157
argument

of a funcƟon, 17
of a logarithm, 92
of a trigonometric funcƟon, 139

asymptote
horizontal, 198
verƟcal, 196

asymptote
horizontal
formal definiƟon of, 75
intuiƟve definiƟon of, 75
locaƟon of, 77

slant
determinaƟon of, 79
formal definiƟon of, 79

slant (oblique), 79
verƟcal
formal definiƟon of, 75
intuiƟve definiƟon of, 75
locaƟon of, 76

BisecƟon Method, 209

Cartesian coordinate plane, 10
Cartesian coordinates, 10
Chain Rule, 248

notaƟon, 252
change of base formulas, 99
circular funcƟon, 115
codomain, 17
CofuncƟon IdenƟƟes, 125
common base, 87
common logarithm, 89
complex number

definiƟon of, 4
set of, 4

composite funcƟon
definiƟon of, 26

concave down, 271
concave up, 271
concavity, 271

inflecƟon point, 271
test for, 271

constant funcƟon
as a horizontal line, 44

Constant MulƟple Rule
of derivaƟves, 234
of integraƟon, 289

constant term of a polynomial, 57
conƟnuous, 60
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conƟnuous funcƟon, 204
properƟes, 207

coordinates
Cartesian, 10

cosecant
graph of, 143
of an angle, 115
properƟes of, 145

cosine
graph of, 139
of an angle, 105, 115
properƟes of, 138

cotangent
graph of, 147
of an angle, 115
properƟes of, 149

criƟcal number, 259
criƟcal point, 259
curve sketching, 278

decreasing funcƟon, 264
finding intervals, 265

degree of a polynomial, 57
dependent variable, 17
depreciaƟon, 87
derivaƟve

acceleraƟon, 227
as a funcƟon, 219
at a point, 215
basic rules, 231
Chain Rule, 248, 252
Constant MulƟple Rule, 234
Constant Rule, 231
exponenƟal funcƟons, 252
First Deriv. Test, 267
Generalized Power Rule, 249
higher order, 235
interpretaƟon, 236

interpretaƟon, 225
moƟon, 227
normal line, 217
notaƟon, 219, 235
Power Rule, 231, 243
Product Rule, 238
QuoƟent Rule, 240
second, 235
Second Deriv. Test, 274
Sum/Difference Rule, 234
tangent line, 215
third, 235
trigonometric funcƟons, 241
velocity, 227

diagram
Venn Diagram, 3

Difference IdenƟty
for cosine, 123, 128
for sine, 126, 128
for tangent, 128

differenƟable, 215
disconƟnuity, 207

disconƟnuity
essenƟal, 208
infinite, 208
jump, 208
removable, 208

discriminant
of a quadraƟc equaƟon, 52
trichotomy, 52

distance
definiƟon, 13
distance formula, 14

domain, 17
domain

implied, 19
Double Angle IdenƟƟes, 128

empty set, 3, 4
end behaviour

of f(x) = axn, n even, 59
of f(x) = axn, n odd, 60
of a funcƟon graph, 58
polynomial, 62

Even/Odd IdenƟƟes, 123
exponenƟal funcƟon

algebraic properƟes of, 95
change of base formula, 99
common base, 87
definiƟon of, 86
graphical properƟes of, 87
inverse properƟes of, 95
natural base, 87
one-to-one properƟes of, 95

extrema
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
finding, 260
relaƟve, 258

Extreme Value Theorem, 257
extreme values, 257

First DerivaƟve Test, 267
floor funcƟon, 204
frequency

of a sinusoid, 141
funcƟon

absolute value, 46
argument, 17
arithmeƟc, 23
as a process, 17, 30
circular, 115
composite
definiƟon of, 26

constant, 44
conƟnuous, 60
definiƟon, 17
dependent variable of, 17
difference, 23
exponenƟal, 86
independent variable of, 17



inverse
definiƟon of, 30
properƟes of, 31
solving for, 34
uniqueness of, 31

linear, 43
logarithmic, 89
notaƟon, 17
one-to-one, 32
periodic, 138
piecewise, 46
polynomial, 56
product, 23
quadraƟc, 49
quoƟent, 23
raƟonal, 73
smooth, 60
sum, 23

fundamental cycle
of y = cos(x), 139

Generalized Power Rule, 249
graph

hole in, 76

Half-Angle Formulas, 131
hole

in a graph, 76
locaƟon of, 76

horizontal asymptote
formal definiƟon of, 75
intuiƟve definiƟon of, 75
locaƟon of, 77

Horizontal Line Test (HLT), 32

implied domain of a funcƟon, 19
increasing funcƟon, 264

finding intervals, 265
indefinite integral, 286
independent variable, 17
indeterminate form, 171, 197
inflecƟon point, 272
iniƟal value problem, 290
integer

definiƟon of, 4
set of, 4

integraƟon
indefinite, 286
notaƟon, 287
Power Rule, 290
Sum/Difference Rule, 289

Intermediate Value Theorem, 208
Intermediate Value Theorem

polynomial zero version, 60
intersecƟon of two sets, 2
interval

definiƟon of, 6
notaƟon for, 6

inverse
of a funcƟon
definiƟon of, 30

properƟes of, 31
solving for, 34
uniqueness of, 31

inverƟbility
funcƟon, 32

inverƟble
funcƟon, 30

irraƟonal number
definiƟon of, 4
set of, 4

leading coefficient of a polynomial, 57
leading term of a polynomial, 57
limit

at infinity, 198
definiƟon, 176
difference quoƟent, 175
does not exist, 174, 189
indeterminate form, 171, 197
informal definiƟon, 176
leŌ handed, 188
of infinity, 194
one sided, 188
properƟes, 178
pseudo-definiƟon, 172
right handed, 188
Squeeze Theorem, 181

line
linear funcƟon, 43
point-slope form, 43
slope of, 41
slope-intercept form, 43

linear funcƟon, 43
logarithm

algebraic properƟes of, 96
change of base formula, 99
common, 89
general, “base b”, 89
graphical properƟes of, 90
inverse properƟes of, 95
natural, 89
one-to-one properƟes of, 95

maximum
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
relaƟve/local, 258

midpoint
definiƟon of, 15
midpoint formula, 15

minimum
absolute, 257
and First Deriv. Test, 267, 274
relaƟve/local, 258

mulƟplicity
effect on the graph of a polynomial, 63
of a zero, 63

natural base, 87
natural logarithm, 89



natural number
definiƟon of, 4
set of, 4

Newton’s Law of Cooling, 88
normal line, 217

oblique asymptote, 79
one-to-one funcƟon, 32
ordered pair, 10
ordinate, 10
origin, 10

parabola
graph of a quadraƟc funcƟon, 49
vertex, 49

period
of a funcƟon, 138

periodic funcƟon, 138
phase, 141
phase shiŌ, 141
point of inflecƟon, 272
point-slope form of a line, 43
polynomial funcƟon

constant term, 57
definiƟon of, 56
degree, 57
end behaviour, 58
leading coefficient, 57
leading term, 57
zero
mulƟplicity, 63

Power ReducƟon Formulas, 130
Power Rule

differenƟaƟon, 231, 238, 243
integraƟon, 290

power rule
for absolute value, 47
for exponenƟal funcƟons, 95
for logarithms, 96

product rule
for absolute value, 47
for exponenƟal funcƟons, 95
for logarithms, 96

Product to Sum Formulas, 133
Pythagorean IdenƟƟes, 117

quadrants, 12
quadraƟc formula, 51
quadraƟc funcƟon

definiƟon of, 49
general form, 50
standard form, 50

QuoƟent IdenƟƟes, 116
QuoƟent Rule, 240
quoƟent rule

for absolute value, 47
for exponenƟal funcƟons, 95
for logarithms, 96

rate of change
slope of a line, 42

raƟonal funcƟons, 73
raƟonal number

definiƟon of, 4
set of, 4

real number
definiƟon of, 3, 4
set of, 3, 4

Reciprocal IdenƟƟes, 116
reference angle, 108
Reference Angle Theorem

for cosine and sine, 109
reflecƟon

of a point, 13

secant
graph of, 143
of an angle, 115
properƟes of, 145

Second DerivaƟve Test, 274
set

definiƟon of, 1
empty, 3, 4
exclusion, 2
inclusion, 2
intersecƟon, 2
roster method, 1
set-builder notaƟon, 1
sets of numbers, 4
union, 2
verbal descripƟon, 1

set-builder notaƟon, 1
sign diagram, 265
sign diagram

polynomial funcƟon, 61
sine

graph of, 139
of an angle, 105, 115
properƟes of, 138

sinusoid
amplitude, 141
graph of, 141
phase shiŌ, 141

slant asymptote, 79
slant asymptote

determinaƟon of, 79
formal definiƟon of, 79

slope
definiƟon, 41
of a line, 41
rate of change, 42

slope-intercept form of a line, 43
smooth, 60
Squeeze Theorem, 181
subset

definiƟon of, 2
Sum IdenƟty

for cosine, 123, 128
for sine, 126, 128
for tangent, 128

Sum to Product Formulas, 133



Sum/Difference Rule
of derivaƟves, 234
of integraƟon, 289

symmetry
about the x-axis, 12
about the y-axis, 12
about the origin, 12

tangent
graph of, 146
of an angle, 115
properƟes of, 149

tangent line, 215
trichotomy, 5

union of two sets, 2
Unit Circle

important points, 110

variable
dependent, 17
independent, 17

velocity, 226
Venn Diagram, 3
vertex

of a parabola, 49
verƟcal asymptote

formal definiƟon of, 75
intuiƟve definiƟon of, 75
locaƟon of, 76

zero
mulƟplicity of, 63



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
x
√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
x
√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
x
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C



The Unit Circle
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√
1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√
1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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