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PREFACE

One of the challenges with a course like Math 1010 is finding a suitable text-
book. The course covers material from two topics — Precalculus and Calculus
— that are usually offered as separate courses, with separate texts. Before the
initial offering of Math 1010, | reviewed a number of commercially available
options, but these all had two things in common: they did not quite meet our
needs, and they were all very expensive (some were as much as $400).

Since writing a new textbook from scratch is a huge undertaking, requiring
resources (like time) we simply did not have, | chose to explore non-commercial
options. This took a bit of searching, since non-commercial texts, while inexpen-
sive (or free), are of varying quality. Fortunately, there are some decent texts
out there. Unfortunately, | couldn’t find a single text that covered all of the ma-
terial we need for Math 1010.

To get around this problem, | have selected two textbooks as our primary
sources for the course. The first is Precalculus, version 3, by Carl Stitz and Jeff
Zeager. The second is APEX Calculus I, version 3.0, by Hartman et al. (As of
June, 2018, we have updated to version 4.0!) Both texts have two very useful
advantages. First, they’re both free (as in beer): you can download either text
in PDF format from the authors’ web pages. Second, they’re also open source
texts (that is, free, as in speech). Both books are written using the BlpXmarkup
language, as is typical in mathematics publishing. What is not typical is that the
authors of both texts make their source code freely available, allowing others
(such as myself) to edit and customize the books as they see fit.

In the first iteration of this project (Fall 2015), | was only able to edit each text
individually for length and content, resulting in two separate textbooks for Math
1010. For Fall 2016, | had enough time to take the content of the Precalculus
textbook and adapt its source code to be compatible with the formatting of the
Calculus textbook, allowing me to produce a single textbook for all of Math 1010.

For Fall 2017, | produced this much shortened, abridged version of the “Com-
plete (and Current) Edition” produced the previous year. That version has more
material than an instructor can reasonably expect to cover in one semester. The
unabridged version is still available for a student who wants a more complete
treatment of the precalculus material in the text.

The book is very much a work in progress, and | will be editing it regularly.
Feedback is always welcome.
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1: THE REAL NUMBERS

1.1 Some Basic Set Theory Notions

While the authors would like nothing more than to delve quickly and deeply into
the sheer excitement that is Precalculus, experience has taught us that a brief
refresher on some basic notions is welcome, if not completely necessary, at this
stage. To that end, we present a brief summary of ‘set theory’ and some of
the associated vocabulary and notations we use in the text. Like all good Math
books, we begin with a definition.

Definition 1.1.1 Set

A set is a well-defined collection of objects which are called the ‘ele-
ments’ of the set. Here, ‘well-defined’ means that it is possible to deter-
mine if something belongs to the collection or not, without prejudice.

For example, the collection of letters that make up the word “pronghorns” One thing that student evaluations teach
is well-defined and is a set, but the collection of the worst math teachers in the us is that any given Mathematics instruc-

world is not well-defined, and so is not a set. In general, there are three ways tor can be simultaneously the best and
to describe sets. They are worst teacher ever, depending on who is

completing the evaluation.

Key Idea 1.1.1 Ways to Describe Sets

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a left brace ‘{’, list each element
of the set only once and then end with a right brace ‘}".

3. The Set-Builder Method: A combination of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of letters that make
up the word “pronghorns”. A roster description of Swould be {p,r,0,n, g, h,s}.
Note that we listed ‘r’, ‘0’, and ‘n’ only once, even though they appear twice in
“pronghorns.” Also, the order of the elements doesn’t matter, so {0, n, p,r,g,s,h}
is also a roster description of S. A set-builder description of S is:

{x|xis a letter in the word “pronghorns”.}

The way to read this is: ‘The set of elements x such that x is a letter in the
word “pronghorns.”” In each of the above cases, we may use the familiar equals
sign‘="and writeS = {p,r,0,n, g, h,s} orS = {x]| xis a letter in the word “pronghorns”.}.
Clearly ris in S and g is not in S. We express these sentiments mathematically
by writingr € Sand q ¢ S.

More precisely, we have the following.



Chapter 1 The Real Numbers

Definition 1.1.2 Notation for set inclusion
Let A be a set.
e |f xis an element of A then we write x € A which is read ‘xisin A’.

e If xis not an element of A then we write x ¢ A which is read ‘x is
notin A’.

Now let’s consider the set C = {x | x is a consonant in the word “pronghorns”}.
A roster description of Cis C = {p,r,n, g, h,s}. Note that by construction, every
element of Cis also in S. We express this relationship by stating that the set C
is a subset of the set S, which is written in symbols as C C S. The more formal
definition is given below.

Definition 1.1.3 Subset

Given sets A and B, we say that the set A is a subset of the set B and write
‘A C B’ if every element in A is also an element of B.

Note that in our example above C C S, but not vice-versa, since o € S but
o ¢ C. Additionally, the set of vowels V = {a, e, i, 0, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V, either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p,r,0,n,g,h,s,a,e,i,u}. ThenS C Uand V C U. The
set U we have built is called the union of the sets S and V and is denoted S U V.
Furthermore, S and V aren’t completely different sets since they both contain
the letter ‘0. (Since the word ‘different’ could be ambiguous, mathematicians
use the word disjoint to refer to two sets that have no elements in common.)
The intersection of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersection of S and V'is {0}, written SNV = {o}.
We formalize these ideas below.

Definition 1.1.4 Intersection and Union
Suppose A and B are sets.
 The intersection of Aand BisANB = {x|x € Aand x € B}

e The unionof Aand BisAUB = {x|x € Aor x € B (or both)}

The key words in Definition 1.1.4 to focus on are the conjunctions: ‘intersec-
tion’ corresponds to ‘and’ meaning the elements have to be in both sets to be
in the intersection, whereas ‘union’ corresponds to ‘or’ meaning the elements
have to be in one set, or the other set (or both). In other words, to belong to
the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, CU V = {p,r,n,g,h,s,a,e,i,o,u}.
When it comes to their intersection, however, we run into a bit of notational



awkwardness since C and V have no elements in common. While we could write
C NV = {}, this sort of thing happens often enough that we give the set with
no elements a name.

Definition 1.1.5 Empty set

The Empty Set () is the set which contains no elements. That is,

0= {} = {x|x £ xb.

As promised, the empty set is the set containing no elements since no matter
what ‘X’ is, ‘x = x." Like the number ‘0,’ the empty set plays a vital role in math-
ematics. We introduce it here more as a symbol of convenience as opposed to
a contrivance.  Using this new bit of notation, we have for the sets C and V
above that CNV = (). A nice way to visualize relationships between sets and set
operations is to draw a Venn Diagram. A Venn Diagram for the sets S, Cand Vs
drawn in Figure 1.1.1.

In Figure 1.1.1 we have three circles - one for each of the sets C, Sand V. We
visualize the area enclosed by each of these circles as the elements of each set.
Here, we’'ve spelled out the elements for definitiveness. Notice that the circle
representing the set C is completely inside the circle representing S. This is a
geometric way of showing that C C S. Also, notice that the circles representing
S and V overlap on the letter ‘0". This common region is how we visualize SN V.
Notice that since CNV = (), the circles which represent C and V have no overlap
whatsoever.

All of these circles lie in a rectangle labelled U (for ‘universal’ set). A universal
set contains all of the elements under discussion, so it could always be taken as
the union of all of the sets in question, or an even larger set. In this case, we
could take U = S U V or U as the set of letters in the entire alphabet. The usual
triptych of Venn Diagrams indicating generic sets A and B along with AN B and
A U Biis given below.

(The reader may well wonder if there is an ultimate universal set which con-
tains everything. The short answer is ‘no’. Our definition of a set turns out to
be overly simplistic, but correcting this takes us well beyond the confines of
this course. If you want the longer answer, you can begin by reading about
Russell’s Paradox on Wikipedia.)

1.1.1 Sets of Real Numbers

The playground for most of this text is the set of Real Numbers. Many quantities
in the ‘real world’ can be quantified using real numbers: the temperature at a
given time, the revenue generated by selling a certain number of products and
the maximum population of Sasquatch which can inhabit a particular region are
just three basic examples. A succinct, but nonetheless incomplete definition of
a real number is given below.

Definition 1.1.6 The real numbers

A real number is any number which possesses a decimal representation.
The set of real numbers is denoted by the character R.

1.1 Some Basic Set Theory Notions

The full extent of the empty set’s role will
not be explored in this text, but it is of fun-
damental importance in Set Theory. In
fact, the empty set can be used to gener-
ate numbers - mathematicians can create
something from nothing! If you're inter-
ested, read about the von Neumann con-
struction of the natural numbers or con-
sider signing up for Math 2000.

Q
1)
<

Figure 1.1.1: A Venn diagram for C, S, and
"4

hS
5]

Sets A and B.

kS
5]
[w

AN Bis shaded.

.o

A B

A U Bis shaded.

Figure 1.1.2: Venn diagrams for intersec-
tion and union
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An example of a number with a
repeating  decimal expansion is

a = 2.13234234234.... This is ra-
tional since 1000 = 213.2342342342...,
and 100000 = 213234.234234... so

999000 = 100000a — 100a = 213021.

This gives us the rational expression
213021

99900 °

The classic example of an irrational num-
ber is the number 7, but numbers like v/2
and 0.101001000100001... are other
fine representatives.

Certain subsets of the real numbers are worthy of note and are listed below.
In more advanced courses like Analysis, you learn that the real numbers can be
constructed from the rational numbers, which in turn can be constructed from
the integers (which themselves come from the natural numbers, which in turn
can be defined as sets...).

Definition 1.1.7 Sets of Numbers

1. The Empty Set: ) = {} = {x|x # x}. This is the set with no elements.
Like the number ‘0, it plays a vital role in mathematics.

2. The Natural Numbers: N = {1,2 3, ...} The periods of ellipsis here indi-
cate that the natural numbers contain 1, 2, 3, ‘and so forth’.

3. ThelIntegers: Z ={...,—3,-2,-1,0,1,2,3,...}

4. The Rational Numbers: Q = {2 |a € Zandb € Z}. Rational numbers
are the ratios of integers (provided the denominator is not zero!) It turns
out that another way to describe the rational numbers is:

Q = {x| x possesses a repeating or terminating decimal representation. }

5. The Real Numbers: R = {x| x possesses a decimal representation. }

6. The Irrational Numbers: Real numbers that are not rational are called ir-
rational. As a set, we have {x € R|x ¢ Q}. (There is no standard symbol
for this set.) Every irrational number has a decimal expansion which nei-
ther repeats nor terminates.

7. The Complex Numbers: C = {a+bi|a,b € Randi= +/—1} (We will not
deal with complex numbers in Math 1010, although they usually make an
appearance in Math 1410.)

It is important to note that every natural number is a whole number is an
integer. Each integer is a rational number (take b = 1 in the above definition for
Q) and the rational numbers are all real numbers, since they possess decimal
representations (via long division!). If we take b = 0 in the above definition of
C, we see that every real number is a complex number. In this sense, the sets
N, Z, Q, R, and C are ‘nested’ like Matryoshka dolls. More formally, these sets
form a subset chain: N C Z C Q C R. The reader is encouraged to sketch a
Venn Diagram depicting R and all of the subsets mentioned above.

As you may recall, we often visualize the set of real numbers R as a line where
each point on the line corresponds to one and only one real number. Given two
different real numbers a and b, we write a < b if a is located to the left of b on
the number line, as shown in Figure 1.1.3.

While this notion seems innocuous, it is worth pointing out that this conven-
tion is rooted in two deep properties of real numbers. The first property is that
R is complete. This means that there are no ‘holes’ or ‘gaps’ in the real number
line. (This intuitive feel for what it means to be ‘complete’ is as good as it gets at
this level. Completeness does get a much more precise meaning later in courses
like Analysis and Topology.) Another way to think about this is that if you choose
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any two distinct (different) real numbers, and look between them, you'll find a
solid line segment (or interval) consisting of infinitely many real numbers.
The next result tells us what types of numbers we can expect to find.

Theorem 1.1.1 Density Property of Q in R

Between any two distinct real numbers, there is at least one rational
number and irrational number. It then follows that between any two
distinct real numbers there will be infinitely many rational and irrational
numbers.

The root word ‘dense’ here communicates the idea that rationals and irra-
tionals are ‘thoroughly mixed’ into R. The reader is encouraged to think about
how one would find both a rational and an irrational number between, say,
0.9999 and 1. Once you’ve done that, ask yourself whether there is any dif-
ference between the numbers 0.9 and 1.

The second property R possesses that lets us view it as a line is that the set
is totally ordered. This means that given any two real numbers a and b, either
a < b,a > bora = b which allows us to arrange the numbers from least
(left) to greatest (right). You may have heard this property given as the ‘Law of
Trichotomy’.

Definition 1.1.8 Law of Trichotomy

If a and b are real numbers then exactly one of the following statements
is true:
a<b a>b a=>b

The reader is probably familiar with the relations a < b and a > b in the
context of solving inequalities. The order properties of the real number system
can be summarized as a collection of rules for manipulating inequalities, as fol-
lows:

Key Idea 1.1.2 Rules for inequalities

Let a, b, and ¢ be any real numbers. Then:
e Ifa<b,thena+c<b-+c.
e Ifa<b,thena—c<b—c.
e Ifa<bandc > 0, thenac < bc.

e Ifa < bandc < 0,thenac > bc. (In particular, —a > —b.)

1 1
e If0<a<b,then - < —.
b a

Note the emphasis in rule #3 above: caution must always be exercised when
manipulating inequalities: multiplying by a negative number reverses the sign.

1.1 Some Basic Set Theory Notions

a b

Figure 1.1.3: The real number line with
two numbers g and b, where a < b.

The Law of Trichotomy, strictly speaking,
is an axiom of the real numbers: a ba-
sic requirement that we assume to be
true. However, in any construction of
the real numbers, such as the method of
Dedekind cuts, it is necessary to prove
that the Law of Trichotomy is satisfied.
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The importance of understanding inter-
val notation in Calculus cannot be over-
stated. If you don’t find yourself getting

the hang of it through repeated use, you

may need to take the time to just memo-

rize this chart.

This is especially important to remember when dealing with inequalities involv-
ing variable quantities, for example, with rational inequalities (see Example 3.3.5).

Segments of the real number line are called intervals of numbers. Below
is @ summary of the so-called interval notation associated with given sets of
numbers. For intervals with finite endpoints, we list the left endpoint, then the
right endpoint. We use square brackets, ‘[ or /|', if the endpoint is included in the
interval and use a filled-in or ‘closed’ dot to indicate membership in the interval.
Otherwise, we use parentheses, ‘(" or /) and an ‘open’ circle to indicate that the
endpoint is not part of the set. If the interval does not have finite endpoints,
we use the symbols —oo to indicate that the interval extends indefinitely to the
left and oo to indicate that the interval extends indefinitely to the right. Since
infinity is a concept, and not a number, we always use parentheses when using
these symbols in interval notation, and use an appropriate arrow to indicate that
the interval extends indefinitely in one (or both) directions.

Definition 1.1.9 Interval Notation

Let a and b be real numbers with a < b.

Set of Real Numbers | Interval Notation | Region on the Real Number Line
{x]a <x < b} (a,b) a?—z
{x]a <x< b} [a,b) n’—z
{x]a <x< b} (a, b] (IO—I.)
{x]a <x< b} [a, b] o

{x|x < b} (=00, b) *—Z
{x|x < b} (~o0, b] —
{x|x>a} (a,00) n‘?—*
{x|x > a} [a,0) e

R (=00, 00) -

As you can glean from the table, for intervals with finite endpoints we start
by writing ‘left endpoint, right endpoint’. We use square brackets, ‘[’ or ‘], if the
endpoint is included in the interval. This corresponds to a ‘filled-in’ or ‘closed’
dot on the number line to indicate that the number is included in the set. Oth-
erwise, we use parentheses, ‘(" or ‘)’ that correspond to an ‘open’ circle which
indicates that the endpoint is not part of the set. If the interval does not have
finite endpoints, we use the symbol —oo to indicate that the interval extends
indefinitely to the left and the symbol oo to indicate that the interval extends
indefinitely to the right. Since infinity is a concept, and not a number, we al-
ways use parentheses when using these symbols in interval notation, and use
the appropriate arrow to indicate that the interval extends indefinitely in one or



both directions.
Let’s do a few examples to make sure we have the hang of the notation:

Set of Real Numbers | Interval Notation | Region on the Real Number Line
{x]1<x<3} [1,3) T 3§
x| —1<x<4) [-1,4] I S
{x|x <5} (~c0,5] —
{x|x> -2} (—2,00) s

We defined the intersection and union of arbitrary sets in Definition 1.1.4.
Recall that the union of two sets consists of the totality of the elements in each
of the sets, collected together. For example, if A = {1,2,3} and B = {2,4,6},
thenANB = {2}and AUB = {1,2,3,4,6}. IfA =[-5,3) and B = (1,00),
then we can find AN B and AU B graphically. To find AN B, we shade the overlap
of the two and obtain AN B = (1, 3). To find A U B, we shade each of A and B
and describe the resulting shaded region to find AU B = [—5, 00).

While both intersection and union are important, we have more occasion to
use union in this text than intersection, simply because most of the sets of real
numbers we will be working with are either intervals or are unions of intervals,
as the following example illustrates.

Example 1.1.1

Expressing sets as unions of intervals

Express the following sets of numbers using interval notation.

1.

3.

{x|x<—=2o0rx>2}

2. {x|x#3}
{x|x # £3}

4. {x|] —1<x<3orx=5}

SOLUTION

1.

The best way to proceed here is to graph the set of numbers on the num-
ber line and glean the answer from it. The inequality x < —2 corresponds
to the interval (—oo, —2] and the inequality x > 2 corresponds to the in-
terval [2, 00). Since we are looking to describe the real numbers x in one of
these or the other, we have {x|x < —2 or x > 2} = (—o0, —2]U[2, 0).

For the set {x | x # 3}, we shade the entire real number line except x = 3,
where we leave an open circle. This divides the real number line into two
intervals, (—o0,3) and (3,00). Since the values of x could be in either
one of these intervals or the other, we have that {x | x # 3} = (—00,3) U
(3,00)

. For the set {x|x # £3}, we proceed as before and exclude both x = 3

and x = —3 from our set. This breaks the number line into three inter-
vals, (—o0,—3), (—3,3) and (3,00). Since the set describes real num-
bers which come from the first, second or third interval, we have {x|x #
43} = (—00,—3) U (—3,3) U (3, 00).

1.1 Some Basic Set Theory Notions

® e}
O

h: T

A=[-5,3),B=(1,00)

[ 0
O3

-5 1 3

ANB=(1,3)

[ 0
O3
-5 1 3 i

Figure 1.1.4: Union and intersection of in-
tervals

~

-2 2

Y

Figure 1.1.5: The set (—o0, —2] U [2, 00)

Figure 1.1.6: The set (—00,3) U (3, 00)

-“+-——0—0—

-3 3
Figure 1.1.7: The set (—o0,—3) U
(_373)U(3100)

-1 3 5

Figure 1.1.8: The set (—1,3] U {5}
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4. Graphingtheset {x| —1 < x < 3 or x = 5}, we get one interval, (—1, 3]
along with a single number, or point, {5}. While we could express the
latter as [5, 5] (Can you see why?), we choose to Wwrite our answer as {x | —
l1<x<3orx=5}=(-1,3]U{5}.



Exercises 1.1

Problems 4. (—00,4] N (0,0)
1. Fillin the chart below: 5. (—00,0) N [1,5]
Set of Real Interval Region on the
Numbers Notation | Real Number Line 6. (—00,0)U[1,5]
{x| —1<x<5} 7. (—o0,5]/Ns5,8)
[0,3) In Exercises 8 — 19, write the set using interval notation.
2 7 8. {x|x#5}
{x] =5 <x<0} 9. {x|x# —1}
(=3,3) 10. {x|x # -3, 4}
5 7 11. {x|x#0, 2}
{x|x <3} 12. {x|x#2, =2}
(=,9) 13. {x|x#0, +4}
i 14. {x|x< —lorx > 1}
{x|x> -3} 15. {x|x <3orx>2}

In Exercises 2 — 7, find the indicated intersection orunionand ~ 16. {x|x < —3orx > 0}
simplify if possible. Express your answers in interval nota-

tion. 17. {x|x <5o0orx="6}
2. (—-1,5]N[0,8) 18. {x|x > 2orx = £1}

3. (-1,1)U[0,6] 19. {x| —3<x<3orx=4}
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The Cartesian Plane is named in honour
of René Descartes.

Usually extending off towards infinity is
indicated by arrows, but here, the arrows
are used to indicate the direction of in-
creasing values of x and y.

The names of the coordinates can vary
depending on the context of the appli-
cation. If, for example, the horizontal
axis represented time we might choose
to call it the t-axis. The first number in
the ordered pair would then be the t-
coordinate.

10

1.2 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite
Algebra and Geometry. Simply put, we must find a way to draw algebraic things.
Let’s start with possibly the greatest mathematical achievement of all time: the
Cartesian Coordinate Plane. Imagine two real number lines crossing at a right
angle at 0 as drawn below.

The horizontal number line is usually called the x-axis while the vertical num-
ber line is usually called the y-axis. As with the usual number line, we imagine
these axes extending off indefinitely in both directions. Having two number lines
allows us to locate the positions of points off of the number lines as well as points
on the lines themselves.

For example, consider the point P on the next page. To use the numbers on
the axes to label this point, we imagine dropping a vertical line from the x-axis to
P and extending a horizontal line from the y-axis to P. This process is sometimes
called ‘projecting’ the point P to the x- (respectively y-) axis. We then describe
the point P using the ordered pair (2, —4). The first number in the ordered pair
is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate. Taken together, the ordered pair (2, —4) comprise the Cartesian
coordinates of the point P. In practice, the distinction between a point and its
coordinates is blurred; for example, we often speak of ‘the point (2, —4). We
can think of (2, —4) as instructions on how to reach P from the origin (0, 0) by
moving 2 units to the right and 4 units downwards. Notice that the order in the
ordered pair is important — if we wish to plot the point (—4, 2), we would move
to the left 4 units from the origin and then move upwards 2 units, as below on
the right.


http://en.wikipedia.org/wiki/Descartes

1.2 The Cartesian Coordinate Plane

Yy Y
4t 44
3T 34
(_472)
2+ ¢ ———————- 21
|
14 | 11
|
—4 -3 -2 -1 i?éle —4 -3 -2 A1 i?ézl?p
14 | 11 !
| |
-2t I -2t I
| |
[ [
31 | 3l !
| |
—4+---- e P —4+-—--- e P(2,-4)

When we speak of the Cartesian Coordinate Plane, we/mean the set of all
possible ordered pairs (x, y) as x and y take values from the/real numbers. Below
is a summary of important facts about Cartesian coordinates.

Key Idea 1.2.1 Important Facts about the Cartesian Coordinate
Plane

Cartesian coordinates are sometimes re-
ferred to as rectangular coordinates, to
distinguish them from other coordinate
systems such as polar coordinates.

(a,b) and (c, d) represent the same/point in the plane if and only
ifa=candb =d.

* (x,y) lies on the x-axis if and only if y = 0.
* (x,y) lies on the y-axis if and only if x = 0.

e The origin is the point (0, 0). It is the only point common to both

axes.
Example 1.2.1 Plotting points in the Cartesian Plane
Plot the following points: A(5,8), B(—3,3), C(—5.8,—-3), D(4.5,—1), £(5,0), The letter O is almost always reserved for
F(07 5)' 6(777 O); H(Oa 79); O(Oa O) the origin.
SOLUTION To plot these points, we start at the origin and move to the

right if the x-coordinate is positive; to the left if it is negative. Next, we move up
if the y-coordinate is positive or down if it is negative. If the x-coordinate is O,
we start at the origin and move along the y-axis only. If the y-coordinate is 0 we
move along the x-axis only.

11
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40
Quadrant Il Quadrant |
3 4
r<0,y>0 x>0,y >0
2 4
10
4 -3 -2 1 2 3 4
14
Quadrant Il B Quadrant IV
rz<0,y<0 z>0,y<0

Figure 1.2.1: The four quadrants of the

Cartesian plane

12

A(5,8)

F(0,5)

— NN W e OO N 0 O
N '
*

G(~17,0) 10(0,0) E(5,0)
,g,g,;,g,g,g,g,ﬁ,il 1 2 3456 7 89 =
p— B [ ]

Y D(4.5,-1)

The axes divide the plane into four regions called quadrants. They are la-
belled with Roman numerals and proceed counterclockwise around the plane:
see Figure 1.2.1.

For example, (1,2) lies in Quadrant I, (—1,2) in Quadrant Il, (=1, —2) in
Quadrant lll and (1, —2) in Quadrant IV. If a point other than the origin happens
to lie on the axes, we typically refer to that point as lying on the positive or
negative x-axis (if y = 0) or on the positive or negative y-axis (if x = 0). For
example, (0, 4) lies on the positive y-axis whereas (—117, 0) lies on the negative
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of Mathematics is symmetry.
There are many types of symmetry in Mathematics, but three of them can be
discussed easily using Cartesian Coordinates.

Definition 1.2.1 Symmetry in the Cartesian Plane

Two points (a, b) and (c, d) in the plane are said to be

e symmetric about the x-axis ifa = cand b = —d
¢ symmetric about the y-axisifa = —cand b =d
e symmetric about the originifa = —cand b = —d




In Figure 1.2.2, P and S are symmetric about the x-axis, as are Qand R; P and
Q are symmetric about the y-axis, as are R and S; and P and R are symmetric
about the origin, as are Q and S.

Example 1.2.2 Finding points exhibiting symmetry
Let P be the point (—2, 3). Find the points which are symmetric to P about the:
1. x-axis

2. y-axis 3. origin

Check your answer by plotting the points.

SOLUTION The figure after Definition 1.2.1 gives us a good way to think
about finding symmetric points in terms of taking the opposites of the x- and/or
y-coordinates of P(—2, 3).

1. To find the point symmetric about the x-axis, we replace the y-coordinate
with its opposite to get (—2, —3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate
with its opposite to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-
coordinates with their opposites to get (2, —3).

The points are plotted in Figure 1.2.3.

One way to visualize the processes in the previous example is with the con-
cept of a reflection. If we start with our point (—2, 3) and pretend that the x-axis
is a mirror, then the reflection of (—2, 3) across the x-axis would lie at (—2, —3).
If we pretend that the y-axis is a mirror, the reflection of (—2, 3) across that axis
would be (2,3). If we reflect across the x-axis and then the y-axis, we would
go from (—2,3) to (—2,—3) then to (2, —3), and so we would end up at the
point symmetric to (—2, 3) about the origin. We summarize and generalize this
process below.

Key Idea 1.2.2 Reflections in the Cartesian Plane

To reflect a point (x, y) about the:
e x-axis, replace y with —y.
e y-axis, replace x with —x.

e origin, replace x with —x and y with —y.

1.2.1 Distance in the Plane

Another important concept in Geometry is the notion of length. If we are go-
ing to unite Algebra and Geometry using the Cartesian Plane, then we need to
develop an algebraic understanding of what distance in the plane means. Sup-
pose we have two points, P (xo, o) and Q (x1,y1) , in the plane. By the distance
d between P and Q, we mean the length of the line segment joining P with Q.
(Remember, given any two distinct points in the plane, there is a unique line

1.2 The Cartesian Coordinate Plane

Q(fza y)

Y

P(x,y)

R(_x7 _y)

S(:L‘7 _y)

Figure 1.2.2: The three types of symmetry

in the plane
° 3+ °
P(-2,3) 2 (2,3)
1 4
—3 -2 -1 1 2 3 .
14
—9
° —3 4 °
(-2,-3) (2,-3)

Figure 1.2.3: The point P(—2,3) and its

three reflections
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Q (xlayl)

P ($0a yO)

Q (z1,9.)

P (z9,9,) (T1,90)

Figure 1.2.4: Distance between P and Q

14

containing both points.) Our goal now is to create an algebraic formula to com-
pute the distance between these two points. Consider the generic situation in
Figure 1.2.4.

With a little more imagination, we can envision a right triangle whose hy-
potenuse has length d as drawn above on the right. From the latter figure, we
see that the lengths of the legs of the triangle are |x; — xo| and |y1 — yol so the
Pythagorean Theorem gives us

X1 — %o|” + lyr — vol* = d?

2 2
(X1 —=x0)"+ (y1 —y0)" = d
(Do you remember why we can replace the absolute value notation with

parentheses?) By extracting the square root of both sides of the second equa-
tion and using the fact that distance is never negative, we get

Key Idea 1.2.3 The Distance Formula

The distance d between the points P (xo, o) and Q (x4, y1) is:

d= \/(Xl - Xo)z + (y1 — y0)2

Itis not always the case that the points Pand Q lend themselves to construct-
ing such a triangle. If the points P and Q are arranged vertically or horizontally,
or describe the exact same point, we cannot use the above geometric argument
to derive the distance formula. It is left to the reader in Exercise 16 to verify
Equation 1.2.3 for these cases.

Example 1.2.3 Distance between two points
Find and simplify the distance between P(—2,3) and Q(1, —3).

SOLUTION

=9+ 36
3v5
So the distance is 31/5.
Example 1.2.4 Finding points at a given distance

Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

SOLUTION We shall soon see that the points we wish to find are on the
line x = 1, but for now we’ll just view them as points of the form (1, y).

We require that the distance from (3, 2) to (1, y) be 4. The Distance Formula,
Equation 1.2.3, yields



http://en.wikipedia.org/wiki/Pythagorean_Theorem

d= ’\/(X1 —x0)* + (y1 — )’
4= A3 (2P
- VTG
e=(Vary-2)

16=4+(y—2)>

squaring both sides

12=(y—2)?
(y—22=12
y—2=+V12 extracting the square root
y—2=142V3
y=2+2V3

We obtain two answers: (1,2 + 2\@) and (1,2 — 2\@) The reader is en-
couraged to think about wny there are two answers.

Related to finding the distance between two points is the problem of find-
ing the midpoint of the line segment connecting two points. Given two points,
P (xo, ¥o) and Q (x1, y1), the midpoint M of P and Q is defined to be the point
on the line segment connecting P and Q whose distance from P is equal to its
distance from Q.

Key Idea 1.2.4 The Midpoint Formula

The midpoint M of the line segment connecting P (xo, o) and Q (x1, y1)
is:

M= X0+X1’yo+y1
2 2

If we let d denote the distance between P and Q, we leave it as Exercise 17
to show that the distance between P and M is d/2 which is the same as the
distance between M and Q. This suffices to show that Key Idea 1.2.4 gives the
coordinates of the midpoint.

Example 1.2.5 Finding the midpoint of a line segment
Find the midpoint of the line segment connecting P(—2, 3) and Q(1, —3).

SOLUTION

M — X0+X17yo+y1
2 2

The midpointis (—1,0).

1.2 The Cartesian Coordinate Plane

Yy
34
2 T _(. (37 2)
/
It S .
, distance is 4 units
f f -
J/2 3
-1+ )'/
¥ (L,y)
921
341

Figure 1.2.5: Diagram for Example 1.2.4

Q (3?17%)

P (%,yu)

Figure 1.2.6: The midpoint of a line seg-

ment
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Exercises 1.2

Problems

1. Plot and label the points A(—3,-7), B(1.3,-2),
C(w,+/10), D(0,8), E£(—5.5,0), F(—8,4), G(9.2,—7.8)
and H(7, 5) in the Cartesian Coordinate Plane given below.

=N W e OO N 0 ©

—9-8-T-6-5-4-3-2-1 [ 1 23456789«

2. For each point given in Exercise 1 above
¢ Identify the quadrant or axis in/on which the point
lies.

e Find the point symmetric to the given point about the
X-axis.

¢ Find the point symmetric to the given point about the
y-axis.

¢ Find the point symmetric to the given point about the
origin.

In Exercises 3 — 10, find the distance d between the points and
the midpoint M of the line segment which connects them.

3. (1,2),(-3,5)

4. (3,-10), (-1,2)

(39.6)

b

~ ()]
Ve /I\
N
Ui‘-b e
vl o N
NP
7 N P
‘.-\ Wi~
w2 IN)
| ~—
-
Sl
N———

o]

- (V2,V3), (—VB,—VD2)
. (2v35,V12), (V20,V27).

[Ye]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

(0,0), (x,¥)

Find all of the points of the form (x, —1) which are 4 units
from the point (3, 2).

Find all of the points on the y-axis which are 5 units from
the point (-5, 3).

Find all of the points on the x-axis which are 2 units from
the point (—1,1).

Find all of the points of the form (x, —x) which are 1 unit
from the origin.

Let’s assume for a moment that we are standing at the ori-
gin and the positive y-axis points due North while the pos-
itive x-axis points due East. Our Sasquatch-o-meter tells us
that Sasquatch is 3 miles West and 4 miles South of our cur-
rent position. What are the coordinates of his position?
How far away is he from us? If he runs 7 miles due East
what would his new position be?

Verify the Distance Formula 1.2.3 for the cases when:

(@) The points are arranged vertically. (Hint: Use P(a, yo)
and Q(a7y1)')

(b) The points are arranged horizontally. (Hint: Use
P(xo,b) and Q(xi, b).)

(c) The points are actually the same point. (You
shouldn’t need a hint for this one.)

Verify the Midpoint Formula by showing the distance be-
tween P(xy,y:) and M and the distance between M and
Q(x, y,) are both half of the distance between P and Q.

Show that the points A, B and C below are the vertices of
a right triangle.

(a) A(-3,2), B(—6,4),and C(1,8)
(b) A(—3,1), B(4,0) and C(0, —3)

Find a point D(x, y) such that the points A(—3, 1), B(4,0),
C(0,—3) and D are the corners of a square. Justify your
answer.

Discuss with your classmates how many numbers are in the
interval (0,1).

The world is not flat. (There are those who disagree with
this statement. Look them up on the Internet some time
when you’re bored.) Thus the Cartesian Plane cannot pos-
sibly be the end of the story. Discuss with your classmates
how you would extend Cartesian Coordinates to represent
the three dimensional world. What would the Distance and
Midpoint formulas look like, assuming those concepts make
sense at all?



2: FUNCTIONS

2.1 Function Notation

Definition 2.1.1 Function

A function f from a set A to a set B is a rule that assigns each element
X € Atoaunique element y € B. We express the fact that the function
frelates the element x to the element y by writing y = f(x).

The set A is called the domain of the function, and the set B is called the
codomain of the function.

Informally, we view a function as a process by which each x in its domain is
matched with some y in the codomain. If we think of the domain of a function
as a set of inputs and the range as a set of outputs, we can think of a function f
as a process by which each input x is matched with only one output y. Since the
output is completely determined by the input x and the process f, we symbolize
the output with function notation: ‘f(x)’, read f of x.” In other words, j(x) is
the output which results by applying the process f to the input x. In this case,
the parentheses here do not indicate multiplication, as they do elsewhere in
Algebra. This can cause confusion if the context is not clear, so you must read
carefully. This relationship is typically visualized using a diagram similar to the
one in Figure 2.1.1.

The value of y is completely dependent on the choice of x. For this reason,
x is often called the independent variable, or argument of f, whereas y is often
called the dependent variable.

As we shall see, the process of a function fis usually described using an al-
gebraic formula. For example, suppose a function f takes a real number and
performs the following two steps, in sequence

1. Multiply by 3
2. Add 4

If we choose 5 as our input, in Step 1 we multiply by 3 to get (5)(3) = 15. In
Step 2, we add 4 to our result from Step 1 which yields 15 + 4 = 19. Using func-
tion notation, we would write f(5) = 19 to indicate that the result of applying
the process f to the input 5 gives the output 19. In general, if we use x for the
input, applying Step 1 produces 3x. Following with Step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x + 4. Notice
that to check our formula for the case x = 5, we replace the occurrence of x in
the formula for f(x) with 5 to get f(5)/= 3(5) + 4 = 15 + 4 = 19, as required.

Generally, we prefer to define functions of a real variable using a formula,
rather than giving a verbal description, as in the following example.

Example 2.1.1 Using function notation
Letf(x) = —x* +3x+ 4

1. Find and simplify the following.

(a) f(—1),£(0),£(2)

z y= .f (2)

Domain Range
(Inputs) (Outputs)

Figure 2.1.1: Graphical depiction of a
function

It is common in many areas of mathemat-
ics to use the notation f : A — B to
denote a function f with domain A and
codomain B. However, this notation is
less common in Calculus, where the do-
main and codomain are almost always
subsets of R. It is more common in calcu-
lus to specify a function using the formula
by which each element of the domain is
assigned to an element in the codomain.
For example, f(x) = x* describes the
function f : R — R that assigns each real
number x € R to its square.
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Functions

(b) f(2x), 2f(x)
() fix+2), fix) +2,f(x) + f(2)

2. Solve f(x) = 4.

SOLUTION

1. (a) To find f(—1), we replace every occurrence of x in the expression
f(x) with —1

f=1) = —(-1)*+3(-1)+4

I
—
[E=y
S~—
+
—

|
w
~
_|_
D

Similarly, f(0) = —(0)2+3(0)+4 = 4,andf(2) = —(2)?+3(2)+4 =
—4+6+4=6.

(b) To find f(2x), we replace every occurrence of x with the quantity 2x

—(2x)2+3(2x) + 4
= —(4°)+ (6x) + 4
—4x* + 6x+ 4

f(2x)

The expression 2f(x) means we multiply the expression f(x) by 2

2f(x) = 2(—x*+3x+4)
—2x* +6x+8

(c) Tofind f(x + 2), we replace every occurrence of x with the quantity
X+ 2
fix+2) —(x+2)2+3(x+2)+4
— (X +4x+4)+(3x+6)+4
—x* —4x—4+3x+6+4
= —-xX*—x+6

To find f(x) + 2, we add 2 to the expression for f(x)

fX)+2 = (—x*+3x+4)+2
= —x*+3x+6

From our work above, we see f(2) = 6 so that

fX)+f(2) = (—x*+3x+4)+6
= —x2+3x+10

2. Since f(x) = —x* + 3x + 4, the equation f(x) = 4 is equivalent to —x* +
3x+4 = 4. Solving we get —x?+3x = 0, or x(—x+3) = 0. We getx = 0
or x = 3, and we can verify these answers by checking that f(0) = 4 and

f3) = 4.



2.1 Function Notation

A few notes about Example 2.1.1 are in order. First note the difference be-
tween the answers for f(2x) and 2f(x). For f(2x), we are multiplying the input by
2; for 2f(x), we are multiplying the output by 2. As we see, we get entirely differ-
ent results. Along these lines, note that f(x+2), f(x) +2 and f(x) +£(2) are three
different expressions as well. Even though function notation uses parentheses,
as does multiplication, there is no general ‘distributive property’ of function no-
tation. Finally, note the practice of using parentheses when substituting one
algebraic expression into another; we highly recommend this practice as it will
reduce careless errors.

2x
Suppose now we wish to find r(3) for r(x) = 29 Substitution gives
X

2(3) 6

r(3) - (3)2 _9 - Oa
which is undefined. (Why is this, again?) The number 3 is not an allowable
input to the function r; in other words, 3 is not in the domain of r. Which other
real numbers are forbidden in this formula? We think back to arithmetic. The
reason r(3) is undefined is because substitution results in a division by 0. To
determine which other numbers result in such a transgression, we set the de-

nominator equal to 0 and solve

X*—-9=0
x*=9
\/; = \/§ extract square roots
x =43

As long as we substitute numbers other than 3 and —3, the expression r(x)
is a real number. Hence, we write our domain in interval notation (see the Ex-
ercises for Section 1.2) as (—oo, —3) U (—3,3) U (3, 00). When a formula for a
function is given, we assume that the function is valid for all real numbers which
make arithmetic sense when substituted into the formula. This set of numbers
is often called the implied domain (or ‘implicit domain’) of the function. At this
stage, there are only two mathematical sins we need to avoid: division by 0 and
extracting even roots of negative numbers. The following example illustrates
these concepts.

Example 2.1.2 Determining an implied domain
Find the domain of the following functions.
1. g(x) =4 —3x
2. h(x) =v/4 —3x
2
3. f(x) = — 4x
1 —
x—3
SOLUTION

1. The potential disaster for g is if the radicand is negative. To avoid this, we
set4 — 3x > 0. From this, we get 3x < 4 or x < 3. What this shows is The ‘radicand’ is the expression ‘inside’
that as long as x < %, the expression’4 — 3x > 0, and the formula g(x) the radical.
returns a real number. Our domainis (—oo, %].

19
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2. The formula for h(x) is hauntingly close to that of g(x) with one key dif-
ference — whereas the expression for g(x) includes an even indexed root
(namely a square root), the formula for h(x) involves an odd indexed root
(the fifth root). Since odd roots of real numbers (even negative real num-
bers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (—o0, 00).

3. In the expression for f, there are two denominators. We need to make
sure neither of them is 0. To that end, we set each denominator equal to
0 and solve. For the ‘small’ denominator, we get x —3 = 0 or x = 3. For
the ‘large’ denominator

ax
x—3
4x
 x—3
(1)(x—3) s (x—37 clear denominators
x—3)= i
x—3
x—3 =4x
—3 =3x
—1=x
So we get two real numbers which make denominators 0, namely x = —1

and x = 3. Our domain is all real numbers except —1 and 3:

(—o00, ~1) U (=1,3) U (3,00).

It is worth reiterating the importance of finding the domain of a function
before simplifying, as evidenced by the function / in the previous example. Even
though the formula /(x) simplifies to 3x, it would be inaccurate to write /(x) =
3x without adding the stipulation that x # 0. It would be analogous to not
reporting taxable income or some other sin of omission.



Exercises 2.1

Problems

In Exercises 1 — 8, use the given function f to find and simplify
the following:

* f(3) * f(—x)

* f(_l) ° f(X—4)
s f(3)

. f(ax) "4
o 4f(x) e f(x°)

1Lf(x) =2x+1

5. f(x) =
6. () = =

7. fx)=6

8. flx)=0

In Exercises 9 — 16, use the given function f to find and sim-
plify the following:

* f(2) e f(a) +£(2)
* f(-2) . £(2)
* f20) ()
e 2f(a) * 7
* fla+2) * fla+h)
9. f(x) =2x—5

10. f(x) =5—2x
11 f(x) =2 -1
12. f(x) =3¢ +3x—2

13. f(x) = vV2x+ 1

14. f(x) = 117
15. f(x) = %
16. flx) = %

In Exercises 17 — 24, use the given function f to find f(0) and
solve f(x) = 0.

17. f(x) =2x— 1

18. f(x) =3 — 2x

19. f(x) =2* -6

20. f(x) =x* —x—12
21. flx) = Vx+4

22. f(x) = V1 - 2x

2. 00 = 3 -
3x* — 12x
24. f(x) = R
x+5 if x< -3
25. Letf(x) = Vv9—x2 if —3<x<3 Computethe
—x+5 if x>3
following function values.
(@) f(—4) (d) f(3.001)
(b) f(—3) (e) f(—3.001)
(c) f(3) (f) £(2)
X if x< —1
26. Letf(x) = vV1—x2 if —1<x<1 Computethe
x if x>1
following function values.
(a) £(4) (d) f(0)
(b) f(—3) (e) f(—1)
(c) f(1) (f) £(—0.999)

In Exercises 27 — 52, find the (implied) domain of the function.
27. f(x) = x* — 13x® + 56x* — 19

28. f(x) =x"+4

29. f(x) = i;i

30. f(x) = f)’: —
31, f(x) = %
32, f(x) = )(22%3
33. f(x) = Xfi“ :e

21
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34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

X—2

f(x)

Tx—2
f(x)=+v3—x
f(x) =v2x+5
f(x) = 9xv/x+3
V7 —x
fix) = véx—2
6
fx) = Vex—3
fix) =vex—2
1) = ;s
Va2
foo = x26)i;>62

44,

45.

46.

47.

48.

49.

50.

51.

52.

= Y2
s(t) = ﬁ
ain = Y
b(0) = 99— 5

o) =/ 75
1
(v) =
g . 712
T(t) = f__ts
ulw) = SW—_\;’W



2.2 Operations on Functions

2.2.1 Arithmetic with Functions

In the previous section we used the newly defined function notation to make
sense of expressions such as ‘f(x) + 2’ and ‘2f(x)’ for a given function f. It would
seem natural, then, that functions should have their own arithmetic which is
consistent with the arithmetic of real numbers. The following definitions allow
us to add, subtract, multiply and divide functions using the arithmetic we already
know for real numbers.

Definition 2.2.1 Function Arithmetic

Suppose f and g are functions and x is in both the domain of f and the
domain of g.

e The sum of fand g, denoted f + g, is the function defined by the
formula

(f+9)(x) = f(x) + g(x)

¢ The difference of fand g, denoted f — g, is the function defined by
the formula

(f—9)(x) = f(x) — g(x)

¢ The product of fand g, denoted fg, is the function defined by the
formula

¢ The quotient of fand g, denoted g, is the function defined by the

9-%

formula

provided g(x) # 0.

In other words, to add two functions, we add their outputs; to subtract two
functions, we subtract their outputs, and so on. Note that while the formula
(f+9)(x) = f(x)+g(x) looks suspiciously like some kind of distributive property,
it is nothing of the sort; the addition on the left hand side of the equation is
function addition, and we are using this equation to define the output of the
new function f + g as the sum of the real number outputs from fand g.

Example 2.2.1 Arithmetic with functions
1
Let f(x) = 6x* — 2xand g(x) = 3 — <

1. Find (f+ g)(—1) 2. Find (fg)(2)

3. Find the domain of g — fthen find and simplify a formula for (g — f)(x).

4. Find the domain of (?) then find and simplify a formula for (?) (x).

SOLUTION

2.2 Operations on Functions

Recall that if x is in the domains of both
fand g, then we can say that x is an el-
ement of the intersection of the two do-
mains.
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1. To find (f+ g)(—1) we first find f(—1) = 8 and g(—1) = 4. By definition,

we have that (f+ g)(—1) = f(—1) +g(—1) =8 + 4 = 12.

. Tofind (fg)(2), we first need f(2) and g(2). Since f(2) = 20and g(2) = 3,

our formula yields (fg)(2) = f(2)g(2) = (20) (3) = 50.

. One method to find the domain of g — fis to find the domain of g and

of f separately, then find the intersection of these two sets. Owing to the
denominator in the expression g(x) = 3 — %, we get that the domain of
gis (—00,0) U (0,00). Since f(x) = 6x*> — 2x s valid for all real numbers,
we have no further restrictions. Thus the domain of g — f matches the
domain of g} namely, (—o0,0) U (0, c0).

A second method is to analyze the formula for (g—f)(x) before simplifying
and look for/the usual domain issues. In this case,

990 =a0 ) = (33 ) - (6¢ - 2x),

so we find, s before, the domain is (—oo, 0) U (0, 00).

Moving along, we need to simplify a formula for (g — f)(x). One issue
here is that what it means to ‘simplify’ this function may depend on the
context. Onja most basic level, we could simply clear the parentheses:

@-pw=(3-3)~ (60 -2 ~3- 1 e+

In many contexts (computing a derivative comes to mind), this would be
the preferred result. In other contexts, we may instead want to express
our result as a single fraction. Getting a common denominator, we would
write

3x 1 6x3 2 —6xX*—2x*+3x—1
(@-N0)=—-—— -+ = :

X X X X X

. As in the previous example, we have two ways to approach finding the

domain of %. First, we can find the domain of g and f separately, and

find the intersection of these two sets. In addition, since (%) (x) = %,
we are introducing a new denominator, namely f(x), so we need to guard
against this being 0 as well. Our previous work tells us that the domain of
gis (—o0,0) U (0, 00) and the domain of fis (—oo, 00). Setting f(x) = 0
gives 6x> —2x = O or x = 0, % As a result, the domain of £ is all real

numbers except x = 0 and x = , or (—00,0) U (0, 1) U (%, 00).
Alternatively, we may proceed as above and analyze the expression (%) (x) =

% before simplifying. In this case,

990 - x

f flx)  6x* —2x
We see immediately from the ‘little’ denominator that x # 0. To keep the
‘big’ denominator away from 0, we solve 6x?> — 2x = 0 and get x = 0 or



X = % Hence, as before, we find the domain of g to be

(—o0,0)U (0&) u (ioo) .

Next, we find and simplify a formula for <?) (x).

1
g (x):ig(x) _ 27X
f f(x) 6x2 — 2x
1
3-  «x
= 627)(2 - = simplify compound fractions
X2 —2x X

3 1
——|x
B X 3x—1

(6x2 —2x)x  (6x* — 2x)x
3x—1

=— fact
2x*(3x — 1) actor
1
2X2(3x—1)
1
2x?

Please note the importance of finding the domain of a function before sim-
plifying its expression. In number 4 in Example 2.2.1 above, had we waited to

1
find the domain of g until after simplifying, we’d just have the formula 5 to
be
go by, and we would (incorrectly!) state the domain as (—oo, 0) U (0, 00), since

the other troublesome number, x = %, was cancelled away.

2.2 Operations on Functions
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gof

Figure 2.2.1: Composition of functions
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2.2.2 Function Composition

The four types of arithmetic operations with functions described so far are not
the only ways to combine functions. There is one more especially important
operation, known as function composition.

Definition 2.2.2 Composition of Functions

Suppose f and g are two functions. The composite of g with f, denoted
g o f, is defined by the formula (g o f)(x) = g(f(x)), provided x is an
element of the domain of f and f(x) is an element of the domain of g.

The quantity g o fis also read ‘g composed with f or, more simply ‘g of f At
its most basic level, Definition 2.2.2 tells us to obtain the formula for (g o f) (x),
we replace every occurrence of x in the formula for g(x) with the formula we
have for f(x). If we take a step back and look at this from a procedural, ‘inputs
and outputs’ perspective, Defintion 2.2.2 tells us the output from g o fis found
by taking the output from f, f(x), and then making that the input to g. The result,
g(f(x)), is the output from g o f. From this perspective, we see gofas a two step
process taking an input x and first applying the procedure f then applying the
procedure g. This is diagrammed abstractly in Figure 2.2.1.

Example 2.2.2 Evaluating composite functions
Letf(x) = x* —4xand g(x) =2 — V/x + 3.

Find the indicated function value for each of the following:

1 (feg)(1) 2. (gof)(1) 3. (g°N)(2)

SOLUTION

1. As before, we use Definition 2.2.2 to write (fo g)(1) = f(g(1)). We find
g(1) =0,s0

(fog)(1) =f(g(1)) =£(0) =0
2. Using Definition 2.2.2, (g o f)(1) = g(f(1)). We find f(1) = —3, so

(gof)(1) =g(f(1)) =g(-3) =2

3. We proceed as in the previous example by first finding f(2) = —4. How-
ever, we now run into trouble, since (g o f)(2) = g(f(2)) = g(—4) is
undefined! We can’t compute \ﬂ — 4 +3) = /—1if we are working
over the real numbers. Here we see the importance of domain for com-
posite functions: it is not enough for x to be in the domain of f: only those
x values such that f(x) belongs to the domain of g are permitted. We con-
sider this problem more generally in the next example.



Example 2.2.3 Domain of composite functions
With f(x) = x* —4x, g(x) = 2—+/x + 3 asin Example 2.2.2 find and simplify the
composite functions (g of)(x) and (fo g)(x). State the domain of each function.

SOLUTION By definition, (g of)(x) = g(f(x)). We insert the expression
f(x) into g to get

(gofNHx) =g(f(x)) =g (X¥* —4x) =2 —/(x®* — 4x) +3

=2—/x2—4x+3

Hence, (g of)(x) =2 — v/x* — 4x + 3.

To find the domain of g o f, we need to find the elements in the domain of f
whose outputs f(x) are in the domain of g. We accomplish this by following the
rule set forth in Section 2.1, that is, we find the domain before we simplify. To
that end, we examine (gof)(x) = 2 — \/(x? — 4x) + 3. To keep the square root
happy, we solve the inequality x> — 4x + 3 > 0 by creating a sign diagram. If we
let r(x) = x2 — 4x + 3, we find the zeros of r to be x = 1 and x = 3. We obtain
the sign diagram in Figure 2.2.2.

Our solution to x* — 4x+ 3 > 0, and hence the domain of g o f, is (—o0, 1] U
[3,0).

To find (fo g)(x), we find f(g(x)). We insert the expression g(x) into f to get

(fog)(x) =flg(x)) =f(2— Vx+3)
—(2-vx+3)"—4(2-Vx+3)
—4—4/x+3+ (Vx+3) —8+4Vx+3
=4+x+3-8

=x—-1

Thus we get (fo g)(x) = x — 1. To find the domain of (f o g), we look to
the step before we did any simplification and find (fo g)(x) = (2 — \/)(Jr73)2 —
4 (2 — M) To keep the square root happy, we set x + 3 > 0 and find our
domain to be [—3, 00).

Notice that in Example 2.2.3, we found (g o f)(x) # (fo g)(x). In Example
2.2.4 we add evidence that this is the rule, rather than the exception.

Example 2.2.4 Comparing order of composition
Find and simplify the functions (g o h)(x) and (h o g)(x), where we take g(x) =

2
2 —+/x+3andh(x) = x—i—ixl State the domain of each function.

SOLUTION To find (g o h)(x), we compute g(h(x)). We insert the ex-

2.2 Operations on Functions

(+) 0 (=) 0(+)
1 3

Figure 2.2.2: The sign diagram of r(x)
X —4x+3
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Figure 2.2.3: The sign diagram of
5x +3

r(x) =
x+1

28

pression h(x) into g first to get

(goh)(x) =g(h(x)) =g ( 2x )

x+1
2x
:2—“( +3
x+1
2x 3(x+1) )
=2 + —-" get common denominators
x+1 x+1
5 3
x+1

To find the domain of (goh), we look to the step before we began to simplify:

@omi =2 /(25) +3

To avoid division by zero, we need x # —1. To keep the radical happy, we need
to solve
2 5x+3
X X + >

3= >0
x+1 x+1

5x+3
Defining r(x) = X‘:—l ,weseerisundefinedatx = —landr(x) = Oatx = —%.

Our sign diagram is given in Figure 2.2.3.
Our domain is (—oo, —1) U |

~3,00).

Next, we find (h o g)(x) by finding h(g(x)). We insert the expression g(x)
into h first to get

To find the domain of h o g, we look to the step before any simplification:

2(2—-Vx+3)
oo =5 ATay+1

To keep the square root happy, we require x + 3 > 0 or x > —3. Setting the
denominator equal to zero gives (2 —VX+ 3) +1=0o0r+x-+ 3 = 3. Squar-
ing both sides gives us x + 3 = 9, or x = 6. Since x = 6 checks in the original
equation, (2 —Vx+ 3) 4+ 1 = 0, we know x = 6 is the only zero of the denom-
inator. Hence, the domain of ho g is [—3,6) U (6, 00).

A useful skillin Calculus is to be able to take a complicated function and break
it down into a composition of easier functions which our last example illustrates.



2.2 Operations on Functions

Example 2.2.5 Decomposing functions
Write each of the following functions as a composition of two or more (non-
identity) functions. Check your answer by performing the function composition.

1. F(x) =[3x— 1]

2. Glx) = -2
X241
Vx+1
3. H(x) = i1
SOLUTION There are many approaches to this kind of problem, and we

showcase a different methodology in each of the solutions below.

1. Our goal is to express the function F as F = g o f for functions g and f.
From Definition 2.2.2, we know F(x) = g(f(x)), and we can think of f(x) as
being the ‘inside’ function and g as being the ‘outside’ function. Looking
at F(x) = |3x — 1| from an ‘inside versus outside’ perspective, we can
think of 3x — 1 being inside the absolute value symbols. Taking this cue,
we define f(x) = 3x — 1. At this point, we have F(x) = |[f(x)|. What is the
outside function? The function which takes the absolute value of its input,
g(x) = |x|. Sure enough, (g o f)(x) = g(f(x)) = |f(x)| = [3x — 1| = F(x),
so we are done.

2. We attack deconstructing G from an operational approach. Given an input
x, the first step is to square x, then add 1, then divide the result into 2. We
will assign each of these steps a function so as to write G as a composite
of three functions: f, g and h. Our first function, f, is the function that
squares its input, f(x) = x*. The next function is the function that adds 1
to its input, g(x) = x + 1. Our last function takes its input and divides it
into 2, h(x) = 2. The claimis that G = h o g o f. We find

T ox

(hog00)(x) = hlglflx)) = hlg () = h (¥ +1) = ="~ = 6(x)

so we are done.

Vx+1
JX—1

function from simpler functions, we see the expression 1/x is a simple
piece of the larger function. If we define f(x) = \/x, we have H(x) =

3. If we look H(x) = with an eye towards building a complicated

;Egj If we want to decompose H = g of, then we can glean the formula
for g(x) by looking at what is being done to f(x). We take g(x) = *£1, so
f0+1  VE+1
= = = = H
(9070 = 80l = 577 = Yorg = HW),
as required.
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Figure 2.2.4: The relationship between a
function and its inverse

30

2.2.3 Inverse Functions

Thinking of a function as a process like we did in Section 2.1, in this section we
seek another function which might reverse that process. As in real life, we will
find that some processes (like putting on socks and shoes) are reversible while
some (like cooking a steak) are not. We start by discussing a very basic function
which is reversible, f(x) = 3x + 4. Thinking of f as a process, we start with an
input x and apply two steps, as we saw in Section 2.1

1. multiply by 3
2. add 4

To reverse this process, we seek a function g which will undo each of these
steps and take the output from f, 3x + 4, and return the input x. If we think of
the real-world reversible two-step process of first putting on socks then putting
on shoes, to reverse the process, we first take off the shoes, and then we take
off the socks. In much the same way, the function g should undo the second
step of f first. That is, the function g should

1. subtract 4
2. divide by 3

xX—4
Following this procedure, we get g(x) = 5 Let’s check to see if the

function g does the job. If x = 5, then f(5) = 3(5) 4+ 4 = 15 + 4 = 19. Taking
the output 19 from £, we substitute it into g to get g(19) = =% = £ =5,

which is our original input to f. To check that g does the job for all x in the
domain of f, we take the generic output from f, f(x) = 3x + 4, and substitute
. . 3x+4)—4 .
that into g. Thatis, g(f(x)) = g(3x + 4) = % = ¥ = x, which
is our original input to f. If we carefully examine the arithmetic as we simplify
g(f(x)), we actually see g first ‘undoing’ the addition of 4, and then ‘undoing’

the multiplication by 3. Not only does g undo f, but f also undoes g. That is, if

x—4
we take the output from g, g(x) = 3 and put that into f, we get f(g(x)) =

3

function composition developed in Section 2.2.2, the statements g(f(x)) = x
and f(g(x)) = x can be written as (g o f)(x) = xand (fo g)(x) = x, respectively.
Abstractly, we can visualize the relationship between f and g in Figure 2.2.4.

The main idea to get from Figure 2.2.4 is that g takes the outputs from fand
returns them to their respective inputs, and conversely, f takes outputs from g
and returns them to their respective inputs. We now have enough background
to state the central definition of the section.

—4 —4
f<x ) = 3(X3 >+4 = (x — 4) + 4 = x. Using the language of

Definition 2.2.3 Inverse of a function

Suppose fand g are two functions such that

1. (g of)(x) = x for all x in the domain of f and

2. (fog)(x) = xforall xin the domain of g

then fand g are inverses of each other and the functions fand g are said
to be invertible.




We now formalize the concept that inverse functions exchange inputs and
outputs.

Theorem 2.2.1 Properties of Inverse Functions

Suppose fand g are inverse functions.

¢ The range (recall this is the set of all outputs of a function) of fis
the domain of g and the domain of fis the range of g

e f(a) =bifandonlyifg(b) = a

* (a,b) is on the graph of fif and only if (b, a) is on the graph of g

Theorem 2.2.2 Uniqueness of Inverse Functions and Their Graphs

Suppose fis an invertible function.

* There is exactly one inverse function for f, denoted f~! (read f-
inverse)

 The graph of y = f~1(x) is the reflection of the graph of y = f(x)
across the line y = x.

Let’s turn our attention to the function f(x) = x2. Is f invertible? A likely
candidate for the inverse is the function g(x) = v/x. Checking the composition
yields (g o f)(x) = g(f(x)) = vx2 = |x|, which is not equal to x for all x in
the domain (—o0, 00). For example, when x = —2, f(—=2) = (=2)? = 4, but
g(4) = /4 = 2, which means g failed to return the input —2 from its output 4.
What g did, however, is match the output 4 to a different input, namely 2, which
satisfies f(2) = 4. This issue is presented schematically in Figure 2.2.6.

We see from the diagram that since both f(—2) and f(2) are 4, it is impossi-
ble to construct a function which takes 4 back to both x = 2 and x = —2. (By
definition, a function matches a real number with exactly one other real num-
ber.) From a graphical standpoint, we know that if y = f~1(x) exists, its graph
can be obtained by reflecting y = x? about the line y = x, in accordance with
Theorem 2.2.2. Doing so takes the graph in Figure 2.2.7 (a) to the one in Figure
2.2.7 (b).

We see that the line x = 4 intersects the graph of the supposed inverse twice
- meaning the graph fails the Vertical Line Test, and as such, does not represent y
as afunction of x. The vertical line x = 4 on the graph on the right corresponds to
the horizontal line y = 4 on the graph of y = f(x). The fact that the horizontal
line y = 4 intersects the graph of f twice means two different inputs, namely
x = —2 and x = 2, are matched with the same output, 4, which is the cause of
all of the trouble. In general, for a function to have an inverse, different inputs
must go to different outputs, or else we will run into the same problem we did
with f(x) = x*. We give this property a name.

2.2 Operations on Functions

Figure 2.2.5: Reflectingy = f(x) across
y = x to obtainy = g(x)

Figure 2.2.6: The function f(x) = x* is not
invertible

(47 _2)

(b)y =f1(x)?

Figure 2.2.7: Reflecting y = X across the
line y = x does not produce a function
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Definition 2.2.4 One-to-one function

A function fis said to be one-to-one if f matches different inputs to dif-
ferent outputs. Equivalently, f is one-to-one if and only if whenever
f(c) = f(d), thenc =d.

Graphically, we detect one-to-one functions using the test below.

Theorem 2.2.3 The Horizontal Line Test

A function f is one-to-one if and only if no horizontal line intersects the
graph of f more than once.

We say that the graph of a function passes the Horizontal Line Test if no hor-
izontal line intersects the graph more than once; otherwise, we say the graph of
the function fails the Horizontal Line Test. We have argued that if f is invertible,
then f must be one-to-one, otherwise the graph given by reflecting the graph
of y = f(x) about the line y = x will fail the Vertical Line Test. It turns out that
being one-to-one is also enough to guarantee invertibility. To see this, we think
of f as the set of ordered pairs which constitute its graph. If switching the x- and
y-coordinates of the points results in a function, then fis invertible and we have
found f~1. This is precisely what the Horizontal Line Test does for us: it checks to
see whether or not a set of points describes x as a function of y. We summarize
these results below.

Theorem 2.2.4 Equivalent Conditions for Invertibility

Suppose fis a function. The following statements are equivalent.
e fisinvertible

e fis one-to-one

e The graph of f passes the Horizontal Line Test

We put this result to work in the next example.

Example 2.2.6 Finding one-to-one functions
Determine if the following functions are one-to-one in two ways: (a) analytically
using Definition 2.2.4 and (b) graphically using the Horizontal Line Test.

_1—2x

LX) =

3. h(x) =x* —2x + 4

32



SOLUTION
1. (a)
(b)
2. (a)
(b)
3. (a)

To determine if f is one-to-one analytically, we assume f(c) = f(d)
and attempt to deduce that c = d.

fle) = f(d)
1-2c  1-2
5 B 5
1—-2c = 1-2d
—2c = -2d

c = dVv

Hence, f is one-to-one.

To check if f is one-to-one graphically, we look to see if the graph of
y = f(x) passes the Horizontal Line Test. We have that f is a non-
constant linear function, which means its graph is a non-horizontal
line. Thus the graph of f passes the Horizontal Line Test: see Figure
2.2.8.

We begin with the assumption that g(c) = g(d) and try to show
c=d.

g(c) = g(d)
2c 2d
1-¢c  1-d
2c(1—d) = 2d(1-0)
2c—2cd = 2d-—2dc
2c = 2d
c = dV

We have shown that g is one-to-one.

The graph of g is shown in Figure 2.2.9. We get the sole intercept at
(0,0), a vertical asymptote x = 1 and a horizontal asymptote (which
the graph never crosses) y = —2. We see from that the graph of g
in Figure 2.2.9 that g passes the Horizontal Line Test.

We begin with h(c) = h(d). As we work our way through the prob-
lem, we encounter a nonlinear equation. We move the non-zero
terms to the left, leave a 0 on the right and factor accordingly.

h(c) = h(d)
2—2c+4 d> —2d+4
2—2c = d*—-2
c—d?>—2c+2d = 0
(c+d)(c—d)—2(c—d) = 0

(c—d)((c+d)—2) = 0
c—d=0 or c+d—2=0
c=d or c=2—-d

We get ¢ = d as one possibility, but we also get the possibility that
¢ = 2 —d. This suggests that f may not be one-to-one. Takingd = 0,
we get ¢ = O orc = 2. With h(0) = 4 and h(2) = 4, we have
produced two different inputs with the same output meaning h is
not one-to-one.

factor by grouping

2.2 Operations on Functions

2

\\\\i-

-2-1

—1-
—9

Figure 2.2.8: The function fis one-to-one

Y

X

|
|
|
|
1
+
|
|
|
|

2

-

Figure 2.2.9: The function g is one-to-one
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Figure 2.2.10: The function h is not one-
to-one

34

(b) We note that h is a quadratic function and we graph y = h(x) using
the techniques presented in Section 3.1.3. The vertex is (1, 3) and
the parabola opens upwards. We see immediately from the graph in
Figure 2.2.10 that h is not one-to-one, since there are several hori-
zontal lines which cross the graph more than once.

We have shown that the functions f and g'in Example 2.2.6 are one-to-one.
This means they are invertible, so it is natural towonder what f~*(x) and g~ *(x)
would be. For f(x) = %, we can think our ‘way through the inverse since
there is only one occurrence of x. We can track step-by-step what is done to x
and reverse those steps as we did at the beginning of the chapter. The func-
tion g(x) = % is a bit trickier since x occurs in two places. When one eval-
uates g(x) for a specific value of x, which is first, the 2x or the 1 — x? We can
imagine functions more complicated than these so we need to develop a general
methodology to attack this problem. Theorem 2.2.1 tells us equationy = ffl(x)

is equivalent to f(y) = x and this is the basis of our algorithm.

Key Idea 2.2.1 Steps for finding the Inverse of a One-to-one Func-
tion

1. Writey = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f~1(x)

Note that we could have simply written ‘Solve x = f(y) for y’ and be done
with it. The act of interchanging the x and y is there to remind us that we are
finding the inverse function by switching the inputs and outputs.

Example 2.2.7 Computing inverse functions
Find the inverse of the following one-to-one functions. Check your answers an-
alytically using function composition and graphically.

1—2x
1. =
£ = =
2x
2 =
g0 = 1—
SOLUTION

1. Aswe mentioned earlier, it is possible to think our way through the inverse
of f by recording the steps we apply to x and the order in which we apply
them and then reversing those steps in the reverse order. We encourage
the reader to do this. We, on the other hand, will practice the algorithm.
We write y = f(x) and proceed to switch x and y



y = fx)
o 1-2
o= 5
1-2
X = c y switch x and y
5 = 1-2
5x—1 = =2y
x—1
—2 =
= 5x+ L
A
We have f~!(x) = —3x + 3. To check this answer analytically, we first

check that (f o f) (x)
numbers.

(Froflx) =

x for all x in the domain of f, which is all real

| | |
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We now check that (foffl) (x) = xfor all x in the range of fwhich is also
all real numbers. (Recall that the domain of f~1) is the range of f.)

(fof™)

1—2f*(x)

5

1-2(-3x+3) 1+5x—1

=ff'(x)) =

- 5

:S—XZX\/
5

5

To check our answer graphically, we graph y = f(x) and y = f~(x) on the
same set of axes in Figure 2.2.11. They appear to be reflections across the

liney = x.

. To find g~ !(x), we start with y = g(x). We note that the domain of g is

(—00,1) U (1,00).

x(

2x
=g(x
y =901
2
x:—y switch x and y
1-y
1-y)=2
X—xy =2y
x=xy+2y=y(x+2) factor
X
YT X2

2.2 Operations on Functions

.
.
.
2 .
.
.
\\ e
-4 -3 -2 -1 /] \vx‘s 4
///71
-
.
.
.

-2

Figure 2.2.11: The graphs of f and f!
from Example 2.2.7
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Figure 2.2.12: The graphs of g and g~*

from Example 2.2.7
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X
We obtain g~ 1(x) = 12 To check this analytically, we first check
X

(gf1 o g) (x) = x for all x in the domain of g, that is, for all x # 1.

(6 00) () =g gl =g ( 2 )

(5) a-n

= . clear denominators

<12—Xx> 2 e

- 2x - 2x

2 +2(1—x)  2x+2—2x
2x

=—=xV
2

Next, we check g (g_l(x)) = xforallxintherange of g. From the graph of
g in Example 2.2.6, we have that the range of gjis (—o0, —2) U (—2, 00).
This matches the domain we get from the formula g=1(x) = XJ%Z, as it
should.

(gog™?) (X)=g(gl(X)):g( . )

= . 2) clear denominators
X (x+2)
B <x + 2)
- 2x _ 2x
o (x+2)—-x 2

Graphing y = g(x) and y = g~ *(x) on the same set of axes is busy, but we
can see the symmetric relationship if we thicken the curve fory = g=%(x).
Note that the vertical asymptote x = 1 of the graph of g corresponds to
the horizontal asymptote y = 1 of the graph of g1, as it should since x
and y are switched. Similarly, the horizontal asymptote y = —2 of the
graph of g corresponds to the vertical asymptote x = —2 of the graph of
g~ 1. See Figure 2.2.12



Exercises 2.2

Problems

In Exercises 1 — 10, use the pair of functions f and g to find
the following values if they exist:

o, e
: E?g)_(?)(l) * (%) (=2)

1. f(x) =3x+1landg(x) =4 —x

2. f(x) =x*andg(x) = —2x+1

3. f(x) =x* —xandg(x) =12 — x*

4. f(x) =23 and g(x) = —x* — 2x — 3
5. f(x) = vx+3andg(x) = 2x — 1

6. f(x) = V4 —xandg(x) = Vx +2

7. fx) = 2xand g(x) = Zx:— -
) 3
8. f(x) =x"and g(x) = 3

9. f(x) = x*and g(x) = X—lz

1

— 2 —
10. f(x) =x*+1andg(x) = i

In Exercises 11 — 20, use the pair of functions f and g to find

the domain of the indicated function then find and simplify
an expression for it.

e (f+9)(x) * (fg)(x)
< F-9) ()0
11. f(x) = 2x+ Land g(x) = x — 2
12. f(x) =1 —4xand g(x) = 2x — 1
13. f(x) =x*and g(x) = 3x — 1
14. f(x) = x* — xand g(x) = 7x
15. f(x) =x* —4andg(x) =3x+6

16. f(x) = —x* +x+6andg(x) =x* — 9

17. f(x) = % and g(x) = %
18. f(x) =x—1landg(x) = ﬁ

19. f(x) =xandg(x) = Vx+1
20. f(x) = v/x—5andg(x) = f(x) = v/x—5
In Exercises 21 — 32, let f be the function defined by

f = {(_37 4)7 (_27 2)7 (_17 0)7 (07 1)7 (17 3)5 (23 4)’ (37 _1)}

and let g be the function defined

g= {(_37 _2)7 (_27 0)7 (_13 _4)7 (07 0)7 (17 _3)7 (27 1)7 (37 2)}

Compute the indicated value if it exists.
21. (f+9)(-3)
22. (f-9)(2)
23. (fg)(=1)
24. (g+H(1)
25. (9-1)(3)
26. (of)(—3)

In Exercises 33 — 44, use the given pair of functions to find the
following values if they exist.

* (gof)(0) * (gof)(-3)
e (fog)(-1) e (fog)(3)
* (fof)(2) * (fof)(-2)

33, f(x) = x4, g(x) = 2x+ 1
34, f(x) =4 —x,9(x) =1—x

35. f(x) =4 —3x,g(x) = |x|
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36. f(x) = |x—1],g(x) =x* — 5

37. f(x) = 4x+5,9(x) = VX

38. f(x) = V3—xg(x) =x* +1

39. f(x) =6 —x — x*, g(x) = xy/x + 10
40. f(x) =v/x+1,g9(x) = 4x — x

3 4
4L f0) = 75,000 = 5y
X
2. fl) = 5000 = 53
43. f(x) = % 9(x) = Vax + 1
10x
44. f(x) =+/2x+5,9(x) = el

In Exercises 45 — 56, use the given pair of functions to find and
simplify expressions for the following functions and state the
domain of each using interval notation.

* (9o * (fog)(¥)

45, f(x) =2x+3,9(x) =x* — 9

* (feHi®)

46. f(x) =x* —x+1,g(x) =3x—5
47. f(x) =x* — 4,g(x) = |x|

48. f(x) = 3x — 5, g(x) = V/x

49. flx) = Ix+ 1], g(x) = v/

50. f(x) =3 =%, g(x) = vx+1

51 f(x) =[x, g(x) = V& —x

52. fx) =x* —x—1,9(x) =v/x—5

53. f(x) =3x—1,g(x) =

T x+3
54, f6) = g0 =
2 1
5. £0) = 57,000 = 2T
2x
56. f(x) = " _4,g(x) =+1—x

In Exercises 57 — 62, use f(x) = —2x, g(x) = y/xand h(x) =
|x| to find and simplify expressions for the following functions
and state the domain of each using interval notation.

57. (hogof)(x)

58. (hofog)(x)

59. (gofoh)(x)

60. (gohof)(x)

61. (fohog)(x)

62. (fogoh)(x)
In Exercises 63 — 72, write the given function as a composition
of two or more non-identity functions. (There are several cor-
rect answers, so check your answer using function composi-
tion.)

63. p(x) = (2x+ 3)3

64. P(x) = (@ —x+1)°

65. h(x) =

66. H(x) = |7 — 3x|

67. r(x) = 5xi -
68. R(x) — X27_1
69. g(x) = m i—i
2 +1
70. Q(x) = 1
71. v(x) = §x7+4)1(
72. w(x) = X4X7_|2_1

In Exercises 73 — 92, show that the given function is one-to-
one and find its inverse. Check your answers algebraically
and graphically. Verify that the range of f is the domain of
! and vice-versa.

73. f(x) =6x—2

74. f(x) =42 — x

75. f(x) = ng +4
76. f(x) =1 — 4+53X

77. fx) =+v3x—1+5
78. f(x) =2—+/x=5
79. f(x) =3vx—1—-4



80.

81.

82.

83.

84.

85.

86.

87.

f(xX) =1—2y2x+5

fix)=+v3x—1
f(x) =3—-vx-2
f(x) =x* —10x,x > 5

f(x) :3(x+4)2—5, x< —4
fix) =x* —6x+5, x<3

f) =8 +4x+1,x< -1

92.

2x—1
3x+4

4x + 2
3x—6
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3: ESSENTIAL FUNCTIONS

3.1 Linear and Quadratic Functions

3.1.1 Linear Functions

We now begin the study of families of functions. Our first family, linear functions,
are old friends as we shall soon see. Recall from Geometry that two distinct
points in the plane determine a unique line containing those points, as indicated
in Figure 3.1.1.

To give a sense of the ‘steepness’ of the line, we recall that we can compute
the slope of the line using the formula below.

Definition 3.1.1 Slope

The slope m of the line containing the points P (xo, ¥o) and Q (xy, y1) is:

Yi—Yo

X1 —Xo

provided x; # Xo.

A couple of notes about Definition 3.1.1 are in order. First, don’t ask why we
use the letter ‘m’ to represent slope. There are many explanations out there,
but apparently no one really knows for sure. Secondly, the stipulation x; # xg
ensures that we aren’t trying to divide by zero. The reader is invited to pause to
think about what is happening geometrically; the anxious reader can skip along
to the next example.

Example 3.1.1 Finding the slope of a line
Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1. P(0,0),Q(2,4) 2. P(-2,3),Q(2,-3)
3. P(—3,2), Q(4, 2) 4. P(2,3), Q(Z,—l)
SOLUTION In each of these examples, we apply the slope formula, from

Definition 3.1.1.

14

P (z0,y0)

Q(xhyl)

Figure 3.1.1: The line between two points
Pand Q

See www.mathforum.org or
www.mathworld.wolfram.com for
discussions on the use of the letter m to
indicate slope.



http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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Figure 3.1.2: Slope as “rise over run”

42

Yy
W
P 5l
N
L
2 f_3_3,673 ——t—t ——t——t
- 2 _ (_2) - 4 - 2 -3 -2 71_1-- 1 2 3
_od
ol
Ll
Y
2—2 0
3 m = 77*0 P
4—(-3) 7 :
Yy
3T P
N
L
1-3 4 -
4 m= = — which is undefined +
2-2 0 1 @
-1t o
ol
_34

You may recall from high school that slope can be described as the ratio ’ﬂ%ﬁ’.

For example, in the second part of Example 3.1.1, we found the slope to be %
We can interpret this as a rise of 1 unit upward for every 2 units to the right we
travel along the line, as shown in Figure 3.1.2.

Using more formal notation, given points (xo, ¥o) and (x1, 1), we use the
Greek letter delta ‘A’ to write Ay = y; — yg and Ax = x; — xg. In most scientific
circles, the symbol A means ‘change in’.

Hence, we may write

Ay

Ax’

which describes the slope as the rate of change of y with respect to x. Given a

slope m and a point (xg, o) on a line, suppose (x, y) is another point on our line,
as in Figure 3.1.3. Definition 3.1.1 yields

Y —Yo

X — Xo

m (X —xo) =y — Yo
Yy —Yo=m(x—Xo)

m —=

We have just derived the point-slope form of a line.



3.1 Linear and Quadratic Functions

Key Idea 3.1.1 The point-slope form of a line

The point-slope form of the equation of a line with slope m containing
the point (xo, yo) is the equation y — yo = m (x — xp).

Example 3.1.2 Using the point-slope form
Write the equation of the line containing the points (—1,3) and (2,1).

(xn; yn)

Figure 3.1.3: Deriving the point-slope for-
SOLUTION In order to use Key Idea 3.1.1 we need to find the slope of mula

the line in question so we use Definition 3.1.1to getm = 3 = 2_1(’_31) = -2,

We are spoiled for choice for a point (xo, yo). We'll use (—1,3) and leave it to
the reader to check that using (2, 1) results in the same equation. Substituting
into the point-slope form of the line, we get

Yy —Yo=m(x—Xo)

y-3=-3(x—(-1)

3
y—3:—3@+u
3
g 2, 2
373
27
y——§x+ 3

In simplifying the equation of the line in the previous example, we produced
another form of a line, the slope-intercept form. This is the familiary = mx+»b
form you have probably seen in high school. The ‘intercept’ in ‘slope-intercept’
comes from the fact that if we set x = 0, we get y = b. In other words, the
y-intercept of the liney = mx + b is (0, b).

Key Idea 3.1.2 Slope intercept form of a line

The slope-intercept form of the line with slope m and y-intercept (0, b)
is the equation y = mx + b.

Note that if we have slope m = 0, we get the equation y = b. The formula
given in Key Idea 3.1.2 can be used to describe all lines except vertical lines. All
lines except vertical lines are functions (Why is this?) so we have finally reached
a good point to introduce linear functions.

Definition 3.1.2 Linear function

A linear function is a function of the form
f(x) = mx+ b,

where m and b are real numbers with m # 0. The domain of a linear
function is (—o0, 00).
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For the case m = 0, we get f(x) = b. These are given their own classification.

Definition 3.1.3 Constant function

A constant function is a function of the form

where b is real number. The domain of a constant function is (—oo, od).

Recall that to graph a function, f, we graph the equation y = f(x). Hence,
the graph of a linear function is a line with slope m and y-intercept (0, b); the
graph of a constant function is a horizontal line (a line with slope m = 0) and a y-
intercept of (0, b). A line with positive slope is called an increasing line because
a linear function with m > 0 is an increasing function. Similarly, a line with a
negative slope is called a decreasing line because a linear function withm < 0is
a decreasing function. And horizontal lines were called constant because, well,
we hope you’ve already made the connection.

Example 3.1.3 Graphing linear functions
Graph the following functions. Identify the slope and y-intercept.

XX —4
2. f(x) =3x—1 4 f) = —
SOLUTION

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0)

y through (0, 3): see Figure 3.1.4.
T 2. The graph of f(x) = 3x— 1 is the graph of the line y = 3x— 1. Comparison
of this equation with Equation 3.1.2 yields m = 3 and b = —1. Hence,

our slope is 3 and our y-intercept is (0, —1). To get another point on the
line, we can plot (1,f(1)) = (1,2). Constructing the line through these
points gives us Figure 3.1.5.

, , , , , ,
t t t t
-3 -2 -1 1 2 3 4

3-2
3. At first glance, the function f(x) = TX does not fit the form in Defi-

Figure 3.1.4: The graph of f(x) = nition 3 1.2 but after some rearrangmg weget f(x) = 32 =3 — = —
——x+ We identifym = —= and b= § Hence, our graph is a line W|th
a sIope of —= and ay- |ntercept of (0 ( ) Plotting an additional point, we

can choose (17f(1)) to get (1, 1): see Figure 3.1.6.

4. If we simplify the expression for f, we get

2
) = x> —4 :M(erz) Y
x—2 (e—2y
If we were to state f(x) = x+2, we would be committing a sin of omission.
Remember, to find the domain of a function, we do so before we simplify!
In this case, f has big problems when x = 2, and as such, the domain of
fis (—00,2) U (2,00). To indicate this, we write f(x) = x + 2, x # 2.

Figure 3.1.5: The graph of f(x) = 3x — 1
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So, except|at x = 2, we graph the liney = x 4+ 2. The slope m = 1 and
the y-intercept s (0, 2). A second point on the graphiis (1,£(1)) = (1, 3).
Since our function fis not defined at x = 2, we put an open circle at the
point that would be on the line y = x + 2 when x = 2, namely (2,4), as
shown in Figure 3.1.7.

The last two functions in the previous example showcase some of the diffi-
culty in defining a linear function using the phrase ‘of the form’ as in Definition
3.1.2, since some algebraic manipulations may be needed to rewrite a given
function to match ‘the form’. Keep in mind that the domains of linear and con-
stant functions are all real numbers (—o0, 0), so while f(x) = XXZ__Z“ simplified
to a formula f(x) = x + 2, fis not considered a linear function since its domain
excludes x = 2. However, we would consider

22 42
=71

to be a constant function since its domain is all real numbers (Can you tell us

why?) and
0 2342 202+1) 5
X) = = = .
XX+1 (1)

3.1 Linear and Quadratic Functions

Figure 3.1.7: The graph of f(x) = ); —

—4
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3.1.2 Absolute Value Functions

Before we move on to quadratic functions, we pause to consider the absolute
value. The absolute value function is an example of a piecewise function, given
by different formulas on different parts of its domain. The absolute value func-
tion is in particular a piecewise linear function, so we’ve chosen to place it be-
tween linear and quadratic functions.

There are a few ways to describe what is meant by the absolute value |x| of
a real number x. You may have been taught that |x| is the distance from the real
number x to 0 on the number line. So, for example, |5| = 5and | —5| = 5, since
each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units
& 1 1 1 1 1 1 1 1 1 &
v T T T T T T T T T v
-5 —4 -3 -2 -1 0 1 2 3 4 5

Another way to define absolute value is by the equation |x| = VX2, Using
this definition, we have |5| = /(5)2 = v/25 = 5and | — 5| = /(-5)2 =
V25 = 5. The long and short of both of these procedures is that |x| takes nega-
tive real numbers and assigns them to their positive counterparts while it leaves
positive numbers alone. This last description is the one we shall adopt, and is
summarized in the following definition.

Definition 3.1.4 Absolute value function

The absolute value of a real number x, denoted |x|, is given by

—x, ifx<O
Xl = .
X, ifx>0

In Definition 3.1.4, we define |x| using a piecewise-defined function. To check
that this definition agrees with what we previously understood as absolute value,
note that since 5 > 0, to find |5| we use the rule |x| = x, so |5| = 5. Similarly,
since —5 < 0, we use the rule |x| = —x, so that | —5| = —(—5) = 5. Thisis one
of the times when it’s best to interpret the expression ‘—x’ as ‘the opposite of x’
as opposed to ‘negative x'. Before we begin studying absolute value functions,
we remind ourselves of the properties of absolute value.



3.1 Linear and Quadratic Functions

Theorem 3.1.1 Properties of Absolute Value

Let a, b and x be real numbers and let n be an integer. Then
* Product Rule: |ab| = |a||b]|
* Power Rule: |a"| = |a|" whenever a" is defined

%‘ = m, provided b # 0

¢ Quotient Rule: ‘
Equality Properties:
e |x] =0ifandonlyifx = 0.

e Forc>0,|x| =cifandonlyifx = cor —x = c.

* Forc < 0, |x| = c has no solution.

Example 3.1.4 Solving equations with absolute values
Solve each of the following equations.

1. \3x—1|:6 2. 3—|X+5|:1
3. 3\2x—|—1|—5:0 4.4—|5X+3|=5
SOLUTION

1. The equation |3x—1| = 6is of the form |x| = cfor ¢ > 0, so by the Equality
Properties, |3x—1| = 6is equivalentto3x—1 = 6 or 3x—1 = —6. Solving
the former, we arrive at x = %, and solving the latter, we get x = —%. We
may check both of these solutions by substituting them into the original
equation and showing that the arithmetic works out.

2. To use the Equality Properties to solve 3 — |x + 5| = 1, we first isolate the
absolute value.

3—|x+5/=1
—|x+5]=-2 subtract 3
|x+5] =2 divide by —1

From the Equality Properties, we have x +5 =2 orx + 5 = —2, and get
our solutions to be x = —3 or x = —7. We leave it to the reader to check
both answers in the original equation.

3. Asinthe previous example, we first isolate the absolute value in the equa-
tion3|2x+1|—5=0andget |2x+ 1| = g Using the Equality Properties,
we have 2x + 1 = 2 or 2x + 1 = —2. Solving the former gives x = $ and
solving the latter gives x = —%. As usual, we may substitute both answers
in the original equation to check.

4. Upon isolating the absolute value in the equation 4 — |5x 4 3| = 5, we get

|5x + 3| = —1. At this point, we know there cannot be any real solution,
since, by definition, the absolute value of anything is never negative. We
are done.
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Figure 3.1.8: Constructing the graph of
fx) = Ix]
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Next, we turn our attention to graphing absolute value functions. Our strat-
egy in the next example is to make liberal use of Definition 3.1.4 along with what
we know about graphing linear functions (from Section 3.1.1) and piecewise-
defined functions (from Section 2.1).

Example 3.1.5 Graphing the absolute value function
Graph the function f(x) = |x|.

SOLUTION To find the zeros of f, we set f(x) = 0. We get |x| = 0, which,
by Theorem 3.1.1 gives us x = 0. Since the zeros of f are the x-coordinates of
the x-intercepts of the graph of y = f(x), we get (0, 0) as our only x-intercept,
and this of course is our y-intercept as well. Using Definition 3.1.4, we get

—x, ifx<O0
x) = |x| = .
fix) = {x, ifx>0
Hence, for x < 0, we are graphing the line y = —x; for x > 0, we have the line

y = x. Plotting these gives us the first two graphs in Figure 3.1.8.

Notice that we have an ‘open circle’ at (0,0) in the graph when x < 0. As
we have seen before, this is due to the fact that the points on y = —x approach
(0,0) as the x-values approach 0. Since x is required to be strictly less than
zero on this stretch, the open circle is drawn at the origin. However, notice that
when x > 0, we get to fill in the point at (0, 0), which effectively ‘plugs’ the hole
indicated by the open circle. Thus our final result is the graph at the bottom of
Figure 3.1.8.



3.1.3 Quadratic Functions

You may recall studying quadratic equations in high school. In this section, we re-
view those equations in the context of our next family of functions: the quadratic
functions.

Definition 3.1.5 Quadratic function

A quadratic function is a function of the form
f(x) = ax® + bx +c,

where a, b and c are real numbers with a # 0. The domain of a quadratic
function is (—o0, 00).

The most basic quadratic function is f(x) = x2, whose graph is given in Figure
3.1.9. Its shape should look familiar from high school — it is called a parabola.
The point (0, 0) is called the vertex of the parabola. In this case, the vertex is a
relative minimum and is also the where the absolute minimum value of f can be
found.

Much like many of the absolute value functions in Section 3.1.2, knowing the
graph of f(x) = x? enables us to graph an entire family of quadratic functions
using transformations.

Example 3.1.6 Graphics quadratic functions

Graph the following functions starting with the graph of f(x) = x* and using
transformations. Find the vertex, state the range and find the x- and y-intercepts,
if any exist.

1. g(x) = (x+2)> -3
2. h(x) = —2(x —3)2 +1

SOLUTION

1. Since g(x) = (x+2)% —3 = f(x+2) — 3, we shift the graph of y = f(x) to
the left 2 units, and then down three units. We move our marked points
accordingly and connect the dots in parabolic fashion to get the graph in
Figure 3.1.11.

From the graph, we see that the vertex has moved from (0, 0) on the graph
of y = f(x) to (—2, —3) on the graph of y = g(x). This sets [—3, c0) as the
range of g. We see that the graph of y = g(x) crosses the x-axis twice, so
we expect two x-intercepts. To find these, we set y = g(x) = 0 and solve.
Doing so yields the equation (x+2)? —3 = 0, or (x+ 2)? = 3. Extracting
square roots gives x + 2 = ++/3,0orx = —2 ++/3. Our Xx-intercepts
are (—2 —+/3,0) ~ (—3.73,0) and (—2 + v/3,0) ~ (—0.27,0). The y-
intercept of the graph, (0, 1) was one of the points we originally plotted,
so we are done.

2. To graph h(x) = —2(x — 3)> + 1 = —2f(x — 3) + 1, we first shift right
3 units. Next, we multiply each of our y-values first by —2 and then add
1 to that result. Geometrically, this is a vertical stretch by a factor of 2,
followed by a reflection about the x-axis, followed by a vertical shift up 1
unit. This gives us the graph in Figure 3.1.12.

3.1 Linear and Quadratic Functions

(3,1)

Figure 3.1.12: h(x) = —2f(x —3) +1 =
—2(x—3)2 41
y

a4 (2,4)

14+ (1,1)

-2 -1 (0’0) 1 2 T

Figure 3.1.9: The graph of the basic
quadratic function f(x) = x*

(27 4)

(1,1)

t
2

Figure 3.1.10: The graph y = x* with
points labelled

sl

(_27 _3)

Figure 3.1.11: g(x) = f(x +2) — 3 =
(x+2)>-3
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The vertex is (3, 1) which makes the range of h (—oo, 1]. From our graph,
we know that there are two x-intercepts, so we set y = h(x) = 0 and
solve. We get —2(x — 3)? + 1 = 0 which gives (x — 3)> = . Extracting
square roots gives x — 3 = :I:iz, so that when we add 3 to each side, we
getx =3+ % Although our graph doesn’t show it, there is a y-intercept
which can be found by setting x = 0. With h(0) = —2(0—3)2+1 = —17,
we have that our y-intercept is (0, —17).

In the previous example, note that neither the formula given for g(x) nor
the one given for h(x) match the form given in Definition 3.1.5. We could, of
course, convert both g(x) and h(x) into that form by expanding and collecting
like terms. Doing so, we find g(x) = (x +2)> —3 = x> + 4x+ 1 and h(x) =
—2(x —3)% +1 = —2x* + 12x — 17. While these ‘simplified’ formulas for g(x)
and h(x) satisfy Definition 3.1.5, they do not lend themselves to graphing easily.
For that reason, the form of g and h presented in Example 3.1.7 is given a special
name, which we list below, along with the form presented in Definition 3.1.5.

Definition 3.1.6 Standard and General Form of Quadratic Functions

Suppose fis a quadratic function.

* The general form of the quadratic function fis f(x) = ax* +bx+rc,
where @, b and c are real numbers with a # 0.

* The standard form of the quadratic function fis f(x) = a(x—h)*+
k, where a, h and k are real numbers with a # 0.

One of the advantages of the standard form is that we can immediately read
off the location of the vertex:

Theorem 3.1.2 Vertex Formula for Quadratics in Standard Form

For the quadratic function f(x) = a(x —h)? + k, where a, h and k are real
numbers with a # 0, the vertex of the graph of y = f(x) is (h, k).

To convert a quadratic function given in general form into standard-form, we
employ the ancient rite of ‘Completing the Square’. We remind the reader how
this is done in our next example.

Example 3.1.7 Converting from general to standard form
Convert the functions below from general form to standard form.

1. f(x) =x* — 4x + 3.

2. gx) =6—x—x*

SOLUTION

1. To convert from general form to standard form, we complete the square.
First, we verify that the coefficient of x? is 1. Next, we find the coefficient



3.1 Linear and Quadratic Functions

of x, in this case —4, and take half of it to get %(—4) = —2. This tells us
that our target perfect square quantity is (x — 2)2. To get an expression
equivalent to (x — 2)2, we need to add (—2)2 = 4 to the x* — 4x to create
a perfect square trinomial, but to keep the balance, we must also subtract
it. We collect the terms which create the perfect square and gather the
remaining constant terms. Putting it all together, we get If you forget why we do what we do to
complete the square, start with a(x —

h)? + k, multiply it out, step by step, and

flx) = X2 — 4x+ 3 (Compute ;( 4) = -2) then reverse the process.
=(X—4x+4-4)+3 (Add and subtract (—2)2 = 4.)
= (¥ —4x+4) —4+3 (Group the perfect square trinomial.)
=(x—-272-1 (Factor the perfect square trinomial.)

From the standard form we can immediately (if desired) produce a sketch
of the graph of f, as shown in Figure 3.1.13.

2. To get started, we rewrite g(x) = 6 — x — x> = —x> — x + 6 and note that
the coefficient of x? is —1, not 1. This means our first step is to factor out
the (—1) from both the x* and x terms. We then follow the completing
the square recipe as above.

gx) = —x* —x+6
= (—1) (¥* +x) + 6 (Factor the coefficient of x* from x and x.)

1 1

=(-1) <x2 +x+ i) +(-1) (—i) +6

(Group the perfect square trinomial.)
L1 2 L2
= — X —_ —_
2 4

Using the standard form, we can again obtain the graph of g, as shown in
Figure 3.1.14.

In addition to making it easy for us to sketch the graph of a quadratic func-
tion by finding the standard form, completing the square is also the technique
needed to obtain the famous quadratic formula.

Theorem 3.1.3 The Quadratic Formula

If a, b and c are real numbers with a # 0, then the solutions to ax* +
bx+ c=0are

—b ++/b? — 4ac Figure3.1.14: g(x) = 6 — x — X
n 2a '

Assuming the conditions of Equation 3.1.3, the solutions to ax?> +bx+c =0
are precisely the zeros of f(x) = ax® + bx + c. To find these zeros (if possible),
we proceed as follows:
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ax* +bx+c=0

(42
a|\x +—-x|=—c
a

(2 b b2> b?
a x+ax+— =—Cc+ —

492 4q
alxs b\?2 _ b? —4ac
20/ 4a
N b\? b®—4ac
X+ —) = ———
2a 4g2
b vb% — 4ac
X+ —=f——
2a 2a
‘e —b + vb? — 4ac
- 2a ’

In our discussions of domain, we were warned against having negative num-
bers underneath the square root. Given that v/b? — 4ac is part of the Quadratic
Formula, we will need to pay special attention to the radicand b?> — 4ac. It turns
out that the quantity b> — 4ac plays a critical role in determining the nature of
the solutions to a quadratic equation. It is given a special name.

Definition 3.1.7 Discriminant

If a, b and c are real numbers with a # 0, then the discriminant of the
quadratic equation ax? + bx + ¢ = 0 is the quantity b> — 4ac.

The discriminant ‘discriminates’ between the kinds of solutions we get from
a quadratic equation. These cases, and their relation to the discriminant, are
summarized below.

Theorem 3.1.4 Discriminant Trichotomy
Let a, b and c be real numbers with a # 0.
e Ifb%?—4ac < 0, the equation ax? +bx-+c = 0 has no real solutions.

e If b2 — 4ac = 0, the equation ax? + bx 4 ¢ = 0 has exactly one
real solution.

e If b> — 4ac > 0, the equation ax*> + bx + ¢ = 0 has exactly two
real solutions.




Exercises 3.1

Problems

In Exercises 1 — 10, find both the point-slope form and the
slope-intercept form of the line with the given slope which

passes through the given point.
1. m=3, P(3,-1)

2. m

—2, P(-5,8)
3. m=-1, P(—7,-1)
4. m=2% P(-2,1)

5. m=23 P(-2,1)

i, P(-1,4)

7. m=0, P(3,117)

8. m=—2, P(0,-3)
9. m= -5, P(v/3,2V3)

10. m =678, P(—1,—12)

In Exercises 11 — 20, find the slope-intercept form of the line

which passes through the given points.
11. P(0,0), Q(-3,5)

12. P(—1,-2), Q(3,-2)

13. P(5,0), Q(0,—8)

14. P(3,-5), Q(7,4)

15. P(—1,5), Q(7,5)

16. P(4,-8), Q(5,—8)

17. P(5.3) a3, -3)

18. P(5,3). a(-3:3)

19. P(V2,-V2), (-v2,V2)
20. P(—v3,-1), Q(v/3,1)

In Exercises 21 — 26, graph the function. Find the slope, y-

intercept and x-intercept, if any exist.
21 f(x) =2x—1
22, f(x) =3 —x

23. f(x) =3

24. f(x) =0

25. f(x) = 3x+1

26. f(x) =

1—x
2

In Exercises 27 — 41, solve the equation.

27. x| =6
28. [3x— 1| =10
29. [4—x|=7
30. 4— |x| =3
31. 25x+1|-3=0
32. [7x—1]+2=0
33, 2 ;'X‘ =1
34. 25-2 -3 =5
35. x| =x+3
36. |2x—1| =x+1
37. 4— x| =2x+1
38. |[x—4/=x-5
39. |x| = ¥
40. x| =12 — ¥
41, ¥ -1 =3
Prove that if |[f(x)] = |g(x)| then either f(x) = g(x) or
f(x) = —g(x). Use that result to solve the equations in Ex-

ercises 42 - 47.

42.

43.

44,

45.

46.

47.

13x — 2| = |2x + 7|
[3x + 1| = |4x]
11— 2 = |x+1]
|[4—x]—|x+2|=0
|2 — 5x| = 5|x + 1]

3Ix — 1] = 2|x + 1]
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In Exercises 48 — 59, graph the function. Find the zeros of each
function and the x- and y-intercepts of each graph, if any ex-
ist. From the graph, determine the domain and range of each
function, list the intervals on which the function is increasing,
decreasing or constant, and find the relative and absolute ex-
trema, if they exist.

48. f(x) = |x + 4|

49. f(x) = |x| + 4

50. f(x) = |4x|

51. f(x) = —3|x|

52. f(x) =3|x+4|—4

53. f(x) = %|2x — 1]

-3

54. f(x) = |§12|
55. f(x) = 57:)’?

56. f(x) =x+|x| -3

57. f(x) = |x+2|—x

58. f(x) = Ix+ 2| — |x

59. f(x) = |x+ 4|+ |x — 2|
In Exercises 60 — 67, graph the quadratic function. Find the
x- and y-intercepts of each graph, if any exist. If it is given
in general form, convert it into standard form; if it is given
in standard form, convert it into general form. Find the do-
main and range of the function and list the intervals on which
the function is increasing or decreasing. Identify the vertex
and the axis of symmetry and determine whether the vertex
yields a relative and absolute maximum or minimum.

60. f(x) =x*+2

61. f(x) = —(x +2)*

62. f(x) =x* —2x—8

63. f(x) = —2(x + 1) + 4

64. f(x) = 2x* —4x—1

65. f(x) = —3x* +4x — 7

66. f(x) =x*+x+1

67. f(x) = —3x* +5x+ 4

In Exercises 68 — 99, solve the inequality. Write your answer
using interval notation.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

I3x—5/ <4

|7x + 2| > 10

|2x+1| —5<0
2—x]—4>-3
3x+5)+2<1
27 —x+4>1
2<|a—-x<7
1<|2x—9/<3

|x + 3| > |6x + 9

Ix—3|—[2x+1] <0

[1—2x| >x+5
x+5< |x+5|
x> |x+1]
[2x+1] <6 —x
x+|2x—3| <2
3—x]>x—5
X 4+2x—3>0
16x* +8x+1>0
X +9 < 6x

9x* 4 16 > 24x
x4+ 4 < 4x

¥ +1<0

3 < 1lx+4
x> X
2% —4x—1>0
5x + 4 < 3x?

2< ¥ -9/ <9

X < |ax — 3|
L+x+1>0
x> x|



98. x|x+5| > —6

99. x|x—3| <2
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3.2 Polynomial Functions

3.2.1 Graphs of Polynomial Functions

Three of the families of functions studied thus far — constant, linear and quadratic
— belong to a much larger group of functions called polynomials. We begin our
formal study of general polynomials with a definition and some examples.

Definition 3.2.1 Polynomial function

A polynomial function is a function of the form
f) = anX" + an_1X" P+ .+ a2X* + a1x + ag,

where ag, a1, ..., 0, are real numbers and n > 1 is a natural number. The
domain of a polynomial function is (—oo, co).

There are several things about Definition 3.2.1 that may be off-putting or
downright frightening. The best thing to do is look at an example. Consider
flx) = 4x° — 3x? + 2x — 5. Is this a polynomial function? We can re-write the
formula for fas f(x) = 4x>+0x*+0x> 4 (—3)x*+2x+(—5). Comparing this with
Definition 3.2.1, we identifyn = 5,a5 = 4,a4 = 0,a3 = 0,0, = —3,0; = 2
and ap = —5. In other words, as is the coefficient of x>, a4 is the coefficient of
x*, and so forth; the subscript on the a’s merely indicates to which power of x
the coefficient belongs. The business of restricting n to be a natural ruimber lets
us focus on well-behaved algebraic animals. (Yes, there-are examples of worse
behaviour still to come!)

Example 3.2.1 Identifying polynomial functions
Determine if the following functions are polynomials. Explain your reasoning.
4 X3 — 3
1. g(x) = + 4. fix) = Vx
X
4x + x3
2. p(x) = " 5. h(x) = |x]|
4x + X3
3. q(x) = pe Y 6. z(x) =0
SOLUTION
3

4
is x # 0. By defini-

X

tion, a polynomial has all real numbers as its domain. Hence, g can’t be a

polynomial.

1. We note directly that the domain of g(x) =

X3+ 4x

2. Even though p(x) = simplifies to p(x) = x* + 4, which certainly
looks like the form given in Definition 3.2.1, the domain of p, which, as you
may recall, we determine before we simplify, excludes 0. Alas, p is not a

polynomial function for the same reason g isn’t.

3. After what happened with p in the previous part, you may be a little shy
x3 4+ 4x
about simplifying g(x) = %

X

nition 3.2.1. If we look at the domain of g before we simplified, we see

to g(x) = x, which certainly fits Defi-



that it is, indeed, all real numbers. A function which can be written in
the form of Definition 3.2.1 whose domain is all real numbers is, in fact, a
polynomial.

4. We can rewrite f(x) = /x as f(x) = x3. Since 1 is not a natural number, f
is not a poynomial.

5. The function h(x) = |x| isn’t a polynomial, since it can’t be written as a
combination of powers of x even though it can be written as a piecewise
function involving polynomials. As we shall see in this section, graphs of
polynomials possess a quality that the graph of h does not.

6. There’s nothing in Definition 3.2.1 which prevents all the coefficients a,,
etc., from being 0. Hence, z(x) = 0, is an honest-to-goodness polynomial.

Definition 3.2.2 Polynomial terminology
Suppose fis a polynomial function.

e Givenf(x) = apX" +a,_1xX""1+.. .+ ax* +aix+ag witha, # 0,
we say

— The natural number n is called the degree of the polynomial
f.
— The term a,x" is called the leading term of the polynomial f.

— The real number a, is called the leading coefficient of the
polynomial f.

— The real number qy is called the constant term of the poly-
nomial f.

e If f(x) = ap, and ag # 0, we say f has degree 0.

* If f(x) = 0, we say f has no degree.

The reader may well wonder why we have chosen to separate off constant
functions from the other polynomials in Definition 3.2.2. Why not just lump
them all together and, instead of forcing n to be a natural number,n =1,2,...,
allow n to be a whole number,n = 0,1, 2,.... We could unify all of the cases,
since, after all, isn’t apx® = ag? The answer is ‘yes, as long as x # 0. The
function f(x) = 3 and g(x) = 3x° are different, because their domains are dif-
ferent. The number f(0) = 3 is defined, whereas g(0) = 3(0)° is not. Indeed,
much of the theory we will develop in this chapter doesn’t include the constant
functions, so we might as well treat them as outsiders from the start. One good
thing that comes from Definition 3.2.2 is that we can now think of linear func-
tions as degree 1 (or ‘first degree’) polynomial functions and quadratic functions
as degree 2 (or ‘second degree’) polynomial functions.

3.2 Polynomial Functions

Once we get to calculus, we’ll see that the
absolute value function is the classic ex-
ample of a function which is continuous
everywhere, but fails to have a derivative
everywhere: the graph of h(x) = |x| fails
to be “smooth” at the origin.

In the context of limits, results such as
0° are known as indeterminant forms.
These are cases where the function fails
to be defined, but the methods of calcu-
lus might still be able to extract informa-
tion.
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3. h(x) =

Example 3.2.2 Using polynomial terminiology
Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial functions.

1. flx) =4x —3x* + 2x—5

2. g(x) =12x+x3

4 —x
5

4. p(x) = (2x— 1)} (x — 2)(3x + 2)

SOLUTION

1. There are no surprises with f(x) = 4x> — 3x? + 2x — 5. Itis written in the

form of Definition 3.2.2, and we see that the degree is 5, the leading term
is 4x°, the leading coefficient is 4 and the constant term is —5.

. The form given in Definition 3.2.2 has the highest power of x first. To that

end, we re-write g(x) = 12x + x*> = x® + 12x, and see that the degree of
g is 3, the leading term is x3, the leading coefficient is 1 and the constant
termis 0.

. We need to rewrite the formula for h so that it resembles the form given

in Definition 3.2.2: h(x) = *2* = ¢ — £ = —Ix+ 2. The degree of h s

1, the leading term is —%X, the leading coefficient is —% and the constant
termis 2.

. It may seem that we have some work ahead of us to get p in the form

of Definition 3.2.2. However, it is possible to glean the information re-
quested about p without multiplying out the entire expression (2x—1)3(x—
2)(3x + 2). The leading term of p will be the term which has the highest
power of x. The way to get this term is to multiply the terms with the high-
est power of x from each factor together - in other words, the leading term
of p(x) is the product of the leading terms of the factors of p(x). Hence,
the leading term of p is (2x)3(x)(3x) = 24x°. This means that the degree
of pis 5 and the leading coefficient is 24. As for the constant term, we can
perform a similar trick. The constant term is obtained by multiplying the
constant terms from each of the factors (—1)3(—2)(2) = 4.

We now consider the graphs of polynomial functions. In Figure 3.2.1 the
graphs of y = x2, y = x* and y = x®, are shown. We have omitted the axes to
allow you to see that as the exponent increases, the ‘bottom’ becomes ‘flatter’
and the ‘sides’ become ‘steeper.” If you take the the time to graph these func-
tions by hand, (make sure you choose some x-values between —1 and 1.) you
will see why.

All of these functions are even, (Do you remember how to show this?) and it
is exactly because the exponent is even. (Herein lies one of the possible origins
of the term ‘even’ when applied to functions.) This symmetry is important, but
we want to explore a different yet equally important feature of these functions
which we can be seen graphically — their end behaviour.



The end behaviour of a function is a way to describe what is happening to
the function values (the y-values) as the x-values approach the ‘ends’ of the x-
axis. (Of course, there are no ends to the x-axis.) That is, what happens to y as
x becomes small without bound (written x — —o0) and, on the flip side, as x
becomes large without bound (written x — o).

For example, given f(x) = x?, as x — —oo, we imagine substituting x =
—100, x = —1000, etc., into f to get f(—100) = 10000, f(—1000) = 1000000,
and so on. Thus the function values are becoming larger and larger positive
numbers (without bound). To describe this behaviour, we write: as x — —oo,
f(x) — oo. If we study the behaviour of fas x — 0o, we see that in this case,
too, f(x) — co. (We told you that the symmetry was important!) The same can
be said for any function of the form f(x) = x" where nis an even natural number.
If we generalize just a bit to include vertical scalings and reflections across the
Xx-axis, we have

Key Idea 3.2.1 End behaviour of functions f(x) = ax”, n even.

Suppose f(x) = ax" where a # 0 is a real number and n is an even
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

e fora > 0,asx — —oo, f(x) = coand as x — o0, f(x) — 00

e fora < 0,asx — —oo, f(x) = —ooand as x — oo, f(x) = —o0

This is illustrated graphically below:

N/ P

a>0 a<O0

We now turn our attention to functions of the form f(x) = x" wheren > 3
is an odd natural number. (We ignore the case when n = 1, since the graph
of f(x) = x is a line and doesn’t fit the general pattern of higher-degree odd
polynomials.) In Figure 3.2.2 we have graphed y = x3, y = x>, and y = x’. The
‘flattening’ and ‘steepening’ that we saw with the even powers presents itself
here as well, and, it should come as no surprise that all of these functions are
odd. (And are, perhaps, the inspiration for the moniker ‘odd function’.) The end
behaviour of these functions is all the same, with f(x) — —o0 as x — —oo and
f(x) = coasx — oo.

As with the even degreed functions we studied earlier, we can generalize
their end behaviour.

3.2 Polynomial Functions

When x — oo we think of x as moving far
to the right of zero and becoming a very
large positive number. When x — —oo
we think of x as becoming a very large (in
the sense of its absolute value) negative
number far to the left of zero.

y=x

y =x*

y=x°
Figure 3.2.1: Graphing even powers of x

y=x

y=x

y=x

Figure 3.2.2: Graphing odd powers of x
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In fact, when we get to Calculus, you'll
find that smooth functions are automat-
ically continuous, so that saying ‘polyno-
mials are continuous and smooth’ is re-
dundant.

I
|
|
|
|
‘hole’

‘corner’

‘cusp’

|
|
|
'
‘break’

Figure 3.2.3: Pathologies not found on
graphs of polynomials

Figure 3.2.4: The graph of a polynomial
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Key Idea 3.2.2 End behaviour of functions f(x) = ax", n odd.

Suppose f(x) = ax" where a # 0 is a real number and n > 3 is an odd
natural number. The end behaviour of the graph of y = f(x) matches
one of the following:

e fora > 0,asx — —oo, f(x) = —oo and as x — o0, f(x) — o0

e fora < 0,asx — —oo, f(x) — oo and as x — oo, f(x) = —o0

This is illustrated graphically as follows:

/ N

a>0 a<O0

Despite having different end behaviour, all functions of the form f(x) = ax"
for natural numbers n share two properties which help distinguish them from
other animals in the algebra zoo: they are continuous and smooth. While these
concepts are formally defined using Calculus, informally, graphs of continuous
functions have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth functions
have no ‘sharp turns’. It turns out that these traits are preserved when functions
are added together, so general polynomial functions inherit these qualities. In
Figure 3.2.3, we find the graph of a function which is neither smooth nor contin-
uous, and to its right we have a graph of a polynomial, for comparison. The func-
tion whose graph appears on the left fails to be continuous where it has a ‘break’
or ‘hole’ in the graph; everywhere else, the function is continuous. The function
is continuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’,
so these are places where the function fails to be smooth. Apart from these
four places, the function is smooth and continuous. Polynomial functions are
smooth and continuous everywhere, as exhibited in Figure 3.2.4.

The notion of smoothness is what tells us graphically that, for example, f(x) =
|x|, whose graph is the characteristic ‘v’ shape, cannot be a polynomial. The no-
tion of continuity is key to constructing sign diagrams: the zeros of a polynomial
function are the only possible places where it can change sign. This last result is
formalized in the following theorem.

Theorem 3.2.1 The Intermediate Value Theorem (Zero Version)

Suppose f is a continuous function on an interval containing x = a and
x = bwith a < b. If f(a) and f(b) have different signs, then f has at least
one zero between x = a and x = b; that is, for at least one real number
csuch thata < ¢ < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart
of what it means to be a real number, and is one of the most often used and un-
der appreciated theorems in Mathematics. With that being said, most students
see the result as common sense since it says, geometrically, that the graph of a
polynomial function cannot be above the x-axis at one point and below the x-



axis at another point without crossing the x-axis somewhere in between. We’'ll
return to the Intermediate Value Theorem later in the Calculus portion of the
course, when we study continuity in general. The following example uses the
Intermediate Value Theorem to establish a fact that that most students take for
granted. Many students, and sadly some instructors, will find it silly.

Example 3.2.3 Existence of /2
Use the Intermediate Value Theorem to establish that v/2 is a real number.

SOLUTION Consider the polynomial function f(x) = x> —2. Thenf(1) =
—1and f(3) = 7. Since f(1) and f(3) have different signs, the Intermediate
Value Theorem guarantees us a real number ¢ between 1 and 3 with f(c) = 0. If
¢ — 2 = 0then ¢ = +/2. Since cis between 1 and 3, cis positive, so ¢ = V2.

Our primary use of the Intermediate Value Theorem is in the construction
of sign diagrams, since it guarantees us that polynomial functions are always
positive (4) or always negative (—) on intervals which do not contain any of its
zeros. The general algorithm for polynomials is given below.

Key Idea 3.2.3
mial Function

Steps for Constructing a Sign Diagram for a Polyno-

Suppose fis a polynomial function.

1. Find the zeros of f and place them on the number line with the
number 0 above them.

2. Choose a real number, called a test value, in each of the intervals
determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write
that sign above the corresponding interval.

Example 3.2.4 Using a sign diagram to sketch a polynomial
Construct a sign diagram for f(x) = x*(x — 3)2(x + 2) (x* + 1). Use it to give a
rough sketch of the graph of y = f(x).

SOLUTION
0. Wegetx = 0, x = 3and x = —2. (The equation x> + 1 = 0 produces no
real solutions.) These three points divide the real number line into four inter-
vals: (—o0,—2), (—2,0), (0,3) and (3,00). We select the test values x = —3,
x = —1,x = land x = 4. We find f(—3) is (+), f(—1) is (—) and f(1) is (+)
as is f(4). Wherever fis (4), its graph is above the x-axis; wherever fis (—), its
graph is below the x-axis. The x-intercepts of the graph of fare (—2,0), (0,0)
and (3, 0). Knowing fis smooth and continuous allows us to sketch its graph in
Figure 3.2.6.

A couple of notes about the Example 3.2.4 are in order. First, note that we
purposefully did not label the y-axis in the sketch of the graph of y = f(x). This
is because the sign diagram gives us the zeros and the relative position of the
graph - it doesn’t give us any information as to how high or low the graph strays
from the x-axis. Furthermore, as we have mentioned earlier in the text, without
Calculus, the values of the relative maximum and minimum can only be found
approximately using a calculator. If we took the time to find the leading term of

First, we find the zeros of fby solving x> (x—3)2(x+2) (x* + 1) =

3.2 Polynomial Functions

The validity of the result in Example 3.2.3
of course relies on having a rigorous proof
of Theorem 3.2.1. Although intuitive, its
proof is one of the most difficult in sin-
gle variable calculus. At most universities,
you don’t see a proof until a first course in
Analysis, like Math 3500.

(+) 0(=) 0 (+) 0 (+)

P21 013 9

-3 -1 1 4
Figure 3.2.5: The sign diagram of fin Ex-
ample 3.2.4

Figure 3.2.6: The graph y = f(x) for Ex-
ample 3.2.4
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y = flx)

A view close to the origin

A ‘zoomed out’ view

Figure 3.2.7: Two views of the polynomi-

als f(x) and g(x)
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f, we would find it to be x®. Looking at the end behaviour of f, we notice that it
matches the end behaviour of y = x8. This is no accident, as we find out in the
next theorem.

Theorem 3.2.2 End behaviour for Polynomial Functions

The end behaviour of a polynomial f(x) = a,x"+a,_1x""1+.. . +ax*+
a1x + ap with a, # 0 matches the end behaviour of y = a,x".

To see why Theorem 3.2.2 is true, let’s first look at a specific example. Con-
sider f(x) = 4x*> — x + 5. If we wish to examine end behaviour, we look to see
the behaviour of fas x — +o00. Since we’re concerned with x’s far down the
x-axis, we are far away from x = 0 so can rewrite f(x) for these values of x as

1 5
f(x):4x3(1—4xz+4x3>

1 5
As x becomes unbounded (in either direction), the terms el and Y be-
come closer and closer to 0, as the table below indicates.

1 5
X e el
—1000 || 0.00000025 | —0.00000000125
—100 0.000025 —0.00000125
—10 0.0025 —0.00125
10 0.0025 0.00125
100 0.000025 0.00000125
1000 || 0.00000025 | 0.00000000125

In other words, as x — o0, f(x) ~ 4x* (1 — 0+ 0) = 4x, which is the
leading term of f. The formal proof of Theorem 3.2.2 works in much the same
way. Factoring out the leading term leaves

f(x) = apt” (1 +

On—1 a; a1 do )

Fot —— —
anX apx"=2  a,x"1 0 gpx"

As x — =00, any term with an x in the denominator becomes closer and
closer to 0, and we have f(x) ~ a,x". Geometrically, Theorem 3.2.2 says that if
we graph y = f(x) using a graphing calculator, and continue to ‘zoom out’, the
graph of it and its leading term become indistinguishable. In Figure 3.2.7 the
graphs of y = 4x3 — x + 5 and y = 4x* ) in two different windows.

Let’s returnto the function in Example 3.2.4, f(x) = x*(x—3)?(x+2) (x> + 1),
whose sign diagram and graph are given in Figures 3.2.5 and 3.2.6. Theorem
3.2.2 tells us that the end behaviour is the same as that of its leading term x8.
This tells us that the graph of y = f(x) starts and ends above the x-axis. In other
words, f(x) is () as x — £o0, and as a result, we no longer need to evaluate
f at the test values x = —3 and x = 4. Is there a way to eliminate the need to
evaluate f at the other test values? What we would really need to know is how
the function behaves near its zeros - does it cross through the x-axis at these
points, as it does at x = —2 and x = 0, or does it simply touch and rebound
like it does at x = 3. From the sign diagram, the graph of f will cross the x-axis
whenever the signs on either side of the zero switch (like they do at x = —2 and
x = 0); it will touch when the signs are the same on either side of the zero (as is



the case with x = 3). What we need to determine is the reason behind whether
or not the sign change occurs.

Fortunately, f was given to us in factored form: f(x) = x*(x — 3)2(x + 2).
When we attempt to determine the sign of f(—4), we are attempting to find the
sign of the number (—4)3(—7)2(—2), which works out to be (—)(+)(—) which
is (4). If we move to the other side of x = —2, and find the sign of f(—1), we
are determining the sign of (—1)3(—4)?(41), which is (—=)(+)(+) which gives
us the (—). Notice that signs of the first two factors in both expressions are the
same in f(—4) and f(—1). The only factor which switches sign is the third factor,
(x 4 2), precisely the factor which gave us the zero x = —2. If we move to the
other side of 0 and look closely at f(1), we get the sign pattern (+1)3(—2)?(+3)
or (+)(+)(+) and we note that, once again, going from f(—1) to f(1), the only
factor which changed sign was the first factor, x3, which corresponds to the
zero x = 0. Finally, to find f(4), we substitute to get (+4)3(+2)?(+5) which
is (+)(+)(+) or (+). The sign didn’t change for the middle factor (x — 3)2.
Even though this is the factor which corresponds to the zero x = 3, the fact that
the quantity is squared kept the sign of the middle factor the same on either
side of 3. If we look back at the exponents on the factors (x + 2) and x3, we see
that they are both odd, so as we substitute values to the left and right of the cor-
responding zeros, the signs of the corresponding factors change which results in
the sign of the function value changing. This is the key to the behaviour of the
function near the zeros. We need a definition and then a theorem.

Definition 3.2.3 Multiplicity of a zero

Suppose fis a polynomial function and m is a natural number. If (x —c)™
is a factor of f(x) but (x — ¢)™*1 is not, then we say x = cis a zero of
multiplicity m.

Hence, rewriting f(x) = x3(x—3)2(x+2) asf(x) = (x—0)3(x—3)?(x—(-2))%,
we see that x = 0 is a zero of multiplicity 3, x = 3 is a zero of multiplicity 2 and
x = —2 is a zero of multiplicity 1.

Theorem 3.2.3 The Role of Multiplicity

Suppose fis a polynomial function and x = cis a zero of multiplicity m.

e If mis even, the graph of y = f(x) touches and rebounds from the
x-axis at (c, 0).

* If mis odd, the graph of y = f(x) crosses through the x-axis at
(c,0).

Our last example shows howend behaviour and multiplicity allow us to sketch
a decent graph without apgealing to a sign diagram.

Example 3.2.5 Using end behaviour and multiplicity
Sketch the graph of f(x) = —3(2x — 1)(x + 1) using end behaviour and the
multiplicity of its zeros.

SOLUTION The end behaviour of the graph of f will match that of its
leading term. To find the leading term, we multiply by the leading terms of each

3.2 Polynomial Functions
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Figure 3.2.8: The graph y = f(x) for Ex-
ample 3.2.5
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factor to get (—3)(2x)(x)2 = —6x3. This tells us that the graph will start above
the x-axis, in Quadrant I, and finish below the x-axis, in Quadrant IV. Next, we
find the zeros of f. Fortunately for us, fis factored. (Obtaining the factored form
of a polynomial is the main focus of the next few sections.) Setting each factor
equal to zero gives is x = % and x = —1 as zeros. To find the multiplicity of
X = % we note that it corresponds to the factor (2x — 1). This isn’t strictly in
the form required in Definition 3.2.3. If we factor out the 2, however, we get
(2x—1) = 2 (x — %), and we see that the multiplicity of x = % is 1. Since 1is an
odd number, we know from Theorem 3.2.3 that the graph|of f will cross through
the x-axis at (3, 0). Since the zero x = —1 corresponds to the factor (x + 1)* =
(x—(—1))2, we find its multiplicity to be 2 which is an even number. As such, the
graph of f will touch and rebound from the x-axis at (—1,0). Though we’re not
asked to, we can find the y-intercept by finding f(0) = —3(2(0)—1)(0+1)? = 3.
Thus (0, 3) is an additional point on the graph. Putting this together gives us the
graph in Figure 3.2.8.

3.2.2 Polynomial Arithmetic

The previous section introduced all the important polynomial terminology and
taught us the basic techniques for graphing polynomial functions. We saw that a
necessary ingredient for obtaining the graph of a polynomial function is knowl-
edge of the zeros of the polynomial. In the next few sections, we will cover the
algebraic techniques needed to obtain this information.

In this section our focus is entirely on algebraic manipulation, so we will
pause briefly in our discussion of functions, and simply consider polynomial ex-
pressions. (That is, we simply dispense with writing “p(x) =" in front of every
polynomial.)

We begin with (you guessed it) a bit more terminology that can come in
handy when comparing polynomials.

Definition 3.2.4 Polynomial Vocabulary, Part 2

o Like Terms: Terms in a polynomial are called like terms if they have
the same variables each with the same corresponding exponents.

¢ Simplified: A polynomial is said to be simplified if all arithmetic
operations have been completed and there are no longer any like
terms.

¢ Classification by Number of Terms: A simplified polynomial is
called a

— monomial if it has exactly one nonzero term
— binomial if it has exactly two nonzero terms

— trinomial if it has exactly three nonzero terms

For example, x*> 4+ x\/3 + 4 is a trinomial of degree 2. The coefficient of x? is
1 and the constant term is 4. The polynomial 27x%y + % is a binomial of degree
3 (x’y = x?y') with constant term 0.

The concept of ‘like’ terms really amounts to finding terms which can be
combined using the Distributive Property. For example, in the polynomial 17x%y—



3xy? + 7xy?, —3xy? and 7xy? are like terms, since they have the same variables
with the same corresponding exponents. This allows us to combine these two
terms as follows:

17Xy —3xy* +7xy? = 17¢°y+(=3)xy* +7xy* +17x°y+(—3+7)xy* = 17x°y-+axy*

Note that even though 17x%y and 4xy? have the same variables, they are not like
terms since in the first term we have x*> and y = y* but in the second we have
x = x* and y = y? so the corresponding exponents aren’t the same. Hence,
17x%y + 4xy? is the simplified form of the polynomial.

There are four basic operations we can perform with polynomials: addition,
subtraction, multiplication and division. The first three of these operations fol-
low directly from properties of real number arithmetic and will be discussed
together first. Division, on the other hand, is a bit more complicated and will be
discussed separately.

3.2.3 Polynomial Addition, Subtraction and Multiplication.

Adding and subtracting polynomials comes down to identifying like terms and
then adding or subtracting the coefficients of those like terms. Multiplying poly-
nomials comes to us courtesy of the Generalized Distributive Property.

Theorem 3.2.4 Generalized Distributive Property

To multiply a quantity of n terms by a quantity of m terms, multiply each
of the n terms of the first quantity by each of the m terms in the second
quantity and add the resulting n - m terms together.

In particular, Theorem 3.2.4 says that, before combining like terms, a product
of an n-term polynomial and an m-term polynomial will generate (n - m)-terms.
For example, a binomial times a trinomial will produce six terms some of which
may be like terms. Thus the simplified end result may have fewer than six terms
but you will start with six terms.

A special case of Theorem 3.2.4 is the famous F.O.L.L., listed here:

Key Idea 3.2.4 F.O.LL:

The terms generated from the product of two binomials: (a + b)(c + d)
can be verbalized as follows “Take the sum of:

¢ the product of the First terms a and ¢, ac
¢ the product of the Outer terms a and d, ad
¢ the product of the Inner terms b and ¢, bc

¢ the product of the Last terms b and d, bd.”

Thatis, (a + b)(c + d) = ac + ad + bc + bd.

3.2 Polynomial Functions

We caved to peer pressure on this one.
Apparently all of the cool Precalculus
books have FOIL in them even though it’s
redundant once you know how to dis-
tribute multiplication across addition. In
general, we don’t like mechanical short-
cuts that interfere with a student’s under-
standing of the material and FOIL is one of
the worst.
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Theorem 3.2.4 is best proved using the technique known as Mathematical
Induction which is covered in Math 2000. The result is really nothing more than
repeated applications of the Distributive Property so it seems reasonable and
we’ll use it without proof for now. The other major piece of polynomial multipli-
cation is the law of exponents a”a™ = a"™™. The Commutative and Associative
Properties of addition and multiplication are also used extensively. We put all
of these properties to good use in the next example.

Example 3.2.6 Addition and subtraction of polynomials
Perform the indicated operations and simplify.

1. (3x¥* —2x+1) — (7x — 3)

2. 4xz%> —3z(xz — x+ 4)

3. (2t+1)(3t—-7)

4. (3y —V2) (9v* + 32y + V/4)
SOLUTION

1. We begin ‘distributing the negative’, then we rearrange and combine like
terms:

(3% —2x+1) — (7x—3)=3x" —2x+1—7x+3 Distribute
=3x*> — 2x — 7x + 1 + 3 Rearrange terms

=3x*—9x+4 Combine like terms
Our answer is 3x? — 9x + 4.

2. Following in our footsteps from the previous example, we first distribute
the —3z through, then rearrange and combine like terms.

4xz2* — 3z(xz — x + 4) = 4xz* — 3z(xz) + 3z(x) — 32(4)  Distribute
= 4x2% — 3x2* + 3xz — 12z Multiply

= xz2? 4 3xz — 12z Combine like terms
We get our final answer: xz2 + 3xz — 12z
3. At last, we have a chance to use our F.O.l.L. technique:
(2t+ 1)(3t—7) = (2t)(3t) + (2t)(=7) + (1)(3t) + (1)(—7) FO..L.
=6t — 14t 4+ 3t — 7 Multiply
=6t> — 11t —7 Combine like terms

We get 6t — 11t — 7 as our final answer.

4. We use the Generalized Distributive Property here, multiplying each term
in the second quantity first by 3y, then by —v/2:

(3y - \/i) <9y2 +3V2y + \3/?1) =3y (9)?) + 3y (3\ﬁy) +3y (\3/21)
V2 (9y) - V2 (392y) - V2 (V)
=27y +9y*V2 — 9y*V2 + 3yV4a — 3yv/4a — 2
=27y -2

To our surprise and delight, this product reduces to 27y3 — 2.
66



We conclude our discussion of polynomial multiplication by showcasing two
special products which happen often enough they should be committed to mem-
ory.

Key Idea 3.2.5 Special Products

Let a and b be real numbers:

e Perfect Square: (a + b)? = a® + 2ab + b? and
(a —b)? = a* — 2ab + b?

* Difference of Two Squares: (a — b)(a + b) = a*> — b®

The formulas in Theorem 3.2.5 can be verified by working through the mul-
tiplication. (These are both special cases of F.O.l.L.)

3.2.4 Polynomial Long Division.

We now turn our attention to polynomial long division. Dividing two polyno-
mials follows the same algorithm, in principle, as dividing two natural numbers
so we review that process first. Suppose we wished to divide 2585 by 79. The
standard division tableau is given below.

32

79[ 2585
—237)
215
—158

57

In this case, 79 is called the divisor, 2585 is called the dividend, 32 is called
the quotient and 57 is called the remainder. We can check our answer by show-

ing:

dividend = (divisor)(quotient) + remainder

or in this case, 2585 = (79)(32) + 57v . We hope that the long division tableau
evokes warm, fuzzy memories of your formative years as opposed to feelings
of hopelessness and frustration. If you experience the latter, keep in mind that
the Division Algorithm essentially is a two-step process, iterated over and over
again. First, we guess the number of times the divisor goes into the dividend and
then we subtract off our guess. We repeat those steps with what'’s left over until
what’s left over (the remainder) is less than what we started with (the divisor).
That’s all there is to it!

The division algorithm for polynomials has the same basic two steps but
when we subtract polynomials, we must take care to subtract like terms only. As
a transition to polynomial division, let’s write out our previous division tableau
in expanded form.

3.2 Polynomial Functions
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3-10+2
7-1049/2-10° +5-10 +8-10 +5
—(2-10*+3-10° +7-10) |
2-10° +1-10+5
—(1-10°+5-10 +8)

510 + 7

Written this way, we see that when we line up the digits we are really lining
up the coefficients of the corresponding powers of 10 - much like how we’ll have
to keep the powers of x lined up in the same columns. The big difference be-
tween polynomial division and the division of natural numbers is that the value
of x is an unknown quantity. So unlike using the known value of 10, when we
subtract there can be no regrouping of coefficients as in our previous example.
(The subtraction 215 — 158 requires us to ‘regroup’ or ‘borrow’ from the tens
digit, then the hundreds digit.) This actually makes polynomial division easier.
(In our opinion - you can judge for yourself.) Before we dive into examples, we
first note that for any polynomial functions d(x) and p(x) such that the degree
of p is greater than or equal to the degree of d, there exist unique polynomial
functions g(x) and r(x) such that

p(x) = d(x)q(x) + r(x),

and either r(x) = 0, or the degree of r is less than the degree of d. This result
tells us that we can divide polynomials whenever the degree of the divisor is
less than or equal to the degree of the dividend. We know we’re done with
the division when the polynomial left over (the remainder) has a degree strictly
less than the divisor. It’s time to walk through a few examples to refresh your
memory.

Example 3.2.7 Polynomial long division

Perform the indicated division. Check your answer by showing

dividend = (divisor)(quotient) 4 remainder
(4P —5x—14) = (x—2)
. (2t+7)+ (3t—4)
3. (6y> —1) + (2y +5)
-

w') + (W = V2).

SOLUTION

1. To begin (x* + 4x* — 5x — 14) + (x — 2), we divide the first term in the
dsividend, namely x3, by the first term in the divisor, namely x, and get
= x%. This then becomes the first term in the quotient. We proceed as

in regular long division at this point: we multiply the entire divisor, x — 2,

by this first term in the quotient to get x*(x — 2) = x> — 2x?. We then

subtract this result from the dividend.

XZ

x—Z‘ x3 + 4x* —5x—14

-(¥=22) |

6x% —5x




Now we ‘bring down’ the next term of the quotient, namely —5x, and
repeat the process. We divide % = 6x, and add this to the quotient
polynomial, multiply it by the divisor (which yields 6x(x —2) = 6x> — 12x)
and subtract.
x* + 6x
x—2‘x3 +4x*> — 5x —14

- (¥ -2x") 1

6x> — 5x |
—(6x*—12x) |
7x —14

Finally, we ‘bring down’ the last term of the dividend, namely —14, and
repeat the process. We divide % = 7, add this to the quotient, multiply
it by the divisor (which yields 7(x — 2) = 7x — 14) and subtract.

x> + 6x + 7
X—2‘X3 + 4x* — 5x — 14
—(x®—2x2

6x2 — 5x
—(6x* —12x)

7x — 14

— (7x —14)

0

In this case, we get a quotient of x> + 6x + 7 with a remainder of 0. To
check our answer, we compute

(x—=2) (X + 6x + 7)+0 = X’ +6x+7x—2x*—12x—14 = X*+4x* —5x—14 v

. To compute (2t + 7) =+ (3t — 4), we start as before. We find 2 = 2, so
that becomes the first (and only) term in the quotient. We multiply the
divisor (3t — 4) by £ and get 2t — £. We subtract this from the divided
and get 2.

2
3
3t—4‘ 2t + 7
()
—|2t—=
A3/
29
3

Our answer is % with a remainder of ? To check our answer, we compute

(3t—4) 2 +29—2t 8+29—2t+21—2t+7/
3 3 3 3 3

. When we set-up the tableau for (6y2 — 1) +(2y 4+ 5), we must first issue

a ‘placeholder’ for the ‘missing’ y-term in the dividend, 6y*> — 1 = 6y? +
2

Oy — 1. We then proceed as before. Since % = 3y, 3y is the first term

3.2 Polynomial Functions
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in our quotient. We multiply (2y 4+ 5) times 3y and subtract it from the
dividend. We bring down the —1, and repeat.

5 15
y 2
2y+5‘ 6y + Oy — 1
—(6y*+ 15y) 1
—15y — 1
15y 15
=3
73
2

Our answer is 3y — £ with a remainder of 2. To check our answer, we
compute:

15\ 73 , 75 73 ,
(2y+5) (-5 )+ 5 =6/ —15y+15y — —+ — =6/ — 1V

4. For our last example, we need ‘placeholders’ for both the divisor w? —
V2 = w? + 0w — /2 and the dividend w3 = w3 + Ow? + Ow + 0. The
first term in the quotient is x—j = w, and when we multiply and subtract
this from the dividend, we’re left with just Ow? + w2 +0 = wy/2.

w
w2 +0w—v/2| w? +0w2+ Ow +0
- (WP+ow?’—wv2) |
ow2+ w+/2 +0

Since the degree of wy/2 (which is 1) is less than the degree of the divisor
(which is 2), we are done. Our|answer is w with a remainder of wv/2. To
check, we compute:

(Wz—ﬁ>w+WV§:W3—W\6+W\6:W3/
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Exercises 3.2

Problems

In Exercises 1 — 10, solve the inequality. Write your answer
using interval notation.

1 f(x) =4 —x—3x
2. g(x) =3x° — 2% +x+1
3. g(r)=1-16r"
4. Z(b) = 42b - b*
5. f(x) = V3x" +22.5x° — X’ + 1
6. s(t) = —4.98 + vot + 5o
7. P)=(x—1)(x—2)(x—3)(x — 4)
8. p(t) = —t*(3 = 5t)( +t+4)
9. f(x) = =2 (x + 1)(x + 2)?
10. G(t) =4(t—2)* (t+2)
In Exercises 11 — 20, find the real zeros of the given polyno-
mial and their corresponding multiplicities. Use this informa-
tion along with a sign chart to provide a rough sketch of the

graph of the polynomial. Compare your answer with the re-
sult from a graphing utility.

11. a(x) = x(x + 2)?

12. g(x) = x(x + 2)3

13. f(x) = —2(x — 2)*(x + 1)

14. g(x) = (2x + 1)*(x — 3)

15. F(x) = (x4 2)?

16. P(x) = (x — 1)(x — 2)(x — 3)(x — 4)
17. Q(x) = (x + 5)*(x — 3)*

18. h(x) = x*(x — 2)%(x + 2)?

19. H(t) = (3 - t)(£" +1)

20. Z(b) = b(42 — b?)

21. Here are a few other questions for you to discuss with your
classmates.

(a) How many local extrema could a polynomial of de-
gree n have? How few local extrema can it have?

(b) Could a polynomial have two local maxima but no lo-
cal minima?

(c) If a polynomial has two local maxima and two local
minima, can it be of odd degree? Can it be of even
degree?

(d) Can a polynomial have local extrema without having
any real zeros?

(e) Why must every polynomial of odd degree have at
least one real zero?

(f) Can a polynomial have two distinct real zeros and no
local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield
an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what
can we say about the degree of the polynomial and
the sign of the leading coefficient?

In Exercises 22 — 36, perform the indicated operations and
simplify.

22. (4—3x)+ (3%X + 2x+7)

23. £ +4t-2(3-1)

24. q(200 — 3q) — (5q + 500)
25. By —1)(2y+1)

26. (3 - %) (2x+5)

27. —(4t+3)(f —2)

28. 2w(w? — 5)(w® + 5)

29. (50* — 3)(25a" + 150 +9)
30. (X —2x+3)(X* + 2x + 3)
31 (V7 -2)(V7 +2)

32. (x—v/5)?

33, (x — v/5)(* + xv/5 + v/25)
34, (w—3)2— (w*+9)

35. (x+h)* —2(x+h) — (X* —2x)
36. (x—[2+V5)(x— [2 - V5])

In Exercises 37 — 48, perform the indicated operations and
simplify.

37. (5% —3x+1) =+ (x+ 1)

38. 3y +6y—7) = (y—3)
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39.

40.

41.

42.

43.

44,

45,

46.

47.

(6w — 3) + (2w + 5)

(2x+1) + (3x — 4)

(2 —4)+(2t+1)

(w? — 8) + (5w — 10)

(2¢ —x+1)+ (3% +1)

(4 +3y° +1) = (2 —y+1)
wh =+ (WP —2)

(58 —t+1)+ (£ +4)

(B —4)+ (- VA)

48.

Perfect Cube: (a + b)® = o® + 3a°b + 3ab® + b*

In Exercises 49 — 55, verify the given formula by showing the
left hand side of the equation simplifies to the right hand side
of the equation.

49.

50.

51.

52.

53.

54.

Perfect Cube: (a + b)® = o® + 3a°b + 3ab® + b*
Difference of Cubes: (a — b)(a® + ab + b*) = a* — b*
Sum of Cubes: (a + b)(a* — ab + b*) = a® + b

Perfect Quartic: (a+b)* = a* +4a°b+ 6a*b*> + 4ab® + b*
Difference of Quartics: (a — b)(a + b)(a® + b?) = a* — b*

sum of Quartics: (a* + abv/2 + b*)(a®> — ab\v/2 + b*) =
a* + b



3.3 Rational Functions

3.3 Rational Functions

3.3.1 Introduction to Rational Functions

If we add, subtract or multiply polynomial functions according to the function
arithmetic rules defined in Section 2.2.1, we will produce another polynomial
function. If, on the other hand, we divide two polynomial functions, the result
may not be a polynomial. In this chapter we study rational functions - functions
which are ratios of polynomials.

Definition 3.3.1 Rational Function
A rational function is a function which is the ratio of polynomial func-
tions. Said differently, r is a rational function if it is of the form
(X) _ P(X) According to Definition 3.3.1, all polyno-
q(x) ’ mial functions are also rational functions,

since we can take g(x) = 1.
where p and g are polynomial functions. ax)

As we recall from Section 2.1, we have domain issues any time the denomi-
nator of a fraction is zero. In the-example below, we review this concept as well
as some of the arithmetic of rational expressions.

Example 3.3.1 Domain of rational functions
X
Find the domain of the following rational functions. Write them in the form ZEX;
for polynomial functions p and g and simplify.
2x—1
1. f(x) =
f0) x+1
3
2. gx) =2 —
9(x) x+1
3. hix) 2 -1 3x-2
. h(x) = —
x2X—-1 x2-1
4 r(x) 2% -1  3x-2
. X) = -
xX—-1  x2-1
SOLUTION

1. To find the domain of f, we proceed as we did in Section 2.1: we find
the zeros of the denominator and exclude them from the domain. Setting
x+1 = Oresults in x = —1. Hence, our domain is (—oo, —1) U (—1, 00).
The expression f(x) is already in the form requested and when we check
for common factors among the numerator and denominator we find none,
so we are done.

2. Proceeding as before, we determine the domain of g by solving x+1 = 0.

As before, we find the domain of g is (—oo, —1) U (—1, 00). To write g(x)
in the form requested, we need to get a common denominator
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3 2 3 2)(x+1 3
w0 - 2o _ 23 @+
x+1 1 x+1 1x+1) x+1
_ (x+2)-3 21
B x+1 o ox+1

This formula is now completely simplified.

3. The denominators in the formula for h(x) are both x*> — 1 whose zeros are
x = =£1. As a result, the domain of his (—oo, —1) U (—=1,1) U (1, c0).
We now proceed to simplify h(x). Since we have the same denominator
in both terms, we subtract the numerators. We then factor the resulting
numerator and denominator, and cancel out the common factor.

ho) = 2¢—-1 -2 _ (2-1)—(3x-2)

x2 -1 x2—1 x2 -1
22 —1—-3x+2 22 —3x+1

I I | I

=)D (X1

(=1 (x+D)e—1g
2x—1

- x+1

4. To find the domain of r, it may help to temporarily rewrite r(x) as

2% —1
x2—1
r(x) = ey
x2—1

We need to set all of the denominators equal to zero which means we

3x—2
need to solve notonlyx>*—1 = 0, butalso 21 = 0. Wefindx = £1for

the former and x = 2 for the latter. Our domain is (—oo0, —1) U (—1,3) U
(2,1)U(1, 00). We simplify r(x) by rewriting the division as multiplication
by the reciprocal and then by cancelling the common factor

) 2% —1 3x—2 2% -1 x*—-1
rix) = - = :
x2—1 x2—1 x2—1 3x—2

L @-y(e-1 (-2
2-1)(3x—-2) (2—T1)(3x—2)

2% —1
3x—2

In Example 3.3.1, note that the expressions for f(x), g(x) and h(x) work out
to be the same. However, only two of these functions are actually equal. For
two functions to be equal, they need, among other things, to have the same
domain. Since f(x) = g(x) and f and g have the same domain, they are equal
functions. Even though the formula h(x) is the same as f(x), the domain of h is
different than the domain of f, and thus they are different functions.



We now turn our attention to the graphs of rational functions. Consider the
. 2x—1 . .
function f(x) = “F1 from Example 3.3.1. Using GeoGebra, we obtain the
X

graph in Figure 3.3.1

Two behaviours of the graph are worthy of further discussion. First, note
that the graph appears to ‘break’ at x = —1. We know from our last example
that x = —1 is not in the domain of f which means f(—1) is undefined. When
we make a table of values to study the behaviour of f near x = —1 we see that
we can get ‘near’ x = —1 from two directions. We can choose values a little
less than —1, for example x = —1.1, x = —1.01, x = —1.001, and so on. These
values are said to ‘approach —1 from the left. Similarly, the values x = —0.9,
x = —0.99, x = —0.999, etc., are said to ‘approach —1 from the right! If we
make the two tables in Figure 3.3.2, we find that the numerical results confirm
what we see graphically.

As the x values approach —1 from the left, the function values become larger
and larger positive numbers. (We would need Calculus to confirm this analyti-
cally.) We express this symbolically by stating as x — —17, f(x) — oco. Simi-
larly, using analogous notation, we conclude from the table that as x — —17,
f(x) — —oo. For this type of unbounded behaviour, we say the graph of y = f(x)
has a vertical asymptote of x = —1. Roughly speaking, this means that near
x = —1, the graph looks very much like the vertical line x = —1.

The other feature worthy of note about the graph of y = f(x) is that it seems
to ‘level off’ on the left and right hand sides of the screen. This is a statement
about the end behaviour of the function. As we discussed in Section 3.2.1, the
end behaviour of a function is its behaviour as x attains larger and larger negative
values without bound (here, the word ‘larger’ means larger in absolute value),
X — —00, and as x becomes large without bound, x — oo.

From the tables in Figure 3.3.3, we see that as x — —oo, f(x) — 21 and as
X — 00, f(x) — 2. Here the ‘+’ means ‘from above’ and the ‘—’ means ‘from
below’. In this case, we say the graph of y = f(x) has a horizontal asymptote
of y = 2. This means that the end behaviour of f resembles the horizontal line
y = 2, which explains the ‘levelling off’ behaviour we see in Figure 3.3.1. We
formalize the concepts of vertical and horizontal asymptotes in the following
definitions.

Definition 3.3.2 Vertical Asymptote

The line x = c is called a vertical asymptote of the graph of a function
y = f(x) ifasx — ¢~ oras x — ¢, either f(x) — oo or f(x) — —o0.

Definition 3.3.3 Horizontal Asymptote

The line y = cis called a horizontal asymptote of the graph of a function
y =f(x)ifasx - —ocoorasx — oo, f(x) — c.

Note that in Definition 3.3.3, we write f(x) — ¢ (notf(x) — ¢t orf(x) — ¢™)
because we are unconcerned from which direction the values f(x) approach the
value ¢, just as long as they do so.

In our discussion following Example 3.3.1, we determined that, despite the
fact that the formula for h(x) reduced to the same formula as f(x), the functions

3.3 Rational Functions

2x—1
x+1

Figure 3.3.1: The graph of f(x) =

x|| f(x) (x,f(x))
—11][ 32 (—1.1,32)
—1.01]] 302 | (—1.01,302)
—1.0011 3002 | (—1.001,3002)
—1.0001[30002 [ (—1.001, 30002)

x| f(x) (x.f(x))
0.9 —28 (—0.9, —28)
—0.99|[ —298 | (—0.99, —298)

—0.999| —2998 | (—0.999, —2998)

—0.9999 || —29998 | (—0.9999, —29998)

Figure 3.3.2: Values of f(x) = 27 near
x=-1
X|[f) =] (xf()) =

—10([2.3333] (—10,2.3333)
~100([2.0303| (—100,2.0303)
—1000([2.0030| (—1000, 2.0030)
—10000 [ 2.0003 [ (—10000, 2.0003)

X||f0) =] (xflx) =
10((1.7273| (10,1.7273)
100{|{1.9703| (100, 1.9703)
1000(|1.9970| (1000, 1.9970)
10000||1.9997 | (10000, 1.9997)

2x—1
Figure 3.3.3: Values of f(x) = ):(Jr 1 for

large negative and positive values of x
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x|[h(x) =| (x,h(x)) =~
0.9]{0.4210| (0.9,0.4210)
0.99(/0.4925| (0.99,0.4925)
0.999(/0.4992| (0.999, 0.4992)
0.9999/0.4999(0.9999, 0.4999)

x||h(x) =| (x,h(x)) =~
1.1/(0.5714| (1.1,0.5714)
1.01{{0.5075| (1.01,0.5075)

1.001[0.5007 (1.001, 0.5007)

1.0001{{0.5001 | (1.0001, 0.5001)

Figure 3.3.4: Values of h(x) = 2=1 —

x2—1
3x—=2
x2—1

nearx =1

Wk Ut N o
A
—t—t—t

Figure 3.3.5: The graph y = h(x) showing
asymptotes and the ‘hole’

In Calculus, we will see how these ‘holes’
in graphs can be ‘plugged’ once we've
made a more advanced study of continu-
ity.

In English, Theorem 3.3.1 says that if x =
cis not in the domain of r but, when we
simplify r(x), it no longer makes the de-
nominator 0, then we have a hole at x =
c. Otherwise, the line x = cis a vertical
asymptote of the graph of y = r(x). In
other words, Theorem 3.3.1 tells us ‘How
to tell your asymptote from a hole in the
graph!
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f and h are different, since x = 1 is in the domain of f, but x = 1 is not in the
2% -1 3x—2 ,
> - = using a graphing calculator,
xt—1 xc—1
we are surprised to find that the graph looks identical to the graph of y = f(x).
There is a vertical asymptote at x = —1, but near x = 1, everything seem fine.
Tables of values provide numerical evidence which supports the graphical ob-
servation: see Figure 3.3.4.

We see thatasx — 17, h(x) — 0.5 and as x — 1%, h(x) — 0.5. In
other words, the points on the graph of y = h(x) are approaching (1,0.5), but
since x = 1is not in the domain of h, it would be inaccurate to fill in a point at
(1,0.5). To indicate this, we put an open circle (also called a hole in this case)
at (1,0.5). Figure 3.3.5 is a detailed graph of y = h(x), with the vertical and
horizontal asymptotes as dashed lines.

Neither x = —1 nor x = 1 are in the domain of h, yet the behaviour of the
graph of y = h(x) is drastically different near these x-values. The reason for
this lies in the second to last step when we simplified the formula for h(x) in
(2x—1)(x—1)
(x+1)(x—1)
not in the domain of h is because the factor (x + 1) appears in the denominator
of h(x); similarly, x = 1 is not in the domain of h because of the factor (x — 1)
in the denominator of h(x). The major difference between these two factors is
that (x — 1) cancels with a factor in the numerator whereas (x + 1) does not.
Loosely speaking, the trouble caused by (x — 1) in the denominator is cancelled
away while the factor (x4 1) remains to cause mischief. This is why the graph of
y = h(x) has a vertical asymptote at x = —1 but only a hole at x = 1. These ob-
servations are generalized and summarized in the theorem below, whose proof
is found in Calculus.

domain of h. If we graph h(x) =

Example 3.3.1, where we had h(x) = . Thereason x = —1is

Theorem 3.3.1 Location of Vertical Asymptotes and Holes

X

Suppose r is a rational function which can be written as r(x) = pE;
q(x

where p and g have no common zeros (in other words, r(x) is in lowest

terms). Let ¢ be a real number which is not in the domain of r.

¢ If g(c) # 0, then the graph of y = r(x) has a hole at <c, ;’Eg)

¢ Ifg(c) = 0, then the line x = cis a vertical asymptote of the graph
of y = r(x).

Example 3.3.2 Finding vertical asymptotes

Find the vertical asymptotes of, and/or holes in, the graphs of the following ra-
tional functions. Verify your answers using software or a graphing calculator,
and describe the behaviour of the graph near them using proper notation.

2x X —x—6
1. X) = = ——
0 =5—3 3 h() =55
XX —x—6 x> —x—6
2. = 4. ==
g(x) 2 _9 rx) X2 +4x+ 4
SOLUTION
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1. To use Theorem 3.3.1, we first find all of the real numbers which aren’t in
the domain of f. To do so, we solve x> —3 = O and getx = ++/3. Since the
expression f(x) is in lowest terms, there is no cancellation possible, and
we conclude that the lines x = —v/3 and x = /3 are vertical asymptotes
to the graph of y = f(x). Plotting the function in GeoGebra verifies this 2

claim, and|from the graph in Figure 3.3.6, we see that as x — -3,
f(x) = —co, as x — —\@Jr,f(x) — 00,asx — V3, f(x) = —oc, and
finally as x — v/3 ", f(x) — 0.

o, . X —x—6
2. Solving x* — 9 = 0 gives x = +£3. In lowest terms g(x) = @9 =
(x—3)(x+2) X+2 ' ] Figure 3.3.6: The graph y = f(x) in Exam-
= . Since x = —3 continues to make trouble in the ple 3.3.2
(x—=3)(x+3) x+3
denominator, we know the line x = —3is a vertical asymptote of the graph
of y = g(x). Since x = 3 no longer produces a 0 in the denominator, we

have a hole at x = 3. To find the y-coordinate of the hole, we substitute
2
3 and find the hole is at (3, 2). When we graph y = g(x)

X
x = 3into +

X
using GeoGebra, we clearly see the vertical asymptote at x = —3, but
everything seems calm near x = 3: see Figure 3.3.7. Hence,asx — —37, )

g(x) = o0, asx — —37, g(x) — —oo,asx — 37, g(x) — g_, and as N i

! +
x—3%,g(x) = 2".

3. The domain of h is all real numbers, since x> +9 = 0 has no real solutions.
Accordingly, the graph of y = h(x) is devoid of both vertical asymptotes

and holes, |as see in Figure 3.3.8. Figure 3.3.7: The graph y = g(x) in Exam-

ple 3.3.2
4. Setting x> 4 4x + 4 = 0 gives us x = —2 as the only real number of
concern. Simplifying, we see r(x) = X —x—6 _ (x=3)x+2)
. 2lmplitying, 7X2+4X+47 (X+2)2 - )
x—3

5 Since x = —2 continues to produce a 0 in the denominator of the

X
reduced function, we know x = —2 is a vertical asymptote to the graph. s

The graph|in Figure 3.3.9 bears this out, and, moreover, we see that as
x — —27,|r(x) = coand asx — —27, r(x) — —oo.

Now that we have thoroughly investigated vertical asymptotes, we can turn

our attention to horizontal asymptotes. The next theorem tells us when to ex- Figure 3.3.8: The graphy = h(x) in Exam-

pect horizontal asymptotes. ple 3.3.2
Theorem 3.3.2 Location of Horizontal Asymptotes
, , . _ px)
Suppose r is a rational function and r(x) = @, where p and g are

YT Er

polynomial functions with leading coefficients a and b, respectively.

* Ifthe degree of p(x) is the same as the degree of g(x), theny = 7
is the horizontal asymptote of the graph of y = r(x).

¢ If the degree of p(x) is less than the degree of g(x), theny = O is “

the horizontal asymptote of the graph of y = r(x).
Figure 3.3.9: The graph y = r(x) in Exam-
¢ If the degree of p(x) is greater than the degree of g(x), then the ple 3.3.2

graph of y = r(x) has no horizontal asymptotes.
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More specifically, as x — —oo, f(x) —
2%, and as x — oo, f(x) — 27. Notice
that the graph gets close to the same y
value as x — —oo or x — oo. This means
that the graph can have only one horizon-
tal asymptote if it is going to have one at
all. Thus we were justified in using ‘the’
in the previous theorem.

Figure 3.3.10: Graphs of the three func-
tions in Example 3.3.3
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Like Theorem 3.3.1, Theorem 3.3.2 is proved using Calculus. Nevertheless,

2x—1
we can understand the idea behind it using our example f(x) = 1 If we
interpret f(x) as a division problem, (2x — 1) =+ (x+ 1), we find that the quotient

is 2 with a remainder of —3. Using what we know about polynomial division, we

2x —
et 2x—1 = 2(x+1)—3. Dividing both sides b 1) gives =2- .
get2x (x+1) ividing [ y (x+1) giv 1 1

3
As x becomes unbounded in either direction, the quantity 11 gets closer and
X

closer to 0 so that the values of f(x) become closer and closer (as seen in the
tables in Figure 3.3.3) to 2. In symbols, as x — %00, f(x) — 2, and we have the
result.

Example 3.3.3 Finding horizontal asymptotes

List the horizontal asymptotes, if any, of the graphs of the following functions.
Verify your answers using a graphing calculator, and describe the behaviour of
the graph near them using proper notation.

L S = x25—|)i 1

2 000 =g

3. hix) = 6x35—_ 32ij 1
SOLUTION

1. The numerator of f(x) is 5x, which has degree 1. The denominator of f(x) is
x*41, which has degree 2. Applying Theorem 3.3.2, y = Oiis the horizontal
asymptote. Sure enough, we see from the graph that as x — —oo, f(x) —
0~ and asx — oo, f(x) — 0T.

2. The numerator of g(x), x> — 4, has degree 2, but the degree of the de-
nominator, x + 1, has degree 1. By Theorem 3.3.2, there is no horizontal
asymptote. From the graph, we see that the graph of y = g(x) doesn’t ap-
pear to level off to a constant value, so there is no horizontal asymptote.
(Sit tight! We'll revisit this function and its end behaviour shortly.)

3. The degrees of the numerator and denominator of h(x) are both three,

so Theorem 3.3.2 tells us y = & = —3 is the horizontal asymptote. We

—2
see from the calculator’s graph that as x — —oo, h(x) — —3T, and as

x — 00, h(x) —» =37,



We close this section with a discussion of the third (and final!) kind of asymp-
tote which can be associated with the graphs of rational functions. Let us return
. x>
to the function g(x) =

X

in Example 3.3.3. Performing long division, (see

x> —4 3
the remarks following Theorem 3.3.2) we get g(x) = =x—-1- .
x+1 x+1

3
Since the term ﬁ — 0 as x — o0, it stands to reason that as x becomes
X

+1

3
unbounded, the function values g(x) = x — 1 — i ~ x — 1. Geometri-
X

cally, this means that the graph of y = g(x) should resemble the liney = x — 1
as x — +o0o. We see this play out both numerically and graphically in Figures
3.3.11and 3.3.12.

The way we symbolize the relationship between the end behaviour of y =
g(x) with that of the liney = x— 1 s to write ‘as x — 00, g(x) — x—1. In this
case, we say the liney = x — 1is a slant asymptote (or ‘oblique’ asymptote)
to the graph of y = g(x). Informally, the graph of a rational function has a slant
asymptote if, as x — oo or as x — —oo, the graph resembles a non-horizontal,
or ‘slanted’ line. Formally, we define a slant asymptote as follows.

Definition 3.3.4 Slant Asymptote

The line y = mx + b where m = 0 is called a slant asymptote of the
graph of a function y = f(x) if as x — —oo or as x — oo, f(x) — mx+ b.

Afew remarks are in order. First, note that the stipulation m # Qin Definition
3.3.4is what makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when
m = 0 in which case we’d have a horizontal asymptote. Secondly, while we
have motivated what me mean intuitively by the notation ‘f(x) — mx + b,’ like
so many ideas in this section, the formal definition requires Calculus. Another
way to express this sentiment, however, is to rephrase ‘f(x) — mx+b’ as ‘f(x) —
(mx 4+ b) — 0! In other words, the graph of y = f(x) has the slant asymptote
y = mx + b if and only if the graph of y = f(x) — (mx + b) has a horizontal
asymptote y = 0.

Our next task is to determine the conditions under which the graph of a
rational function has a slant asymptote, and if it does, how to find it. In the case

2
X
of g(x) =
one more than the degree if its denominator x + 1 which is 1. This results in a
linear quotient polynomial, and it is this quotient polynomial which is the slant
asymptote. Generalizing this situation gives us the following theorem.

, the degree of the numerator x> — 4 is 2, which is exactly

Theorem 3.3.3 Determination of Slant Asymptotes

X
Suppose r is a rational function and r(x) = pE;, where the degree of
q(x

p is exactly one more than the degree of g. Then the graph of y = r(x)
has the slant asymptote y = L(x) where L(x) is the quotient obtained by

dividing p(x) by g(x).

In the same way that Theorem 3.3.2 gives us an easy way to see if the graph

3.3 Rational Functions

X g(x) x—1
—10|| ~ —10.6667 —11
—100|| ~ —100.9697 | —101
—1000|| ~ —1000.9970 | —1001
—10000 ||~ —10000.9997 | —10001
/// . |/
// ’
V L
/ [
J |
o
e
7 \
) X —4
Figure 3.3.11: The graphy = as
x+1
X — —00
X g(x) x—1
10 ~ 8.7273 9
100 ~ 98.9703 99
1000 || =2 998.9970 | 999
10000 || ~ 9998.9997 | 9999
///
. 7/
J
& /4
y=u l//
4
//

Figure 3.3.12: The graphy =

X — 400
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Figure 3.3.15: The graph y = h(x) in Ex-
ample 3.3.4

Figure 3.3.13: The graph y = f(x) in Ex-
ample 3.3.4

Note that we are purposefully avoiding
notation like ‘as x — oo, f(x) — (—x +
3)™. While it is possible to define these
notions formally with Calculus, it is not
standard to do so. Besides, with the in-
troduction of the symbol ‘?" in the next
section, the authors feel we are in enough
trouble already.

Figure 3.3.14: The graph y = g(x) in Ex-
ample 3.3.4
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X
of a rational function r(x) = & has a horizontal asymptote by comparing

q(x)

the degrees of the numerator and denominator, Theorem 3.3.3 gives us an easy
way to check for slant asymptotes. Unlike Theorem 3.3.2, which gives us a quick
way to find the horizontal asymptotes (if any exist), Theorem 3.3.3 gives us no
such ‘short-cut’. If a slant asymptote exists, we have no recourse but to use long
division to find it. (That’s OK, though. In the next section, we’ll use long division
to analyze end behaviour and it’s worth the effort!)

Example 3.3.4 Finding slant asymptotes

Find the slant asymptotes of the graphs of the following functions if they exist.
Verify your answers using software or a graphing calculator and describe the
behaviour of the graph near them using proper notation.

2. g(x) = i:;
3. h(x) = ij tj{
SOLUTION

1. The degree of the numerator is 2 and the degree of the denominator is 1,
so Theorem 3.3.3 guarantees us a slant asymptote. To find it, we divide
1—x = —x + 1into x> — 4x + 2 and get a quotient of —x + 3, so our
slant asymptote is y = —x + 3. We confirm this graphically in Figure
3.3.13, and we see that as x — —o0, the graph of y = f(x) approaches the
asymptote from below, and as x — oo, the graph of y = f(x) approaches
the asymptote from above.

X2 —4

X—2
is 2 and the degree of the denominator is 1, so Theorem 3.3.3 applies.

2. Aswith the previous example, the degree of the numerator g(x) =

X =4 (x+2)(x—2)  (x+2)(x—2]

g(x) = x—2 - (x—2) - Mrl =x+2, x#2

so we have that the slant asymptote y = x + 2|is identical to the graph
of y = g(x) except at x = 2 (where the latter hgs a ‘hole’ at (2,4).) The
graph (using GeoGebra) in Figure 3.3.14 supports this claim.

3

3. For h(x) = %, the degree of the numeratar is 3 and the degree of
the denominator is 2 so again, we are guaranteed the existence of a slant
asymptote. The long division (x* + 1) + (x? — 4) gives a quotient of just
X, so our slant asymptote is the line y = x. The graph confirms this, and
we find that as x — —oo, the graph of y = h(x) approaches the asymp-
tote from below, and as x — oo, the graph of y| = h(x) approaches the
asymptote from above: see Figure 3.3.15.



We end this section by giving a few examples of rational equations and in-
equalities. Particular care must be taken with rational inequalities, since the
sign of both numerator and denominator can affect the solution. (Many are
the students who have gone wiong by attempting to clear denominators in an
inequality!)

Example 3.3.5 Rational equation and inequality

¥B—2x+1 1
1. Sove — = —x— 1.
x—1 2
3
-2 1 1
2. Solve X ooxrd > —x—1.
x—1 2
3. Use your computer or calculator to graphically check your answers to 1
and 2.

SOLUTION

1. To solve the equation, we clear denominators

X —2x+1 1
— T - = Ix-1
x—1 2
X —2x+1 1
<+> 20x—-1) = (xl) 2(x—1)
x—1 2
23 —4x+2 = x*—3x+2 expand
23 —x2—x = 0
x(2x+1)(x—1) = 0 factor
x = —31,0,1

Since we cleared denominators, we need to check for extraneous solu-
tions. Sure enough, we see that x = 1 does not satisfy the original equa-
tion and must be discarded. Our solutions are x = —% and x = 0.

2. To solve the inequality, it may be tempting to begin as we did with the
equation — namely by multiplying both sides by the quantity (x — 1). The
problem is that, depending on x, (x — 1) may be positive (which doesn’t
affect the inequality) or (x — 1) could be negative (which would reverse
the inequality). Instead of working by cases, we collect all of the terms on
one side of the inequality with 0 on the other and make a sign diagram.

B —2x+1_1
+ > —x—1
x—1 2
S_2x+1 1
X X+ —=x+1>0
x—1
2(x* —2x+1) —x(x—1)+1(2(x—1
( )2(( 1)) (( ))20 get a common denominator
X_

23 —x*—x
— >0 expand
2x — 2
Viewing the left hand side as a rational function r(x) we make a sign dia-
gram. The only value excluded from the domain of ris x = 1 which is the
solution to 2x — 2 = 0. The zeros of r are the solutions to 2x> — x> —x = 0,

3.3 Rational Functions

> (+)

|

NI= L
o
P

Figure 3.3.16: The sign diagram for the in-
equality in Example 3.3.5
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Figure 3.3.17: The initial plot of f(x) and
g(x)

(-093,-062)

©,-1)

(0.36,-155)

Figure 3.3.18: Zooming in to find the in-
tersection points
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which we have already found to be x = 0, x = —% and x = 1, the latter
was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we obtain the sign diagram in Figure 3.3.16.

We are interested in where r(x) > 0. We find r(x) > 0, or (+), on the in-
tervals (—oo, —3), (0,1) and (1, 00). We add to these intervals the zeros
of r, = and 0, to get our final solution: (—oo, 3] U [0,1) U (1, 00).

X —2x+1

. Geometrically, if we set f(x) = 1 and g(x) = x — 1, the solu-
X —

tions to f(x) = g(x) are the x-coordinates of the points where the graphs
of y = f(x) and y = g(x) intersect. The solution to f(x) > g(x) represents
not only where the graphs meet, but the intervals over which the graph
of y = f(x) is above (>) the graph of g(x). Entering these two functions
into GeoGebra gives us Figure 3.3.17.

Zooming in and using the Intersect tool, we see€ in Figure 3.3.18 that the
graphs cross when x = —% and x = 0. It is clear from the calculator that
the graph of y = f(x) is above the graph of y = g(x) on (—oo, —%) as well
ason (0, 00). According to the calculator, our solution is then (—oo7 —%] U
[0, 00) which almost matches the answer we found analytically. We have
to remember that f is not defined at x = 1, and, even though it isn’t
shown on the calculator, there is a hole in the graph of y = f(x) when
x = 1 which is why x = 1 is not part of our final answer. (There is no
asymptote at x = 1 since the graph is well behaved near x = 1. According
to Theorem 3.3.1, there must be a hole there.)



Exercises 3.3

Problems

In Exercises 1 — 18, for the given rational function f:

10.

11.

12.

13.

14.

15.

16.

e Find the domain of f.

¢ Identify any vertical asymptotes of the graph of y =
f%).

¢ |dentify any holes in the graph.

¢ Find the horizontal asymptote, if it exists.

e Find the slant asymptote, if it exists.

e Graph the function using a graphing utility and de-
scribe the behaviour near the asymptotes.

fl) = 3xx— 6
R

) = +>)((— 12
0= g

00 = 3
o = S

100 = 5o

o) = 52

fx) = Xxlxix__f
iy = 222
i = T2
o = X
g =
fx) = _)5(:4—_3)3()2(3:3):—_110
)= 1o

18 — 2x
17. f(x) = —————
fx) x2—9
3 2
— 4 —4x—5
18.f(X):#

x24+x+1

In Exercises 19 — 24, solve the rational equation. Be sure to

check for extraneous solutions.

X
5x+4

19. =3

-1
3x -1

200 — =
x2+1

21. + =

22. =x+5

23, —7—— =1

24, ———— = 4x
x2—9

In Exercises 25 — 38, solve the rational inequality. Express

your answer using interval notation.

1
X+ 2

25. >0

X=3 9
X+2 —

26.

X
27. — >0
x2—1 >
4x
xX2+4

28.

2
X —x—12

29, — >0
X2 +x—6

3x%2 —5x — 2
30. ———— <0
x2—9

3 2
31, X+27X+X>0
X2 —x—2

2
X +5x+6
32, ——
x2—1 >
3x—1 <

33.
x2+1 -

2x + 17
x+1

34. >x+5

83



W3 4 3 2 _
X +4x>4x 37, X A% + X 2x 15>

35.
x2—-9 = x3 —4x? -

X

1 5x3 — 12x* + 9x + 10
- <o 38 X X AXHI0 S 5
x24+1 x2—1

36.



3.4 Exponential and Logarithmic Functions

3.4.1 Introduction to Exponential and Logarithmic Functions

Of all of the functions we study in this text, exponential and logarithmic func-
tions are possibly the ones which impact everyday life the most. This section
introduces us to these functions while the rest of the chapter will more thor-
oughly explore their properties. Up to this point, we have dealt with functions
which involve terms like x* or x2/3, in other words, terms of the form x” where
the base of the term, x, varies but the exponent of each term, p, remains con-
stant. In this chapter, we study functions of the form f(x) = b* where the base
b is a constant and the exponent x is the variable. We start our exploration of
these functions with f(x) = 2*. (Apparently this is a tradition. Every textbook
we have ever read starts with f(x) = 2*.) We make a table of values, plot the
points and connect the dots in a pleasing fashion: see Figure 3.4.1

A few remarks about the graph of f(x) = 2* which we have constructed are

in order. As x — —oo and attains values like x = —100 or x = —1000, the
function f(x) = 2" takes on values like f(—100) = 27'% = _i; or f(—1000) =
271000 — 2o In other words, as x — —oo,

. 1

~ ——— ~ very small
very big (+) very (+)

So as x — —o0, 2¥ — 0T, This is represented graphically using the x-axis (the
line y = 0) as a horizontal asymptote. On the flip side, as x — oo, we find
£(100) = 219, £(1000) = 2°%°, and so on, thus 2* — oco. As a result, our graph
suggests the range of fis (0, c0). The graph of f passes the Horizontal Line Test
which means f is one-to-one and hence invertible. We also note that when we
‘connected the dots in a pleasing fashion’, we have made the implicit assumption
that f(x) = 2 is continuous (recall that this means there are no holes or other
kinds of breaks in the graph) and has a domain of all real numbers. In particular,
we have suggested that things like 2V3 exist as real numbers. We should take
a moment to discuss what something like 2V3 might mean, and refer the inter-
ested reader to a solid course in Calculus for a more rigorous explanation. The
number /3 = 1.73205 . . .is an irrational number and as such, its decimal repre-
sentation neither repeats nor terminates. We can, however, approximate v/3 by
terminating decimals, and it stands to reason (this is where Calculus and conti-
nuity come into play) that we can use these to approximate 2V3, For example, if
we approximate v/3 by 1.73, we can approximate 2V3 ~ 2173 = 21% = /2173,
Itis not, by any means, a pleasant number, but it is at least a number that we un-
derstand in terms of powers and roots. It also stands to reason that better and
better approximations of v/3 yield better and better approximations of 2‘/§, SO
the value of 2V3 should be the result of this sequence of approximations.

3.4 Exponential and Logarithmic Functions

Exponential and logarithmic functions
frequently occur in solutions to differen-
tial equations, which are used to pro-
duce mathematical models of phenom-
ena throughout the physical, life, and so-
cial sciences. You'll see some examples if
you continue on to Calculus | and I, and
even more if you take Math 3600, our first
course in differential equations.

x ) | (x.f(x))
3| 27= ] (3))
R e
—1] 2t =5 ] (-L3)
0 2°=1 (0,1)
1 2'=2 (1,2)
2 2’ =4 (2,4)
3 2% =3 (3,8)

Y

Figure 3.4.1: Plotting f(x) = 2*

To fully understand the argument we
used to define 2¥ when x is irrational,
you’ll have to proceed far enough through
the Calculus sequence (Calculus Ill should
do it) to encounter the topic of conver-
gence of infinite sequences.
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—3-2-1 1 2 3 T

(b)y =g(x) = f(=x) =27

Figure 3.4.2: Reflecting y = 2* across the
y-axis to obtain the graphy = 27
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Suppose we wish to study the family of functions f(x) = b*. Which bases b
make sense to study? We find that we run into difficulty if b < 0. For example,
if b = —2, then the function f(x) = (—2)* has trouble, for instance, at x = 3
since (—2)'/2 = \/=2 is not a real number. In general, if x is any rational num-
ber with an even denominator, then (—2)* is not defined, so we must restrict
our attention to bases b > 0. What about b = 0? The function f(x) = 0% is
undefined for x < 0 because we cannot divide by 0 and 0° is an indeterminant
form. For x > 0, 0¥ = 0 so the function f(x) = 0 is the same as the function
f(x) = 0,x > 0. We know everything we can possibly know about this func-
tion, so we exclude it from our investigations. The only other base we exclude
is b = 1, since the function f(x) = 1* = 1 s, once again, a function we have
already studied. We are now ready for our definition of exponential functions.

Definition 3.4.1 Exponential function

A function of the form f(x) = b* where b is a fixed real number, b > 0,
b # 1is called a base b exponential function.

We leave it to the reader to verify (by graphing some more examples on your
own) that if b > 1, then the exponential function f(x) = b* will share the same
basic shape and characteristics as f(x) = 2*. Whatif 0 < b < 1? Consider

g(x) = (%)X We could certainly build a table of values and connect the points,

or we could take a step back and note that g(x) = ()" = (271)" = 27* =

f(—x), where f(x) = 2*. The graph of f(—x) is obtained from the graph of f(x)
by reflecting it across the y-axis. We get the graph in Figure 3.4.2 (b).

We see that the domain and range of g match that of f, namely (—oo, c0) and
(0, 00), respectively. Like f, g is also one-to-one. Whereas f is always increasing,
g is always decreasing. As a result, as x — —o0, g(x) — o0, and on the flip
side, as x — o0, g(x) — 0T. It shouldn’t be too surprising that for all choices
of the base 0 < b < 1, the graph of y = b* behaves similarly to the graph of
g. We summarize the basic properties of exponential functions in the following
theorem. (The proof of which, like many things discussed in the text, requires
Calculus.)



Theorem 3.4.1 Properties of Exponential Functions
Suppose f(x) = b*.
 The domain of fis (—oo, 00) and the range of fis (0, 00).

* (0,1) is on the graph of fand y = 0 is a horizontal asymptote to
the graph of f.

e fis one-to-one, continuous and smooth (the graph of f has no
sharp turns or corners).

e Ifb>1: e fO<b<1:
— fis always increasing — fis always decreasing
- Asx = —oo, f(x) = - Asx = —oo, f(x) —
ot 00
- Asx — o0, f(x) = o0 - Asx — oo, f(x) — 0T
— The graph of f resem- — The graph of f resem-
bles: bles:
y=0b5b>1 y=b,0<b<1

Of all of the bases for exponential functions, two occur the most often in
scientific circles. The first, base 10, is often called the common base. The sec-
ond base is an irrational number, e ~ 2.718, called the natural base. You may
encounter a more formal discussion of the number e in later Calculus courses.
For now, it is enough to know that since e > 1,/f(x) = € is an increasing ex-
ponential function. The following examples give us an idea how these functions
are used in the wild.

Example 3.4.1 Modelling vehicle depreciation
The value of a car can be modelled by V(x) = 25 (£)", where x > 0is age of the
car in years and V(x) is the value in thousands of dollars.

1. Find and interpret V(0).
2. Sketch the graph of y = V(x) using transformations.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

SOLUTION

1. To find V(0), we replace x with 0 to obtain V(0) = 25 (%)0 = 25. Since x
represents the age of the car inyears, x = 0 corresponds to the car being
brand new. Since V(x) is measured in thousands of dollars, V(0) = 25
corresponds to a value of $25,000. Putting it all together, we interpret
V(0) = 25 to mean the purchase price of the car was $25,000.

3.4 Exponential and Logarithmic Functions
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30 +
(0,25) 4
20 +
154
10 4

HA.y =0

y = V(x) = 25f(x),x > 0

Figure 3.4.3: The graphy = V(x) in Exam-

ple 3.4.1
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2. Tography =25 (%)X, we start with the basic exponential function f(x) =
(g)x. Since the base b = # is between 0 and 1, the graph of y = f(x) is
decreasing. We plot the y-intercept (0, 1) and two other points, (-1, 3)
and (1, ), and label the horizontal asymptote y = 0. To obtain V(x) =
25 (%)X, x > 0, we multiply the output from f by 25, in other words,
V(x) = 25f(x). This results in a vertical stretch by a factor of 25. We
multiply all of the y values in the graph by 25 (including the y value of
the horizontal asymptote) and obtain the points (—17 1%), (0,25) and
(1,20). The horizontal asymptote remains y = 0. Finally, we restrict the
domain to [0, oo) to fit with the applied domain given to us. We have the
result in Figure 3.4.3.

3. We see from the graph of V that its horizontal asymptote is y = 0. (We
leave it to reader to verify this analytically by thinking about what happens
as we take larger and larger powers of %.) This means as the car gets older,
its value diminishes to 0.

The function in the previous example is often called a ‘decay curve’. Increas-
ing exponential functions are used to model ‘growth curves’ many examples of
which are encountered in applications of exponential functions. For now, we
present another common decay curve which will serve as the basis for further
study of exponential functions. Although it may look more complicated than the
previous example, it is actually just a basic exponential function which has been
modified by a few transformations.

Example 3.4.2 Newton’s Law of Cooling
According to Newton’s Law of Cooling the temperature of coffee T (in degrees
Fahrenheit) t minutes after it is served can be modelled by T(t) = 70 +90e %1,

1. Find and interpret T(0).
2. Sketch the graph of y = T(t) using transformations.

3. Find and interpret the horizontal asymptote of the graph.

SOLUTION

1. To find T(0), we replace every occurrence of the independent variable t
with 0 to obtain T(0) = 70+90e~%%(®) = 160. This means that the coffee
was served at 160°F.

2. To graph y = T(t) using transformations, we start with the basic function,
f(t) = e'. Aswe have already remarked, e ~ 2.718 > 1so the graph of fis
anincreasing exponential with y-intercept (0, 1) and horizontal asymptote
y = 0. The points (—1,e7!) &~ (—1,0.37) and (1,e) ~ (1,2.72) are also
on the graph. We have

T(t) = 70 4+ 90e~ %" = 90e~ %" 4 70 = 90f(—0.1t) + 70

Multiplication of the input to f, t, by —0.1 results in a horizontal expansion
by a factor of 10 as well as a reflection about the y-axis. We divide each
of the x values of our points by —0.1 (which amounts to multiplying them
by —10) to obtain (10,e7*), (0,1), and (—10,e). Since none of these
changes affected the y values, the horizontal asymptote remains y = 0.


http://en.wikipedia.org/wiki/Heat_transfer#Newton.27s_law_of_cooling

Next, we see that the output from f is being multiplied by 90. This re-
sults in a vertical stretch by a factor of 90. We multiply the y-coordinates
by 90 to obtain (10,90e?), (0,90), and (—10,90e). We also multiply
the y value of the horizontal asymptote y = 0 by 90, and it remains
y = 0. Finally, we add 70 to all of the y-coordinates, which shifts the
graph upwards to obtain (10,90e~* + 70) ~ (10, 103.11), (0, 160), and
(—10,90e + 70) ~ (—10,314.64). Adding 70 to the horizontal asymp-
tote shifts it upwards as well to y = 70. We connect these three points
using the same shape in the same direction as in the graph of f and, last
but not least, we restrict the domain to match the applied domain [0, co).
The result is given in Figure 3.4.4.

3. From the graph, we see that the horizontal asymptote is y = 70. It is
worth a moment or two of our time to see how this happens analytically.
Ast — oo, We get T(t) = 70 + 90e %1 ~ 70 + 90e*®v?8 (=), Since
e>1,

11

every big (—) ~
every big (+) very big (_|_)

~ very small (+)

The larger t becomes, the smaller e~%f becomes, so the term 90e %1 ~

very small (+). Hence, T(t) =~ 70+very small (+) which means the graph
is approaching the horizontal line y = 70 from above. This means that as
time goes by, the temperature of the coffee is cooling to 70°F, presumably
room temperature.

As we have already remarked, the graphs of f(x) = b* all pass the Horizon-
tal Line Test. Thus the exponential functions are invertible. We now turn our
attention to these inverses, the logarithmic functions, which are called ‘logs’ for
short.

Definition 3.4.2 Logarithm function

The inverse of the exponential function f(x) = b* is called the base b
logarithm function, and is denoted f~1(x) = log,(x) We read ‘log,(x)’
as ‘log base b of x.

We have special notations for the common base, b = 10, and the natural
base, b = e.

Definition 3.4.3 Common and Natural Logarithms

The common logarithm of a real number x is log,4(x) and is usually writ-
ten log(x). The natural logarithm of a real number x is log,(x) and is
usually written In(x).

Since logs are defined as the inverses of exponential functions, we can use
Theorems 2.2.1 and 2.2.2 to tell us about logarithmic functions. For example, we
know that the domain of a log function is the range of an exponential function,
namely (0, o), and that the range of a log function is the domain of an exponen-
tial function, namely (—o0, 00). Since we know the basic shapes of y = f(x) =

3.4 Exponential and Logarithmic Functions

"t
2 4 6 8 10 12 14 16 18 20 t

y=T(t)

Figure 3.4.4: Graphing T(t) in Example

3.4.2

The reader is cautioned that in more ad-

vanced

mathematics textbooks, the no-

tation log(x) is often used to denote the
natural logarithm (or its generalization to
the complex numbers). In mathematics,
the natural logarithm is preferred since
it is better behaved with respect to the
operations of Calculus. The base 10 log-
arithm tends to appear in other science

fields.
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y=5b",b>1
y = logy(xz),b>1

y=0b",0<b<1
y =log,(x),0<b<1

Figure 3.4.5: The logarithm is the inverse
of the exponential function

90

b for the different cases of b, we can obtain the graph of y = f~1(x) = log,(x)
by reflecting the graph of facross the line y = x as shown below. The y-intercept
(0,1) on the graph of f corresponds to an x-intercept of (1,0) on the graph of
f~1. The horizontal asymptotes y = 0 on the graphs of the exponential functions
become vertical asymptotes x = 0 on the log graphs: see Figure 3.4.5.

On a procedural level, logs undo the exponentials. Consider the function
f(x) = 2*. When we evaluate f(3) = 23 = 8, the input 3 becomes the exponent
on the base 2 to produce the real number 8. The function f~1(x) = log,(x)
then takes the number 8 as its input and returns the exponent 3 as its output.
In symbols, log,(8) = 3. More generally, log, (x) is the exponent you put on 2 to
get x. Thus, log,(16) = 4, because 2* = 16. The following theorem summarizes
the basic properties of logarithmic functions, all of which come from the fact that
they are inverses of exponential functions.

Theorem 3.4.2 Properties of Logarithmic Functions
Suppose f(x) = log, (x).
* The domain of fis (0, c0) and the range of fis (—oo, 00).

* (1,0) is on the graph of f and x = 0 is a vertical asymptote of the
graph of f.

¢ fis one-to-one, continuous and smooth

e b? = cifand only if log,(c) = a. That is, log,(c) is the exponent you
put on b to obtain c.

* log, (b*) = xfor all xand b'°&*®) = xforall x > 0

e Ifb>1: e IfO< b <1:

— fis always increasing

- Asx — 07, flx) —
—00

- Asx — o0, f(x) = 0o

— The graph of f resem- The graph of f resem-
bles: bles:

\
S

y = log,(z),b > 1 y = log,(z),0 < b < 1

fis always decreasing

Asx — 0T, f(x) — oo

Asx — 00, f(x) = —o0

As we have mentioned, Theorem 3.4.2 is a consequence of Theorems 2.2.1
and 2.2.2. However, it is worth the reader’s time to understand Theorem 3.4.2
from an exponential perspective. For instance, we know that the domain of
g(x) = log,(x) is (0,00). Why? Because the range of f(x) = 2¥is (0,00). Ina
way, this says everything, but at the same time, it doesn’t. For example, if we try




to find log,(—1), we are trying to find the exponent we put on 2 to give us —1.
In other words, we are looking for x that satisfies 2 = —1. There is no such real
number, since all powers of 2 are positive. While what we have said is exactly the
same thing as saying ‘the domain of g(x) = log,(x) is (0, c0) because the range
of f(x) = 2¥is (0, c0)’, we feel it is in a student’s best interest to understand the
statements in Theorem 3.4.2 at this level instead of just merely memorizing the

facts.

Example 3.4.3 Using properties of logarithms
Simplify the following.

1. log,(81) 4. In (3 ez)
1
2. log, <8> 5. log(0.001)
6. 2082 (8)

3. Iogﬁ(ZS) 7. 117"08117(6)

SOLUTION

1. The number log;(81) is the exponent we put on 3 to get 81. As such, we
want to write 81 as a power of 3. We find 81 = 3%, so that log;(81) = 4.

2. To find log, (%), we need rewrite £ as a power of 2. We find 1 = & =
273,s0log, (§) = 3.

3. To determine Iogﬁ(ZS), we need to express 25 as a power of v/5. We

2
know 25 = 52, and 5 = (\ﬁ)z, so we have 25 = ((\@)2) = (\@)4.
We get log 5(25) = 4.

4. First, recall that the notation In (\3/?) means log, (\3/e2), so we are look-
ing for the exponent to put on e to obtain ve2. Rewriting ve2 = e2/3, we
find In (\3/e2) =In (e/3) = 2.

5. Rewriting log(0.001) as log,;,(0.001), we see that we need to write 0.001
asapower of 10. We have 0.001 = == = 745 = 1073, Hence, log(0.001)
log (1073) = —3.

6. We can use Theorem 3.4.2 directly to simplify 2'°62(8) = 8. We can also
understand this problem by first finding log,(8). By definition, log,(8) is
the exponent we put on 2 to get 8. Since 8 = 23, we have log,(8) = 3.
We now substitute to find 2'°&(8) = 23 =g,

7. From Theorem 3.4.2, we know 117'°8w(®) = 6, but we cannot directly

apply this formula to the expression 117~ '°817(8)  (Can you see why?) At
this point, we use a property of exponents followed by Theorem 3.4.2 to
get

117-'08117(5) — # — E
117'08117(6) 6

34

Exponential and Logarithmic Functions

It is worth a moment of your time to
think your way through why 117'%817(®) —
6. By definition, log;,(6) is the expo-
nent we put on 117 to get 6. What are
we doing with this exponent? We are
putting it on 117. By definition we get 6.
In other words, the exponential function
f(x) = 117" undoes the logarithmic func-
tion g(x) = logyy5(x).
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R

y=2logB—z)=1

Figure 3.4.6:y = f(x) = 2log(3 —x) — 1

(+)

v
0 1

Figure 3.4.7: Sign diagram for r(x) = )

y=In <%)

Figure 3.4.8: y = g(x) = In (f)
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Up until this point, restrictions on the domains of functions came from avoid-
ing division by zero and keeping negative numbers from beneath even radicals.
With the introduction of logs, we now have another restriction. Since the do-
main of f(x) = log,(x) is (0, c0), the argument of the log must be strictly posi-

Example 3.4.4 Domain for logarithmic functions
Find the domain of the following functions. Check your answers graphically us-
ing the computer or calculator.

1. f(x) =2log(3 —x) —1

2. g(x) = In (Xfl)

SOLUTION

. We set 3 — x > 0 to obtain x < 3, or (—o0, 3). The graph in Figure 3.4.6

verifies this. Note that we could have graphed f using transformations. We
rewrite f(x) = 2logyo(—x + 3) — 1 and find the main function involved is
y = h(x) = log,o(x). We select three points to track, (15, —1), (1,0) and
(10,1), along with the vertical asymptote x = 0. Since f(x) = 2h(—x +
3) — 1, to obtain the destinations of these points, we first subtract 3 from
the x-coordinates (shifting the graph left 3 units), then divide (multiply)
by the x-coordinates by —1 (causing a reflection across the y-axis). These
transformations apply to the vertical asymptote x = 0 as well. Subtracting
3 gives us x = —3 as our asymptote, then multiplying by —1 gives us the
vertical asymptote x = 3. Next, we multiply the y-coordinates by 2 which
results in a vertical stretch by a factor of 2, then we finish by subtracting 1
from the y-coordinates which shifts the graph down 1 unit. We leave it to
the reader to perform the indicated arithmetic on the points themselves
and to verify the graph produced by the calculator below.

. To find the domain of g, we need to solve the inequality ;*5 > 0. As

1
X

usual, we proceed using a sign diagram. If we define r(x) = 1 we
X —

find ris undefined at x = 1 and r(x) = 0 when x = 0. Choosing some test
values, we generate the sign diagram in Figure 3.4.7.

We find -*5 > 0on (—00,0)U(1, 00) to get the domain of g. The graph of
y = g(x) in Figure 3.4.8 confirms this. We can tell from the graph of g that
it is not the result of transformations being applied to the graph y = In(x),
so barring a more detailed analysis using Calculus, the calculator graph
is the best we can do. One thing worthy of note, however, is the end
behaviour of g. The graph suggests that as x — +o0, g(x) — 0. We can

verify this analytically. We know that as x — +oo, %5 =~ 1. Hence, it

makes sense that g(x) = In (L) ~In(1) =0.

x—1

While logarithms have some interesting applications of their own which you’ll
explore in the exercises, their primary use to us will be to undo exponential func-
tions. (This is, after all, how they were defined.) Our last example solidifies this
and reviews all of the material in the section.



Example 3.4.5 Inverting an exponential function
Let f(x) =271 — 3.

1.
2.

Graph f using transformations and state the domain and range of f.
Explain why fis invertible and find a formula for f~(x).
Graph f~1 using transformations and state the domain and range of f 1.

Verify (f~* o f) (x) = x for all x in the domain of fand (fo f!) (x) = x
for all x in the domain of f~1.

Graph fand f~! on the same set of axes and check the symmetry about
the liney = x.

SOLUTION

1.

If we identify g(x) = 2*, we see f(x) = g(x — 1) — 3. We pick the
points (—1, %), (0,1) and (1, 2) on the graph of g along with the hori-
zontal asymptote y = 0 to track through the transformations. We first
add 1 to the x-coordinates of the points on the graph of g (shifting g to
the right 1 unit) to get (0, 3), (1,1) and (2,2). The horizontal asymptote
remains y = 0. Next, we subtract 3 from the y-coordinates, shifting the
graph down 3 units. We get the points (0, —2), (1,—2) and (2, —1) with
the horizontal asymptote now at y = —3. Connecting the dots in the or-
der and manner as they were on the graph of g, we get the bottom graph
in Figure 3.4.9. We see that the domain of f is the same as g, namely

(—00, 00), but that the range of fis (—3, 00).

. The graph of f passes the Horizontal Line Test so f is one-to-one, hence

invertible. To find a formula for f~1(x), we normally set y = f(x), inter-
change the x and y, then proceed to solve for y. Doing so in this situation
leads us to the equation x = 2! — 3. We have yet to discuss how to
solve this kind of equation, so we will attempt to find the formula for f~*
from a procedural perspective. If we break f(x) = 2*~! — 3 into a series
of steps, we find f takes an input x and applies the steps

(a) subtract1

(b) put as an exponent on 2

(c) subtract 3
Clearly, to undo subtracting 1, we will add 1, and similarly we undo sub-
tracting 3 by adding 3. How do we undo the second step? The answer is

we use the logarithm. By definition, log,(x) undoes exponentiation by 2.
Hence, f~1 should

(a) add 3
(b) take the logarithm base 2
(c) add 1

In symbols, f~1(x) = log,(x + 3) + 1.

. To graph f~(x) = log,(x + 3) + 1 using transformations, we start with

j(x) = log,(x), We track the points (3, —1), (1,0) and (2, 1) on the graph
of j along with the vertical asymptote x = 0 through the transformations.

3.4 Exponential and Logarithmic Functions

Figure 3.4.9: Graphing f(x) = 2" ' — 31in
Example 3.4.5
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Since f~1(x) = j(x+3)+1, we first subtract 3 from each of the x values (in-

cluding the vertical asymptote) to obtain (-3, —1), (—2,0) and (—1,1)

with a vertical asymptote x = —3. Next, we add 1 to the y values on the

graph and get (—2,0), (—2,1) and (—1,2). If you are experiencing déja
y , vu, there is a good reason for it but we leave it to the reader to determine
s+ , the source of this uncanny familiarity. We obtain the graph below. The
domain of f~1is (—3, o), which matches the range of f, and the range of
ftis (—o0, 00), which matches the domain of £.

4. We now verify that f(x) = 2>~ — 3 and f~1(x) = log,(x + 3) + 1 satisfy
the composition requirement for inverses. For all real numbers x,

(Ftof) (x) =fFHf(x)

s x —fF1 (fol _ 3)

=log, ([2*=3] +3) +1
=log, (2" 1) +1

y=fle) =27 -3 = (x=1)+1
y=f"1z) =logy(x+3)+1 Since log, (2") = u for all real numbers u
Figure 3.4.11: The graphs of fand f ! in =xv
Example 3.4.5
For all real numbers x > —3, we have (pay attention - can you spot in
which step below we need x > —37)
(Fof™) () =F(F (%)
= f(logy(x +3) +1)
Yy
4T — 2(Iog2(x+3)+l)—1 -3
3T | 3
P — 2082(X+ ) 3
i =(x+3)-3
PSP A N A S Since 2'°22:(*) =  for all real numbers u > 0
1,1
Y =xv
_3]

5. Last, but certainly not least, we graph y = f(x) and y = f~1(x) on the
same set of axes and see the symmetry about the line y = x in Figure

1 3.4.11
| Y
| 4-/
I 1 . .
LT 3.4.2 Properties of Logarithms
[
: / L In Section 3.4.1, we introduced the logarithmic functions as inverses of expo-
ife-1, [ 1234256787 nential functions and discussed a few of their functional properties from that
! ol perspective. In this section, we explore the algebraic properties of logarithms.
B 3 Historically, these have played a huge role in the scientific development of our

1 society since, among other things, they were used to develop analog computing
y=f"(x) =log,(x+3)+1 devi . - L .

ices called slide rules which enabled scientists and engineers to perform ac-

Figure 3.4.10: Graphing f'(x) = curate calculations leading to such things as space travel and the moon landing.

log,(x + 3) + 1 in Example 3.4.5 As we shall see shortly, logs inherit analogs of all of the properties of exponents

you learned in Elementary and Intermediate Algebra. We first extract two prop-

erties from Theorem 3.4.2 to remind us of the definition of a logarithm as the

inverse of an exponential function.
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Theorem 3.4.3 Inverse Properties of Exponential and Logarithmic
Functions

Letb > 0,b # 1.
e b? = cifand onlyif log,(c) = a

* log, (b*) = xfor all xand b'%&*®) = xforall x > 0

Next, we spell out what it means for exponential and logarithmic functions
to be one-to-one.

Theorem 3.4.4 One-to-one Properties of Exponential and Logarith-
mic Functions

Let f(x) = b* and g(x) = log,(x) where b > 0, b # 1. Then fand g are
one-to-one and

e bY = b if and only if u = w for all real numbers u and w.

¢ log,(u) = log,(w) if and only if u = w for all real numbers u > 0,
w > 0.

We now state the algebraic properties of exponential functions which will
serve as a basis for the properties of logarithms. While these properties may
look identical to the ones you learned in Elementary and Intermediate Algebra,
they apply to real number exponents, not just rational exponents. Note that
in the theorem that follows, we are interested in the properties of exponential
functions, so the base b is restrictedto b > 0, b # 1.

Theorem 3.4.5 Algebraic Properties of Exponential Functions

Let f(x) = b* be an exponential function (b > 0, b # 1) and let v and w
be real numbers.

* Product Rule: f(u + w) = f(u)f(w). In other words, b“T% = b“b"
f(u) b

* Quotient Rule: f(u — w) = ——. In other words, b*~% = o

flw)

* Power Rule: (f(u))"” = f(uw). In other words, (b“)" = b“*

While the properties listed in Theorem 3.4.5 are certainly believable based
on similar properties of integer and rational exponents, the full proofs require
Calculus. To each of these properties of exponential functions corresponds an
analogous property of logarithmic functions. We list these below in our next
theorem.

3.4 Exponential and Logarithmic Functions
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Interestingly enough, expanding loga-
rithms is the exact opposite process
(which we will practice later) that is most
useful in Algebra. The utility of expanding
logarithms becomes apparent in Calculus.

96

Theorem 3.4.6 Algebraic Properties of Logarithmic Functions

Let g(x) = log,(x) be a logarithmic function (b > 0, b 7 1) andletu > 0
and w > 0 be real numbers.

¢ Product Rule: g(uw) = g(u) + g(w). In other words, log, (uw) =
log,,(u) + log, (w)

¢ Quotient Rule: g(%) = g(u) — g(w). In other words,
u
log, () = logy (1) — log, (w)

e Power Rule: g(u”) = wg(u). In other words, log,\(u¥) =
w log, (u)

There are a couple of different ways to understand why Theorem\3.4.6 is
true. Consider the product rule: log,(uw) = log,(u) + log,(w). Leta =
log, (uw), ¢ = log,(u), and d = log,(w). Then, by definition, b* = uw, b = u
and bY = w. Hence, b® = uw = b°b? = b°t9, so that b7 = b°+9. By the
one-to-one property of b*, we have @ = ¢ + d. In other words, log,(uw) =
logy,(u) + log,(w). The remaining properties are proved similarly.

Example 3.4.6 Expanding logarithmic expressions
Expand the following using the properties of logarithms and simplify. Assume
when necessary that all quantities represent positive real numbers.

8 [ 100x2
1. lo — 3
82 (x) 3. log )75

3\2 2
2. In| — 4. logyyy (X _4)
ex

SOLUTION

1. Toexpand log, (&), we use the Quotient Rule identifyingu = 8and w = x
and simplify.

Quotient Rule

log, (i) = log,(8) — log,(x)

=3 —log,(x)
= —log,(x) +3

Since2® =8

2. We have a power, quotient and product occurring in In (%)2 Since the
exponent 2 applies to the entire quantity inside the logarithm, we begin
with the Power Rule with u = % and w = 2. Next, we see the Quotient
Rule is applicable, with u = 3 and w = ex, so we replace In (:7) with the
quantity In(3) — In(ex). Since In (%) is being multiplied by 2, the entire
quantity In(3)—In(ex) is multiplied by 2. Finally, we apply the Product Rule
with u = e and w = x, and replace In(ex) with the quantity In(e) + In(x),
and simplify, keeping in mind that the natural log is log base e.




3
In ( ) 21In ) Power Rule

2[In(3) — In(ex)] Quotient Rule
=2In(3) — 2In(ex)
=21In(3) — 2[In(e) + In(x)] Product Rule
=2In(3) — 2In(e) — 2In(x)
—2In(3) —2—2In(x) Sincee! = e

—2In(x) +2In(3) — 2

3. Recalling that a cube root is the same thing as the power 1/3, we begin
by using the Power Rule, and we keep in mind that the common log is log
base 10.

./ 1002 10052\ /3
log = log

yz° yz°
100x?
= —log Jz5 Power Rule
= = [log (100x%) — log (yz°)] Quotient Rule

log (100x°) — % log (y2°)

WP WRFRPWRF, W

log(100) + log (<2)] — 5 [log(y) +log (*)]
Product Rule

1 1 a1 1 5
3 log(100) + 3 log (x*) 3 log(y) 3 log (2°)

1 2 1 5
= —log(100 —| — = — =1
3 108(100) + > log(x) — 2 log(y) — 5 log(2)
Power Rule

2 2 1 5
=-+ 3 log(x) — 3 log(y) — 3 log(z) Since 10> = 100

3
2 1 5 2
3 l08(x) — 3 log(y) — 3 log(2) + 5

4. Atfirstit seems as if we have no means of simplifying log, 5 (x2 — 4), since
none of the properties of logs addresses the issue of expanding a differ-
ence inside the logarithm. However, we may factor x> —4 = (x+2)(x—2)
thereby introducing a product which gives us license to use the Product
Rule.

logyy; (X* — 4) = logyy; [(x + 2)(x — 2)] Factor
= logy17(x + 2) + logy17(x — 2) Product Rule

3.4 Exponential and Logarithmic Functions

At this point in the text, the reader is en-
couraged to carefully read through each
step and think of which quantity is play-
ing the role of u and which is playing the
role of w as we apply each property.

97



Chapter 3

98

Essential Functions

Example 3.4.7 Combining logarithmic expressions
Use the properties of logarithms to write the following as a single logarithm.

1. logs(x — 1) — logs(x + 1) 2. log(x) + 2log(y) — log(2)
3. 4log,(x) + 3 4. —In(x) — 3
SOLUTION Whereas in Example 3.4.6 we read the properties in Theo-

rem 3.4.6 from left to right to expand logarithms, in this example we read them
from right to left.

1. The difference of logarithms requires the Quotient Rule: log;(x — 1) —
logs(x + 1) = log;, (;—})

2. Inthe expression, log(x)+2 log(y) —log(z), we have both a sum and differ-
ence of logarithms. However, before we use the product rule to combine
log(x) + 2log(y), we note that we need to somehow deal with the co-
efficient 2 on log(y). This can be handled using the Power Rule. We can
then apply the Product and Quotient Rules as we move from left to right.
Putting it all together, we have

log(x) + 2log(y) — log(z) = log(x) + log (y*) — log(z) ~ Power Rule

= log (xy*) — log(2) Product Rule
xy? .
=log | — Quotient Rule
z

3. We can certainly get started rewriting 4 log, (x) 4 3 by applying the Power
Rule to 4 log, (x) to obtain log, (x*), but in order to use the Product Rule
to handle the addition, we need to rewrite 3 as a logarithm base 2. From
Theorem 3.4.3, we know 3 = log, (2%), so we get

410g,(x) 4+ 3 = log, (x*) + 3 Power Rule
= log, (x*) + log, (2%) Since 3 = log, (2°)
= log, (x*) + log,(8)
= log, (8x*) Product Rule

4. To get started with — In(x) — 1, we rewrite — In(x) as (—1) In(x). We can

then use the Power Rule to obtain (—1) In(x) = In (x~*). In order to use
the Quotient Rule, we need to write % as a natural logarithm. Theorem
3.4.3givesus 2 = In (e'/?) =In (\/e). We have



~In() — 3 = (~1)In() — 3
—in () - 3 Power Rule
=In(x*) ~In (e?) since 1 = In (%/2)
—In(xY) — In (Ve)
~In (X:> Quotient Rule
()

As we would expect, the rule of thumb for re-assembling logarithms is the
opposite of what it was for dismantling them. That is, if we are interested in
rewriting an expression as a single logarithm, we apply log properties following
the usual order of operations: deal with multiples of logs first with the Power
Rule, then deal with addition and subtraction using the Product and Quotient
Rules, respectively. Additionally, we find that using log properties in this fash-
ion can increase the domain of the expression. For example, we leave it to the
reader to verify the domain of f(x) = logs(x — 1) — logz(x+ 1) is (1, 00) but the

x+1
The two logarithm buttons commonly found on calculators are the ‘LOG’ and
‘LN’ buttons which correspond to the common and natural logs, respectively.
Suppose we wanted an approximation to log,(7). The answer should be a little
less than 3, (Can you explain why?) but how do we coerce the calculator into
telling us a more accurate answer? We need the following theorem.

domain of g(x) = log; (ﬂ) is (—o0, —1) U (1, 00).

Theorem 3.4.7 Change of Base Formulas

Leta,b > 0,a,b # 1.

o o = b¥'%8:(9) for all real numbers x.

log, (x
¢ log,(x) = 8 (x) for all real numbers x > 0.
log,(a)
Example 3.4.8 Using change of base formulas

Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a computer or calcu-
lator, as appropriate.

1. 3% to base 10

2. 2Xtobasee

3. log,(5) to base e
4. In(x) to base 10

SOLUTION

3.4 Exponential and Logarithmic Functions
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3
’//D
T 3 1) I o

Figure 3.4.12: y = f(x) = 2*andy =
g(X) — exln(Z)

Figure 3.4.13: y = f(x) = 2*andy =
g(X) —_ exln(Z)

100

. We apply the Change of Base formula with a = 3 and b = 10 to obtain

32 = 10%'8(3), Typing the latter in the calculator produces an answer of
9 as required.

. Here,a = 2 and b = e so we have 2* = @) | To verify this on our

calculator, we can graph f(x) = 2* (in black) and g(x) = & (in grey).
Their graphs are indistinguishable which provides evidence that they are
the same function: see Figure 3.4.12.

. Applying the change of base with a = 4 and b = e leads us to write

In(5)

log,(5) = () Evaluating this in the calculator gives In(5)

n@ ~ 1.16. How
do we check this really is the value of log,(5)? By definition, log,(5) is the
exponent we put on 4 to get 5. The plot from GeoGebra in Figure 3.4.13
confirms this. (Which means if it is lying to us about the first answer it
gave us, at least it is being consistent.)

. We write In(x) = log,(x) = %% we graph both f(x) = In(x) and

log(e) *
g(x) = :2:2’3 and find both graphs appear to be identical.




Exercises 3.4

Problems

In Exercises 1 — 15, use the property: b = c if and only if
log,, (c) = afrom Theorem 3.4.2 to rewrite the given equation
in the other form. That is, rewrite the exponential equations
as logarithmic equations and rewrite the logarithmic equa-

tions as exponential equations.

1. 22 =38

8. logs(25) =2
9. log,s(5) =3
10. log, (37) = —4

11. logs (3) = -1

ST

12. log(100) = 2
13. log(0.1) = —1

14. In(e) =1

NI

ﬁ.m(ﬁ):—
In Exercises 16 — 42, evaluate the expression.

16. log,(27)

17. logg(216)

18. log,(32)

19. logs ()

20. logg(4)

21. logss(216)

22. logi1(625)
5

23. Iog% (216)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

In Exercises 43 — 57, find the domain of the function.

43.

44.

45.

46.

47.

48.

logss(36)

108 (3550000 )

log(0.01)
In (¢)
log,(8)
log(1)
logy; (v/13)
08¢ (1/36)

~log;(3)
3610835 (216)
logse (367%°)
In(e%)

log (W)

log (\S/W)

logs (3|0g3(5))
log (eln(loo))
log, (3’ '°g3(2>)

In (426bg“>)

fx) =In(& +1)
f(x) = log, (4x + 8)
f(x) = In(4x — 20)
f(x) = log (x* + 9x + 18)
00 =0 ( 515

X +9x+ 18
f(x) = log (W)
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49. f(x) = In(7 — x) + In(x — 4)
50. f(x) = In(4x — 20) + In (X’ + 9x + 18)
51. f(x) = log (X + x + 1)

52. f(x) = {/log,(x)

53. f(x) = logs(|x + 3| — 4)

54. f(x) = In(yv/x — 4 —3)

5. f(x) = ﬁlgs(x)
56. f(x) = 710; (;)X

57. f(x) = In(=2¢ — x* + 13x — 6)
In Exercises 58 — 63, sketch the graph of y = g(x) by start-
ing with the graph of y = f(x) and using transformations.
Track at least three points of your choice and the horizontal
asymptote through the transformations. State the domain
and range of g.

58. f(x) =2%,g(x)=2"—1

—1

59. f() = (5)" () = (3)°

60. f(x) =3%,g(x) =37"+2

61. f(x) = 10°, g(x) = 10" — 20

62. f(x) =€, g(x) =8—e"

63. f(x) = €* g(x) = 10e ™
In Exercises 64 — 69, sketch the graph of y = g(x) by starting
with the graph of y = f(x) and using transformations. Track

at least three points of your choice and the vertical asymptote
through the transformations. State the domain and range of

g.

66. f(x) = log;(x), g(x) = — logs(x — 2)
67. f(x) = log(x), g(x) = 2log(x + 20) — 1
68. f(x) =In(x), g(x) = —In(8 —x)
69. f(x) = In(x), g(x) = —101In (%)
In Exercises 70 — 84, expand the given logarithm and simplify.

Assume when necessary that all quantities represent positive
real numbers.

70. In(x*y?)

128
71. |0g2 m

3
72. logg (22—5)

73. log(1.23 x 10%)

e ()

75. logg (x* — 25)
76. log /5 (4x°)
77. log, (9x(y* — 8))

78. log (1000x°y°)
2
X
79. | —
Og3 (81y4)
80. In (4 Q)
ez
216\*
81. |Og6 (XTy>

100.
82. Iog( XW)

4v/x?
83. Iog%< \\@)
Yz

In Exercises 85 — 98, use the properties of logarithms to write
the expression as a single logarithm.

85. 4In(x) + 2In(y)

86. log, (x) + log, (y) — log, ()
87. logs(x) — 2logs(y)

88. 2logs(x) — 2log;(y) — logs(2)
89. 2In(x) — 3In(y) — 4In(2)

90. log(x) — +log(z) + 3 log(y)
91. —In(x) — In(y) + 3 In(2)

92. logs(x) — 3



93.
94.
95.
96.
97.

98.

In Exercises 99 — 102, use the appropriate change of base for-
mula to convert the given expression to an expression with

3 — log(x)

log, (x) + log, (x — 3) — 2
In(x) + 3

log, (x) + log, (x)

log, (x) + log, (x — 1)

log, (x) + Iog% (x—1)

the indicated base.

99.

100.

7"'tobasee

log;(x + 2) to base 10

101.

102.

2 X
<7) to base e
3

log(x* + 1) to base e

In Exercises 103 — 108, use the appropriate change of base
formula to approximate the logarithm.

103.

104.

105.

106.

107.

108.

log;(12)
logs(80)
loge(72)

1
6
Iog% (1000)

Iog% (50)
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4: FOUNDATIONS OF
TRIGONOMETRY P
\ 0

4.1 The Unit Circle: Sine and Cosine .

In this section, we consider the problem of describing the position of a point
on the unit circle. To that end, consider an angle 6 in standard position and let
P denote the point where the terminal side of 6 intersects the Unit Circle, as
in Figure 4.1.2. By associating the point P with the angle 6, we are assigning a
position on the Unit Circle to the angle 6. The x-coordinate of P is called the
cosine of #, written cos(#), while the y-coordinate of P is called the sine of 6,
written sin(6). The reader is encouraged to verify that these rules used to match
an angle with its cosine and sine do, in fact, satisfy the definition of a function.
That is, for each angle 6, there is only one associated value of cos(f) and only
one associated value of sin(6).

Figure 4.1.2: Defining cos(6) and sin(0)

The etymology of the name ‘sine’ is quite
colourful, and the interested reader is in-
vited to research it; the ‘co’ in ‘cosine’ is

Example 4.1.1 Evaluating cos(¢) and sin(6) explained in Section 4.3.

Find the cosine and sine of the following angles.

1. 0=—7 3.0=¢%

2.0=173 4. 0=3

SOLUTION

1. The angle §# = — represents one half of a clockwise revolution so its
terminal side lies on the negative x-axis. The point on the Unit Circle that
lies on the negative x-axis is (—1,0) which means cos(—7) = —1 and
sin(—m) = 0.

2. When we sketch § = 7 in standard position, we see in Figure 4.1.1 that its
terminal does not lie along any of the coordinate axes which makes our
job of finding the cosine and sine values a bit more difficult. Let P(x,y) P(-1,0)
denote the point on the terminal side of 6 which lies on the Unit Circle. \J L @
By definition, x = cos (§) and y = sin (§). If we drop a perpendicular
line segment from P to the x-axis, we obtain a 45° —45° —90° right triangle
whose legs have lengths x and y units. From Geometry, we gety = x. (Can
you show this?) Since P(x, y) lies on the Unit Circle, we have x* + y? = 1.

Substituting y = xinto this equation yields 2x> = 1, orx = i\/% = i%.

Figure 4.1.3: Finding cos(—m) and
Since P(x, y) lies in the first quadrant, x > 0, so x = cos () = *2 and sin(—7)
V2

with y = x we have y = sin (I) = ¥2.
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)

1
| P(ZC, y) P(T7y)
|
1 g

0 =45° 45°
N o - Yy
1
\9 = 45°
xr
¢ = Z in standard position 45° — 45° — 90° triangle

Figure 4.1.1: Finding cos (5 ) and sin (%)

3. As before, the terminal side of 0 = % does not lie on any of the coordinate
axes, so we proceed using a triangle approach. Letting P(x, y) denote the
point on the terminal side of 6 which lies on the Unit Circle, we drop a
perpendicular line segment from P to the x-axis to form a 30° — 60° — 90°
right triangle: see Figure 4.1.4. After a bit of Geometry (again, can you
show this?) we find y = 1 sosin (Z) = 1. Since P(x,y) lies on the Unit
Circle, we substitute y = 1 intox? + y? = 1togetx? = 2, orx = j:?.

1
P
Here,x > 0sox = cos (1) = ?

¢ = £ in standard position 30° — 60° — 90° triangle

Figure 4.1.4: Finding cos (%) and sin (1)

4. Plotting @ = % in standard position, we find itis nota quadrantal angle and
set about using a triangle approach. Once again, we get a 30° — 60° — 90°
right triangle and, after the usual computations, findx = cos () = 3 and

2
y=sin(3) =2
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)
1

$b(z,y)

‘ P(a,y)

|

|

| s

| 30°
N9 = 60° Yy

x
1
¢ = 60°
LY [
x
0 = Z in standard position 30° — 60° — 90° triangle

Figure 4.1.5: Finding cos (%) and sin ()

In Example 4.1.1, it was quite easy to find the cosine and sine of the quad-
rantal angles, but for non-quadrantal angles, the task was much more involved.
In these latter cases, we made good use of the fact that the point P(x,y) =
(cos(8), sin(f)) lies on the Unit Circle, x* 4+ y* = 1. If we substitute x = cos(f)
and y = sin(0) into x> + y2 = 1, we get (cos(#))” + (sin(d))> = 1. An
unfortunate convention, which the authors are compelled to perpetuate, is to
write (cos(6))? as cos?(6) and (sin(0))” as sin?(6). (This is unfortunate from a
‘function notation’ perspective, as you will see once you encounter the inverse
trigonometric functions.) Rewriting the identity using this convention results
in the following theorem, which is without a doubt one of the most important
results in Trigonometry.

Theorem 4.1.1 The Pythagorean Identity
For any angle 6, cos?(6) + sin?(0) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from
which both the Distance Formula and the equation for a circle are ultimately de-
rived. The word ‘Identity’ reminds us that, regardless of the angle 6, the equa-
tionin Theorem 4.1.1is always true. If one of cos(¢) or sin(¢) is known, Theorem
4.1.1 can be used to determine the other, up to a (%) sign. If, in addition, we
know where the terminal side of # lies when in standard position, then we can
remove the ambiguity of the (&) and completely determine the missing value
as the next example illustrates.

Example 4.1.2 Using the Pythagorean Identity
Using the given information about 6, find the indicated value.

1. If #is a Quadrant Il angle with sin(f) = 2, find cos(#).

2. If 7 < 6 < 23X with cos() = —g, find sin(0).

3. Ifsin(#) = 1, find cos(6).

4.1 The Unit Circle: Sine and Cosine
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Figure 4.1.7: Reference angle « for a
Quadrant | angle

Figure 4.1.8: Reference angle « for a
Quadrant Il angle

Figure 4.1.9: Reference angle « for a
Quadrant Il angle

Figure 4.1.10: Reference angle « for a
Quadrant IV angle

108

SOLUTION

1. When we substitute sin(#) = 2 into The Pythagorean Identity, cos?(§) +
sin?(6) = 1, we obtain cos?(¢) + = = 1. Solving, we find cos(f) = +3.
Since 6 is a Quadrant Il angle, its terminal side, when plotted in standard
position, lies in Quadrant Il. Since the x-coordinates are negative in Quad-
rant Il, cos() is too. Hence, cos(f) = —%.

2. Substituting cos(f) = —% into cos?(6) + sin?(§) = 1 gives sin(f) =
i% = i%. Since we are given that 7 < |0 < 37”,
Quadrant Il angle. Hence both its sine and cosine are negative and we

conclude sin(f) = — 5.

we know @ is a

3. When we substitute sin(#) = 1 into cos?() + sin?(§) = 1, we find
cos(d) = 0.

Another tool which helps immensely in determining cosines and sines of an-
gles is the symmetry inherent in the Unit Circle. Suppose, for instance, we wish
to know the cosine and sine of § = 5?” We plot € in standard position be-
low and, as usual, let P(x,y) denote the point on the terminal side of # which

lies on the Unit Circle. Note that the terminal side of ¢ lies § radians short of
one half revolution. In Example 4.1.1, we determined that cos (g) = ? and
sin (g) = % This means that the point on the terminal side of the angle ¢, when

plotted in standard position, is <\/§ 1). From Figure 4.1.6, it is clear that the

202
point P(x,y) we seek can be obtained by reflecting that point about the y-axis.
Hence, cos (37) = —¥2 and sin (32) = 1.
Yy
1
Yy
1
P(z,y) 0 =23z

ﬂ‘,
/"
)
i
o
A
=

Figure 4.1.6: Refelcting P(x, y) across the y-axis to obtain a Quadrant | angle

In the above scenario, the angle 7 is called the reference angle for the angle
5%. In general, for a non-quadrantal angle 6, the reference angle for 8 (usually
denoted «) is the acute angle made between the terminal side of 8 and the x-
axis. If 6 is a Quadrant | or IV angle, « is the angle between the terminal side
of 6 and the positive x-axis; if 6 is a Quadrant Il or Il angle, « is the angle be-
tween the terminal side of 6 and the negative x-axis. If we let P denote the point
(cos(6),sin(#)), then P lies on the Unit Circle. Since the Unit Circle possesses
symmetry with respect to the x-axis, y-axis and origin, regardless of where the
terminal side of 8 lies, there is a point Q symmetric with P which determines ’s
reference angle, a as seen below.

We have just outlined the proof of the following theorem.



Theorem 4.1.2

Suppose « is the reference angle for 6. Then cos(d) = =+ cos(«) and
sin(0) = £ sin(«), where the choice of the (1) depends on the quadrant
in which the terminal side of 4 lies.

Reference Angle Theorem

In light of Theorem 4.1.2, it pays to know the cosine and sine values for cer-
tain common angles. In the table below, we summarize the values which we
consider essential and must be memorized.

Example 4.1.3

Cosine and Sine Values of Common Angles
O(degrees) | O(radians) || cos(8) | sin(6)
0° 0 1
30°

45°

60°

[« IRINIT N‘E N‘a
= N‘a N‘& Nk | O

N (wy [RE [on

90°

Using reference angles

Find the cosine and sine of the following angles.

1.

2.

__ 57 _ 57
0==> 3.0=-

_ lr In
97 6 ‘ 3

SOLUTION

1.

We begin by plotting 6 = 57“ in standard position and find its terminal side
overshoots the negative x-axis to land in Quadrant Ill. Hence, we obtain
0’s reference angle « by subtracting: « = 6 — 7 = 57” —m = 7. Since
is a Quadrant lll angle, both cos(#) < 0 and sin(f) < 0. The Reference

Angle Theorem yields: cos (3£) = —cos (5) = —? and sin (3£) =

—sin(§) = =%

11w

. The terminal side of § = =%, when plotted in standard position, lies in

6
Quadrant IV, just shy of the positive x-axis. To find 6’s reference angle «,

we subtract: « = 27 — 0 = 27w — ”T" = % Since 6 is a Quadrant IV

angle, cos(€) > 0andsin(f) < 0, so the Reference Angle Theorem gives:

cos (HF) = cos (Z) = ? and sin (17) = —sin (I) = -1,

. To plot # = —3T, we rotate clockwise an angle of %” from the positive x-

a4
axis. The terminal side of 6, therefore, lies in Quadrant Il making an angle
ofa = % — m = 7 radians with respect to the negative x-axis. Since ¢
is a Quadrant Il angle, the Reference Angle Theorem gives: cos (—5{) =
—cos (I) = —¥Z andsin (—38) = sin (1) = 2.

4 2

. Sincetheanglef = 7{ measures more than 2w = %’T, we find the terminal

side of 0 by rotating one full revolution followed by an additional o = %’T -
1

27 = % racians. Since 6 and « are coterminal, cos (%) = cos (1) = 3

andsin () =sin () = ?

4.1 The Unit Circle: Sine and Cosine

N
R \\ R 1,

Figure 4.1.11:

sin (%)

Finding cos (2) and

/
N

0=

Figure 4.1.12:

sin (47)

Finding cos (X%) and

-

/
NP

Figure 4.1.13: Finding cos (—2F) and

a
sin (%)

m
]
o

)

| ] e

Figure 4.1.14:

sin ()

Finding cos (%) and
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The reader may have noticed that when expressed in radian measure, the
reference angle is easy to spot. Reduced fraction multiples of = with a denom-
inator of 6 have % as a reference angle, those with a denominator of 4 have
7 as their reference angle, and those with a denominator of 3 have g as their
reference angle. The Reference Angle Theorem in conjunction with the table of
cosine and sine values on Page 109 can be used to generate the following figure,
which the authors feel should be committed to memory. (At the very least, one
should memorize the first quadrant and learn to make use of Theorem 4.1.2.)

Figure 4.1.15: Important Points on the Unit Circle
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Our next example asks us to solve some very basic trigonometric equations.

Example 4.1.4 Solving basic trigonometric equations
Find all of the angles which satisfy the given equation.

1. cos(f) = % 2. sin(f) = _% 3. cos(#) = 0.

SOLUTION

1. If cos(f) = %, then the terminal side of 6, when plotted in standard posi-
tion, intersects the Unit Circle at x = % This means @ is a Quadrant | or IV
angle with reference angle 3.

Yy Yy

/
e
L ol

wi= 4
-
8
3
—
8

@l

Figure 4.1.16: Angles with cos(f) = 3

One solution in Quadrant | is § = g, and since all other Quadrant | so-
lutions must be coterminal with %, we find § = g + 2wk for integers
k. Proceeding similarly for the Quadrant IV case, we find the solution to
cos(f) = % hereis 27, so our answer in this Quadrant is § = 2 + 27k for

integers k.
2. Ifsin(0) = —%, then when @ is plotted in standard position, its terminal
side intersects the Unit Circle aty = —%. From this, we determine 6 is a

Quadrant lll or Quadrant IV angle with reference angle g.

Yy Yy
1 1

ox

=
=
f

Figure 4.1.17: Angles with sin() = —32

In Quadrant Ill, one solution is %” so we capture all Quadrant Il solutions
by adding integer multiples of 27: § = %’r + 2mk. In Quadrant IV, one
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Il
-

'\()

P(cos(t),sin(t))

\(}:t

Figure 4.1.19: Defining cos(t) and sin(t)
as functions of a real variable

112

117

solution is =5 S0 all the solutions here are of the form 8 = HT” + 27k for

integers k.

3. The angles with cos(f) = 0 are quadrantal angles whose terminal sides,
when plotted in standard position, lie along the y-axis.

Y Yy

(ME]
(NIE]

N JAR
N

[SIE]

Figure 4.1.18: Angles with cos(¢) =0

While, technically speaking, 7 isn’t a reference angle we can nonetheless
use it to find our answers. If we follow the procedure set forth in the
previous examples, we find 0 = 7 + 27k and = 37” + 27k for integers,
k. While this solution is correct, it can be shortened to § = 3 + wk for
integers k. (Can you see why this works from the diagram?)

One of the key items to take from Example 4.1.4 is that, in general, solu-
tions to trigonometric equations consist of infinitely many answers. The reader
is encouraged write out as many of these answers as necessary to get a feel for
them. This is especially important when checking answers to the exercises. For
example, another Quadrant IV solution to sin() = —% is ® = — . Hence, the
family of Quadrant IV answers to number 2 above could just have easily been
written 6 = —Z + 2k for integers k. While on the surface, this family may look
different than the stated solution of § = “T“ + 27k for integers k, we leave it to
the reader to show they represent the same list of angles.

We close this section by noting that we can easily extend the functions cosine
and sine to real numbers by identifying a real number t with the angle 6 = t ra-
dians. Using this identification, we define cos(t) = cos(f) and sin(t) = sin(0).
In practice this means expressions like cos(7) and sin(2) can be found by re-
garding the inputs as angles in radian measure or real numbers; the choice is
the reader’s.

In the same way we studied polynomial, rational, exponential, and loga-
rithmic functions, we will study the trigonometric functions f(t) = cos(t) and
g(t) = sin(t). The first order of business is to find the domains and ranges of
these functions. Whether we think of identifying the real number t with the an-
gle & = tradians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and
sine functions are defined for all real numbers t. In other words, the domain of
f(t) = cos(t) and of g(t) = sin(t) is (—o0, 00). Since cos(t) and sin(t) represent
x- and y-coordinates, respectively, of points on the Unit Circle, they both take
on all of the values between —1 an 1, inclusive. In other words, the range of
f(t) = cos(t) and of g(t) = sin(t) is the interval [—1, 1]. To summarize:



Theorem4.1.3 Domain and Range of the Cosine and Sine Functions

* The function f(t) = cos(t)  The function g(t) = sin(t)
- has domain (—o0, 00) - hasdomain (—o0, 00)
- has range [—1,1] — has range [—1, 1]

Suppose, as in the Exercises, we are asked to solve an equation such as

sin(t) = —%. As we have already mentioned, the distinction between t as a
real number and as an angle § = t radians is often blurred. Indeed, we solve
sin(t) = —% in the exact same manner as we did in Example 4.1.4 number 2.

Our solution is only cosmetically different in that the variable used is t rather
than 0: t = %" + 2wk ort = MTW + 2wk for integers, k. We will study the co-
sine and sine functions in greater detail in Section 4.4. Until then, keep in mind
that any properties of cosine and sine developed in the following sections which
regard them as functions of angles in radian measure apply equally well if the
inputs are regarded as real numbers.

4.1 The Unit Circle: Sine and Cosine
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Exercises 4.1

Problems In Exercises 21 — 30, use the results developed throughout
the section to find the requested value.

In Exercises 1 — 20, find the exact value of the cosine and sine

of the given angle. 21. Ifsin(9) = —% with 6 in Quadrant IV, what is cos(6)?
1. =0 4
- 22. If cos(f) = — with 0 in Quadrant I, what is sin(#)?
2. 0=" 9
4
p_ T 23. Ifsin(9) = 15—3 with 6 in Quadrant II, what is cos(6)?
3.0=2
3
4 0-T 24. If cos(f) = —% with 6 in Quadrant Ill, what is sin(6)?
2
59— 27 25. Ifsin(9) = 7% with € in Quadrant Ill, what is cos(6)?
3
28 . . -
60— 37 26. If cos(f) = o3 with € in Quadrant IV, what is sin(6)?
4
2
7.0=m 27. Ifsin(9) = \57@ and g < # < m, whatis cos()?
7w
8. 0=—
110 5
6 28. Ifcos(f) = o and 2w < 6 < Tﬂ, what is sin(6)?
9. 0= 5% 37
29. Ifsin(f) = —0.42and 7w < 0 < 5 what is cos(6)?
10. 6 = an -
3 30. If cos(f) = —0.98 and 5 < 6 < m, what is sin(6)?
1. 9= 27
T Ty In Exercises 31 — 39, find all of the angles which satisfy the
given equation.
12. 0 = S?ﬂ—
31. sin(d) = =
13.9="7 s
32. cos(9) = _¥3
237 2
14, = =2
6 33. sin(0) =0
137
15. 0 = ——
2 34. cos(f) = ?
437
16. 0 = ———
6 35. sin(f) = ?
17. 0 = 3
4 36. cos(f) = —1
18. 0 = —g 37. sin(0) = —1
19. 0 = 107 38. cos(f) = V3
3 2
20. 0 = 117w 39. cos(f) = —1.001
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4.2 The Six Circular Functions and Fundamental Identities

4.2 The SixCircular Functions and Fundamental Iden-
tities

In section 4.1, we defined cos(6) and sin(6) for angles 6§ using the coordinate
values of points on the Unit Circle. As such, these functions earn the moniker
circular functions. It turns out that cosine and sine are just two of the six com-
monly used circular functions which we define below.

Definition 4.2.1 The Circular Functions

Suppose @ is an angle plotted in standard position and P(x, y) is the point
on the terminal side of 8 which lies on the Unit Circle.

* The cosine of 6, denoted cos(#), is defined by cos(#) = x.

* The sine of §, denoted sin(6), is defined by sin(6) = y.

1
» The secant of §, denoted sec(), is defined by sec(d) = S Pro-
vided x # 0.

1
 The cosecant of 6, denoted csc(0), is defined by csc(f) = " pro-
vided y # 0.

* The tangent of 0, denoted tan(6), is defined by tan(6) = X, pro-
X
vided x # 0.

* The cotangent of 6, denoted cot(f), is defined by cot(d) = 3
provided y # 0.

While we left the history of the name ‘sine’ as an interesting research project
in Section 4.1, the names ‘tangent’ and ‘secant’ can be explained using the dia-
gram below. Consider the acute angle 6 below in standard position. Let P(x, y)
denote, as usual, the point on the terminal side of § which lies on the Unit Cir-
cle and let Q(1,y’) denote the point on the terminal side of 6 which lies on the
vertical line x = 1, as in Figure 4.2.1.

The word ‘tangent’ comes from the Latin meaning ‘to touch,” and for this
reason, the line x = 1is called a tangent line to the Unit Circle since it intersects,
or ‘touches’, the circle at only one point, namely (1, 0). Dropping perpendiculars

from P and Q creates a pair of similar triangles AOPA and AOQB. Thus % = %
which gives y’ = ¥ = tan(f), where this last equality comes from applying
Definition 4.2.1. We have just shown that for acute angles 6, tan(0) is the y-
coordinate of the point on the terminal side of 8 which lies on the line x = 1
which is tangent to the Unit Circle. Now the word ‘secant’ means ‘to cut’, so a
secant line is any line that ‘cuts through’ a circle at two points. (Compare this
with the definition given in Section 3.1.1.) The line containing the terminal side
of 0 is a secant line since it intersects the Unit Circle in Quadrants | and IIl. With
the point P lying on the Unit Circle, the length of the hypotenuse of AOPA is
1. If we let h denote the length of the hypotenuse of AOQB, we have from
similar triangles that ? = %, orh = % = sec(#). Hence for an acute angle 0,
sec(#) is the length of the line segment which lies on the secant line determined
by the terminal side of 8 and ‘cuts off’ the tangent line x = 1. Not only do

The functions in Definition 4.2.1 are also
(and perhaps, more commonly) known as
trigonometric functions, owing to the fact
that the can also be defined in terms of
ratios of the three sides of a right-angle
triangle

y
4/) = (1. tan(9))

P(z,y)

\gr D

o A(z,0)  B(1,0) z

Figure 4.2.1: Explaining the tangent and
secant functions
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these observations help explain the names of these functions, they serve as the
basis for a fundamental inequality needed for Calculus which we’ll explore in the
Exercises.

Of the six circular functions, only cosine and sine are defined for all angles.
Since cos(f) = x and sin(8) = y in Definition 4.2.1, it is customary to rephrase
the remaining four circular functions in terms of cosine and sine. The following
theorem is a result of simply replacing x with cos(6) and y with sin(6) in Defini-

tion 4.2.1.
Theorem 4.2.1 Reciprocal and Quotient Identities
e sec(f) = - rovided cos(f) # O; if cos(f) = 0, sec(d) is
- COS(H)' p ’ - ’
undefined.
1
e csc(f) = Sn(0)’ provided sin(f) # 0; if sin(#) = 0, csc(f) is
undefined.
e tan(f) = sin(6) rovided cos(f) # O; if cos(f) = 0, tan(0) is
- COS(G)’ p ’ - ’
undefined.
cos(6) . ) s .
e cot(f) = Sin(0)’ provided sin(f) # O; if sin(6) = 0, cot(f) is
undefined.
Example 4.2.1 Evaluating circular functions
Find the indicated value, if it exists.

1. csc(ZF)

2. cot(3)

3. tan (), where 0 is any angle coterminal with 3.

4. cos (), where csc(f) = —+/5 and § is a Quadrant IV angle.

5. sin (), where tan(¢) =3and m < 6 < .

SOLUTION
ieacin (IT) — V2 7\ _ _ 1 _ _ 1 _ _ 2 _

1. Sincesin () = —*2, csc (&) = wE) - ViR v —/2.

2. Since 6 = 3 radians is not one of the ‘common angles’ from Section 4.1,
we resort to the calculator for a decimal approximation. Ensuring that the
calculator is in radian mode, we find cot(3) = Z?:((:)) ~ —7.015.

3. If 6 is coterminal with 2%, then cos() = cos (3£) = 0 and sin(f) =
sin (37) = —1. Attempting to compute tan(f) = zg;((z)) results in 7, so
tan(0) is undefined.

. _ 1 o . o 1 /5

4. We are given that csc(f) = oy = —/5s0sin(f) = —% = %

As we saw in Section 4.1, we can use the Pythagorean Identity, cosz(ﬁ) +
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sin?() = 1, tofind cos(6) by knowing sin(#). Substituting, we get cos?(6)+
2

(—%) = 1, which gives cos?() = #, or cos(f) = i%. Since f is a

Quadrant IV angle, cos(f) > 0, so cos(#) = %

5. If tan(f) = 3, then 2;2(((;)) = 3. Be careful - this does NOT mean we
sin(0)

can take sin(#) = 3 and cos(f) = 1. Instead, from cos(d) — 3 We get:
sin(f) = 3 cos(d). To relate cos(#) and sin(#), we once again employ the
Pythagorean Identity, cos?(6) +sin?(#) = 1. Solving sin(#) = 3 cos() for

cos(9), we find cos(#) = 1 sin(f). Substituting this into the Pythagorean

Identity, we find sin®(0) + (3 sin(@))2 = 1. Solving, we get sin*() =
so sin(f) = i%. Since 7 < 6 < 3%, 0 is a Quadrant Il angle. This
means sin(#) < 0, so our final answer is sin(§) = —%.

Our next step is to provide versions of the identity cos?(6) + sin?() = 1
for the remaining circular functions. Assuming cos(f) # 0, we may start with

cos?(#) + sin?(#) = 1 and divide both sides by cos?(6) to obtain 1 + sg;zz((?) =

ﬁ. Using properties of exponents along with the Reciprocal and Quotient
Identities, this reduces to 1 + tan?(0) = sec?(6). If sin(#) # 0, we can divide
both sides of the identity cos?(6) +sin?() = 1 by sin?(#), apply Theorem 4.2.1
once again, and obtain cot?(f) + 1 = csc?(f). These three Pythagorean Iden-
tities are worth memorizing and they, along with some of their other common
forms, are summarized in the following theorem.

Theorem 4.2.2 The Pythagorean Identities

1. cos?(0) +sin*(0) = 1.
Common Alternate Forms:
e 1 —sin?(#) = cos?(0)
e 1 —cos?(f) = sin’(f)
2. 1+ tan?() = sec?(#), provided cos() # 0.
Common Alternate Forms:
* sec’(f) —tan?(0) = 1
e sec’(f) — 1 =tan?(0)
3. 1+ cot?(0) = csc?(0), provided sin(6) # 0.
Common Alternate Forms:
* csc?(0) —cot?(0) =1
e csc?(0) — 1 = cot?(h)
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Example 4.2.2 Verifying trigonometric identities
Verify the following identities. Assume that all quantities are defined.

1 .
— 2. tan(#) = sin(0) sec()
1. sc(0) sin(6)
3. (sec(d) — tan(f))(sec() + g e 1
tan(f)) =1 1—tan(f) cos(f) —sin(0)
SOLUTION In verifying identities, we typically start with the more com-

plicated side of the equation and use known identities to transform it into the
other side of the equation.

1. To verify ﬁ = sin(0), we start with the left side. Using csc(6) = ﬁ,
we get:
1 1
= = sin(6),
CSC(G) sinte)

which is what we were trying to prove.

2. Starting with the right hand side of tan(#) = sin(0) sec(f), we use sec(d) =

ﬁ and find:

sin(0) sec(8) = sin(0) cosl(9) = CS(I:S((Z)) = tan(0),

where the last equality is courtesy of Theorem 4.2.1.

3. Expanding the left hand side of the equation gives: (sec(f)—tan(#))(sec(6)+
tan(6)) = sec?(f) — tan?(6). According to Theorem 4.2.2, sec?(f) —
tan?(6) = 1. Putting it all together,

(sec(f) — tan(f))(sec(f) + tan(h)) = sec®(d) — tan’(f) = 1.

4. While both sides of our last identity contain fractions, the left side affords

us more opportunities to use our identities. Substituting sec(6) = cosl((,)
and tan(0) = ;”S((z)) we get:
1 1
sec(6) B cos(6) cos(6) cos(6)
1—tan(d) 1 sin(f) X sin(6)  cos(6)
~ cos(0) ~ cos()
1
. <c05(0)> (cos(h))
(- 55 o
(W(eos(®)) - (20 (cos(6)
1

cos(6) — sin(0)’
which is exactly what we had set out to show.
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Verifying trigonometric identities requires a healthy mix of tenacity and in-
spiration. You will need to spend many hours struggling with them just to be-
come proficient in the basics. Like many things in life, there is no short-cut here
— there is no complete algorithm for verifying identities. Nevertheless, a sum-
mary of some strategies which may be helpful (depending on the situation) is
provided below and ample practice is provided for you in the Exercises.

Key Idea 4.2.1 Strategies for Verifying Identities

¢ Try working on the more complicated side of the identity.

¢ Use the Reciprocal and Quotient Identities in Theorem 4.2.1 to
write functions on one side of the identity in terms of the func-
tions on the other side of the identity. Simplify the resulting com-
plex fractions.

¢ Add rational expressions with unlike denominators by obtaining
common denominators.

¢ Use the Pythagorean ldentities in Theorem 4.2.2 to ‘exchange’
sines and cosines, secants and tangents, cosecants and cotan-
gents, and simplify sums or differences of squares to one term.

e Multiply numerator and denominator by Pythagorean Conjugates
in order to take advantage of the Pythagorean Identities in Theo-
rem4.2.2.

¢ If you find yourself stuck working with one side of the identity, try
starting with the other side of the identity and see if you can find
a way to bridge the two parts of your work.
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Problems In Exercises 21 — 34, use the given the information to find the
exact values of the remaining circular functions of 6.

In Exercises 1 — 20, find the exact value of the cosine and sine

of the given angle. 21. sin(0) = g with @ in Quadrant II
1. 6=0 12
22. tan(9) = = with 0 in Quadrant Il
2.0=12
4 25
23. csc(f) = = with 6 in Quadrant |
T 24
24. sec(f) = 7 with 0 in Quadrant IV
7r
4. ==
2 10v/91
25. csc(f) = — 0919 with € in Quadrant Il
5. 0= 2"
3 26. cot(#) = —23 with 6 in Quadrant I
6. O = %Tﬂ 27. tan(f) = —2 with 6 in Quadrant IV.
7 0=nr 28. sec(f) = —4 with 0 in Quadrant Il.
g g7 29. cot(f) = /5 with 6 in Quadrant IIl.
6
30. cos(d) = 1 with € in Quadrant I.
57 3
9. 0=—
4
31. cot(f) =2with0 < 6 < g
10 6=2"
3 m
32. csc(f) = 5 with 5 < 0 <m.
11. 0 = 3m
2 . 3T
33. tan(f) = V10 with7m < 0 < R
12. 0 = 5?71—
34. sec(9) = 2+/5 with 37” <0 <2m.
13. = In
4 In Exercises 35 — 49, find all of the angles which satisfy the
’3 equation.
14. 6= =5
35. tan(f) = /3
137
15. 60 = —T 36. sec(0) =2
16 06— _ 437 37. csc(f) = -1
6
3 38. cot(f) = ﬁ
17. 0= —=— 3
4
. 39. tan(d) =0
18. 0 == _g
40. sec(d) =1
107
19. 0= —~ 41. csc(f) =2
20. 0 =1177 42. cot(f) =0
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43, tan(d) = -1
44. sec(f) =0

45. csc(f) = —%

46. sec(f) = —1
47. tan(0) = —/3
48. csc(f) = -2

49. cot(f) = —1

In Exercises 50 — 57, solve the equation for t. Give exact val-

ues.
50. cot(t) =1
51. tan(t) = é
3
2
52. sec(t) = —ﬁ
3
53. csc(t) =0

54, cot(t) = —/3

55. tan(t) = —?
56. sec(t) = ?
57. csc(t) = Z?ﬁ

In Exercises 58 — 104, verify the identity. Assume that all

quantities are defined.
58. cos(f) sec(f) =1
59. tan(f) cos(f) = sin()
60. sin(f)csc(f) =1
61. tan(f) cot() =1

62. csc(f) cos(6) = cot(9)

63. CSC;ZZ(E?) = sec(6) tan(0)
64. ;?152((?) = csc(6) cot(9)
65. © ;zi(ré()()) = sec(#) + tan(0)

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

1 — cos(6)

= csc() — cot(h)

sin(0)
T
o = eslt)
1+Setz(r?2)(e) = cos(9)
14:55552)(6) = sin(6)
g = tan(t)

4cos’(0) 4 4sin*(0) = 4

9 — cos?(0) —sin?(f) = 8

tan*(6) = tan(6) sec’ (6) — tan(6)
sin(0) = (1 — cos*(6))” sin(6)
sec’®(0) = (1+ tan’(6))" sec’(0)

cos (6) tan’ (6) = tan(6) — sin(6) cos(6)
sec’(6) — sec’(9) = tan’(6) + tan‘(6)

cos(f) +1 1+ sec(d)
cos(f) =1~ 1 —sec(h)

sin(0) +1 14 csc(f)
sin(f) —1 1 — csc()

1—cot(d) tan(f) —1
1+cot(f)  tan(d) +1

1—tan(f)  cos(f) —sin(0)
1+tan(f)  cos(8) +sin()

tan(6) + cot(f) = sec(8) csc(f)
csc(0) — sin(6) = cot(8) cos(6)

cos(0) — sec(d) = — tan(6) sin(6)
cos(6) (tan(6) + cot(8)) = csc(6)
sin(6) (tan(9) + cot(9)) = sec(9)

1 n 1
1—cos(d) 1+ cos(f)

= 2csc?(0)
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90.

91.

92.

93.

94.

95.

96.

97.

1 1

@71 s 1 = 260 o)
csc(91) T1 csc(el) — = 2sec(f) tan(6)
csc(f) - cot(d)  csc(9) i cot(g) — 20t
1 i°f§fie> . j";ft)(e) = sin(6) + cos(0)

T = sec(f) — tan(6)

! = sec(f) + tan(0)

! = csc(6) + cot(0)

: = csc(f) — cot ()

98.

99.

100.

101.

102.

103.

104

" 1+sin(6)

1-— slin(g) = sec’(f) + sec(f) tan(0)

1+ ;n(a) = sec?(#) — sec(f) tan(9)

%os(e) = csc?(6) + csc() cot(6)

14-%05(9) = csc? () — csc() cot(6)
cos(d)  1—sin(6)

1+sin(f) — cos(6)

csc(f) — cot(f) = : j_':ies)(e)

L=5in(0) _ (gec(d) — tan(6))?




4.3 Trigonometric Identities

In Section 4.2, we saw the utility of the Pythagorean Identities in Theorem 4.2.2
along with the Quotient and Reciprocal Identities in Theorem 4.2.1. Not only did
these identities help us compute the values of the circular functions for angles,
they were also useful in simplifying expressions involving the circular functions.
In this section, we introduce several collections of identities which have uses in
this course and beyond. Our first set of identities is the ‘Even / Odd’ identities.

Theorem 4.3.1 Even / Odd Identities

For all applicable angles 6,

* cos(—0) = cos(0) * sec(—0) = sec(h)
e sin(—60) = —sin(0) e csc(—0) = —csc(h)
* tan(—0) = —tan(h) e cot(—0) = —cot(h)

In light of the Quotient and Reciprocal Identities, Theorem 4.2.1, it suffices
to show cos(—#) = cos(#) and sin(—0) = — sin(#). The remaining four circular
functions can be expressed in terms of cos(6) and sin(#) so the proofs of their
Even / Odd Identities are left as exercises.

By adding the appropriate multiple of 27, we may replace 6 by the cotermi-
nal angle 0y with 0 < 6y < 2m; the reader can verify that the angles —6 and
—0p are then also coterminal. The Evan / Odd identities then follow by observ-
ing that the points P = (cos(6yp), sin(fp)) and Q = (cos(—bp), sin(—bp)) lie on
opposite sides of the x-axis, as shown in Figure 4.3.1.

The Even / Odd Identities are readily demonstrated using any of the ‘com-
mon angles’ noted in Section 4.1. Their true utility, however, lies not in com-
putation, but in simplifying expressions involving the circular functions. In fact,
our next batch of identities makes heavy use of the Even / Odd Identities.

Theorem 4.3.2 Sum and Difference Identities for Cosine
For all angles o and /3,
e cos(a + ) = cos(a) cos(B) — sin(a) sin(B)

e cos(a — f3) = cos(a) cos(B) + sin(a) sin(/3)

We first prove the result for differences. As in the proof of the Even / Odd
Identities, we can reduce the proof for general angles « and /3 to angles g and
B, coterminal with « and f3, respectively, each of which measure between 0 and
27 radians. Since o and oy are coterminal, as are 8 and 3, it follows that o — 3
is coterminal with avg — 3. Consider the case in Figure 4.3.2 where ag > f3,.

Since the angles POQ and AOB are congruent, the distance between P and Q
is equal to the distance between A and B. The distance formula, Equation 1.2.3,
yields

4.3 Trigonometric Identities

As mentioned at the end of Section 4.1,
properties of the circular functions when
thought of as functions of angles in ra-
dian measure hold equally well if we view
these functions as functions of real num-
bers. Not surprisingly, the Even / Odd
properties of the circular functions are so
named because they identify cosine and
secant as even functions, while the re-
maining four circular functions are odd.

Yy
1
0,
; \\
&/ 0 ! !
y
1
0,
P(cos(6o),sin(o)) /\
Q(cos(—8o),sin(—6p)) \J 1 £
_00

Figure 4.3.1: Establishing Theorem 4.3.1
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P(cos(ao), sin(a0))

Q(cos(Bo). sin(Bo))

A(cos(ao — Bo),sin(ag — Bo))

o B(1,0) =

Figure 4.3.2: Establishing Theorem 4.3.2

In Figure 4.3.2, the triangles POQ and
AOB are congruent, which is even better.
However, ap — 3, could be 0 or it could
be 7, neither of which makes a triangle. It
could also be larger than 7, which makes
a triangle, just not the one we’ve drawn.
You should think about those three cases.

124

V/(cos(ao) — cos(/3,))? + (sin(ao) — sin(/5,))?
= /(cos(ao — fy) — 1) + (sin(ao — f) — 0)?

Squaring both sides, we expand the left hand side of this equation as

(cos(an) — cos(f,))* + (sin(ao) — sin(f,))?
= cos®(ap) — 2 cos(ap) cos(By) + cos?(B,)
+ sin? () — 2sin(ap) sin(B,) + sin®(5,)
= cos?(ag) + sin®(ap) + cos?(B,) + sin®(B,)
— 2cos(ayp) cos(By) — 2sin(avp) sin(B,)

From the Pythagorean Identities we have cos?(ag) + sin?(ap) = 1 and
cos?(By) + sin*(3,) = 1, so

(cos(ag) — cos(By))*+(sin(ao) — sin(f,))?
=2 — 2cos(ap) cos(B,y) — 2sin(ag) sin(3,)

Turning our attention to the right hand side of our equation, we find

(cos(ag — Bg) — 1)*+(sin(ap — By) — 0)?
= cos’(ap — By) — 2cos(ag — Bg) + 1 + sin*(ap — fBy)
=1+ cos®(ag — By) + sin®(ap — By) — 2 cos(ap — fBy)

Once again, we simplify cos?(ag — 3,) + sin?(ag — B5) = 1, so that

(cos(ag — By) — 1)? + (sin(ag — By) —0)> = 2 —2cos(ag — fBy)

Putting it all together, we get 2 — 2 cos(ay) cos(f,) — 2sin(ap) sin(5,) =
2 — 2cos(ag — fB,), which simplifies to: cos(ap — B,) = cos(ap) cos(B,) +
sin(a) sin(B,). Since avand v, S and Sy and a— 3 and ap— 3, are all coterminal
pairs of angles, we have cos(a — 3) = cos(«) cos(/3) + sin(a) sin(f5). For the
case where aig < 3, we can apply the above argument to the angle 5, — ag to
obtain the identity cos(8, — cg) = cos(3,) cos(ag) + sin(B,) sin(ap). Applying
the Even Identity of cosine, we get cos(f, — ap) = cos(—(ao—By)) = cos(ao—
B,), and we get the identity in this case, too.

To get the sum identity for cosine, we use the difference formula along with
the Even/Odd Identities

cos(a + ) = cos(a — (—f3)) = cos(a) cos(—f3) + sin(«) sin(—f)
= cos(a) cos() — sin(«) sin(3)



Example 4.3.1 Using Theorem 4.3.2

1. Find the exact value of cos (15°).

2. Verify the identity: cos (2 — 6) = sin(6).

SOLUTION

1. In order to use Theorem 4.3.2 to find cos (15°), we need to write 15° as
a sum or difference of angles whose cosines and sines we know. One way
to do so is to write 15° = 45° — 30°.

cos (15°) cos (45° — 30°)

= cos (45°) cos (30°) + sin (45°) sin (30°)

()(F)-(5)6)

2. In a straightforward application of Theorem 4.3.2, we find

cos (g — 0)

cos (g) cos (f) + sin (g) sin (0)

(0) (cos(6)) + (1) (sin(6))
= sin(6)

The identity verified in Example 4.3.1, namely, cos (g — 9) = sin(), is the
first of what are called the ‘cofunction’ identities. From sin(f) = cos (g — 0),

we get:
sin (g - 9) = cos (g - [g - GD = cos(6),

which says, in words, that the ‘co’sine of an angle is the sine of its ‘co’mplement.

Now that these identities have been established for cosine and sine, the remain-
ing circular functions follow suit. The remaining proofs are left as exercises.

Theorem 4.3.3 Cofunction Identities

For all applicable angles 6,

* cos (g - 9) = sin(0) * csC (g - 9) = sec(6)
* sin (g - 9) = cos(0) * tan (; - 9) = cot(0)
* sec (g - 9) = csc(6) e cot (g - 9) = tan(6)

With the Cofunction Identities in place, we are now in the position to derive
the sum and difference formulas for sine. To derive the sum formula for sine, we

4.3 Trigonometric Identities
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convert to cosines using a cofunction identity, then expand using the difference
formula for cosine

(o)
[}
7}

sinfa + ) =

N
|
)
ot
- 2
vv

—

NS

I
o
o
a

I3

Il

(@]

(]

wn
/N N N

_ a) COS(B) —+ sin (g - 04) Sin(ﬂ)
cos(f3) + cos(a) sin(3)

— N

= sin(a

We can derive the difference formula for sine by rewriting sin(aw — ) as
sin(a + (—)) and using the sum formula and the Even / Odd Identities. Again,
we leave the details to the reader.

Theorem 4.3.4 Sum and Difference Identities for Sine
For all angles o and f3,

e sin(a + B) = sin(a) cos(B) + cos(«) sin(5)

e sin(a — B) = sin(a) cos(3) — cos(a) sin(B)

Example 4.3.2 Using Theorem 4.3.4

1. Find the exact value of sin (£7°)

2. If ais a Quadrant Il angle with sin(a) = 13, and (3 is a Quadrant Ill angle
with tan(8) = 2, find sin(a — 3).

3. Derive a formula for tan(« + /3) in terms of tan(c) and tan(f3).

SOLUTION

1. AsinExample 4.3.1, we need to write the angle 3 19“ as a sum or difference
of common angles. The denominator of 12 suggests a combination of an-
gles with denominators 3 and 4. One such combinationis &2 = 4 4 Z
Applying Theorem 4.3.4, we get

o) - (503
(5) 0 (5) )
(D)

V62
4

2. Inordertofind sin(aw—f) using Theorem 4.3.4, we need to find cos(«) and
both cos(3) and sin(3). To find cos(«), we use the Pythagorean Identity



cos?(a) +sin*(a) = 1. Since sin(a) = 2, we have cos?(a) + (ﬁ) =1,
or cos(a) = =22, Since a is a Quadrant Il angle, cos(a) = —12. We now
set about finding cos(3) and sin(/3). We have several ways to proceed,
but the Pythagorean Identity 1 + tan?(3) = sec?(3) is a quick way to get
sec(3), and hence, cos(f3). With tan(3) = 2, we get 1 + 22 = sec?(3) so

that sec(3) = £+/5. Since 3 is a Quadrant Il angle, we choose sec(3) =

550 cos(f}) = 25 = —1= = —¥5. We now need to determine

@ — s
sin(f). We could use The Pythagorean Identlty cos?(B) + sin?(B) = 1,
but we opt instead to use a quotient identity. From tan(3) = CS;”S((?), we
; : 5 25
have sin(3) = tan(3) cos(8) so we get sin(8) = (2) (—%) = —?‘[.

We now have all the pieces needed to find sin(a — 3):

sinfa — ) = sin(a)cos(B) — cos(a) sin(B)

ML REIES
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. We can start expanding tan(« + 3) using a quotient identity and our sum
formulas

sin(a + B)
cos(a + f)
sin(a) cos(f) + cos(a) sin(/3)
cos(a) cos(B) — sin(a) sin(pB)

tan(a +f5) =

Since tan(a) = ;')"S((Z)) and tan() = CS;”S((‘;)), it looks as though if we divide
both numerator and denominator by cos(«) cos(3) we will have what we

want

1
sin(a) cos() + cos(a) sin(f)  cos(a) cos(3)
tan(a+ ) = cos(a) cos(3) — sin(a) sin(B) 1
cos(a) cos(/3)
sin(a) cos()  cos(a)sin(B)
~ cos(a) cos(f) + cos(a) cos(3)
~ cos(a)cos(B)  sin(a)sin(B)
cos(a) cos(B)  cos(a) cos(f3)
sin(a)costp) | costasin(f)
_ cos(a)costd] | costaycos(5)
costalcos(A] _ sin(a) sin(5)
costafcos(B)  cos(a) cos(d)

tan(a) + tan(f)
1 — tan(«) tan(3)

The formula developed in Exercise 4.3.2 for tan(« + 3) can be used to find

a formula for tan(« — ) by rewriting the difference as a sum, tan(a + (—23)),

4.3

Trigonometric Identities

Note: As with any trigonometric iden-
tity, this formula is limited to those cases
where all of the tangents are defined.
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and the reader is encouraged to fill in the details. Below we summarize all of
the sum and difference formulas for cosine, sine and tangent.

Theorem 4.3.5 Sum and Difference Identities

For all applicable angles o and 3,

e cos(a £ ) = cos(a) cos(B) F sin(a) sin(pB)
e sin(a £ ) = sin(a) cos(B) £ cos(a) sin(pB)

tan(a) £ tan(f)

e tan(a £ ) = 1 F tan(a) tan(f)

In the statement of Theorem 4.3.5, we have combined the cases for the sum
‘+" and difference ‘—’ of angles into one formula. The convention here is that if
you want the formula for the sum ‘+’ of two angles, you use the top sign in the
formula; for the difference, ‘—’, use the bottom sign. For example,

_ tan(a) —tan(ﬁ)
tan(Oz -B)= 14 tan(a) tan(ﬁ)

If we specialize the sum formulas in Theorem 4.3.5 to the case when o = 33,
we obtain the following ‘Double Angle’ Identities.

Theorem 4.3.6 Double Angle Identities
For all applicable angles 6,
cos?(6) — sin?(6)
e cos(20) = { 2cos’(f) — 1
1—2sin%()
e sin(26) = 2sin(0) cos(d)

2tan(6)

e tan(20) = 1—tan?(0)

The three different forms for cos(26) can be explained by our ability to ‘ex-
change’ squares of cosine and sine via the Pythagorean Identity c052(9)+sin2(9) =
1 and we leave the details to the reader. It is interesting to note that to de-
termine the value of cos(26), only one piece of information is required: either
cos(#) or sin(6). To determine sin(26), however, it appears that we must know
both sin(#) and cos(6). In the next example, we show how we can find sin(26)
knowing just one piece of information, namely tan(9).



4.3 Trigonometric Identities

Example 4.3.3 Using Theorem 4.3.6

1. Suppose P(—3, 4) lies on the terminal side of 8 when 6 is plotted in stan-
dard position. Find cos(26) and sin(26) and determine the quadrant in
which the terminal side of the angle 26 lies when it is plotted in standard

position.
2. Ifsin(f) = xfor -5 < 6 < 7, find an expression for sin(26) in terms of x.
2tan(6
3. Verify the identity: sin(20) = H:%.

4. Express cos(36) as a polynomial in terms of cos(6).

SOLUTION

1. The point (—3,4) lies on a circle of radius r = /x> +y> = 5. Hence,

cos(f) = —2 and sin(¢) = 2. Applying Theorem 4.3.6, we get cos(26) =

cos?(0)—sin?(6) = (—%)2—(2)2 = — -, andsin(26) = 2sin() cos(6) =
2 (%) (—2) = —32. since both cosine and sine of 26 are negative, the ter-
minal side of 26, when plotted in standard position, lies in Quadrant IlI.

2. If your first reaction to ‘sin(6) = x is ‘No it’s not, cos(d) = x!" then you
have indeed learned something, and we take comfort in that. However,
context is everything. Here, ‘X’ is just a variable - it does not necessarily
represent the x-coordinate of the point on The Unit Circle which lies on
the terminal side of 8, assuming 6 is drawn in standard position. Here,
X represents the quantity sin(#), and what we wish to know is how to
express sin(26) in terms of x. Since sin(26) = 2 sin(d) cos(6), we need to
write cos() in terms of x to finish the problem. We substitute x = sin(6)
into the Pythagorean Identity, cos?() + sin?(f) = 1, to get cos?(6) +
x> = 1, orcos(f) = £1/1 — x2. Since -5 <60 < %, cos(0) > 0, and
thus cos(6) = v/1 — x2. Our final answer is sin(260) = 2sin(f) cos(9) =
2xv/1 — x2.

3. We start with the right hand side of the identity and note that 1+tan?(6) =
sec?(6). From this point, we use the Reciprocal and Quotient Identities to
rewrite tan(#) and sec(6) in terms of cos(6) and sin(6):

) (m(e))
2tan(9)  _ 2tan(¢) _ " \cos(d)) _ 5 <sin(9) ) cos?(6)

1+ tan?(0) sec2(6) 1 cos(f
. cos?(6)
= 2 (;!;2%) cos{#ycos(#) = 2sin(#) cos(8) = sin(26)

4. In Theorem 4.3.6, the formula cos(260) = 2 cos?(f) — 1 expresses cos(26)
as a polynomial in terms of cos(). We are now asked to find such an
identity for cos(36). Using the sum formula for cosine, we begin with

cos(30) = cos(20 + 0)
= co0s(26) cos(6) — sin(20) sin(0)
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Our ultimate goal is to express the right hand side in terms of cos(6) only.
We substitute cos(20) = 2cos?*(f) — 1 and sin(20) = 2sin(f) cos(6)
which yields

cos(36) cos(26) cos(0) — sin(20) sin(6)
(2 cos?(6) — 1) cos(8) — (25sin(8) cos(8)) sin(6)

2cos® () — cos(f) — 2sin?(#) cos(6)

Finally, we exchange sin?(6) for 1 — cos?(6) courtesy of the Pythagorean
Identity, and get

cos(30) = 2cos3(f) — cos(f) — 25sin?(f) cos(#)

= 2cos*(g) — cos(#) — 2 (1 — cos?(6)) cos(0)
= 2cos?(f) — cos(#) — 2 cos(0) + 2 cos®()
= 4cos?(f) — 3cos(6)

and we are done.

In the last problem in Example 4.3.3, we saw how we could rewrite cos(36)
as sums of powers of cos(6). In Calculus, we have occasion to do the reverse;
that is, reduce the power of cosine and sine. Solving the identity cos(26) =
2 cos?(6) — 1 for cos?(#) and the identity cos(26) = 1 — 2sin?(6) for sin*()
results in the aptly-named ‘Power Reduction’ formulas below.

Theorem 4.3.7 Power Reduction Formulas

For all angles 6,

1 20
» cos’(0) = 14 cos(29)
2
1-— 26
° Sinz(Q) = LS()
2
Example 4.3.4 Using Theorem 4.3.7

Rewrite sin?(#) cos?(#) as a sum and difference of cosines to the first power.

SOLUTION We begin with a straightforward application of Theorem 4.3.7

sin?(0) cos?(0) = (1 - c;s(Z@)) (1 + CZS(ZG))

(1 — cos?(26))

Bl M

1
-2 cos?(26)

Next, we apply the power reduction formula to cos?(26) to finish the reduc-
tion
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sin?(6) cos?(f) = % — = cos?(26)
_ 1 1 /1+cos(2(20))
4 4 2
1 1
= 1738 8 cos(40)
1 1
= 373 cos(46)

Another application of the Power Reduction Formulas is the Half Angle For-

mulas. To start, we apply the Power Reduction Formula to cos? (£)

cos? (9) _ 1+cos (2(3)) _ 1+cos(9).
2 2 2

We can obtain a formula for cos (g) by extracting square roots. In a similar
fashion, we may obtain a half angle formula for sine, and by using a quotient
formula, obtain a half angle formula for tangent. We summarize these formulas
below.

Theorem 4.3.8 Half Angle Formulas

For all applicable angles 6,

. cos (2) . 1+ cos(0)

2
. sin (0) . 1 — cos(6)
2 2

. tan 0 1 1 — cos(6)
2 1+ cos(6)
where the choice of £ depends on the quadrant in which the terminal

side of Q lies.
2

Example 4.3.5 Using Theorem 4.3.8

1. Use a half angle formula to find the exact value of cos (15°).
2. Suppose —7 < 6 < 0 with cos(f) = —2. Find sin (%)
3. Use the identity given in number 3 of Example 4.3.3 to derive the identity

0\  sin(0)
tan (2) 1+ cos(0)
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SOLUTION

1. To use the half angle formula, we note that 15° = ¥ and since 15° is a
Quadrant | angle, its cosine is positive. Thus we have

o V3
1 30 1+ %=
cos(15°) = +4/ - cos (30°) = 2
2 2
B 1+ﬁ32__¢2+¢3_yb+vﬁ
N 2 2 4 2
Note: Back in Example 4.3.1, we found

cos (15°) by using the difference formula 2. If =7 < 6 < 0, then —2 < ¢ < 0, which means sin (4) < 0. Theorem
for cosine. In that case, we determined 4.3.8 gives

cos (15°) = M. The reader is en-

couraged to prove that these two expres-

sions are equal. sin Q _ 1_C°5(9)__ 1*(7%)
2) — N 2 - 2

_ 1/1+§.5\/?2Vg

2 5 10 5

3. Instead of our usual approach to verifying identities, namely starting with
one side of the equation and trying to transform it into the other, we will
start with the identity we proved in number 3 of Example 4.3.3 and ma-
nipulate it into the identity we are asked to prove. The identity we are

asked to start with is sin(26) = 1122’;&?2)) If we are to use this to derive
an identity for tan (g), it seems reasonable to proceed by replacing each
[4
2

occurrence of d with

| _ 2tan(9)

sin(2(3)) = 1+tan? (§)
| _ 2tan(Y)
@) = e (D)

We now have the sin() we need, but we somehow need to get a factor
of 1+ cos(f) involved. To get cosines involved, recall that 1 + tan? (g) =
sec? (). We continue to manipulate our given identity by converting se-
cants to cosines and using a power reduction formula

[
sin(0) = m
sin(9) = ZS:Z]((;))
sin(f) = 2tan (g) cos? (g)

sin(0) = 2tan (%) (1'+‘““;(2(§))>
sin() = tan (%) (1+ cos(f))

0\ | sin(6)
(2) T 1tcos(d)

132



Our next batch of identities, the Product to Sum Formulas, are easily verified
by expanding each of the right hand sides in accordance with Theorem 4.3.5
and as you should expect by now we leave the details as exercises. They are of
particular use in Calculus, and we list them here for reference.

Theorem 4.3.9 Product to Sum Formulas

For all angles o and 3,

o cos(a) cos(B) = 3 [cos(av — fB) + cos(av + fB)]
e sin(a)sin(3) = 1 [cos(a — 3) — cos(a + )]

e sin(a)cos(B) = 3 [sin(a — B) + sin(a + B)]

Related to the Product to Sum Formulas are the Sum to Product Formulas,
which come in handy when attempting to solve equations involving trigonomet-

ric functions. These are easily verified using the Product to Sum Formulas, and
as such, their proofs are left as exercises.

Theorem 4.3.10 Sum to Product Formulas

For all angles o and 3,

e cos(a) + cos(f) = 2 cos (W) cos (a ; ﬂ)

= 2m(%5 ) (5

e sin(a) £ sin(3) = 2sin <a f 5) cos (a ]zF 6)

Example 4.3.6 Using Theorems 4.3.9 and 4.3.10

1. Write cos(26) cos(66) asasum.

2. Write sin(#) — sin(36) as a product.

SOLUTION

1. Identifying a = 260 and 3 = 66, we find
cos(20) cos(60) = 3 [cos(20 — 66) + cos(26 + 60)]

1 cos(—46) + 1 cos(86)

2 cos(46) +  cos(86),

where the last equality is courtesy of the even identity for cosine, cos(—46) =

cos(40).

4.3 Trigonometric Identities

The identities in Theorem 4.3.9 are also
known as the Prosthaphaeresis Formulas
and have a rich history. The authors rec-
ommend that you conduct some research
on them as your schedule allows.
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2. ldentifying & = 6 and 8 = 360 yields

sin(f) —sin(3¢) = 2sin

2sin (—6) cos (20)
—2sin (6) cos (26) ,

6 — 36 9+39)
cos

where the last equality is courtesy of the odd identity for sine, sin(—8) =
—sin(0).

This section and the one before it present a rather large volume of trigono-
metric identities, leading to a very common student question: “Do | have to
memorize all of these?” The answer, of course, is no. The indispensable iden-
tities are the Pythagorean identities (Theorem 4.1.1), and the sum/difference
identities (Theorems 4.3.2 and 4.3.4). They are the most common, and all other
identities can be derived from them. That said, there are a number of topics
in Calculus (trig integration comes to mind) where having other identities like
the power reduction formulas in Theorem 4.3.7 at your fingertips will come in
handy.

The reader is reminded that all of the identities presented in this section
which regard the circular functions as functions of angles (in radian measure)
apply equally well to the circular (trigonometric) functions regarded as functions
of real numbers. In Exercises 36 - 41 in Section 4.4, we see how some of these
identities manifest themselves geometrically as we study the graphs of the these
functions. In the upcoming Exercises, however, you need to do all of your work
analytically without graphs.



Exercises 4.3

Problems

In Exercises 1 — 6, use the Even / Odd Identities to verify the
identity. Assume all quantities are defined.

1.

In Exercises 7 — 21, use the Sum and Difference Identities to
find the exact value. You may have need of the Quotient, Re-
ciprocal or Even / Odd Identities as well.

7.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

sin(31 — 20) = —sin(20 — 37)

Vs Vi
_r_ 5t) - (St f)
Ccos ( 2 COoS + 2

tan(—t? +1) = —tan(t* — 1)
csc(—0 —5) = —csc(f + 5)
sec(—6t) = sec(6t)

cot(9 — 70) = — cot(76 — 9)

cos(75°)

. sec(165°)

. sin(105°)

csc(195°)
cot(255°)

tan(375°)

21.

22.

23.

24.

25.

(-5)
sec (——
12

If « is a Quadrant IV angle with cos(a) = ?, and
sin(8) = \gioo, where g < B <, find

(a) cos(a+ B) (d) cos(a— )

(b) sin(a + B) (e) sin(a—p)

(c) tan(a + B) (f) tan(a — B)

If csc(a) = 3, where 0 < a < E, and 3 is a Quadrant Il
angle with tan(8) = —7, find

(a) cos(a+ B) (d) cos(a— )
(b) sin(a + B) (e) sin(a — )
(c) tan(a + B) (f) tan(a — j)

If sin(a) = g,whereo <a< g, and cos(f3) = % where
3% < B < 2, find

(a) sin(a+ B)

(b) cos(ax — )

(c) tan(a — )

If sec(ar) = —g, whereg < a < m andtan(B) = el
3
where T < 8 < ;,ﬁnd
(@) csc(a — B)

(b) sec(a + 8)
(c) cot(a+ B)

In Exercises 26 — 38, verify the identity.

26.

27.

28.

29.

30.

31.

32.

33.

34.

cos(f — ) = — cos(0)

sin(x — 0) = sin(6)

tan (9 n g) = —cot(9)

sin(a+ ) + sin(a — #) = 2sin(a) cos(5)
sin(a+ ) — sin(a — ) = 2 cos(a) sin(5)
cos(a + ) + cos(a — ) = 2 cos(a) cos(B)
cos(a + ) — cos(a — ) = —2sin(a) sin(5)

sinfa + B) 14 cot(a) tan(B)
sinfc —B) 1 — cot(a)tan(B)

cos(a + 3) 1 —tan(a)tan(p)
cos(a — ) 1+ tan(a)tan(p)
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35. tan(a + ) _ sin(a) cos(a) + sin(3) cos(3)
tan(a — B8)  sin(«) cos(a) — sin(B) cos(3)

36, sin(t + hz — sin(t) _ cos(t) (sinlfh)) n
sin(t) (7cos(l;) — 1)
cos(t + h) — cos(t) _ cos(h) — 1

37. 'h = cos(t) (f) —
sin(t) (sm}fh))
tan(t +h) —tan(t) _ (tan(h) sec’(t)

38 h N < h ) <1 —tan(t) tan(h))

In Exercises 39 — 48, use the Half Angle Formulas to find the
exact value. You may have need of the Quotient, Reciprocal
or Even / Odd Identities as well.

39. cos(75°) (compare with Exercise 7)
40. sin(105°) (compare with Exercise 9)
41. cos(67.5°)
42. sin(157.5°)

43. tan(112.5°)

7
44. cos (1—;) (compare with Exercise 16)

45. sin (1) (compare with Exercise 18)

46. cos (E)
8

47. sin (S—W)
8

In Exercises 49 — 58, use the given information about 6 to find
the exact values of

* sin(20) e cos(26) e tan(20)
"(5) (3) (3)
e sin( — ® cos| — e tan| =
2 2 2
49. sin(0) = f% where 3; <0<2m

2
50. cos(f) = % where 0 < 6 < g

12 3
51. tan(f) = - where 7 < 6 < ;

52. csc(f) = 4 where g <0<

3
53. cos(d) = < where 0 < 6 < g

4 3
54. sin(f) = — where 7 < 0 < 771

12 3
55. cos(d) = 3 where 771' <0<2rm
56. sin(6) > where = < 0 <
. = — = m
13 2
3T
57. sec(#) = /5 where 5 < 6 <2r

58. tan(f) = —2 whereg <0<m

In Exercises 59 — 73, verify the identity. Assume all quantities
are defined.

59. (cos(f) + sin(6))* = 1 + sin(26)

60. (cos(f) — sin(6))? = 1 — sin(26)

1 1
61 ten(20) = 1—tan(d) 1+ tan(0)
62. csc(20) = cot(6) + tan(6)

2

63. 8sin*(0) = cos(46) — 4 cos(26) + 3

64. 8cos*(#) = cos(40) + 4cos(20) + 3

65. sin(30) = 3sin(#) — 4sin*(6)

66. sin(40) = 4sin(0) cos*(0) — 4sin®(#) cos(f)

67. 32sin*(0) cos*(0) = 2 + cos(26) — 2 cos(46) — cos(66)
68. 32sin*(f) cos?(0) = 2 — cos(26) — 2 cos(48) + cos(66)
69. cos(46) = 8cos*(6) — 8cos?() + 1

70. cos(80) = 128cos®(f) — 256cos®(f) + 160 cos*(f) —
32cos?(6) + 1 (HINT: Use the result to 69.)

_ cos(0) sin(9)
71, sec(26) = cos(f) +sin(8)  cos(8) — sin()
- 1 1 _ 2cos(0)
" cos(f) —sin(@)  cos(f) +sin(f) ~ cos(20)
3 1 1 _ 2sin(8)
" cos(f) —sin(f)  cos(f) +sin(@)  cos(26)

In Exercises 74 — 79, write the given product as a sum. You
may need to use an Even/Odd Identity.

74. cos(360) cos(56)



75.

76.

77.

78.

79.

sin(20) sin(70)
sin(96) cos(0)
cos(26) cos(66)
sin(36) sin(20)

cos(#) sin(36)

In Exercises 80 — 85, write the given sum as a product. You
may need to use an Even/Odd or Cofunction Identity.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

cos(36) + cos(56)
sin(26) — sin(79)
cos(50) — cos(60)
sin(96) — sin(—0)
sin(6) + cos(4)
cos(6) — sin(6)

Suppose 6 is a Quadrant | angle with sin(8) = x. Verify the
following formulas

(@) cos(f) =+v1—x2
(b) sin(20) = 2xv/1 — x?

(c) cos(20) =1 —2x*

Discuss with your classmates how each of the formulas, if
any, in Exercise 86 change if we change assume 6 is a Quad-
rant II, lll, or IV angle.

Suppose @ is a Quadrant | angle with tan(6) = x. Verify the
following formulas

1
(a) COS(@) = \/ﬁ
. X
(b) sin(6) = Wy
(c) sin(20) = xzz—i 1
2
(d) cos(20) = 12 +X1

Discuss with your classmates how each of the formulas, if
any, in Exercise 88 change if we change assume 6 is a Quad-
rant II, lll, or IV angle.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100

101

102.

If sin(f) = %for—g <0<
cos(26) in terms of x.

T . .
5 find an expression for

If tan(0) = ;for—g <6<
sin(26) in terms of x.

T .. .
5 find an expression for

If sec(f) = Xforo < 0 < E, find an expression for
In|sec(d) + tan()| in terms of x.

Show that cos?(#) —sin?(#) = 2 cos?*(#) —1 = 1—2sin*(6)
for all 4.

1
Let # be a Quadrant Ill angle with cos(f) = —5 Show

that this is not enough information to determine the sign of

0 7
sin (E) by first assuming 37 < 0 < % and then assum-

3 0
ingm <6< 77? and computing sin (E) in both cases.

2 3
Without using your calculator, show that %ﬁ =
V642
4

In part 4 of Example 4.3.3, we wrote cos(36) as a polyno-
mial in terms of cos(6). In Exercise 69, we had you verify an
identity which expresses cos(46) as a polynomial in terms
of cos(6). Can you find a polynomial in terms of cos(6) for
cos(560)? cos(66)? Can you find a pattern so that cos(nf)
could be written as a polynomial in cosine for any natural
number n?

In Exercise 65, we has you verify an identity which ex-
presses sin(36) as a polynomial in terms of sin(#). Can you
do the same for sin(560)? What about for sin(46)? If not,
what goes wrong?

Verify the Even / Odd Identities for tangent, secant, cose-
cant and cotangent.

Verify the Cofunction Identities for tangent, secant, cose-
cant and cotangent.

. Verify the Difference Identities for sine and tangent.
. Verify the Product to Sum Identities.

Verify the Sum to Product Identities.

137



Chapter 4 Foundations of Trigonometry

To see that p = 2w is the smallest value
such that cos(t + p) = cos(t), notice
that when t = 0, we would need to have
cos(p) = cos(0) = 1, and we know that
there are no numbers p between Oand 27
such that cos(p) = 1.

Technically, we should study the interval
[0,27), since whatever happens at t =
27 is the same as what happens att = 0.
As we will see shortly, t = 27 gives us an
extra ‘check’ when we go to graph these
functions. In some texts, the interval of
choice is [—7, 7).
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4.4 Graphs of the Trigonometric Functions

4.4.1 Graphs of the Cosine and Sine Functions

Since radian measure allows us to identify angles with real numbers, and the
sine and cosine functions are defined for any angle, we know that the domain
of f(t) = cos(t) and of g(t) = sin(t) is all real numbers, (—o0, o), and the
range of both functions is [—1, 1]. The Even / Odd Identities in Theorem 4.3.1
tell us cos(—t) = cos(t) for all real numbers t and sin(—t) = — sin(t) for all
real numbers t. This means f(t) = cos(t) is an even function, while g(t) =
sin(t) is an odd function. Another important property of these functions is that
cos(t + 2mk) = cos(t) and sin(t + 27k) = sin(t) for all real numbers t and any
integer k. This last property is given a special name.

Definition 4.4.1 Periodic Function

A function fis said to be periodic if there is a real number ¢ so that f(t +
¢) = f(t) for all real numbers t in the domain of f. The smallest positive
number p for which f(t + p) = f(t) for all real numbers t in the domain
of f, if it exists, is called the period of f.

We have already seen a family of periodic functions in Section 3.1.1: the
constant functions. However, despite being periodic, a constant function has
no period. (We'll leave that odd gem as an exercise for you.) Returning to the
circular functions, we see that by Definition 4.4.1, f(t) = cos(t) is periodic with
period 2, since cos(t + 2mk) = cos(t) for any integer k, in particular, for k = 1.
Similarly, we can show g(t) = sin(t) is also periodic with 27 as its period. Hav-
ing period 27 essentially means that we can completely understand everything
about the functions f(t) = cos(t) and g(t) = sin(t) by studying one interval of
length 27, say [0, 27].

One last property of the functions f(t) = cos(t) and g(t) = sin(t) is worth
pointing out: both of these functions are continuous and smooth. Recall from
Section 3.2.1 that geometrically this means the graphs of the cosine and sine
functions have no jumps, gaps, holes in the graph, asymptotes, corners or cusps.
As we shall see, the graphs of both f(t) = cos(t) and g(t) = sin(t) meander
nicely and don’t cause any trouble. We summarize these facts in the following
theorem.

Theorem 4.4.1 Properties of the Cosine and Sine Functions

¢ The function f(x) = cos(x) ¢ The function f(x) = sin(x)

- has domain (—oo, 00) — hasdomain (—oo, 00)

- has range [—1, 1] - has range [—1, 1]

— is continuous and — is continuous and
smooth smooth

— iseven - is odd

— has period 27 — has period 27




4.4 Graphs of the Trigonometric Functions

In this section, we follow the usual graphing convention and use x as the x || cos(x) (x, cos(x))
independent variable and y as the dependent variable. This allows us to turn 0 1 (0,1)
our attention to graphing the cosine and sine functions in the Cartesian Plane. z § (g, ?)
(Caution: the use of x and y in this context is not to be confused with the x- and T 0 (,0)
y-coordinates of points on the Unit Circle which define cosine and sine. Using ; = - zﬂ
the term ‘trigonometric function’ as opposed to ‘circular function’ can help with 2 2 (Tv *T)
that, but one could then ask, “Hey, where’s the triangle?”) To graph y = cos(x), T -1 (m,—1)
we make a table using some of the ‘common values’ of x in the interval [0, 27]. 51 2 (5; _ﬁ)
This generates a portion of the cosine graph, which we call the ‘fundamental 34 2 &’ - 2
cycle’ of y = cos(x). B 0 (3,0)

A few things about the graph above are worth mentioning. First, this graph 7{ ? (%, ?)
represents only part of the graph of y = cos(x). To get the entire graph, we Py 1 (2m,1)
imagine ‘copying and pasting’ this graph end to end infinitely in both directions

Val f = 0,2
(left and right) on the x-axis. Secondly, the vertical scale here has been greatly alues of f(x) = cos(x) on [0, 2

exaggerated for clarity and aesthetics. Below is an accurate-to-scale graph of v
y = cos(x) showing several cycles with the ‘fundamental cycle’ plotted thicker
than the others. The graph of y = cos(x) is usually described as ‘wavelike’ —
indeed, many of the applications involving the cosine and sine functions feature

modelling wavelike phenomena. }
/fy\ %

The ‘fundamental cycle’ of y = cos(x).

Figure 4.4.1: An accurately scaled graph of y = cos(x).

We can plot the fundamental cycle of the graph of y = sin(x) similarly, with Figure 4.4.3: Graphing y = cos(x)

similar results.
As with the graph of y = cos(x), we provide an accurately scaled graph of

y = sin(x) below with the fundamental cycle highlighted. x || sin(x) (x,sin(x))
v 0 0 (0,0)
5 1 (5:1)
3r V2 (34 J)

3 2 172
Figure 4.4.2: An accurately scaled graph of y = sin(x). - 0 (r,0)
It is no accident that the graphs of y = cos(x) and y = sin(x) are so similar. sl 2 (547 _TZ)
Using a cofunction identity along with the even property of cosine, we have ;r 1 4( EE—

2 B 20

i _ m _ ™\ _ _ T m |l _v2 | (x _v2
sm(x)-cos(i—x)—cos(—(x—2))—cos(x 2), 2 7 (47 2)
o . 27 0 (27,0)

so that the graph of y = sin(x) is the result of shifting the graph of y = cos(x)

. . . . . . . | f =si 2
to the right 7 units. A visual inspection confirms this. Values of f(x) = sin(x) on [0, 27

Yy

Now that we know the basic shapes of the graphs of y = cos(x) and y =
sin(x), we can graph transformations to graph more complicated curves. To do NI
so, we need to keep track of the movement of some key points on the original
graphs. We choose to track the values x = 0, g, m, 377 and 2m. These ‘quarter
marks’ correspond to quadrantal angles, and as such, mark the location of the
zeros and the local extrema of these functions over exactly one period. Before
we begin our next example, we need to review the concept of the ‘argument’
of a function as first introduced in Section 2.1. For the function f(x) = 1 — -1t
5cos(2x — ), the argument of fis x. We shall have occasion, however, to refer
to the argument of the cosine, which in this case is 2x — 7. Loosely stated, the
argument of a trigonometric function is the expression ‘inside’ the function.

INEES

(SIE]
o

~g T

The ‘fundamental cycle’ of y = sin(x)

Figure 4.4.4: Graphing y = sin(x)
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Example 4.4.1 Plotting cosine and sine functions
Graph one cycle of the following functions. State the period of each.
1. f(x) =3cos (257) + 1

2. g(x) = sin(m —2x) + 3

a T—2x=a X
0| m—2x=0| I
SOLUTION
HEEC
Tl m—2x=n 0 1. We set the argument of the cosine, 7“‘;“, equal to each of the values: 0,
P P - Z,m, 3%, 2w and solve for x. We summarize the results in Figure 4.4.7.
S|l m—=2x= | =%
: : i Next, we substitute each of these x values into f(x) = 3 cos (%) +1to
2m | m—2x =21 | —3 . . . .
2 determine the corresponding y-values and connect the dots in a pleasing
wavelike fashion.
Figure 4.4.8: Reference points for g(x) in Y
Example 4.4.1
4 4
x || fx) | (x.f(x)) 3+
1 4 (1,4) o1
2 1 (2,1)
1 -
3 =21 (3,-2)
41 1| (41) 12\ 3 [a 5 7%
5 4 (5,4) —14
—24
Figure 4.4.5: Plotting one cycle of y = f(x) in Example 4.4.1
One cycle is graphed on [1, 5] so the period is the length of that interval
which is 4.
2. Proceeding as above, we set the argument of the sine, 7 — 2x, equal to
each of our quarter marks and solve for x in Figure 4.4.8.
We now find the corresponding y-values on the graph by substituting each
a| ®r=glx of these x-values into g(x) = %sin(ﬂ —2x) + % Once again, we connect
— the dots in a wavelike fashion.
0 T =01
s TX— T T y
5 =32
S x|l g(x) | (x,g(x))
3 TX—m __ 37 : . 4
d L il 2l G TN
27 | B =27 | 5 :
: % 2 (g, 2) \0/
o 3| (03 LT
Figure 4.4.7: Reference points for f(x) in o 1 (_1 1)
4 4>
Example 4.4.1
_T 3 (_z i)
2 2 22

SRS
I

e ad

R

Figure 4.4.6: Plotting one cycle of y = g(x) in Example 4.4.1
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One cycle was graphed on the interval [— 2, Z] so the periodis 2—(—3) =
.

The functions in Example 4.4.1 are examples of sinusoids. Sinusoids can
be characterized by four properties: |period, amplitude, phase shift and verti-
cal shift. We have already discussed| period, that is, how long it takes for the
sinusoid to complete one cycle. The standard period of both f(x) = cos(x) and
g(x) = sin(x) is 27, but horizontal scalings will change the period of the result-
ing sinusoid. The amplitude of the sinusoid is a measure of how ‘tall’ the wave
is, as indicated in the figure below. The amplitude of the standard cosine and
sine functions is 1, but vertical scalings can alter this: see Figure 4.4.9.

The phase shift of the sinusoid is the horizontal shift experienced by the
fundamental cycle. We have seen that a phase (horizontal) shift of 7 to the right
takes f(x) = cos(x) to g(x) = sin(x) since cos (x — 2) = sin(x). As the reader
can verify, a phase shift of 7 to the left takes g(x) = sin(x) to f(x) = cos(x). In
most contexts, the vertical shift of a sinusoid is assumed to be 0, but we state
the more general case below. The following theorem shows how to find these
four fundamental quantities from the formula of the given sinusoid.

Theorem 4.4.2 Standard form of sinusoids

For w > 0, the functions

C(x) = Acos(wx+ ¢) +B | and S(x) = Asin(wx+ ¢) + B

2
¢ have period ] ¢ have phase shift —?
w w

* have amplitude |A] * have vertical shift B

We note that in some scientific and engineering circles, the quantity ¢ men-
tioned in Theorem 4.4.2 is called the phase of the sinusoid. Since our interest
in this book is primarily with graphing sinusoids, we focus our attention on the
horizontal shift —2 induced by ¢.

The parameter w, which is stipulated to be positive, is called the (angular)
frequency of the sinusoid and is the number of cycles the sinusoid completes
over a 27 interval. We can always ensure w > 0 using the Even/Odd Identities.
(Try using the formulas in Theorem 4.4.2 applied to C(x) = cos(—x + 7) to see
why we need w > 0.)

Example 4.4.2 Converting a sinusoid to standard form
Consider the function f(x) = cos(2x) — /3 sin(2x). Find a formula for f(x):

1. in the form C(x) = A cos(wx + ¢) + Bforw > 0
2. inthe form S(x) = Asin(wx + ¢) + Bforw > 0

SOLUTION

1. The key to this problem is to use the expanded forms of the sinusoid for-
mulas and match up corresponding coefficients. Equating f(x) = cos(2x)—
v/3sin(2x) with the expanded form of C(x) = A cos(wx + ¢) + B, we get

cos(2x) — v/3sin(2x) = A cos(wx) cos(¢p) — Asin(wx) sin(¢) + B

4.4 Graphs of the Trigonometric Functions

We have already seen how the Even/Odd
and Cofunction Identities can be used to
rewrite g(x) = sin(x) as a transformed
version of f(x) = cos(x), so of course, the
reverse is true: f(x) = cos(x) can be writ-
ten as a transformed version of g(x) =
sin(x). The authors have seen some in-
stances where sinusoids are always con-
verted to cosine functions while in other
disciplines, the sinusoids are always writ-
ten in terms of sine functions.

|

amplitude

*********** - - - baseline - - -

period

Figure 4.4.9: Properties of sinusoids
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It should be clear that we can take w = 2 and B = 0 to get
cos(2x) — V/3sin(2x) = A cos(2x) cos(p) — Asin(2x) sin(¢)

To determine A and ¢, a bit more work is involved. We get started by
equating the coefficients of the trigonometric functions on either side of
the equation. On the left hand side, the coefficient of cos(2x) is 1, while
on the right hand side, it is A cos(¢). Since this equation is to hold for
all real numbers, we must have that A cos(¢) = 1. Similarly, we find by
equating the coefficients of sin(2x) that Asin(¢) = v/3. What we have
here is a system of nonlinear equations! We can temporarily eliminate the
dependence on ¢ by using the Pythagorean Identity. We know cos?(¢) +
sin?(¢) = 1, so multiplying this by A2 gives A% cos?(¢) + A% sin?(¢) = A%,
Since Acos(¢) = 1and Asin(¢) = v/3, we get A2 = 12 + (1/3)? = 4or
A = 42. Choosing A = 2, we have 2 cos(¢) = 1 and 2sin(¢) = /3 or,
after some rearrangement, cos(¢) = 3 and sin(¢) = ? One such angle
¢ which satisfies this criteria is ¢ = . Hence, one way to write f(x) as a
sinusoid is f(x) = 2 cos (2x + ’3—“) We can easily check our answer using
the sum formula for cosine

f(x) = 2cos(2x+ %)
= 2 [cos(2x) cos (Z) — sin(2x) s
= 2 [cos(:!x) (3) —sin(2x) (i)
cos(2x) — v/3 sin(2x)

(3)
in (%)

2. Proceeding as before, we equate f(x) = cos(2x) — v/3sin(2x) with the
expanded form of S(x) = Asin{wx + ¢) + B to get

cos(2x) — v/3sin(2x) = A sin(wx) cos(¢) + A cos(wx) sin(¢) + B
Once again, we may take w = 2 and B = 0 so that

cos(2x) — v/3sin(2x) = Asin(2x) cos(¢) + A cos(2x) sin(¢)

We equate (be careful here!) the coefficients of cos(2x) on either side and
get Asin(¢) = 1and Acos(¢) = —v/3. Using A? cos?(¢) + A?sin?(¢) =
A? as before, we get A = 42, and again we choose A = 2. This means
2sin(¢) = 1,0rsin(¢) = ,and 2 cos(¢) = —v/3, which means cos(¢) =
—?. One such angle which meets these criteria is ¢ = %’T Hence, we
have f(x) = 2sin (2x + %’T) Checking our work analytically, we have

fix) = 2sin(2x+ ‘%’T)

It is important to note that in order for the technique presented in Example
4.4.2 to fit a function into one of the forms in Theorem 4.4.2, the arguments
of the cosine and sine function much match. That is, while f(x) = cos(2x) —
v/3sin(2x) is a sinusoid, g(x) = cos(2x) — v/3sin(3x) is not.(This graph does,
however, exhibit sinusoid-like characteristics! Check it out!) It is also worth



mentioning that, had we chosen A = —2 instead of A = 2 as we worked through
Example 4.4.2, our final answers would have looked different. The reader is
encouraged to rework Example 4.4.2 using A = —2 to see what these differ-
ences are, and then for a challenging exercise, use identities to show that the
formulas are all equivalent. The general equations to fit a function of the form
f(x) = a cos(wx) + b sin(wx) + B into one of the forms in Theorem 4.4.2 are
explored in Exercise 35.

4.4.2 Graphs of the Secant and Cosecant Functions

We now turn our attention to graphing y = sec(x). Since sec(x) = ﬁ, we can

use our table of values for the graph of y = cos(x) and take reciprocals. We run

into trouble at odd multiples of 7 suchasx = 7 and x = 377“ since cos(x) = 0

at these values. This results in vertical asymptotes at x = 7 and x = 37” Since

cos(x) is periodic with period 2, it follows that sec(x) is also. Below we graph
a fundamental cycle of y = sec(x) along with a more complete graph obtained

by the usual ‘copying and pasting.’

4.4 Graphs of the Trigonometric Functions

x || cos(x) sec(x) | (x,sec(x)) v ! !
0 1 1 (0,1) 31 1 1
| |
il va| VD) o ) 3
z 0 | undefined N i i
| |
e e A N C ) ; R
T K. 3 T br 3% 7In of
T -1 -1 (m,—1) ) €7 T
T | |
T —F —v[GE-a| | :
—aT | |
i 0 | undefined | |
- V2 - -3t I I
T V2| (F.V2) | |
2 1 1 (27, 1) ‘

Figure 4.4.11: The graph of y = secx

As one would expect, to graph y = csc(x) we begin with y = sin(x) and
take reciprocals of the corresponding y-values. Here, we encounter issues at
x = 0,x = wand x = 27w. Proceeding with the usual analysis, we graph the
fundamental cycle of y = csc(x) below along with the dotted graph of y = sin(x)
for reference. Since y = sin(x) and y = cos(x) are merely phase shifts of each
other, so too are y = csc(x) and y = sec(x).

Note: provided that sec(a) and sec(/3)
are defined, sec(a) = sec(f) if and only
if cos(a)) = cos(3). Hence, sec(x) inher-
its its period from cos(x).
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x || sin(x) csc(x) | (x,csc(x)) ) ‘ ‘
0 0 | undefined 51 | !
| |
s 2 T ‘ !
il ¥ Vi GV | |
2| 1 1 G 1 | |
| |
gl s V2| (3.V2) ; ;
m 0 | undefined R T s 3n Tn 2‘:77 g
—1+
57 2 57 | |
el I I A L)) | |
S 1 -1 (-1 | | i
| |
s 2 ™ -3
ml -2 —v2|(Z.-V2) | |
2 0 | undefined ‘

Figure 4.4.12: The ‘fundamental cycle’ of y = csc(x).

T

Figure 4.4.13: The graph of y = cscx

Note that, on the intervals between the vertical asymptotes, both F(x) =
sec(x) and G(x) = csc(x) are continuous and smooth. In other words, they
are continuous and smooth on their domains. The following theorem summa-
rizes the properties of the secant and cosecant functions. Note that all of these
properties are direct results of them being reciprocals of the cosine and sine
functions, respectively.



4.4 Graphs of the Trigonometric Functions

Theorem 4.4.3 Properties of the Secant and Cosecant Functions

¢ The function F(x) = sec(x)

[ (2k+ 1)1 (2k+3
hasdomain{x:x;&%—i—wk,kisaninteger}: U (( +1)m (2k+ )w)

P 2 ’ 2
- hasrange {y: |y| > 1} = (—o0, —1] U [1,00)
— is continuous and smooth on its domain
— iseven
— has period 27
* The function G(x) = csc(x)
oo
- has domain {x : x # 7k, kisaninteger} = U (km, (k + 1))
k=—o00

hasrange {y : ly| > 1} = (—o0, —1] U [1, 00)
is continuous and smooth on its domain
is odd

has period 27

In the next example, we discuss graphing more general secant and cosecant
curves.

Example 4.4.3 Graphing secant and cosecant curves
Graph one cycle of the following functions. State the period of each.

1. f(x) =1 — 2sec(2x)

csc(m — mx) — 5

2. g(x) =
g(x) )
SOLUTION
a 2x=a X
1. To graphy = 1 — 2 sec(2x), we follow the same procedure as in Example ol 2x=o0] o
4.4.1. First, we set the argument of secant, 2x, equal to the ‘quarter marks’ ] gz | z
0, 2, m, 3 and 27 and solve for x in Figure 4.4.15. 2| X753 | a
s x=m7| 3
Next, we substitute these x values into f(x). If f(x) exists, we have a point Tlx=32 &
on the graph; otherwise, we have found a vertical asymptote. In addition | 2x =27 | =
to these points and asymptotes, we have graphed the associated cosine
curve —in this case y = 1 — 2 cos(2x) — dotted in the picture below. Since
one cycle is graphed over the interval [0, 7], the periodis 7 — 0 = 7. Figure 4.4.15: Reference points for f(x) in

Example 4.4.3
145



Chapter 4 Foundations of Trigonometry

a T—TX=a X
0 m—7mx=0 1
s — 1
2 7T_7TX—Z 2
T T—TX=T 0
37 3 | _1
T X =3 5
2m | m—mx =27 | —1

Figure 4.4.18: Reference points for g(x) in
Example 4.4.3
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X fx)
0 -1
7 || undefined
3 3
3 || undefined
T -1

1
|
|
|
|
|
[
o
ol
Y
}
i

3..
2..
1_-
: o -
—14 g 3

e i

Figure 4.4.14: Plotting one cycle of y = f(x) in Example 4.4.3

2. Proceeding as before, we set the argument of cosecanting(x) =
equal to the quarter marks and solve for x in Figure 4.4.18.

4
I
I
I
I
I

csc(m—mx)—5

3

Substituting these x-values into g(x), we generate the graph below and
find the period to be 1 — (<+1) = 2. The associated sine curve, y =

sin(m—mx)—5
3

, is dotted in as a reference.

X g(x)
1 || undefined
1 _4
2 3
0 || undefined
_% _2
—1 || undefined

=+

Figure 4.4.16: Plotting one cycle of y = g(x) in Example 4.4.3

P S B

Before moving on, we note that it is possible to speak of the period, phase
shift and vertical shift of secant and cosecant graphs and use even/odd identities
to put them in a form similar to the sinusoid forms mentioned in Theorem 4.4.2.
Since these quantities match those of the corresponding cosine and sine curves,
we do not spell this out explicitly. Finally, since the ranges of secant and cosecant

are unbounded, there is no amplitude associated with these curves.

4.4.3 Graphs of the Tangent and Cotangent Functions

Finally, we turn our attention to the graphs of the tangent and cotangent func-
tions. When constructing a table of values for the tangent function, we see that
J(x) = tan(x) is undefined at x = 7 and x = 37", and we have vertical asymp-
totes at these points. Plotting this information and performing the usual ‘copy

and paste’ produces Figures 4.4.17 and 4.4.19 below.



X tan(x) | (x,tan(x)) ! !
0 0 (0,0)

| |
i 1 ( | |
Z || undefined 11 l l

| |
3T 3T , ,
T -1 (4,1 R Sy S n et

4 2 4 N Y

T 0 (m,0) -1t 1 :

| |
3 1 (5 | |

| |
3 |l undefined ! !

| |
F 1 5o | |
27 0 (27,0)

Figure 4.4.17: The graph of y = tan(x) over [0, 27]

)

Figure 4.4.19: The graph of y = tan(x)

From the graph, it appears as if the tangent function is periodic with period
7. To prove that this is the case, we appeal to the sum formula for tangents. We
have:

tan(x) +-tan(m)  tan(x) 40
1—tan(x)tan(m) 1 — (tan(x))(0)

= tan(x),

tan(x + ) =

which tells us the period of tan(x) is at most 7. To show that it is exactly
7, suppose p is a positive real number so that tan(x + p) = tan(x) for all real
numbers x. For x = 0, we have tan(p) = tan(0 4+ p) = tan(0) = 0, which
means p is a multiple of 7. The smallest positive multiple of 7 is 7 itself, so we
have established the result. We take as our fundamental cycle for y = tan(x)
the interval (—%, g), and use as our ‘quarter marks’ x = —g, —%, 0, % and %

It should be no surprise that K(x) = cot(x) behaves similarly to J(x) =
tan(x). Plotting cot(x) over the interval [0, 27] results in the graph in Figure
4.4.20 below.

4.4 Graphs of the Trigonometric Functions
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X cot(x) | (x,cot(x))

0 || undefined

i 1 &Y

3 o (59 1

7 -1 (81 :
7 || undefined 1l '
T 1 Gy

7 o (%9

T -1 (-1
27 || undefined

Figure 4.4.20: The graph of y = cot(x) over [0, 27]

From these data, it clearly appears as if the period of cot(x) is 7, and we
leave it to the reader to prove this. (Certainly, mimicking the proof that the
period of tan(x) is an option; for another approach, consider transforming tan(x)
to cot(x) using identities.) We take as one fundamental cycle the interval (0, 7)
with quarter marks: x =0, 7, 7, 37” and w. A more complete graph of y = cot(x)
is below, along with the fundamental cycle highlighted as usual.

Figure 4.4.21: The graph of y = cot(x)

The properties of the tangent and cotangent functions are summarized be-
low. As with Theorem 4.4.3, each of the results below can be traced back to
properties of the cosine and sine functions and the definition of the tangent
and cotangent functions as quotients thereof.
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4.4 Graphs of the Trigonometric Functions

Theorem 4.4.4 Properties of the Tangent and Cotangent Functions

e The function J(x) = tan(x)

[ (2k+ 1)1 (2k+3
has domain {x : x # I + 7k, kis an integer} = U (( er)ﬂ’( JZF)W)

k=—o0

has range (—o0, 00)

is continuous and smooth on its domain
- is odd

has period 7

* The function K(x) = cot(x)

o

has domain {x : x # mk, kis an integer} = U (km, (k + 1))

k=—00

has range (—o0, c0)

is continuous and smooth on its domain
is odd

has period

Example 4.4.4 Plotting tangent and cotangent curves
Graph one cycle of the following functions. Find the period.

1. f(x) =1 —tan (%).

2. g(x) =2cot (Ix+m) + 1.

SOLUTION g 2 —4d X
e el
T X __ i T
4| 2T 79| "2
1. We proceed as we have in all of the previous graphing examples by setting 0 7=0 0
the argument of tangent in f(x) = 1 — tan (%), namely 3, equal to each T x_1x =
of the ‘quarter marks’ —g, —%, 0, T and g, and solving for x: see Figure : i i 2
™ x _m .
2 2 2

4.4.23.

Figure 4.4.23: Reference points for f(x) in

Substituting these x-values into f(x), we find points on the graph and the
Example 4.4.4

vertical asymptotes.

149



Chapter 4 Foundations of Trigonometry

a IX+m=a X
0 Xx+m=0 2
=i 3
| rr=g |
| prn=% |3
T| x+m=mw 0

Figure 4.4.25: Reference points for g(x) in

Example 4.4.4
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f) | (% f9)

— || undefined

x

_g 2 (_%’2) \
0 1 (0,1 *
2 o| (50 U
7 || undefined |

Figure 4.4.22: Plotting one cycle of y = f(x) in Example 4.4.4

We see that the period is m — (—7) = 2.

2. The ‘quarter marks’ for the fundamental cycle of the cotangent curve are
0,%,2,3% and 7. Tograph g(x) = 2 cot (2x + @) +1, we begin by setting
35X + m equal to each quarter mark and solving for x in Figure 4.4.25.

We now use these x-values to generate our graph.

| Y
|
BN
et | Gglo) i A
—2 || undefined |
|
-3 3 (-3.3) [ LT
—1 1] (-1,1) ! .
I EI :
0 || undefined | B
[

Figure 4.4.24: Plotting one cycle of y = g(x) in Example 4.4.4

We find the period to be 0 — (—2) = 2.

As with the secant and cosecant functions, it is possible to extend the notion
of period, phase shift and vertical shift to the tangent and cotangent functions
as we did for the cosine and sine functions in Theorem 4.4.2. Since the number
of classical applications involving sinusoids far outnumber those involving tan-
gent and cotangent functions, we omit this. The ambitious reader is invited to
formulate such a theorem, however.



Exercises 4.4

Problems

In Exercises 1 — 12, graph one cycle of the given function.
State the period, amplitude, phase shift and vertical shift of
the function.

1. y = 3sin(x)
2. y =sin(3x)

3. y= —2cos(x)

s
4. y = cos (x — 7>
y 2

T
5. - . ( 7)
y sin ( x 3

6. y=sin(2x — )

7 = Ecos Ex—&—z
VT3 273

8. y=rcos(3x —27) + 4

T
9. y=sin (fx77>72
y 4

2 T
10. y= 2 (7 4 ) 1
y 3 cos > X | +
3 m 1
1. y=-> (2 7) _z
y 5 cos (2x+ 5 5
12. y = 4sin(—2nx + )

In Exercises 13 — 24, graph one cycle of the given function.
State the period of the function.

13. y=tan (x— g)

1
14. y = 2tan (Zx) -3

1
15. y = gtan(—ZX— T+ 1
™
16. y = (—7)
y =sec(x—
17.y:—csc(x+§)

1 1 us
18. y = —= X+ =
y 3sec(2x 3)

19. y = csc(2x — )

20. y =sec(3x — 2m) + 4

21. y:csc(—x—ﬁ) -2

1
23. y = —11cot <§X>

1 3
24. y:§cot(2x+7ﬁ)+1

In Exercises 25 — 34, use Example 4.4.2 as a guide to show
that the function is a sinusoid by rewriting it in the forms
C(x) = Acos(wx + ¢) + B and S(x) = Asin(wx + ¢) + B
forw>0and0 < ¢ < 27.

25. f(x) = V/2sin(x) +v/2cos(x) + 1
26. f(x) = 3/3sin(3x) — 3 cos(3x)
27. f(x) = —sin(x) + cos(x) — 2

V3

28. f(x) = —% sin(2x) — > cos(2x)

29. f(x) = 2+/3 cos(x) — 2sin(x)
3v3

30. f(x) = %cos(Zx) - sin(2x) + 6

31. f(x) = —% cos(5x) — ? sin(5x)

32. f(x) = —6+/3 cos(3x) — 6sin(3x) — 3

5v2

= ¥ sin(x) — - cos(x)

33. f(x)

34. f(x) = 3sin (%) —3v/3cos (g)

35. you should have noticed a relationship between the phases
¢ for the S(x) and C(x). Show that if f(x) = A sin(wx+a) +
™

B, then f(x) = Acos(wx + ) + Bwhere § = o — 5

In Exercises 36 — 41, verify the identity by graphing the right
and left hand sides on a computer or calculator.

36. sin®(x) + cos’(x) = 1
37. sec’(x) —tan*(x) = 1
38. cos(x) = sin (g fx)
39. tan(x 4+ m) = tan(x)

40. sin(2x) = 2sin(x) cos(x)
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41.

tan ({) _ sin(x)

2/ 1+ cos(x)

In Exercises 42 — 48, graph the function with the help of your
computer or calculator and discuss the given questions with
your classmates.

42.

43,

44,

45.

f(x) = cos(3x) + sin(x). Is this function periodic? If so,
what is the period?

fix) = w What appears to be the horizontal asymptote
of the graph?

f(x) = xsin(x). Graph y = £x on the same set of axes and
describe the behaviour of f.

f(x) = sin (1). What's happening as x — 0?

46.

47.

48.

49.

f(x) = x—tan(x). Graph y = x on the same set of axes and
describe the behaviour of f.

f(x) = e %™ (cos(2x) + sin(2x)). Graphy = e ** on
the same set of axes and describe the behaviour of f.

f(x) = e %™ (cos(2x) + 2sin(x)). Graphy = +e *™ on
the same set of axes and describe the behaviour of f.

Show that a constant function f is periodic by showing that
f(x + 117) = f(x) for all real numbers x. Then show that
f has no period by showing that you cannot find a smallest
number p such that f(x + p) = f(x) for all real numbers
x. Said another way, show that f(x + p) = f(x) for all real
numbers x for ALL values of p > 0, so no smallest value
exists to satisfy the definition of ‘period’.



4.5 |Inverse Trigonometric Functions

4.5 Inverse Trigonometric Functions

As the title indicates, in this section we concern ourselves with finding inverses of
the (circular) trigonometric functions. Our immediate problem is that, owing to
their periodic nature, none of the six circular functions is one-to-one. To remedy
this, we restrict the domains of the circular functions to obtain a one-to-one
function. We first consider f(x) = cos(x). Choosing the interval [0, 7] allows
us to keep the range as [—1, 1] as well as the properties of being smooth and
continuous.

ZanN
N

Figure 4.5.1: Restricting the domain of f(x) = cos(x) to [0, 7].

Recall from Section 2.2.3 that the inverse of a function fis typically denoted
f~1. For this reason, some textbooks use the notation f~2(x) = cos~(x) for the
inverse of f(x) = cos(x). The obvious pitfall here is our convention of writing 14
(cos(x))? as cos?(x), (cos(x))3 as cos®(x) and so on. It is far too easy to confuse
cos1(x) with ﬁ = sec(x) so we will not use this notation in our text. (But be
aware that many books do! As always, be sure to check the context!) Instead,
we use the notation f~1(x) = arccos(x), read ‘arc-cosine of . To understand
the ‘arc’ in ‘arccosine’, recall that an inverse function, by definition, reverses the 14
process of the original function. The function f(t) = cos(t) takes a real number
input t, associates it with the angle § = t radians, and returns the value cos(9).
Digging deeper, we have that cos(f) = cos(t) is the x-coordinate of the termi-
nal point on the Unit Circle of an oriented arc of length |t| whose initial point is flx) =cos(x),0<x< 7
(1,0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and the
outputs as x-coordinates on the Unit Circle. The function 2, then, would take
x-coordinates on the Unit Circle and return oriented arcs, hence the ‘arc’ in arc-
cosine. Figure 4.5.3 shows the graphs of f(x) = cos(x) and f~*(x) = arccos(x), TT
where we obtain the latter from the former by reflecting it across the liney = x,
in accordance with Theorem 2.2.2.

[N
:‘ .
8

We restrict g(x) = sin(x) in a similar manner, although the interval of choice

s[5, 5]-

N s - —
\\A \\/ : f1(x) = arccos(x)

Figure 4.5.3: Reflecting y = cos(x) across
y = xyields y = arccos(x)

NE)

Figure 4.5.2: Restricting the domain of f(x) = sin(x) to [—3, Z].

It should be no surprise that we call g~1(x) = arcsin(x), which is read ‘arc-
sine of x'.

We list some important facts about the arccosine and arcsine functions in
the following theorem.
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Y
1__
_% % xT
14
g(x) =sin(x), -3 <x< %
Yy
s
4
-1 1 T
s
-z

g *(x) = arcsin(x)

Figure 4.5.4: Reflecting y = sin(x) across
y = xyields y = arcsin(x)
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Theorem 4.5.1

Properties of the Arccosine and Arcsine Functions

* Properties of F(x) = arccos(x)

Domain: [—1, 1]

Range: [0, 7]

arccos(x) = tifand only if 0 < t < 7 and cos(t) = x
cos(arccos(x)) = x provided -1 < x <1

arccos(cos(x)) = x provided 0 < x < 7

¢ Properties of G(x) = arcsin(x)

Domain: [—1,1]

Range: -2, Z]

arcsin(x) = tifand only if —Z < t < 2 andsin(t) = x
sin(arcsin(x)) = x provided —1 <x <1

arcsin(sin(x)) = x provided —2 < x <

NS

additionally, arcsine is odd

Everything in Theorem 4.5.1 is a direct consequence of the facts that f(x) =

cos(x) for 0 <

g(x) = sin(x) for -3

example.

Example 4.5.1

x < mand F(x) = arccos(x) are inverses of each other as are
< x < 3 and G(x) = arcsin(x). It’s about time for an

Evaluating the arcsine and arccosine functions

1. Find the exact values of the following.
(a)
(b)
()
(d)

arccos (1)

H 2
arcsin (T)

arccos (—ﬁ>

2

arcsin (—3)

(e) arccos (cos (Z))

(
(f) arccos (cos (1))
(

2. Rewrite the following as algebraic expressions of x and state the domain

on which the equivalence is valid.

(a) tan (arccos (x))

SOLUTION

(b) cos (2arcsin(x))

1. (a) To find arccos (%), we need to find the real number t (or, equiva-
lently, an angle measuring t radians) which lies between 0 and 7 with

cos(t) =

3. We know t = I meets these criteria, so arccos (3) = %

(b) The value of arcsin (%) is a real number t between —7 and 5 with

sin(t) = % The number we seek is t = 7. Hence, arcsin (ﬁ> =

™

4

2



()

(f)

The numbert = arccos (—?) liesintheinterval [0, 7] with cos(t) =
—%. Our answer is arccos (—?) = %”.

To find arcsin (—1), we seek the number t in the interval [—Z, 2

withsin(t) = —1. The answeris t = —Z so thatarcsin (—1) = —Z.
Since 0 < Z < 7, one option would be to simply invoke Theorem
4.5.1 to get arccos (cos (£)) = Z. However, in order to make sure
we understand why this is the case, we choose to work the example
through using the definition of arccosine. Working from the inside

out, arccos (cos (%)) = arccos (?) Now, arccos (?) is the real

(o))

number t with 0 < t < 7 and cos(t) = ? We find t = %, so that
arccos (cos (%)) = Z.
117

Since =" does not fall between 0 and m, Theorem 4.5.1 does not ap-

ply. We are forced to work through from the inside out starting with

arccos (cos (1)) = arccos (?) From the previous problem, we

V3 _ 11 _
know arccos (T) = Z. Hence, arccos (cos (1)) = Z.
One way to simplify cos (arccos (—2)) is to use Theorem 4.5.1 di-
rectly. Since —3 is between —1and 1, we have that cos (arccos (—2))
—% and we are done. However, as before, to really understand why
this cancellation occurs, we let t = arccos (—2). Then, by defini-
tion, cos(t) = —2. Hence, cos (arccos (—2)) = cos(t) = —2, and
we are finished in (nearly) the same amount of time.

As in the previous example, we let t = arccos (—32) so that cos(t) =
—% for some t where 0 < t < 7. Since cos(t) < 0, we can nar-
row this down a bit and conclude that g < t < m, so that t cor-
responds to an angle in Quadrant Il. In terms of t, then, we need

to find sin (arccos (—2)) = sin(t). Using the Pythagorean Identity

cos?(t) + sin’(t) = 1, we get (7%)2 + sin?(t) = 1orsin(t) = &

Since t corresponds to a Quadrants Il angle, we choose sin(t) =
4

Hence, sin (arccos (—2)) = £.

[SIF= IR

We begin this problem in the same manner we began the previous
two problems. To help us see the forest for the trees, we let t =
arccos(x), so our goal is to find a way to express tan (arccos (x)) =
tan(t) in terms of x. Since t = arccos(x), we know cos(t) = x where
0 <t < 7, but since we are after an expression for tan(t), we know
we need to throw out t = 7 from consideration. Hence, either
0 <t % or % < t < 7 so that, geometrically, t corresponds
to an angle in Quadrant | or Quadrant Il. One approach to finding
tan(t) is to use the quotient identity tan(t) = zg‘s((?) Substituting
cos(t) = x into the Pythagorean Identity cos?(t) + sin®(t) = 1 gives
X% +sin%(t) = 1, from which we get sin(t) = ++/1 — x2. Since t cor-
responds to angles in Quadrants | and Il, sin(t) > 0, so we choose

sin(t) = V1 — x2. Thus,

sin(t) V1 —x?
tan(t) = cos(t) T x

To determine the values of x for which this equivalence is valid, we
consider our substitution t = arccos(x). Since the domain of arccos(x)

4.5 |Inverse Trigonometric Functions

An alternative approach to finding tan(t)
is to use the identity 1 + tan’(t) =
sec’(t). Since x = cos(t), sec(t) =
cosl(t) = 1. The reader is invited to work
through this approach to see what, if any,
difficulties arise.
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is [—1, 1], we know we must restrict —1 < x < 1. Additionally, since
we had to discard t = Z, we need to discard x = cos (%) = 0.

Hence, tan (arccos (x)) = ¥2= is valid for x in [-1,0) U (0, 1].

X

(b) We proceed as in the previous problem by writing t = arcsin(x) so
that ¢ lies in the interval [—Z, 2] with sin(t) = x. We aim to ex-

press cos (2 arcsin(x)) = cos(2t) in terms of x. Since cos(2t) is de-
fined everywhere, we get no additional restrictions on t as we did in
the previous problem. We have three choices for rewriting cos(2t):
cos?(t) — sin(t), 2cos?(t) — 1 and 1 — 2sin®(t). Since we know
x = sin(t), it is easiest to use the last form:

cos (2arcsin(x)) = cos(2t) = 1 — 2sin?(t) = 1 — 2x*

To find the restrictions on x, we once again appeal to our substitution
t = arcsin(x). Since arcsin(x) is defined only for —1 < x < 1, the
equivalence cos (2 arcsin(x)) = 1 — 2x* is valid only on [—1, 1].

A few remarks about Example 4.5.1 are in order. Most of the common errors
| encountered in dealing with the inverse circular functions come from the need
| to restrict the domains of the original functions so that they are one-to-one. One
| instance of this phenomenon is the fact that arccos (cos (1)) = Z as opposed
| to &7, This is the exact same phenomenon discussed in Section 2.2.3 when we
} saw /(—2)? = 2 as opposed to —2. Additionally, even though the expression
! we arrived at in part 2b above, namely 1 — 2x?, is defined for all real numbers,
the equivalence cos (2 arcsin(x)) = 1 — 2x? is valid for only —1 < x < 1. This
is akin to the fact that while the expression x is defined for all real numbers, the
equivalence (ﬁ)2 = x is valid only for x > 0. For this reason, it pays to be
careful when we determine the intervals where such equivalences are valid.

|
-—— === = =
|
ISE
INEE S
S == = s
8

777777777 e The next pair of functions we wish to discuss are the inverses of tangent and
. cotangent, which are named arctangent and arccotangent, respectively. First,

] we restrict f(x) = tan(x) to its fundamental cycle on (—Z, 2) to obtain f~*(x) =

— t - arctan(x). Among other things, note that the vertical asymptotes x = —7 and

/x| x = 5 of the graph of f(x) = tan(x) become the horizontal asymptotesy = —7

and y = 7 of the graph of f~(x) = arctan(x): see Figure 4.5.5.

. Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, ) to obtain
f7(x) = arctan(x) g~ 1(x) = arccot(x). Once again, the vertical asymptotes x = 0 and x = 7 of
the graph of g(x) = cot(x) become the horizontal asymptotesy = 0andy =7
of the graph of g7!(x) = arccot(x). We show these graphs in Figure 4.5.6; the
basic properties of the arctangent and arccotangent functions are given in the
following theorem.

Figure 4.5.5: Reflecting y = tan(x) across
y = xyields y = arctan(x)
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Theorem 4.5.2 Properties of the Arctangent and Arccotangent
Functions

* Properties of F(x) = arctan(x) N

— Domain: (—o0, )

IERS

™

. ™
- Range: (—%,7) 1l
- asx — —oo, arctan(x) — —Z";asx — oo, arctan(x) — 2~

- arctan(x) = tifand only if =3 < t < 7 and tan(t) = x

— arctan(x) = arccot (1) forx > 0
- tan (arctan(x)) = x for all real numbers x g(x) = cot(x),0 <x <7
— arctan(tan(x)) = x provided -3 < x < J y

- additionally, arctangentisoad /|  _________ D

* Properties of G(x) = arccot(x) 3T

— Domain: (—o0, ) :
— Range: (0,7) il

- asx — —oo, arccot(x) — w7/ as x — oo, arccot(x) — 07 -1 1 z

- arccot(x) = tifandonly if 0 < t < 7 and cot(t) = x )
1 g~ " (x) = arccot(x)
— arccot(x) = arctan () forx > 0

- cot (arccot(x)) = x forall real numbers x Figure 4.5.6: Reflecting y = cot(x) across
y = xyields y = arccot(x)

- arccot(cot(x)) = x provided 0 < x < 7

Example 4.5.2 Evaluating the arctangent and arccotangent functions

1. Find the exact values of the following.
(a) arctan(v/3) (b) arccot(—+/3)

(c) cot(arccot(—5)) (d) sin (arctan (—-3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(2arctan(x)) (b) cos(arccot(2x))

SOLUTION

1. (a) We know arctan(1/3) is the real number t between —Z and 2 with

tan(t) = v/3. We find t = Z, so arctan(/3) = I.

(b) The real number t = arccot(—/3) lies in the interval (0, 7) with
cot(t) = —v/3. We get arccot(—+/3) = 3.
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It’s always a good idea to make sure
the identities used in these situations are
valid for all values t under consideration.
Check our work back in Example 4.5.1.
Were the identities we used there valid
for all t under consideration? A pedantic
point, to be sure, but what else do you ex-
pect from this book?
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(c)

(d)

(a)

(b)

We can apply Theorem 4.5.2 directly and obtain cot(arccot(—5)) =
—5. However, working it through provides us with yet another op-
portunity to understand why this is the case. Letting t = arccot(—5),
we have that t belongs to the interval (0, ) and cot(t) = —5. Hence,
cot(arccot(—5)) = cot(t) = —5.

We start simplifying sin (arctan (—2)) by letting t = arctan (—2).

Then tan(t) = —2 for some —3 < t < 2. Since tan(t) < 0, we
know, in fact, =5 < t < 0. One way to proceed is to use The
Pythagorean Identity, 1 + cot?(t) = csc?(t), since this relates the
reciprocals of tan(t) and sin(t) and is valid for all t under considera-

tion. From tan(t) = —2, we get cot(t) = —%. Substituting, we get
1+ (—%)2 = csc?(t) so that csc(t) = +3. Since —3 < t < 0, we
choose csc(t) = —2, so sin(t) = —32. Hence, sin (arctan (—3)) =
3
-3
If we let t = arctan(x), then —5 < t < 7 and tan(t) = x. We look
for a way to express tan(2 arctan(x)) = tan(2t) in terms of x. Before
we get started using identities, we note that tan(2t) is undefined
when 2t = 7 +rk for integers k. Dividing both sides of this equation
by 2 tells us we need to exclude values of t where t = 7 + 7k, where
kis an integer. The only members of this family which lie in (—%, g)
aret = i%, which means the values of t under consideration are

(=3, —%)U(~=%>7)U(3,3)- Returning to arctan(2t), we note the
double angle identity tan(2t) = 12727’;(;()0,

t under consideration, hence we get

is valid for all the values of

2tan(t) 2x
tan(2 arctan(x)) = tan(2t) = T tan’(D =1

To find where this equivalence is valid we check back with our substi-
tution t = arctan(x). Since the domain of arctan(x) is all real num-
bers, the only exclusions come from the values of t we discarded
earlier, t = 7. Since x = tan(t), this means we exclude x =
tan (£5) = +1. Hence, the equivalence tan(2arctan(x)) = 2,
holds for all x in (—oo0, —1) U (—1,1) U (1, c0).

To get started, we let t = arccot(2x) so that cot(t) = 2x where
0 < t < . Interms of t, cos(arccot(2x)) = cos(t), and our goal is to
express the latter in terms of x. Since cos(t) is always defined, there
are no additional restrictions on t, so we can begin using identities
to relate cot(t) to cos(t). The identity cot(t) = Zf’ns((tt)) is valid for tin
(0,7), so our strategy is to obtain sin(t) in terms of x, then write
cos(t) = cot(t)sin(t). The identity 1 + cot?(t) = csc?(t) holds
for all tin (0, ) and relates cot(t) and csc(t) = Sinl(t). Substituting
cot(t) = 2x, we get 1 + (2x)? = csc?(t), or csc(t) = £v4x? + 1.
Since t is between 0 and 7, csc(t) > 0, so csc(t) = v/4x? + 1 which

gives Sln(t) = ﬁ Hence,
(arccot(2x)) (t) = cot(t) sin(t) =
cos(arccot(Z2x)) = cos = CcO sin = —
VA +1

Since arccot(2x) is defined for all real numbers x and we encoun-
tered no additional restrictions on t, we have cos (arccot(2x)) =

\/4)2(’2‘74& for all real numbers x.
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The last two functions to invert are secant and cosecant. A portion of each of
their graphs, which were first discussed in Subsection 4.4.2, are given in Figure
4.5.7 below with the fundamental cycles highlighted.

The graph y = sec(x) The graph y = csc(x)

Figure 4.5.7: The fundamental cycles of f(x) = sec(x) and g(x) = csc(x)

It is clear from the graph of secant that we cannot find one single continu-
ous piece of its graph which covers its entire range of (—oo, —1] U [1,00) and
restricts the domain of the function so that it is one-to-one. The same is true for
cosecant. Thus in order to define the arcsecant and arccosecant functions, we
must settle for a piecewise approach wherein we choose one piece to cover the
top of the range, namely [1, c0), and another piece to cover the bottom, namely
(—o00, —1]. There are two generally accepted ways make these choices which re-
strict the domains of these functions so that they are one-to-one. One approach
simplifies the Trigonometry associated with the inverse functions, but compli-
cates the Calculus; the other makes the Calculus easier, but the Trigonometry
less so. We present both points of view.

4.5.1 Inverses of Secant and Cosecant: Trigonometry Friendly
Approach

In this subsection, we restrict the secant and cosecant functions to coincide with
the restrictions on cosine and sine, respectively. For f(x) = sec(x), we restrict
the domain to [0,2) U (2, 7| (Figure 4.5.8) and we restrict g(x) = csc(x) to
[-2,0) U (0, 3] (Figure 4.5.9.

Note that for both arcsecant and arccosecant, the domain is (—oo, —1] U
[1,00). Taking a page from Section 3.1.2, we can rewrite this as {x : x| > 1}.
This is often done in Calculus textbooks, so we include it here for completeness.
Using these definitions, we get the following properties of the arcsecant and
arccosecant functions.
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Yy

f1(x) = arcsec(x)

Figure 4.5.8: The “Trigonometry Friendly”
definition of arcsec(x)
y

[NEES
NEE S

g(x) = csc(x) on [—3,0) U (0, 5]

:

s
T+

g~ 1(x) = arccsc(x)

”

Figure 4.5.9: The “Trigonometry Friendly
definition of arccsc(x)
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Theorem 4.5.3
tions (“Trigonometry Friendly” version)

Properties of the Arcsecant and Arccosecant Func-

* Properties of F(x) = arcsec(x)

Domain: {x: |x| > 1} = (—o0, —1] U [1,00)
Range: [0, g) U (%,ﬂ']
.

as x — —oo, arcsec(x) — 27; as x — oo, arcsec(x) — I

arcsec(x) = tifandonlyif0 <t < Jor 3 <t < 7wand
sec(t) = x

arcsec(x) = arccos (1) provided |x| > 1

sec (arcsec(x)) = x provided |x| > 1

arcsec(sec(x)) = xprovided0 < x < Jor 5 <x<m

* Properties of G(x) = arccsc(x)

Domain: {x : x| > 1} = (—o0, —1] U [1, c0)

Range: [—2,0) U (0, Z]

as x — —oo, arcese(x) — 07; as x — oo, arcesc(x) — O
arcesc(x) = tifandonlyif =5 <t < 0or0 <t < 7 and
csc(t) = x

arcesc(x) = arcsin (1) provided |x| > 1

csc (arcesc(x)) = x provided |x| > 1

arcesc(csc(x)) = x provided =5 <x <0or0<x< 3
additionally, arccosecant is odd

Example 4.5.3

Evaluating the arcsecant and arccosecant functions

1. Find the exact values of the following.

(a) arcsec(2)
(b) arcesc(—2)

(c) arcsec (sec (2F))
(d) cot (arccsc (—3))

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.

(a) tan(arcsec(x))

SOLUTION

1.

(a) Using Theorem 4.5.3, we have arcsec(2) = arccos (%) =ZI.

(b) cos(arccsc(4x))

s

3

(b) Once again, Theorem 4.5.3 gives us arccsc(—2) = arcsin (—3)

s

&
(c) Since % doesn’t fall between 0 and 3 or 5 and 7, we cannot use

the inverse property stated in Theorem 4.5.3. We can, neverthe-

less, begin by working ‘inside out’” which yields arcsec (sec (3F))

arcsec(—+/2) = arccos (—?) =3z

4



(d) One way to begin to simplify cot (arccsc (—3))istolett = arccsc(—3).

(a)

(b)

Then, csc(t) = —3 and, since this is negative, we have that t lies in
the interval [—Z,0). We are after cot (arccsc (—3)) = cot(t), so we
use the Pythagorean Identity 1 + cot?(t) = csc?(t). Substituting,
we have 1 + cot?(t) = (—3)?, or cot(t) = +v/8 = +2/2. Since
—2 <t <0, cot(t) <0, so we get cot (arcesc (—3)) = —2v/2.

We begin simplifying tan(arcsec(x)) by letting t = arcsec(x). Then,
sec(t) = xfortin [0,2) U (%, ], and we seek a formula for tan(t).
Since tan(t) is defined for all t values under consideration, we have
no additional restrictions on t. To relate sec(t) to tan(t), we use
the identity 1 + tan?(t) = sec?(t). This is valid for all values of t
under consideration, and when we substitute sec(t) = x, we get
1+ tan?(t) = x*. Hence, tan(t) = +v/x2 — 1. If t belongs to [0, Z)
then tan(t) > 0; if, on the the other hand, t belongs to (3, 7] then
tan(t) < 0. As a result, we get a piecewise defined function for
tan(t)

¥ —1, fo<t<?
tan(t) =

VXE—1, ifT<t<nm

Now we need to determine what these conditions on t mean for x.
Since x = sec(t), when0 < t < 7,x > 1,and when 7 < t <
7, x < —1. Since we encountered no further restrictions on t, the
equivalence below holds for all x in (—oo, —1] U [1, 00).

X2 —1, ifx>1
tan(arcsec(x)) = VXX —1, ifx< -1

To simplify cos(arccsc(4x)), we start by letting t = arccsc(4x). Then
csc(t) = 4xfor tin [—2,0) U (0, 2], and we now set about finding
an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any additional restrictions on t. From
csc(t) = 4x, we get sin(t) = £, so to find cos(t), we can make use
if the identity cos?(t) + sin?(t) = 1. Substituting sin(t) = % gives

cos?(t) + (ﬁ)z = 1. Solving, we get

16x2 — 1 Viex? — 1
cos(t) = £ X =YX
16x2 4x|

Since t belongs to [—2,0) U (0, 2], we know cos(t) > 0, so we

choose cos(t) = ¥ iTsz' (The absolute values here are necessary,
since x could be negative.) To find the values for which this equiva-
lence is valid, we look back at our original substution, t = arccsc(4x).
Since the domain of arccsc(x) requires its argument x to satisfy x| >
1, the domain of arccsc(4x) requires |4x| > 1. We rewrite this in-

equality and solve to get x < —% orx > 1. Since we had no addi-

tional restrictions on t, the equivalence cos(arccsc(4x)) = Yi&°—1

4[x|
holds for all x in (—o0, —3] U [,00).

4.5

Inverse Trigonometric Functions
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inition of arccsc(x)

162

4.5.2 Inverses of Secant and Cosecant: Calculus Friendly Ap-

proach

In this subsection, we restrict f(x) = sec(x) to [0,3) U [, 3F), and we restrict

g(x) = cse(x) to (0, 5] U (m, ¥ . ’

Using these definitions, we get the following result.

Theorem 4.5.4 Properties of the Arcsecant and Arccosecant Func-
tions (“Calculus Friendly” version)

* Properties of F(x) = arcsec(x)

— Domain: {x: |x| > 1} = (—o0, —1] U [1, 00)
- Range: [0, g) U [71'7 37”)
- asx — —oo, arcsec(x) — 3 ; as x — oo, arcsec(x) — 3

- arcsec(x) = tifandonlyif0 <t < Jorm <t < %and
sec(t) = x

— arcsec(x) = arccos (1) for x > 1 only (Compare this with
the similar result in Theorem 4.5.3.)

- sec (arcsec(x)) = x provided |x| > 1

— arcsec(sec(x)) = x provided 0 < x < Zorm < x < ¥
* Properties of G(x) = arccsc(x)

- Domain: {x: |x] > 1} = (—o0,—1] U [1,00)
- Range: (0, 2] U (m, 3]
- asx — —oo, arcesc(x) — wh; as x — oo, arcesc(x) — O

- arcesc(x) = tifandonlyif 0 <t < Jorm <t < 3T’rand
csc(t) = x

— arccsc(x) = arcsin (%) for x > 1 only (Compare this with the
similar result in Theorem 4.5.3.)

- csc (arcesc(x)) = x provided |x| > 1

— arcesc(csc(x)) = x provided 0 < x < Zorm < x < 3

Our next example is a duplicate of Example 4.5.3. The interested reader is
invited to compare and contrast the solution to each.

Example 4.5.4 Evaluating the arcsecant and arccosecant functions

1. Find the exact values of the following.

(c) arcsec (sec (2F))

(d) cot (arcesc (—3))

(a) arcsec(2)
(b) arccsc(—2)

2. Rewrite the following as algebraic expressions of x and state the domain
on which the equivalence is valid.



4.5 |Inverse Trigonometric Functions

(a) tan(arcsec(x)) (b) cos(arccsc(4x))

SOLUTION

1. (a) Since2 > 1, wecanuse Theorem4.5.4 to getarcsec(2) = arccos (1) =
™

3
(b) Unfortunately, —2 is not greater to or equal to 1, so we cannot ap-
ply Theorem 4.5.4 to arccsc(—2) and convert this into an arcsine
problem. Instead, we appeal to the definition. The real number
t = arcesc(—2) lies in (0, 2] U (m, 3] and satisfies csc(t) = —2.

The t we're after is t = 77, so arccsc(—2) = 7.

(c) Since %” lies between 7 and 37”, we may apply Theorem 4.5.4 di-
rectly to simplify arcsec (sec (27)) = 2Z. We encourage the reader
to work this through using the definition as we have done in the pre-
vious examples to see how it goes.

(d) To help simplify cot (arccsc (—3)) we define t = arccsc (—3) so that
cot (arccsc (—3)) = cot(t). We know csc(t) = —3, and since this is
negative, t lies in (m, 2]. Using the identity 1 4 cot?(t) = csc?(t),
we find 1 + cot?(t) = (—3)? so that cot(t) = +v8 = +21/2.

37

Since tis in the interval (7, 2], we know cot(t) > 0. Our answer is

cot (arcesc (—3)) = 2v/2.

2., (a) We begin simplifying tan(arcsec(x)) by letting t = arcsec(x). Then,
sec(t) = xfortin [0, 2) U [, 2), and we seek a formula for tan(t).
Since tan(t) is defined for all t values under consideration, we have
no additional restrictions on t. To relate sec(t) to tan(t), we use
the identity 1 + tan®(t) = sec?(t). This is valid for all values of t
under consideration, and when we substitute sec(t) = x, we get
1+ tan?(t) = x*. Hence, tan(t) = +v/x2 — 1. Since tliesin [0, 2) U
[m, %), tan(t) > 0, sowe choosetan(t) = v/x* — 1. Since we found
no additional restrictions on t, the equivalence tan(arcsec(x)) =
Vx? — 1holds forall xin the domain of t = arcsec(x), namely (—oo, —1)U
[1,00).

(b) To simplify cos(arccsc(4x)), we start by letting t = arccsc(4x). Then
csc(t) = axfor tin (0, 2] U (7, 2], and we now set about finding
an expression for cos(arccsc(4x)) = cos(t). Since cos(t) is defined
for all t, we do not encounter any additional restrictions on t. From
csc(t) = 4x, we get sin(t) = £, so to find cos(t), we can make use
if the identity cos?(t) + sin’*(t) = 1. Substituting sin(t) = L gives

cos?(t) + (%)2 = 1. Solving, we get

4
16x2 — 1 Viex? — 1
cos(t) = £4/ =+
16x2 4x|

If tlies in (0, 2], then cos(t) > 0, and we choose cos(t) = %-

Otherwise, t belongs to (7, 2] in which case cos(t) < 0, so, we

choose cos(t) = — lfl’f‘_l This leads us to a (momentarily) piece-

wise defined function for cos(t)
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viee -1 fo<t<T™
J =t>3
® 4/x|
CoSs =
I0C =1 e i<
_— I 7T
4x| -2

We now see what these restrictions mean in terms of x. Since 4x =
csc(t), we get thatfor 0 < t < %, 4x > 1,0orx > %. In this case, we
can simplify x| = x so

Viext =1  16x2 —1
cos(t) = 4|x| - 4x

Similarly, for 7 < t < 3%, we get 4x < —1, or x < —1. In this case,
|x| = —x, so we also get

V16x2 — 1 Viexk -1 Viex2 —1

T )

. 2 . .
Hence, in all cases, cos(arcesc(4x)) = Y22-=1, and this equivalence
is valid for all x in the domain of t = arccsc(4x), namely

(w00, —3] U [400)



Exercises 4.5

Problems

In Exercises 1 — 40, find the exact value.

1. arcsin (—1)

. ( \/§)
2. arcsin (| ——
2
. ( ﬁ)
3. arcsin | ———
2
"(-3)
4. arcsin | —=
2

5. arcsin (0)

6. arcsin (
7. arcsin (
8. arcsin (

9. arcsin (1)

N| =
N——

“[5
N
N———

T

)

10. arccos (—1)

11. arccos (—é>
2
12. arccos <—£>
2
1
13. arccos (—7)
2

14. arccos (0)

15. arccos (

N| =
N——

16. arccos (

oI5
S—

oI5

17. arccos <

)

19. arctan (—/3)

18. arccos (1)

20. arctan (—1)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

In Exercises 41 — 48, assume that the range of arcsecant is
) U [, &) and that the range of arccosecant is (0, 7| U
(m, 7] when finding the exact value.

[0

41.

42.

43.

44.

12

won(-2)

arctan (0)

won(2)

arctan (1)
arctan (v/3)
arccot (—v/3)

arccot (—1)
(%)
arccot 7?

arccot (0)

arccot (?)

arccot (1)

arccot (1/3)
arcsec (2)

arcesc (2)

arcsec (v2)
arcese (V2)

()
arcsec ?

()
arccsc T

arcsec (1)

arcesc (1)

s

arcsec (—2)

arcsec (—v/2)

( 2V3
arcsec _T

arcsec (—1)

)
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45. arcesc (—2) 66. cos (arccos (7))

46. arcesc (—v/2) 67. tan (arctan (—1))
68. tan (arctan (v/3
47. arccsc (—&> ( ( ))
5
69. tan | arctan | —
48. arccsc (—1) ( (12))

In Exercises 49 — 56, assume that the range of arcsecant is  70. tan (arctan (0.965))

[0, 2)U (3, 7] and that the range of arccosecant is [— 2, 0) U

(0, 2| when finding the exact value. 71. tan (arctan (37))
49. arcsec (—2) 72. cot (arccot (1))
50. arcsec (—v/2) 73. cot (arccot (—v/3))
7
51. arcsec 7% 74. cot | arccot [ ——
3 24
52. arcsec(—1) 75. cot (arccot (—0.001))
53. arcese(-2) 76. cot <arccot (%))

54. arcesc (—V/2)

77. sec(arcsec (2))

2V3
55. arccsc <_T> 78. sec (arcsec (—1))

1
56. arcesc (—1) 79. sec <arcsec (§>>

In Exercises 57 — 86, find the exact value or state that it is
undefined.

57 sin (arcsin (%)) 81. sec (arcsec (1177))
82. csc (arcesce (v2))

°8 (arcsin <_§>> 83. csc (arccsc (—%ﬁ))

80. sec (arcsec (0.75))

59. sin <arcsin (g)) o e (arccsc (§))

60. sin (arcsin (—0.42))
85. csc (arcesc (1.0001))

5
61. sin <arcsin (f ) -
4 86. csc (arccsc (Z))

62. cos (arccos (Q)) In Exercises 87 — 106, find the exact value or state that it is
2 undefined.

63. cos (arccos G%)) 87. arcsin (sin (%))
. cos(srceos () ea. arsin (s (~3))

. . (3w
65. cos (arccos (—0.998)) 89. arcsin (sm <T))

Wi
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90. arcsin (sin (ll—ﬂ)>
6

91. arcsin (sin (41)>
3

92. arccos (cos (E))
4

93. arccos

94. arccos (cos (%))

95. arccos (cos (,f))
6

96. arccos (cos (5—7T)>
4

97. arctan

98. arctan

99. arctan (tan (7))

100. arctan (tan (g))

101. arctan <tan (%))
(et (3))
(et (-3))

104. arccot (cot (7))

105. arccot (cot (g))
2
106. arccot <cot (%))

N

102. arccot

103. arccot

In Exercises 107 — 118, assume that the range of arcsecant is
0 ”) U [, &) and that the range of arccosecant is (0, | U

)2
(, '] when finding the exact value.

107. arcsec (Sec (%))
)

(= (5)
(=(%))
-3)

110. arcsec (sec g )

108. arcsec

109. arcsec

5
111. arcsec <sec (%))
112. arccsc (csc (%))

113. arccsc (csc (%r

114. arccsc

115. arccsc (csc (—g

117. arcsec

116. arccsc (csc

118. arccsc (csc

In Exercises 119 — 130, assume that the range of arcsecant is
[0, 2) U (%, 7| and that the range of arccosecant is [— 2

72
(0, 2] when finding the exact value.

119. arcsec (sec (%))

120. arcsec

(= (%)
)
)

)

sec

122. arcsec (sec (fg
123. arcsec (sec (?
124. arccsc(

125. arccsc (csc ( ))
126. arccsc (csc (2?71'))
127. arccsc (csc (— ))

128. arccsc (csc

11
129. arcsec (sec (*7r )
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130. arccsc (csc (%))

In Exercises 131 — 154, find the exact value or state that it is
undefined.

)
oo (2)

sin (arctan (—2))

131.

132.

133.
134. sin (arccot (V/5))

135. sin (arcesc (—3))

o oon ()

cos (arctan (v/7))

136.

137.

138. cos (arccot (3))

139. cos (arcsec (5))

o oo (25
E)
Ne)

tan (arccot (12))

)
)

cot (arcesc (v/5))

140.
141.

142.
143.

144. cot(
145. cot(
146.

147. cot (arctan (0.25))

)
sec (arcsin (—%))

sec (arctan (10))

)

148.

149.

150.

151.

152. csc (arccot (9))

153. csc (arcsin (g))
2
154. csc (arctan (f§>)

In Exercises 155 — 164, find the exact value or state that it is
undefined.

5 ™
155. si in| — —
sin (arcsm (13) + 4)

156. cos (arcsec(3) + arctan(2))

tan (arctan(3) + arccos (7%))
sin (2 arcsin (—%))
(%)

sin (2 arctan (2))
cos (2 arcsin (%))
o o (3)

cos (2arccot (—+/5))

(=)
2

In Exercises 165 — 184, rewrite the quantity as algebraic ex-
pressions of x and state the domain on which the equivalence
is valid.

157.

158.

159.

160.

161.

162.

163.

164. s

165. sin (arccos (x))

166. cos (arctan (x))
167. tan (arcsin (x))
168. sec (arctan (x))
169. csc (arccos (x))

170. sin (2arctan (x))

171. sin (2arccos (x))

172. cos (2arctan (x))

173. sin(arccos(2x))



174. sin (arccos (g)) 179. cos(2 arcsin(4x))

175. cos (arcsin (%))

176. cos (arctan (3x))

180. sec(arctan(2x)) tan(arctan(2x))
181. sin (arcsin(x) + arccos(x))
182. cos (arcsin(x) + arctan(x))

177. sin(2 arcsin(7x)) 183. tan (2arcsin(x))

178. sin <2 arcsin (?)) 184. sin (% arctan(x))
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5: LIMITS

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17t century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate x time.” But what if the rate is not constant
— can distance still be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
Isaac Newton and Gottfried Leibniz, are credited with independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundation of “the calculus” is the limit. It is a tool to describe a par-
ticular behaviour of a function. This chapter begins our study of the limit by
approximating its value graphically and numerically. After a formal definition of
the limit, properties are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

5.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the functiony = ? When x is near the value 1, what value (if
any) is y near?

While our question is not precisely formed (what constitutes “near the value
1”7?), the answer does not seem difficult to find. One might think first to look at a
graph of this function to approximate the appropriate y values. Consider Figure
5.1.1, wherey = % is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, theny = % ~ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 5.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

“« ”

sin0 0
—_— % —
0 0

The expression “0/0” has no value; it is indeterminate. Such an expression gives

0.8 +

0.6

0.5 1 1.5

Figure 5.1.1: sin(x) /x near x = 1.

0.8 +

t t X
-1 1

Figure 5.1.2: sin(x) /x near x = 0.
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X sin(x)/x

0.9 0.870363

0.99 0.844471
0.999 0.841772

1 0.841471
1.001 0.84117

1.01  0.838447

1.1 0.810189

Figure 5.1.3: Approximate values of

sin(x)/x with x near 1.

X sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001  0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665
Figure 5.1.4: Approximate values of

sin(x)/x with x near 0.

0.34 +

Figure 5.1.5: Graphically approximating a

3

limit in Example 5.1.1.
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no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f. The expression “the
limit of y as x approaches 1” describes a number, often referred to as L, that y
nears as x nears 1. We write all this as

limy = lim f(x) = L.
x—1 x—1
This is not a complete definition; this is a pseudo-definition that will allow us
to explore the idea of a limit. A more detailed, but still informal, definition of
the limit is given in Definition 5.1.1 at the end of this section. A more precise
definition is beyond the scope of this text.
Above, where f(x) = sin(x)/x, we approximated

. sinx . sinx
lim — ~0.84 and I|lim— 1.
x—1 X x—0 X
(We approximated these limits, hence used the “~” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

In the next section, we will find limits analytically; that is, exactly using a
variety of mathematical tools. For now, we will approximate limits both graph-
ically and numerically. Graphing a function can provide a good approximation,
though often not very precise. Numerical methods can provide a more accurate
approximation. We have already approximated limits graphically, so we now
turn our attention to numerical approximations.

Consider again limy_,; sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
5.1.3.

Notice that for values of x near 1, we have sin(x) /x near 0.841. Thex = 1row
isin bold to highlight the fact that when considering limits, we are not concerned
with the value of the function at that particular x value; we are only concerned
with the values of the function when x is near 1.

Now approximate lim,_,q sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 5.1.2. The table in Figure 5.1.4
shows the value of sin(x) /x for values of x near 0. Ten places after the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our function at x = 0, only on the behaviour
of the function near 0.

This numerical method gives confidence to say that 1 is a good approxima-
tion of lim,_,q sin(x) /x; that is,

lim sin(x)/x =~ 1.
x—0
Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects
of the limit concept.

Example 5.1.1 Approximating the value of a limit
Use graphical and numerical methods to approximate

] X —x—6
lim ——— .
x—=36x2 —19x +3



SOLUTION To graphically approximate the limit, graph
y=(*—x—6)/(6x* —19x +3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 5.1.5 and
5.1.6, respectively.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a better approximation.
The graph and the table imply that

) X —x—6
lim ————— ~ 0.294.
x—=36x2 —19x + 3

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a function. Sometimes a function may act “erratically” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing utilities are very accessible, it makes sense to make proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 5.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 5.1.2 Approximating the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

x+1 x<0
o={ 211 55

SOLUTION Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function, so it
behaves differently on either side of 0. Figure 5.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 5.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near O, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that lim,_,of(x) ~ 1; in fact, we are
probably very sure it equals 1.

5.1 An Introduction To Limits

x> —x—6

X &7 —19x+3
2.9 0.29878
2.99 0.294569

2.999 0.294163
3 not defined
3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 5.1.6: Numerically approximating
a limit in Example 5.1.1.

f t t > X
-1 —0.5 0.5 1

Figure 5.1.7: Graphically approximating a
limit in Example 5.1.2.

X fx)

0.1 0.9
-0.01 0.99
-0.001  0.999

0.001  0.999999
0.01 0.9999
0.1 0.99

Figure 5.1.8: Numerically approximating
a limit in Example 5.1.2.
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Figure 5.1.9: Observing no limitas x — 1
in Example 5.1.3.

X fix)
0.9 2.01
099  2.0001
0.999  2.000001
1.001  1.001
1.01 1.01
11 1.1

Figure 5.1.10: Values of f(x) nearx = 1in
Example 5.1.3.

100 +

0.5 1 1.5 2

Figure 5.1.11: Observing no limit as x —»
1in Example 5.1.4.

X fx)
0.9 100.
099  10000.

0.999 1. x 10°

1.001 1.x 10°
1.01  10000.
1.1 100.

Figure 5.1.12: Values of f(x) nearx = 1in
Example 5.1.4.
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Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we cannot say
limy_f(x) = L for some numbers L for all values of ¢, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The function f(x) may approach different values on either side of c.
2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches ¢ without approaching a spe-
cific value.

We’'ll explore each of these in turn.

Example 5.1.3 Different Values Approached From Left and Right
Explore why Iimlf(x) does not exist, where
X—

X —2x+3 x<1
f(x):{ X x>1

SOLUTION A graph of f(x) around x = 1 and a table are given in Figures
5.1.9 and 5.1.10, respectively. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the left), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 5.1.4 The Function Grows Without Bound
Explore why lim 1/(x — 1) does not exist.
X—

SOLUTION A graph and table of f(x) = 1/(x — 1)2 are given in Figures
5.1.11 and 5.1.12, respectively. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x — 1)? is very small, and:

1
very small number

= very large number.
Since f(x) is not approaching a single number, we conclude that
lim ———
1 (x — 1)2

does not exist.



Example 5.1.5 The Function Oscillates
Explore why Iirr}) sin(1/x) does not exist.
X—

SOLUTION Two graphs of f(x) = sin(1/x) are given in Figures 5.1.13.
Figure 5.1.13(a) shows f(x) on the interval [—1, 1]; notice how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillation, as x approaches
0, f(x) approaches 0. However, Figure 5.1.13(b) zooms in on sin(1/x), on the
interval [—0.1,0.1]. Here the oscillation is even more pronounced. Finally, in
the table in Figure 5.1.13(c), we see sin(1/x) evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between —1 and 1 infinitely many times! Because of this oscillation,

)!m sin(1/x) does not exist.

5.1 An Introduction To Limits

, Tl

+ > X
—1 —0.5 0.5 1 —0.1 |k J4d

=
~
o
-

(a) (b)

X sin(1/x)
0.1 —0.544021
0.01 —0.506366

0.001 0.82688
0.0001  —0.305614
1. x 10> 0.0357488
1. x 10~% —0.349994
1. x 107  0.420548

(c)

Figure 5.1.13: Observing that f(x) = sin(1/x) has no limit as x — 0 in Example 5.1.5.

Limits of Difference Quotients

We have approximated limits of functions as x approached a particular num-
ber. We will consider another important kind of limit after explaining a few key
ideas.

Let f(x) represent the position function, in feet, of some particle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that whenx =1,
the particle is at position 10 ft., and when x = 5, the particle is at 20 ft. Another
way of expressing this is to say

f(1) =10 and f(5) = 20.
Since the particle travelled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:
M — E — 2.5ft/s.
5-1 4

This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 5.1.14.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,

20 +

10 +

Figure 5.1.14: Interpreting a difference
quotient as the slope of a secant line.
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f
20 +
10 +
‘ ‘ -
2 4 6
(a)
f
20 +
10 +
‘ 1 -
2 4 6
(b)
f
20 +
10 +
t + + X
2 4 6

(c)

Figure 5.1.15: Secant lines of f(x) atx = 1
and x = 1 + h, for shrinking values of h
(i.e., h — 0).

p o fasn s
h
—0.5 9.25
-0.1 8.65
—0.01 8515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 5.1.16: The difference quotient
evaluated at values of h near 0.
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consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient is now

fA+h)—f1) _fA+h) —f1)

(1+h) -1 h

Let f(x) = —1.5x* + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h # 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x =1

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 5.1.15. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

f(1+h) = 5(1)

im ——= =7
h—0 h

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 5.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

Despite the importance of limits to calculus, we often settle for an impre-
cise, intuitive understanding of what the limit of a function means. The precise
definition of the limit omitted from a course like Math 1560, and left for later
courses, such as Math 3500. For this course, we will use the following informal
definition.

Definition 5.1.1 Informal Definition of the Limit

Let / be an open interval containing ¢, and let f be a function defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim f(x) = L,

X—C

if we can make the value of f(x) arbitrarily close to L by choosing x # ¢
sufficiently close to c.

The formal definition of the limit makes precise the meaning of the phrases
“arbitrarily close” and “sufficiently close”. The problem with the definition we
have given is that, while it gives an intuitive understanding of the meaning of the
limit, it’s of no use for proving theorems about limits. In Section 5.2 we will state
(but not prove) several theorems about limits which will allow use to compute
their values analytically, without recourse to tables of values.



Exercises 5.1

Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form % is called .
3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situations where lim f(x) does not exist.
X—C
5. In your own words, what is a difference quotient?

. sinx |
6. When x is near 0, —— is near what value?
X

Problems

In Exercises 7 — 16, approximate the given limits both numer-
ically and graphically.

7. limx* +3x—5

x—1

8 limx =3¢ +x—5
x—0

i x+1
9. lim
x—0 x2 4+ 3x
2
10. lim X = %=3

x—3x2 —A4x + 3

x* 4+ 8x+7

11. lim ———

x—=—1x2+6x+5
2

1

12. “mw

x=2 X2 —4x+4

13. lim f(x), where
X—2
. x+2 x<2
f(x)_{ -5 x>2

14. lim f(x), where

X—3

2x+1 x>3 "

f(x)z{ X —x+1 x<3

15. f(x), where

lim
x—0

¥ +3x+1 x>0

f6) = { cosx x<0

16. lim f(x), where

x—m/2

f(x):{ sinx x<7/2 .

cosx x>m/2

In Exercises 17 — 24, a function f and a value a are
given. Approximate the limit of the difference quotient,

,using h = £0.1, +0.01.

lim

h—0

fla+h) —fla)
h

17. f(x) = -7x+2, a=3
18. f(x) =9x+0.06, a=—1

19. f(x) =x*+3x—7, a=1

20. f(x) = a=2

21. f(x) = —4x" +5x—1, a=

22. f(x) =Inx, a=5
23. f(x) =sinx, a=m

24. f(x) =cosx, a=m
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The rigorous definition of limits is of-
ten known as the “c, §” definition of the
limit. You might have a few brief encoun-
ters with this definition as you make your
way through the calculus sequence, but a
careful treatment of limits is usually not
encountered until a course in Analysis.
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5.2 Finding Limits Analytically

In Section 5.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. We ended with what we called
an “informal” definition of the limit. This definition allows us to make intuitive
sense of limits, but it does not allow us to prove theorems about limits.

Since we will not discuss how to formally define limits in this course, we will
have to take the results in this section on faith. However, we will see that the
algebraic rules given below for manipulating limits make the process of calculat-
ing limits much more straightforward.

Suppose that lim,_,, f(x) = 2 and lim,_,, g(x) = 3. What is lim,_,, (f(x) +
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 5.2.1 Basic Limit Properties

Let b, ¢, L and K be real numbers, let n be a positive integer, and let f and g be
functions with the following limits:

lim f(x) = L and IiLn g(x) =K.

X—C

The following limits hold.

1. Constants: limb="b
X—C
2. ldentity limx=c
X—C
3. Sums/Differences: Ii_r}n (fx) £g(x)) =LxK
X c
4. Scalar Multiples: limb - f(x) = bL
X—C
5. Products: lim f(x) - g(x) = LK
X—C
6. Quotients: lim f(x)/g(x) = L/K, (K # 0)
X—C
7. Powers: limf(x)" = L"
X—C
8. Roots: lim F(x) = VL

(If n is even then require f(x) > 0on I.)
9. Compositions: Adjust our previously given limit situation to:

lim f(x) = L, Im g(x) = Kand g(L) =K.

X—C

Then leg(f(x)) =K.

We make a note about Property #8: when n is even, L must be greater than
0. If nis odd, then the statement is true for all L.

We apply the theorem to an example.

Example 5.2.1 Using basic limit properties
Let

limf(x) =2, limg(x)=3 and p(x)=3x* —5x+7.

X—2 x—2

Find the following limits:



L. lim (f(x) + g(x)) 3. lim p(x)

2. le (5f(x) + g(x)?)

SOLUTION

1. Using the Sum/Difference rule, we know that Iim2 (fx)+g(x)) =2+3 =
X—
5.

2. Usingthe Scalar Multiple and Sum/Difference rules, we find that Iim2 (5f(x)+
X—
g(x)?) =5-2+32=19.

3. Here we combine the Power, Scalar Multiple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-

ted:
li = lim(3x* —5x+7
lim p(x) = lim(3x" — 5x +7)
= lim 3x*> — lim 5x + lim 7
X—2 X—2 X—2
=3.22-5.247

=9

Part 3 of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 5.2.1. Not only
that, recognize that

lim p(x) = 9 = p(2);

xX—2
i.e., the limit at 2 was found just by plugging 2 into the function. This holds
true for all polynomials, and also for rational functions (which are quotients of
polynomials), as stated in the following theorem.

Theorem 5.2.2 Limits of Polynomial and Rational Functions

Let p(x) and g(x) be polynomials and c a real number. Then:
L. lim p(x) = p(c)

2. lim P(x) = @ where g(c) # 0.

x=eq(x)  q(c)

Example 5.2.2 Finding a limit of a rational function
Using Theorem 5.2.2, find

o 3x2 —5x+1
lim ——.
x—>-1 x* —x*+3

SOLUTION Using Theorem 5.2.2, we can quickly state that

o 3x* —5x+1  3(—1)2—5(-1)+1
x=—1 ¥ —x24+3  (=1)4—(-1)2+3

9
=2=3
3

5.2 Finding Limits Analytically
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Using approximations (or worse — the rigorous definition) to deal with limits

such as

limx* =4

X—2
can be frustrating, since the result seems fairly obvious. The previous theorems
state that many functions behave in such an “obvious” fashion, as demonstrated
by the rational function in Example 5.2.2.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behaviour is particularly “nice” in terms of limits. In the next section, we will
give a formal name to these functions that behave “nicely.”

Theorem 5.2.3 Special Limits

Let ¢ be a real number in the domain of the given function and let n be a positive integer. The
following limits hold:

1. limsinx = sinc 4. limcscx = cscc 7. lima* =a(a > 0)
X—C X—cC X—C
2. lim cosx = cosc 5. limsecx = secc 8. limlnx=1Inc
X—C X—C X—cC
3. limtanx = tanc 6. lim cotx = cotc im Ay — A
X—C X—C 9. )I(I_rpcﬁ - \ﬁ
Example 5.2.3 Evaluating limits analytically

Evaluate the following limits.

1. lim cosx 4. lim en*
X—T x—1

2. lim(sec® x — tan” x) __sinx
x—3 5. lim —

x—0 X

3. lim cosxsinx
x—7/2

SOLUTION

1. Thisisastraightforward application of Theorem 5.2.3. lim cosx = cos 7 =
X—T
—1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 5.2.3, we have:

lim (sec? x — tan x) = sec? 3 — tan® 3.
x—3

Using the Pythagorean Theorem, this last expression is 1; therefore

lim (sec? x — tan?x) = 1.
x—3

We can also use the Pythagorean Theorem from the start.

lim (sec®x — tan’x) = lim 1 = 1,
X—3 X—3

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 5.2.1 and Theorem 5.2.3 gives

lim cosxsinx = cos(m/2)sin(w/2) =0-1=0.
x—7/2



4. Again, we can approach this in two ways. First, we can use the exponen-

tial/logarithmic identity that e"* = x and evaluate lim e™* = lim x = 1.
x—1 x—1

We can also use the limit Composition Rule of Theorem 5.2.1. Using The-
orem 5.2.3, we have Iim1 Inx = In1 = 0. Applying the Composition rule,
X—

lime™ = lim e = €e° = 1.
x—1 x—0

Both approaches are valid, giving the same result.

5. We encountered this limit in Section 5.1. Applying our theorems, we at-
tempt to find the limit as

“ ”

sinx sin0 0

x—=0 X 0 0

This, of course, violates a condition of Theorem 5.2.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are still unable to eval-
uate this limit with tools we currently have at hand.

The section could have been titled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of functions, we can find limits involving sums,
products, powers, etc., of these functions. We further the development of such
comparative tools with the Squeeze Theorem, a clever and intuitive way to find
the value of some limits.

Before stating this theorem formally, suppose we have functions f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

flx) < g(x) < h(x).

If f and h have the same limit at ¢, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 5.2.4 Squeeze Theorem

Let f, g and h be functions on an open interval / containing c such that

forall xin |/,
f(x) < g(x) < h(x).
If
lim £(x) = L = lim h(x),
then
lmg(x) =L

It can take some work to figure out appropriate functions by which to “squeeze”

the given function of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluating
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim X _ 1.
x—0 X

5.2 Finding Limits Analytically
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(1,tan 6)

(cos 8, sin 0)

(170)

Figure 5.2.1: The unit circle and related
triangles.
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Example 5.2.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

. sinx
lim — = 1.
x—0 X
SOLUTION We begin by considering the unit circle. Each point on the

unit circle has coordinates (cos 8, sin ) for some angle 6 as shown in Figure
5.2.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan €), as shown. (Here we are assuming that0 < 6 < /2.
Later we will show that we can also consider 6 < 0.)

Figure 5.2.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is % tan 6; the area of the sector is §/2; the area of the triangle
contained inside the sector is % sin . It is then clear from the diagram that

tan6 0 sinf
> - > -
2 - 2 -
. 2 .
Multiply all terms by —, giving
sin@
1 0
> — > 1.
cosf — sinf —

Taking reciprocals reverses the inequalities, giving

sinf
cosf < 3 <1.

(These inequalities hold for all values of 8 near 0, even negative values, since
cos(—0) = cos # and sin(—0) = —sin6.)
Now take limits.

. . sind .
limcosf < lim — < Ilim1
6—0 9—0 6 6—0

. sind
cos0 < lim — <1
0—0 0
. sin@
1<lim——<1
0—0 6
sinf
Clearly this means that lim —— = 1.
6—0 0

Two notes about the previous example are worth mentioning. First, one
might be discouraged by this application, thinking “I would never have come up
with that on my own. This is too hard!” Don’t be discouraged; within this text we
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will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ratio of x and sinx
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = xand y = sinx are
essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 5.2.5 Special Limits

Lsinx 3. lim(1+x)r=e 3]
= )ll—% X 1 x—0
_ e -1
2 lim X1 _g 4. lim =1 2 |
" x—0 % x=0 X

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cosx goes to 1. So, in the second limit, both the numerator and

denominator are approaching 0. However, since the limit is 0, we can interpret 1 2 X
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap- Figure 5.2.2: Graphing fin Example 5.2.5
proaching 1 (though never equalling 1), and we know that 1 raised to any power to understand a limit.

is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x — 0, e* approaches 1 “just as fast” as
x — 0, resulting in a limit of 1.

Our final theorem for this section will be motivated by the following exam-
ple.

Example 5.2.5 Using algebra to evaluate a limit

Evaluate the following limit:
2

lim .
x—=1 x—1

SOLUTION We begin by attempting to apply Theorem 5.2.2 and substi-
tuting 1 for x in the quotient. This gives:

) Xzfl 1271 “« »”
lim = =
x—1 x—1 1-1

0
O )
an indeterminate form. We cannot apply the theorem.

By graphing the function, as in Figure 5.2.2, we see that the function seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quotient can be factored:

X*—1  (x—1)(x+1)

x—1 x—1
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The function is not defined when x = 1, but for all other x,

X*—1 (x—1)(x+1) | x—h(x+1) 1
x—1 x—1 7] *—1 X

Clearly Iir’n1 x+1 = 2. Recall that when considering limits, we are not concerned
X—

with the value of the function at 1, only the value the function approaches as x
approaches 1. Since (x> —1)/(x — 1) and x + 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can

conclude that

X2l

lim — = 2.
x—1 x—1

The key to the above example is that the functionsy = (x> —1)/(x—1) and
y = x+ 1 are identical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 5.2.6 Limits of Functions Equal At All But One Point
Let g(x) = f(x) for all x in an open interval, except possibly at ¢, and let

lim g(x) = L for some real number L. Then
X—C

lim f(x) = L.

X—C

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

X
tional function of the form g(x)/f(x) and directly evaluating the limit lim f‘(())
X—C X
returns “0/0”, then (x — c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 5.2.6. We demon-

strate this once more.

Example 5.2.6 Evaluating a limit using Theorem 5.2.6
) x> —2x* —5x+6
Evaluate lim .
x—3 2x3 + 3x2 — 32x + 15

SOLUTION We attempt to apply Theorem 5.2.2 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x— 3) is factor of each. Using
whatever method is most comfortable to you, factor out (x—3) from each (using
polynomial division, synthetic division, a computer algebra system, etc.). We
find that

x> —2x* —5x+6 (x=3)(®+x—2)
23 +3x2 —32x+15  (x—3)(2x2+9x—5)°

We can cancel the (x — 3) terms as long as x # 3. Using Theorem 5.2.6 we
conclude:

X =22 —-5x+6 o (x=3)(x*+x-2)
lim = lim
x=3 26 4+ 3x2 —32x+ 15  x=3 (x —3)(2x* + 9x — 5)
(X +x—2)
= lim ——
x=3 (2x2 4+ 9x — 5)
10 1
S 40 4



We end this section by revisiting g limit first seen in Section 5.1, a limit of
a difference quotient. Let f(x) = —1.5x*> + 11.5x; we approximated the limit

1+h)—f(1
’I,imow ~ 8.5. We formally evaluate this limit in the following ex-
—>
ample.
Example 5.2.7 Evaluating the limit of a difference quotient

Let f(x) = —1.5x* + 11.5x; find ’!imoff(]'_khzi_f(l).

SOLUTION Since f is a polynomial, our first attempt should be to em-
ploy Theorem 5.2.2 and substitute O for h. However, we see that this gives us
“0/0” Knowing that we have a rational function hints that some algebra will
help. Consider the following steps:

f(+h) —f(1)

—1.5(14 h)* +11.5(1 + h) — (—1.5(1)? + 11.5(1))

lim = lim

h—0 h h—0 h

—im —1.5(1+ 2h + h?) + 11.5 4+ 11.5h — 10
h—0 h
_ —1.5n* +8.5h

=lim ———
h—0 h

i h(—1.5h +8.5)
h—0 h

= ’I]i_r)no(—l.Sh +8.5) (using Theorem 5.2.6, as h # 0)

= 8.5 (using Theorem 5.2.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 5.2.3; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 5.5 we give
a name to this nice behaviour; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.

5.2 Finding Limits Analytically
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Exercises 5.2

Terms and Concepts

1. What does the text mean when it says that certain func-
tions’ “behaviour is ‘nice’ in terms of limits”? What, in par-
ticular, is “nice”?

2. Sketch a graph that visually demonstrates the Squeeze The-
orem.
3. You are given the following information:
(@) limf(x)=0
x—1
(b) limg(x) = 0
(@) lim f(x)/g(x) = 2
x—1
What can be said about the relative sizes of f(x) and g(x)

as x approaches 1?

4. T/F: Iim1 Inx = 0. Use a theorem to defend your answer.
X—

Problems

In Exercises 5—12, use the following information to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

o limf(x) =6, limf(x)=9, f(9)=6

¢ limg(x) =3, limg(x)=3, g(6)=9

x—9

(fx) +a(x))

lim
X—9

(3f(x)/9(x))

lim
x—9

7 iy (12 2010)

x—9 g(x)

e im (325

9. lim g(f(x))

x—9

10. lim f(g(x))

Xx—6

11. lim g(f(f(x)))

12 lim f(x)g(x) — £*(x) + ¢ (x)
X—6
In Exercises 13 — 16, use the following information to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

ImA) =2, 0 =1,

f1) =1/5

e limg(x) =0, XIi_)rrfog(x) =7, ¢g(10)=7

x—1

13. lim f(x)9®

x—1

14. lim cos (g(x))

x—10

15. lim f(x)g(x)

lim
x—1
16. lim g(5f(x))

In Exercises 17 — 32, evaluate the given limit.

17. limx* —3x+7
x—3

7
18. lim (Xfa)
x—=1T \X—5

19. lim cosxsinx
x—7/4

20, lim 2X =2
x—=1 x+4

21. limInx
x—0

22. lim 47 %

x—3

23. lim cscx
x—7/6

24. lim In(1 + x)
x—0
2
25, Jim XT3 +5
x—7m 5x2 — 2x — 3

26. lim X1

x—r 1 —x

X —Ax—12
27. I|m —_———
x—6 X2 — 13x + 42

2
2
28. lim X1
x—0 X% — 2x

29. lim M
x—=2 X2 —3x+2

2 J—
30 |im X —10x+16
x—2 X2 —x—2

2 J— J—
31 fim XX~ 14
x——2 X2 + 10x + 16

2
3. fim XX *8
x—=—1x* —6x—7

Use the Squeeze Theorem in Exercises 33 — 36, where appro-
priate, to evaluate the given limit.



33.

34,

35.

36.

. . (1
lim xsin [ —
x—0 X
o 1
lim sin x cos =
x—0 X

lim
x—1

lim
x—3

f(x), where 3x — 2 < f(x) < X°.

f(x), where 6x — 9 < f(x) < x°.

Exercises 37 — 41 challenge your understanding of limits but
can be evaluated using the knowledge gained in this section.

37.

38.

39.

40.

41.

sin 3x

lim

x—=0 X

. sin5x
lim
x—0 8x

lim In(1+ x)
x—0 X

. sinx . . .
lim ——, where x is measured in degrees, not radians.
x—0 X

Let f(x) = 0and g(x) =

X | x

(@) Show why lim f(x) = 0.
X—2

(b) Show why lim g(x) = 1.
x—0

(c) Show why lim g(f(x)) does not exist.
X—2

(d) Show why the answer to part (c) does not violate the
Composition Rule of Theorem 5.2.1.
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Limits

5.3 One Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. The previous section gave us
tools (which we call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and rational, trigono-
metric, exponential and logarithmic functions (and their sums, products, etc.) all
behave “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 5.1 we saw three ways in which limits of functions failed to exist:

1. The function approached different values from the left and right,
2. The function grows without bound, and
3. The function oscillates.

In this section we explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with definitions that are very similar to the definition
of the limit given in Section 5.1, but the notation is slightly different and “x # ¢”
is replaced with either “x < ¢” or “x > ¢.”

Definition 5.3.1 One Sided Limits: Left- and Right-Hand Limits

Left-Hand Limit

Let f be a function defined on (a, ¢) for some a < c and let L be a real
number.

We say that the limit of f(x), as x approaches c from the left, is L, or, the
left—hand limit of fat cis L, and write

lim f(x) =L,

if we can make f(x) arbitrarily close to L by choosing x < c sufficiently
close to c.

Right-Hand Limit

Let f be a function defined on (c, b) for some b > c and let L be a real
number. We say that the limit of f(x), as x approaches c from the right,
is L, or, the right—hand limit of f at cis L, and write

lim f(x) =L,

x—ct

if we can make f(x) arbitrarily close to L by choosing x > c sufficiently
close to c.

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of ¢,” i.e., where x < c¢. The admittedly imperfect notation
x — ¢~ is used to imply that we look at values of x to the left of c. The nota-
tion has nothing to do with positive or negative values of either x or c. A similar
statement holds for evaluating right-hand limits; there we consider only values
of x to theright of ¢, i.e., x > ¢. We can use the theorems from previous sections
to help us evaluate these limits; we just restrict our view to one side of c.

We practice evaluating left- and right-hand limits through a series of exam-
ples.



Example 5.3.1 Evaluating one sided limits
<x<
Let f(x) = { 3 ix (1) - i - ; , as shown in Figure 5.3.1. Find each of the
following:
1. lim f(x 5. lim f(x
X*)lff( ) xﬂOJrf( )
2. lim f(x) 6. f(0)
x—1t
: 7. lim f(x
3. )!l_rplf(x) x—>2*f( )
4. f(1) 8. f(2)
SOLUTION For these problems, the visual aid of the graph is likely more

effective in evaluating the limits than using f itself. Therefore we will refer often
to the graph.

1.

As x goes to 1 from the left, we see that f(x) is approaching the value of 1.
Therefore lim f(x) = 1.

x—1-

. Asxgoesto 1 from the right, we see that f(x) is approaching the value of 2.

Recall that it does not matter that there is an “open circle” there; we are
evaluating a limit, not the value of the function. Therefore Iim+ flx) = 2.
x—1

The limit of f as x approaches 1 does not exist, as discussed in the first
section. The function does not approach one particular value, but two
different values from the left and the right.

Using the definition and by looking at the graph we see that f(1) = 1.

As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore Iim+f(x) = 0. Note we cannot consider a left-hand limit at 0 as fis
x—0

not defined for values of x < 0.

. Using the definition and the graph, f(0) = 0.

As x goes to 2 from the left, we see that f(x) is approaching the value of
1. Therefore lim f(x) = 1.

X—2=

The graph and the definition of the function show that f(2) is not defined.

Note how the left and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left and right-hand limits are equal.

Theorem 5.3.1 Limits and One Sided Limits

Let f be a function defined on an open interval / containing c. Then

if, and only if,

limf(x) =L

X—C

lim f(x) =L and lim f(x) =L.

X—c— x—ct

5.3 One Sided Limits

Figure 5.3.1: Agraph of fin Example 5.3.1.
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Figure 5.3.2: A graph of f from Example
5.3.2

190

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 5.3.1 — 5.3.4 is that the value of the func-
tion may/may not be equal to the value(s) of its left/right-hand limits, even when
these limits agree.

Example 5.3.2 Evaluating limits of a piecewise—defined function
2 — 1
Let f(x) = (x— ZX)Z (1) z i i 5 Evaluate the following.
1. lim f(x 5. lim f(x
x%l*f( ) xﬁOJrf( )
2. lim f(x) 6. f(0)
x—1+
: 7. lim f(x
3. )!l_rplf(x) x—>2*f( )
4. f(1) 8. f(2)
SOLUTION In this example, we evaluate each expression using just the

definition of f, without using a graph as we did in the previous example.

1. As x approaches 1 from the left, we consider a limit where all x-values are
less than 1. This means we use the 2—x piece of the piecewise function fas
the domain for that pieceis (0, 1). As the x-values near 1, 2—x approaches
1; that is, f(x) approaches 1. Therefore “T flx)=1.

X—1—

2. As x approaches 1 from the right, we consider a limit where all x-values
are greater than 1. This means we use the (x—2)? piece of fas the domain
for that piece is (1,2). As the x-values near 1, (x — 2)? approaches 1; that
is, we see that again f(x) approaches 1. Therefore Xir?+f(x) =1.

3. The limit of fas x approaches 1 exists and is 1, as f approaches 1 from both
the right and left. Therefore Iimlf(x) =1
X—

4. Neither piece of fis defined for the x-value of 1; in other words, 1 is not
in the domain of f. Therefore f(1) is not defined.

5. As x approaches 0 from the right, we consider a limit where all x-values
are greater than 0. This means we use the 2 — x piece of f. As the x-values
near 0, 2 — x approaches 2; that is, f(x) approaches 2. So |im+f(x) =2.

x—0

6. f(0) is not defined as O is not in the domain of f.

7. As x approaches 2 from the left, we consider a limit where all x-values are
less than 2. This means we use the (x — 2)? piece of f. As the x-values
near 2, (x — 2)% nears 0; that is, f(x) approaches 0. So lim f(x) = 0.

X—2~

8. f(2) is not defined as 2 is not in the domain of f.

We can confirm our analytic result by consulting the graph of f shown in Figure
5.3.2. Note the open circles on the graph at x = 0, 1 and 2, where fis not de-
fined.



Example 5.3.3 Evaluating limits of a piecewise—defined function
—1)2 <x<
Let f(x) = { (x 11) 0= XX—_2’1X 71 , as shown in Figure 5.3.3. Evaluate
the following.
1. i 3. i
Jim_f(x) lim £(x)
2. lim f(x) 4. f(1)
x—1t
SOLUTION Itis clear by looking at the graph that both the left and right-

hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is O;
ie., Iimlf(x) = 0. Itis also clearly stated that f(1) = 1.
X—

Evaluating limits of a piecewise—defined function

2 0<x<1 -
Let f(x) = { 2X—x 1< : ~5 0 38 shown in Figure 5.3.4. Evaluate the fol-

Example 5.3.4

lowing.
1. xinff f(x) 3. )El_r:’ll f(x)
2. lim f(x) 4. f(1)
x—1+
SOLUTION It is clear from the definition of the function and its graph

that all of the following are equal:

lim f(x) = XiT+f(x) = lim f(x) = f(1) = 1.

x—1- x—1

In Examples 5.3.1 - 5.3.4 we were asked to find both Iimlf(x) and f(1). Con-
X—

sider the following table:

lim £(x) f(a)
Example 5.3.1 does not exist 1
Example 5.3.2 1 not defined
Example 5.3.3 0 1
Example 5.3.4 1 1

Only in Example 5.3.4 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in the next section, entitled “Continuity.” In short, a continu-
ous function is one in which when a function approaches a value as x — ¢ (i.e.,
when )I(l_rpcf(x) = L), it actually attains that value at c. Such functions behave

nicely as they are very predictable.

5.3 One Sided Limits

Figure 5.3.4: Graphing fin Example 5.3.4

Figure 5.3.3: Graphing fin Example 5.3.3
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Exercises 5.3

Terms and Concepts o ‘
1. What are the three ways in which a limit may fail to exist? 7. | i
0s | |
2. T/F:If lim f(x) =5, then Iimlf(x) =5 l
=1~ = ! | | > X
3. T/R:If lim f(x) =5, then lim f(x) =5 (a) lirpff(X) (d) f(1)
x—1— x—1 X— A
(6) lim ) e Mg £
4. T/F: I Jim f(x) = 5, then lim f(x) =5 (©) lim f(x (f) lim f(x)
Problems 05 |
8. 14 °
In Exercises 5 — 12, evaluate each expression using the given
graph of f(x). 05 |
Y (a) lim f(x) (c) lim f(x)
(b) lim f(x) (d) f(1)
x—17F
5.
9. 1
(a) XLiT_ f(x) (d) f(1) os |
(b) XiT+f(X) (e) XL";L f(X) | | | -
(c) lef(X) () XE,T+f(X) 0.5 1 1.5 2
(a) XET— f(x) (c) Jmf(X)
, (b) lim f(x) (d) f(1)
6. 1 /
0.5 | 10. -

: ! ! > X :4 :3 2—}1 1 2 3 4‘1
(@) lim f(x) (d) f(2) / 4

x—1—
(b) lim f(x) (&) tim f00) (@ lim f(x) (c) lim £(x)
(c) lim f(x) (f) lim, f00 (b) lim £ (d) £(0)
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(a) lim f(x) (e) lim f(x)
X——2" X—2—
(b) lim  f(x) (f) XL";\J(X)
(c) Xinlzf(x) (8) X“_f;ﬂzf(x)
(d) f(—=2) (h) f(2)
12. ‘ ‘ .
43 2l 12 3 a4

Let —3 < a < 3 be aninteger.

(a) Iimif(x) (c) Ii_r'{lf(x)
(b) lim f(x) (d) f(a)

In Exercises 13 — 21, evaluate the given limits of the piecewise

defined functions f.
x+1 x<1
13-f(X)={X275 x>1
(a) xirln_f(x) (c) X'mf(x)
(b) lim £(x) (d) f(1)
x—11
2% +5x—1 x<0
14. f(x):{ sin x x>0
(a) Xlﬁirpff(X) (c) Xli_rQ)f(X)
(b) lim f(x) (d) f(0)
x—0t
X —1 x< —1
15. fx) =< x¥* 41 —1<x<1
L +1 x>1
(@ lim f(x) (e) lim f(x)
x——1— x—1—
(b) X_l)lﬂ+f(X) (f) xLITJrf(X)
(c) Xirnlf(x) (8) X“_"plf(x)
(d) f(-=1) (h) f(2)

cos x x<m
16. f(x):{ sin x x>
(a) lim f(x) (@) lim £(x)
(b) lim_f(x) (d) f(m)
1 — cos?x x<a
17. f(x):{ sin? x x>a'’
where a is a real number.
(a) lim f(x) (c) Ii_r)rlf(x)
(b) lim_f(x) (d) f(a)
x+1 x <1
18. f(x) = 1 x=1
x—1 x>1
(a) Jim fx) (c) lim f(x)
(b) lim f(x) (d) f(2)
x—11
X x <2
19. f(x) = x+1 x=2
- +2x+4 x>2
(a) XE@[ f(x) (c) Xlij}f(X)
(b) lim f(x) (d) f(2)
x—2+
[ ax=b)"+c x<b
20. fx) = { alx—b)+c  x>b
where g, b and c are real numbers.
(@) lim f(x) (c) lim f(x)
Xx—b— x—b
(b) lim f(x) (d) f(b)
x—bt
. % x#0
21.f(x)_{ 5 DS
(a) Xlﬁirgg fx) (c) lim f(x)
(b) lim f(x) (d) £(0)
x—0t
Review
2
22. Evaluate the limit: lim X2+57X+4
x——1x>—3x—14
2
23. Evaluate the limit: lim 2)(;16
x——4 x> — 4x — 32
24. Evaluate the limit: lim w
x——6 X? — 6x
. L. . o X —4.4x+ 1.6
25. Approximate the limit numerically: Xir(?4 e _oax
2
26. X +58x—1.2

Approximate the limit numerically: lim ———————.
x—0.2 x2 —4.2x + 0.8
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Figure 5.4.1: Graphing f(x) = 1/x* for
values of x near 0.

194

5.4 Limits Involving Infinity

In Definition 5.1.1 we stated that in the equation lim f(x) = L, both cand L were
X—C

numbers. In this section we relax that definition a bit by considering situations
when it makes sense to let ¢ and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x?, as shown in Figure 5.4.1.
Note how, as x approaches 0, f(x) grows very, very large —in fact, it grows without
bound. It seems appropriate, and descriptive, to state that

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notation such as

We explore both types of use of oo in turn.

Definition 5.4.1 Limit of Infinity, co

Let / be an open interval containing ¢, and let f be a function defined on
1, except possibly at c.

¢ The limit of f(x), as x approaches ¢, is infinity, denoted by

g gn) = oo,
if we can obtain any arbitrarily large value for f(x) by choosing x #
c sufficiently close to c.

¢ The limit of f(x), as x approaches c, is negative infinity, denoted
by
)l(mf(x) = —00,
if we can obtain any arbitrarily large negative value for f(x) by
choosing x # ¢ sufficiently close to c.

This is once again an informal definition, like Definition 5.1.1: we say that if
we get close enough to ¢, then we can make f(x) as large as we want, without
giving precise answers to the questions “How close?” or “How large?”

It is important to note that by saying lim f(x) = oo we are implicitly stating

X—C

that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descriptive.

We define one-sided limits that approach infinity in a similar way.



5.4 Limits Involving Infinity

Definition 5.4.2 One-Sided Limits of Infinity

e Let fbe a function defined on (a, c) for some a < c.

The limit of f(x), as x approaches c from the left, is infinity, or, the
left-hand limit of f at c is infinity, denoted by

lim f(x) = oo,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to ¢, where a < |x < c.
e Let fbe a function defined on (c, b) for some b > c.

The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

Iim+f(x) = 00,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to ¢, where ¢ < x < b.

e The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 5.4.1.

Example 5.4.1 Evaluating limits involving infinity y
N 1 -

Find )!I_I’I’ll m as shown in Figure 5.4.2. 100 1

SOLUTION In Example 5.1.4 of Section 5.1, by inspecting values of x 50 |

close to 1 we concluded that this limit does hot exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
tion does appear to be growing larger and larger, as f(.99) = 10%, f(.999) = 108,
£(.9999) = 108. A similar thing happens on the other side of 1. In general, we ; ; X
can see that as the difference |x — 1| gets smaller, the value of f(x) gets larger 0.5 1 15 2

and larger, so we may say Iim1 1/(x — 1)* = .
X—

Figure 5.4.2: Observing infinite limit as
x — 1in Example 5.4.1.

y

Example 5.4.2 Evaluating limits involving infinity 50 4
1
Find lim —, as shown in Figure 5.4.3.
x—0 X
: f T T X
. . . —1 —0.5 0.5 1
SOLUTION It is easy to see that the function grows without bound near
0, but it does so in different ways on different sides of 0. Since its behaviour is not
1
consistent, we cannot say that Iim0 — = 00. However, we can make a statement %
x—0 X - I
1 1
about one—sided limits. We can state that lim — =ocoand lim — = —cc. 1
x—=0t X x—=0~ X Figure 5.4.3: Evaluating Iir’% -,
x—0 X

195



Chapter 5 Limits

10 |

—10

3x
x2—4

Figure 5.4.4: Graphing f(x) =

f t = X
-1 1 2

Figure 5.4.5: Graphically showing that
2 J—

1
flx) = X I does not have an asymp-
X —

toteatx = 1.

196

Vertical asymptotes

The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = ¢, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 5.4.3 Vertical Asymptote

Let / be an interval that either contains c or has c as an endpoint, and let
fbe a function defined on /, except possibly at c.

If the limit of f(x) as x approaches c from either the left or right (or both)
is 00 or —oo, then the line x = cis a vertical asymptote of f.

Example 5.4.3 Finding vertical asymptotes
3x
Find the vertical asymptotes of f(x) = — 2
X pa—
SOLUTION Vertical asymptotes occur where the function grows without

bound; this can occur at values of ¢ where the denominator is 0. When x is
near ¢, the denominator is small, which in turn can make the function take on
large values. In the case of the given function, the denominator is 0 at x = £2.
Substituting in values of x close to 2 and —2 seems to indicate that the function
tends toward oo or —oc at those points. We can graphically confirm this by
looking at Figure 5.4.4. Thus the vertical asymptotes are at x = +2.

When a rational function has a vertical asymptote at x = ¢, we can conclude
that the denominator is 0 at x = c¢. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (x> — 1)/(x — 1) does not have a vertical asymptote at x = 1,
as shown in Figure 5.4.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

x—1)(x+1)
g = H )
x—1
Cancelling the common term, we get that f(x) = x + 1 for x # 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a little contrived. Another example demon-

strating this important concept is f(x) = (sinx)/x. We have considered this
. . . . . . sinx
function several times in the previous sections. We found that Ilr’% — =1
X— X

i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 5.2 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.




Indeterminate Forms

We have seen how the limits

. sinx X2 —1
lim —— and lim
x—=0 X x—=1 x—1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respectively. However, 0/0 is not a valid arithmetical expression. It gives
no indication that the respective limits are 1 and 2.

With a little cleverness, one can come up with 0/0 expressions which have
a limit of oo, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to O while the denominator is also shrinking to 0.
The respective rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to do more work in order to
compute the limit. That work may be algebraic (such as factoring and cancelling)
or it may require a tool such as the Squeeze Theorem. In a later section we will
learn a technique called I'Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are oo — 0o, 00 - 0, 00/ 00, 0°, x°

and 1°°. Again, keep in mind that these are the “blind” results of evaluating a
limit, and each, in and of itself, has no meaning. The expression co — oo does
not really mean “subtract infinity from infinity.” Rather, it means “One quantity
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between —oo and oo.

Note that 1/0 and co/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be oo, —o0, or simply not exist if the
left- and right-hand limits do not match.

5.4 Limits Involving Infinity
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‘ ; 1 > X
—20 —10 10 20
(a)
X %)
10 0.9615
100 0.9996
10000  0.999996
—10 0.9615
—100 0.9996
—10000 0.999996
(b)

Figure 5.4.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 5.4.4.
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Limits at Infinity and Horizontal Asymptotes

At the beginning of this section we briefly considered what happens to f(x) =
1/x? as x grew very large. Graphically, it concerns the behaviour of the function
to the “far right” of the graph. We make this notion more explicit in the following
definition.

Definition 5.4.4 Limits at Infinity and Horizontal Asymptote

Let L be a real number.
1. Let f be a function defined on (a,c0) for some number a. The
limit of f at infinity is L, denoted lim f(x) = L, if we can make the
X—» 00

value of f(x) arbitrarily close to L by choosing a sufficiently large
positive value of x.

2. Let f be a function defined on (—o0, b) for some number b. The
limit of f at negative infinity is L, denoted lim f(x) = L, if we
X—r—00

can make the value of f(x) arbitrarily close to L by choosing a
sufficiently large negative value of x.

3. If lim f(x) = Lor lim
X—00 X——00

horizontal asymptote of f.

f(x) = L, wesay theliney = Lisa

We can also define limits such as lim f(x) = oo by combining this definition
X—> 00
with Definition 5.4.1.

Example 5.4.4 Approximating horizontal asymptotes
2
X
Approximate the horizontal asymptote(s) of f(x) = ——.
pp ymptote(s) of f(x) ia
SOLUTION We will approximate the horizontal asymptotes by approxi-
mating the limits
2 2
X
lim —— and lim X .
x——o0 X2 + 4 x—o0 X2 + 4

Figure 5.4.6(a) shows a sketch of f, and part (b) gives values of f(x) for large mag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1. Later, we will show how to deter-
mine this analytically.

Horizontal asymptotes can take on a variety of forms. Figure 5.4.7(a) shows
that f(x) = x/(x* + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 5.4.7(b) shows that f(x) = x/v/x?> 4+ 1 has two horizontal asymptotes;
oneaty = 1andthe otheraty = —1.

Figure 5.4.7(c) shows that f(x) = (sinx)/x has even more interesting behav-
jor than at just x = 0; as x approaches +o0, f(x) approaches 0, but oscillates as
it does this.
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(c)

Figure 5.4.7: Considering different types of horizontal asymptotes.

We can analytically evaluate limits at infinity for rational functions once we
understand lim 1/x. As x gets larger and larger, 1/x gets smaller and smaller,
X—r 00

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x.

It is now not much of a jump to conclude the following: for any positive
integer n, we have

1 1
lim — =0 and lim — =0
x—o00 X" x——oo X"

Now suppose we need to compute the following limit:

X+ 2x+1
lim ——————————.
x—o0 4x3 — 2x2 + 9

A good way of approaching this is to divide through the numerator and denom-
inator by x*> (hence multiplying by 1), which is the largest power of x to appear
in the function. Doing this, we get

) X+ 2x+1 1 e+ 2x+1
lim = lim .
x50 A3 — 22 +9  x—oo 1/ 43 — 22+ 9
~ im X3+ 2x/x3 +1/x°
Cxmo0 b33 — 22 /x3 4+ 9/x3
im 142/ +1/x°
= i _
x—oo 4 —2/x+9/x3

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/x", we see that the limit becomes

14040 1

4—-0+0 4

This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.

199



Chapter 5 Limits

200

Theorem 5.4.1 Limits of Rational Functions at Infinity

Let f(x) be a rational function of the following form:

X" + ap_1 X"+ 4+ aix+ag
bpX™ + bpy_1X"=1 4+ - + bix + by’

fix) =

where any of the coefficients may be 0 except for a, and b,,.
a
1. Ifn=m,then lim f(x) = lim f(x)= —.

x—00 x——00 bm

2. If n <m,then lim f(x) = lim f(x)=0.
X—00 X——00

3. If n > m, then lim f(x) and lim f(x) are both infinite.
X—r—00

X— 00

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by x” and in the limit all the terms will
approach 0 except for a,x"/x" and b,,x™ /x". Since n = m, this will leave us with
the limit a, /b, If n < m, then after dividing through by x™, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/b, or 0. If n > m, and
we try dividing through by x”, we end up with all the terms in the denominator
tending toward 0, while the x" term in the numerator does not approach 0. This
is indicative of some sort of infinite limit.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to a,x”, and likewise all the terms in the denominator are small
compared to b,x™. If n = m, looking only at these two important terms, we
have (anx")/(bpx™). This reduces to a,/by,. If n < m, the function behaves
like an/(bmx™"), which tends toward 0. If n > m, the function behaves like
anx"~™ /b, which will tend to either co or —oo depending on the values of n,
m, a,, by, and whether you are looking for lim,_, - f(x) or lim,_, _ o f(x).

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the largest powers of x. For instance, consider again

lim X graphed in Figure 5.4.7(b). When x is very large, X2 + 1 ~ x?
x—too \/2 + 1 A ’ '

Thus

X X
VX2+1lxvVx2=|x|, and — ~ —.
A V41 X

This expression is 1 when x is positive and —1 when x is negative. Hence we get
asymptotes of y = 1 and y = —1, respectively.

Example 5.4.5 Finding a limit of a rational function
2
X
Confirm analytically that y = 1 is the horizontal asymptote of f(x) = e a as
X
approximated in Example 5.4.4.
SOLUTION Before using Theorem 5.4.1, let’s use the technique of eval-

uating limits at infinity of rational functions that led to that theorem. The largest
power of x in fis 2, so divide the numerator and denominator of f by x2, then



take limits.

. 2 . X2 /X2
lim —— = lim —————
x—00 X2 + 4 x—o0 X2 /x% + 4 /X2
= lim —————
x—oo 1+ 4—/X2
1
1+0

We can also use Theorem 5.4.1 directly; in this case n = m so the limit is the
ratio of the leading coefficients of the numerator and denominator, i.e., 1/1=1.

Example 5.4.6 Finding limits of rational functions
Use Theorem 5.4.1 to evaluate each of the following limits.

X +2x—1 o2 —1

1 lim ——— 3. lim
x——oco X3+1 x—oo 3 — X

X2+ 2x—1

2. lim ———
x—oco 1 — x — 3x2

SOLUTION

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 5.4.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the ratio of the coefficients of x2, which
is —1/3. See Figure 5.4.8(b).

3. The highest power of x is in the numerator so the limit will be co or —cc.

To see which, consider only the dominant terms from the numerator and
denominator, which are x?> and —x. The expression in the limit will behave
like X2 /(—x) = —x for large values of x. Therefore, the limit is —co. See
Figure 5.4.8(c).

5.4 Limits Involving Infinity

—40 —30 —20 =
_05 4+
(a)
y
0.5
10 20 30 40
—os | //’1
(b)
y
; > X
20 40
_20 4+
_40 4+

(c)

Figure 5.4.8: Visualizing the functions in
Example 5.4.6.
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Exercises 5.4

Terms and Concepts

1. T/F:If Iin';f(x) = 00, then we are implicitly stating that the
X—
limit exists.

2. T/F:If lim f(x) = 5, then we are implicitly stating that the
X—r 00
limit exists.

3. T/F:If lim f(x) = —oo, then lim f(x) = oo

x—1— x—1

4. T/F: If Iimsf(x) = oo, then f has a vertical asymptote at
X—
x =5.

5. T/F: 00/0is not an indeterminate form.
6. List 5 indeterminate forms.

7. Construct a function with a vertical asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let Iim7f(x) = o0. Explain how we know that f is/is not
X—r
continuous at x = 7.
Problems

In Exercises 9 — 14, evaluate the given limits using the graph
of the function.

9. f(X) = (X+ 1)2

(a) lim f(x)

x——1"

(b) lim f(x)

x——11

100 +

50 +

(d)
(e)
(f)

—50 |

11. f(x) = o]

(@ lim f(x)

X—r —00

(b) lim f(x)

X—r 00

14
0.5 3

N

—10 -5 5

12. f(x) = X sin(7x)

(@) lim flx)

(b) lim £(x)

X— 00

10

(c)
(d)

lim f(x)

X—57

lim f(x)

x—5+

lim £(x)

lim f(x)

x—0—

lim f(x)

x—0t



13. f(x) = cos(x)

(@) lim f(x)

X——00

(b) lim f(x)

X—r 00

14. f(x) = 2° 410

(@ lim f(x)

X—> oo
(b) lim £(x)
X— 00
150 +
100 +

50 +

10 s 5
In Exercises 15 — 18, numerically approximate the following
limits:

(a) lim f(x)

Xx—3"

(b) lim f(x)

x—31

(€) lim £(x)

2

15. f(x) = %

16. f(x) = %
17. f(x) = %
18. f(x) = XZX;_S%;B

In Exercises 19 — 24, identify the horizontal and vertical
asymptotes, if any, of the given function.

W —2x—4
19. f(x) = I x—20
-3 -9 —6
20 f¥) = 5o Tox 15
. x2+x—12
21 fX) = 75 a2
2
X —9
22, f(x) = v
2
X —9
23. f(x) = X127
2
x =1

In Exercises 25 — 28, evaluate the given limit.

L+ 41
x—5

25. lim

X—00

3 2
26. lim X+27X+1

X—00 5—x

Review

29. Use an ¢ — ¢ proof to show that
lim 5x — 2 = 3.

x—1

30. Let lim f(x) = 3and lim g(x) = —1. Evaluate the following
x—2 x—2

limits.

(@ lim(f+g)(x)
(b) lim (fg) (x)

(©) lim (/g)(x)

(d) lim f(x)**

2
x =1 x<3
31. Letf(x):{ X+ 5 >3

Is f continuous everywhere?

32. Evaluate the limit: lim Inx.
X—e
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) </\_/\
1L

Figure 5.5.2: A graph of the step function
in Example 5.5.2.
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5.5 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if Iimlf(x) = 3, then as x is close to 1,
X—r

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problematic; functions can tend to one
value but attain another. This section focuses on functions that do not exhibit
such behaviour.

Definition 5.5.1 Continuous Function

Let f be a function defined on an open interval / containing c.
1. fis continuous at c if lim f(x) = f(c).
X—C

2. fis continuous on / if f is continuous at ¢ for all values of cin I. If f
is continuous on (—oo, 00), we say f is continuous everywhere.

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim f(x) exists,
X—C

2. f(c) is defined, and

3. lim f(x) = f(c)-
Example 5.5.1 Finding intervals of continuity
Let f be defined as shown in Figure 5.5.1. Give the interval(s) on which fis con-
tinuous.

SOLUTION We proceed by examining the three criteria for continuity.

1. The limits lim f(x) exists for all ¢ between 0 and 3.
X—C

2. f(c) is defined for all ¢ between |0 and 3, except for c = 1. We know
immediately that f cannot be continuous at x = 1.

3. The limit lim f(x) = f(c) for all c between 0 and 3, except, of course, for
X—C

c=1.

We conclude that f is continuous at every point of (0, 3) except at x = 1.
Therefore fis continuous on (0,1) and (1, 3).

Our definition of continuity (currently) only applies to open intervals. After
Definition 5.5.2, we’ll be able to say that fis continuous on [0, 1) and (1, 3].

Example 5.5.2 Finding intervals of continuity

The floor function, f(x) = | x|, returns the largest integer smaller than, or equal
to, the input x. (For example, f(w) = |7| = 3.) The graph of f in Figure 5.5.2
demonstrates why this is often called a “step function.”

Give the intervals on which f is continuous.

SOLUTION We examine the three criteria for continuity.
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1. The limits lim,_,.f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The function is defined for all values of c.

3. Thelimit lim f(x) = f(c) for all values of c where the limit exist, since each
X—C
step consists of just a line.

We conclude that f is continuous everywhere except at integer values of c. So
the intervals on which fis continuous are

., (=2,-1),(~1,0),(0,1),(1,2),....

Our definition of continuity on an interval specifies the interval is an open
interval. We can extend the definition of continuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

Definition 5.5.2 Continuity on Closed Intervals

Let fbe defined on the closed interval [a, b] for some real numbersa < b.
fis continuous on [a, b] if:

1. fis continuous on (a, b),

2. lim f(x) = f(a) and

x—at

3. lim f(x) = f(b).

x—b—

We can make the appropriate adjustments to talk about continuity on half-
open intervals such as [a, b) or (a, b] if necessary.

Using this new definition, we can adjust our answer in Example 5.5.1 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We
can also revisit Example 5.5.2 and state that the floor function is continuous on
the following half-open intervals

., [-2,-1),[-1,0),[0,1),[1,2),....

This can tempt us to conclude that f is continuous everywhere; after all, if f is
continuous on [0, 1) and [1, 2), isn’t f also continuous on [0, 2)? Of course, the
answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.

Example 5.5.3 Determining intervals on which a function is continuous
For each of the following functions, give the domain of the function and the
interval(s) on which it is continuous.

1. f(x) =1/x 4. f(x) =vV1—x2
2. fx) = sinx 5. ) = I
3. flx) = vx
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SOLUTION We examine each in turn.

1. The domain of f(x) = 1/xis (—o0,0) U (0,00). As it is a rational func-
tion, we apply Theorem 5.2.2 to recognize that fis continuous on all of its
domain.

2. The domain of f(x) = sinx is all real numbers, or (—o0, c0). Applying
Theorem 5.2.3 shows that sin x is continuous everywhere.

3. The domain of f(x) = y/xis [0, 00). Applying Theorem 5.2.3 shows that
f(x) = v/x is continuous on its domain of [0, co).

4. The domain of f(x) = v/1 — x? is [—1, 1]. Applying Theorems 5.2.1 and
5.2.3 shows that fis continuous on all of its domain, [—1, 1].

5. The domain of f(x) = |x| is (—o0, 00). We can define the absolute value
—x x<0
x x>0
function is continuous on all of its domain, giving that f is continuous on
(—00,0) and [0, 00). We cannot assume this implies that f is continuous
on (—oo, 00); we need to check that )!i_r)r})f(x) = f(0), as x = O'is the point
where f transitions from one “piece” of its definition to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is continuous everywhere.

function as f(x) = . Each “piece” of this piecewise defined

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 5.2.1 and 5.2.2 apply to continuity as well.
Further, now knowing the definition of continuity we can re-read Theorem 5.2.3
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 5.5.1 Properties of Continuous Functions

Let fand g be continuous functions on aninterval /, let c be a real number
and let n be a positive integer. The following functions are continuous on
I

[EEY

. Sums/Differences: f+g

2. Constant Multiples: ¢ - f

3. Products: f-g

4. Quotients: f/g (aslongasg # 0onl)

5. Powers: f"

6. Roots: NG (If nis even then require f(x) > 0on /.)
7. Compositions: Adjust the definitions of f and g to: Let f be

continuous on /, where the range of fon [is J,
and let g be continuous on J. Thengof, i.e.,
g(f(x)), is continuous on /.
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Theorem 5.5.2 Continuous Functions

1. f(x) =sinx 4. f(x) = csex 7. f(x) =ad* (a > 0)
2. f(x) = cosx 5. f(x) = secx 8. f(x) =Inx
3. f(x) = tanx 6. f(x) = cotx 9. f(x) = v/x

Let n be a positive integer. The following functions are continuous on their domains.

We apply these theorems in the following Example,

Example 5.5.4 Determining intervals on which a function is continuous
State the interval(s) on which each of the following functions is continuous.

1 fx) =vx—1++V5—x 3. f(x) =tenx
2. f(x) = xsinx 4. f(x) = Vinx

SOLUTION
as appropriate.

We examine each in turn, applying Theorems 5.5.1and 5.5.2

1. The square—root terms are continuous on the intervals [1, co) and (—oo, 5],
respectively. As fis continuous only where each term is continuous, f is
continuous on [1, 5], the intersection of these two intervals. A graph of f
is given in Figure 5.5.3.

2. The functions y = xand y = sin x are each continuous everywhere, hence
their product is, too.

3. Theorem 5.5.2 states that f(x) = tanx is continuous “on its domain.” Its
domain includes all real numbers except odd multiples of 7/2. Thus the
intervals on which f(x) = tan x is continuous are

3 0w ( s 7r) | 37w
' 27 2)° 27277\ 2] 2 )77
or, equivalently,on D = {x € R | x # n- 7, nis an odd integer}.
4. The domain of y = y/x is [0, 00). The range of y = Inx is (—0o0, 00), but if

we restrict its domain to [1, o) its range is [0, oc). So restricting y = Inx
to the domain of [1, c0) restricts its output is [0,/00), on which y = /x is
defined. Thus the domain of f(x) = VInx s [1, o0).

Classifying discontinuities

We now know what it means for a function to be continuous, so of course we
can easily say what it means for a function to be discontinuous; namely, not
continuous. However, to better understand continuity it is worth our time to
discuss the different ways in which a function can fail to be discontinuous. By
definition, a function fis continuous at a point a in its domain if )I(l_r;r;f(x) = f(a).
If this equality fails to hold, then f is not continuous. We note, however, that
there are a number of different things that can go wrong with this equation.

Figure 5.5.3: A graph of f in Example
5.5.4(1).
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Figure 5.5.4: The graph of a function with
a removable discontinuity at x = 0

N

Figure 5.5.5: The graph of a function with
a jump discontinuity atx = 1

y

4 0 4 8

Figure 5.5.6: The graph of a function with
an infinite discontinuity at x = 2
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1. lim f(x) = Lexists, but L # f(a), or f(a) is undefined. Such a discontinuity
xX—a

is called a removable discontinuity.

A removable discontinuity can be pictured as a “hole” in the graph of f.
The term “removable” refers to the fact that by simply redefining f(a) to
equal L (that is, changing the value of f at a single point), we can create a
new function that is continuous at x = @, and agrees with f at all x # a.

. lim f(x) = Land lim f(x) = Mexist, butL # M. In this case the left and
x—at x—a~

right hand limits both exist, but since they are not equal, the limit of f as
x — a does not exist. Such a discontinuity is called a jump discontinuity.

The phrase “jump discontinuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The function f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negative) as x approaches a. Such
a discontinuity is called an infinite discontinuity.

Infinite discontinuities are most easily understood in terms of infinite lim-
its, which we will discuss in the next section.

4. limy_,4 f(x) does not exist, for reasons other than the above. Such discon-
tinuities are called essential discontinuities . With jump and infinite dis-
continuities, the limit fails to exist, but in ways that can still be described
or even quantified. Essential discontinuities include examples such as
f(x) = sin(1/x) as x — 0, where the function oscillates infinitely often, or
is otherwise so badly-behaved that the limit does not exist.

Consequences of continuity

A common way of thinking of a continuous function is that “its graph can be
sketched without lifting your pencil.” That is, its graph forms a “continuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo—definition glosses over some of the finer points of continuity. Very
strange functions are continuous that one would be hard pressed to actually
sketch by hand.

This intuitive notion of continuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1,2] and f(1) = —10 and
f(2) = 5. If fis continuous on [1, 2] (i.e., its graph can be sketched as a continu-
ous curve from (1, —10) to (2, 5)) then we know intuitively that somewhere on
[1,2] f must be equal to —9, and —8, and —7, —6, ..., 0, 1/2, etc. In short, f
takes on all intermediate values between —10 and 5. It may take on more val-
ues; f may actually equal 6 at some time, for instance, but we are guaranteed all
values between —10 and 5.

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 5.5.3 Intermediate Value Theorem

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value cin (a, b) such that f(c) = y.




One important application of the Intermediate Value Theorem is root find-
ing. Given a function f, we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one cin (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] — we have
halved the size of our interval, hence are closer to a good approximation
of the root.

3. f(d) > 0: Then we know there is a root of f on the interval [a, d] — again,we
have halved the size of our interval, hence are closer to a good approxi-
mation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 5.5.5 Using the Bisection Method
Approximate the root of f(x) = x—=cosx, accurate to three places after the
decimal.

SOLUTION Consider the graph of f(x) = x—cos x, shown in Figure 5.5.7.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
Bisection Method, pick an interval that contains 0.8. We choose [0.7,0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Iteration 2: f(0.7) < 0,£(0.8) > 0, and at the midpoint, 0.75, we have f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
tinue to check the endpoints, just the midpoint. Thus we put the rest of
the iterations in Figure 5.5.8.

Notice that in the 12t iteration we have the endpoints of the interval each
starting with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places after the decimal. Using a computer, we have

£(0.7390) = —0.00014, £(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where fis 0. The
Intermediate Value Theorem states that the actual zero is still within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places after the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a

5.5 Continuity

0.5

0.5

—0.5 |

—1

Figure 5.5.7: Graphing a root of f(x) =

X — COS X.

Iteration Interval Midpoint Sign
1 [0.7,0.9] f(0.8) >0
2 [0.7,0.8] f(0.75) > 0
3 [0.7,0.75] £f(0.725) < 0
4 [0.725,0.75]  f(0.7375) < O
5 [0.7375,0.75] £(0.7438) > 0
6 [0.7375,0.7438]  £(0.7407) > 0
7 [0.7375,0.7407]  £(0.7391) > 0
8 [0.7375,0.7391]  £(0.7383) < O
9 [0.7383,0.7391]  f(0.7387) < 0
10 [0.7387,0.7391]  £(0.7389) < O
11 [0.7389,0.7391]  £(0.7390) < O
12 [0.7390, 0.7391]

Figure 5.5.8: Iterations of the Bisection

Method of Root Finding
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second for the program to run the necessary 35 iterations. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iterations).

Itis a simple matter to extend the Bisection Method to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function g where g(x) = f(x) — 1. Then
use the Bisection Method to solve g(x) = 0.

Similarly, given two functions f and g, we can use the Bisection Method to
solve f(x) = g(x). Once again, create a new function h where h(x) = f(x) — g(x)
and solve h(x) = 0.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary

In this chapter we:
¢ defined the limit,

¢ found accessible ways to approximate their values numerically and graph-
ically,

¢ developed a not—so—easy method of proving the value of a limit (-0 proofs),
¢ explored when limits do not exist,

¢ defined continuity and explored properties of continuous functions, and

e considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, we will want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.



Exercises 5.5

Terms and Concepts

1.

10.

In your own words, describe what it means for a function
to be continuous.

. In your own words, describe what the Intermediate Value

Theorem states.

. What is a “root” of a function?

. Given functions f and g on an interval /, how can the Bisec-

tion Method be used to find a value c where f(c) = g(c)?

. T/F: If f is defined on an open interval containing ¢, and

lim f(x) exists, then fis continuous at c.
X—C

. T/F:If fis continuous at ¢, then lim f(x) exists.
X—C

. T/F:If fis continuous at ¢, then lim f(x) = f(c).

x—ct

. T/F:If fis continuous on [a, b], then lim f(x) = f(a).

X—a—

. T/F:If fis continuous on [0, 1) and [1, 2), then fis continu-

ouson [0, 2).

T/F: The sum of continuous functions is also continuous.

Problems

In Exercises 11 — 18, a graph of a function f is given along with
a value a. Determine if f is continuous at g; if it is not, state
why it is not.

11.

12.

a=1
y
Y

1.5 +

0.5

a=1

1.5 +

0.5 +

t t t
0.5 1 15 2

13. a=1
y
2t |
|
15 |
I
I
1] l
|
0.5 .
I
I
‘ | : . x
0.5 1 1.5 2
14. a=0
y
)4
15 |
16 °
0.5 |
+ + X
0.5 1 1.5 2
15. a=1
y
P
1.5 |
1
0.5 |
+ + + > X
0.5 1 1.5 2
16. a =4

—4 -3 —2 -1

—2
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18. a = 371/2
y
24

1.5 1

0.5

+ + ~+ > X
/2 a 37/2 27

In Exercises 19 — 22, determine if f is continuous at the indi-
cated values. If not, explain why.

1 x=0
SRS I
(a)X:O
(b)X:7r
X —x x<1
20.f(x)={ > i
(a)XZO
(b) x=1
21. f(x)_{ 1215;12 ii:i
(a)Xzfl
(b) x =10
22-f(X)={ T iii
(a)X:O
(b) x=28

In Exercises 23 — 34, give the intervals on which the given
function is continuous.

23. f(x) =x* —3x+9
24. g(x) =
25. g(x) = V4 —x

26. h(k) =vV1—k+vk+1
27. f(t) = V/5t* — 30

1
28. g(t) = Wi
29. g(x) = 1 sz
30. f(x) = ¢€"

31. g(s) =Ins

32. h(t) = cost

33. f(k) = /1 — e
34. f(x) = sin(e* + x*)

Exercises 35 — 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be continuous on [1, 5] where f(1) = —2 and f(5) =
—10. Does avalue 1 < ¢ < 5 exist such that f(c) = —9?
Why/why not?

36. Let g be continuous on [—3,7] where g(0) = 0and g(2) =
25. Does a value —3 < ¢ < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be continuous on [—1, 1] where f(—1) = —10 and
f(1) = 10. Does a value —1 < ¢ < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a function on [—1, 1] where h(—1) = —10 and
h(1) = 10. Does a value —1 < ¢ < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 — 42, use the Bisection Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given function in the given interval.

39. f(x) =x*+2x—4on[L,1.5].

40. f(x) =sinx —1/20n[0.5,0.55]

41. f(x) = € —20n[0.65,0.7].

42. f(x) = cosx — sinxon [0.7,0.8].

Review
43, Letf(x):{XZS;S i;? .
(a) Xlﬁir?f f(x) (c) Xli_rgf(X)
(b) lim f(x) (d) £(5)
x—5+

44. Numerically approximate the following limits:

X —82ux—172
(@ lim ——————
x——a4/5% X*+58x+4
2
—82x—7.2
(b) lim X —o.Xx— /.2
x——4/5~ x2+58x+4
45. Give an example of function f(x) for which Iin'z)f(x) does not
X—
exist.



6: DERIVATIVES

The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivative. Limits describe where a function is going; derivatives describe
how fast the function is going.

6.1 Instantaneous Rates of Change: The Derivative

A common amusement park ride lifts riders to a height then allows them to free-
fall a certain distance before safely stopping them. Suppose such a ride drops
riders from a height of 150 feet. Students of physics may recall that the height
(in feet) of the riders, t seconds after free-fall (and ignoring air resistance, etc.)
can be accurately modelled by f(t) = —16t> + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground at t = 2.54/1.5 ~ 3.06 seconds. Suppose the designers of
the ride decide to begin slowing the riders’ fall after 2 seconds (corresponding
to a height of 86 ft.). How fast will the riders be travelling at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, we do know from common experience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Section 5.1 when we introduced the
difference quotient. We have

change in distance ~ “rise” .
— = = average velocity.
change in time run

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If we make the time
interval small, we will get a good approximation. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximation of the velocity.)

Consider the interval fromt = 2 tot = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f3) —f(2) _ f(3) —£(2)

- — _80ft
3_2 1 /s

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2,2.5] we have

f25) - f(2) _ f(25) - f(2)

25-2 0.5

We can do this for smaller and smaller intervals of time. For instance, over
a time span of 1/10%" of a second, i.e., on [2,2.1], we have

1) =f2) _f1=f2) _ oo
21-2 0.1
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Over a time span of 1/100™" of a second, on [2, 2.01], the average velocity is

f2.01) —f2) _ f201) —f2) _ 416,
2.01—2 0.01

What we are really computing is the average velocity on the interval [2, 2+ h]
for small values of h. That is, we are computing

f2+h) -2
h

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0”

Average Velocity indeterminate form. So we employ a limit, as we did in Section 5.1.

h ft/s
1 —80 We can approximate the value of this limit numerically with small values of
0.5 =72 h as seen in Figure 6.1.2. It looks as though the velocity is approaching —64 ft/s.
0.1 —65.6 Computing the limit directly gives
0.01 —64.16
0.001 —64.016
Figure 6.1.2: Approximating the instan- f(2 + h) —f(Z) —16(2 + h)z +150 — (—16(2)2 + 150)
taneous velocity with average velocities lim = lim
over a small time period h. h=0 h h=0 h
. —64h — 16h?
= lim —
h—0 h
= lim (—64 — 16h)
h—0
= —64.

214

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2,£(2))
and (2 + h,f(2 4+ h)). In Figure 6.1.1, the secant line corresponding to h = 11is
shown in three contexts. Figure 6.1.1(a) shows a “zoomed out” version of f with
its secant line. In (b), we zoom in around the points of intersection between
f and the secant line. Notice how well this secant line approximates f between
those two points —itis a common practice to approximate functions with straight
lines.

As h — 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of —64. In parts (c) and (d) of
Figure 6.1.1, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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6.1
y y
150 -
100
100
50 +
50 +
‘ ‘ A x
1 2 3\
—50 2 2.5 3
(a) (b)
y y

100 + 100 \

50 50 | \

1.5 2 2.5 1.5 2

(c) (d)

2.5

Figure 6.1.1: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in

different amounts. Part (d) shows the tangent line to fat x = 2.

We have just introduced a number of important concepts that we will flesh

out more within this section. First, we formally define two of them.

Definition 6.1.1 Derivative at a Point
Let f be a continuous function on an open interval / and let c be in /. The

derivative of f at ¢, denoted f'(c), is

lim flc+h) —f(c)7
h—0 h
provided the limit exists. If the limit exists, we say that f is differentiable

at ¢; if the limit does not exist, then f is not differentiable at c. If fis
differentiable at every point in /, then fis differentiable on /.

Definition 6.1.2 Tangent Line

Let f be continuous on an open interval / and differentiable at ¢, for some
cin /. The line with equation ¢(x) = f'(c)(x—c) +f(c) is the tangent line
to the graph of f at ¢; that is, it is the line through (c, f(c)) whose slope
is the derivative of fat c.

Some examples will help us understand these definitions.
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40 +
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v

1 2 3 4

Figure 6.1.3: A graph of f(x) = 3x* +5x—
7 and its tangent linesatx = 1and x = 3.
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Example 6.1.1 Finding derivatives and tangent lines
Let f(x) = 3x* + 5x — 7. Find:

1 /(1) 3. £(3)

2. The equation of the tangent line 4. The equation of the tangent line
to the graph of fat x = 1. to the graph fat x = 3.

SOLUTION

1. We compute this directly using Definition 6.1.1.

lim
h—0

()

f(l+h) —f(1)
h

_im 3(1+h)?+5(1+h)—7—(3(1)>+5(1)—7)
o h—0 h

_3h*+11h

lim ———

h—0 h

(3h +11) = 11.

lim
h—0

2. The tangent line at x = 1 has slope f’(1) and goes through the point
(1,f(1)) = (1,1). Thus the tangent line has equation, in point-slope form,
y = 11(x — 1) + 1. In slope-intercept form we have y = 11x — 10.

3. Again, using the definition,

lim
h—0

f'3)

f3+h) -£B3)
h

_ lim 33+h)?*+50B+h)—7-(33)2+53)-7)
it h

. 3h*+23h

lim ———

h—0 h

(3h +23)

lim
h—0
= 23.

4. Thetangentlineatx = 3 has slope 23 and goes through the point (3, f(3)) =
(3,35). Thus the tangent line has equationy = 23(x—3)+35 = 23x—34.

A graph of fis given in Figure 6.1.3 along with the tangent lines at x = 1 and
X = 3.

Anotherimportant line that can be created using information from the deriva-
tive is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite—reciprocal of the tangent line’s slope.
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Definition 6.1.3 Normal Line

Let f be continuous on an open interval / and differentiable at ¢, for some
cin /. The normal line to the graph of f at c is the line with equation

f'(e)

where f'(c) # 0. When f’(c) = 0, the normal line is the vertical line
through (¢, f(c)); thatis, x = c.

(x =€) +f(c),

n(x) =

Example 6.1.2 Finding equations of normal lines
Let f(x) = 3x? + 5x — 7, as in Example 6.1.1. Find the equations of the normal
lines to the graph of fatx = 1 and x = 3.

SOLUTION In Example 6.1.1, we found that f'(1) = 11. Hence atx = 1,
the normal line will have slope —1/11. An equation for the normal line is

n(x) = %11()(_ 1)+ 1.

The normal line is plotted with y = f(x) in Figure 6.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathematically, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite—reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ratio of the picture of the graph plays
a big role in this.)

We also found that f/(3) = 23, so the normal line to the graph of fat x = 3
will have slope —1/23. An equation for the normal line is

n(x) = E(X —3)+35.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not—
so—difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f, the best linear approximation
to fis its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit from a tangent-line approxima-
tion is a line; it|is rather simple to recognize that the tangent line to a line is the
line itself. We lbok at this in the following example.

Example 6.1.3 Finding the derivative of a linear function
Consider f(x) = 3x + 5. Find the equation of the tangent line to fat x = 1 and
x=7.

SOLUTION We find the slope of the tangent line by using Definition
6.1.1.

t t t t X
1 2 3 4

T

Figure 6.1.4: A graph of f(x) = 3x* +5x —
7, along with its normal line at x = 1.
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Figure 6.1.5: f(x) = sin x graphed with an
approximation toits tangent line atx = 0.
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We just found that f'(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5is 3. This is not surprising; lines are characterized by
being the only functions with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivative at any point x will be g; that is,
f'(x) =a.

It is now easy to see that the tangent line to the graph of fat x = 1 is|just f,
with the same being true for x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 6.1.4 Numerical approximation of the tangent line
Approximate the equation of the tangent line to the graph of f(x) = sinx at
x=0.

SOLUTION In order to find the equation of the tangent line, we need a
slope and a point. The point is given to us: (0,sin0) = (0,0). To compute the
slope, we need the derivative. This is where we will make an approximation.

Recall that ( h)
sin(0 + h) —sin0
£(0) = :

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

sin(0.1) —sin0
0.1

f'(0) ~ ~ 0.9983.
Thus our approximation of the equation of the tangent line is y = 0.9983(x —
0) + 0 = 0.9983x; it is graphed in Figure 6.1.5. The graph seems to imply the
approximation is rather good.

. . sinx .
Recall from Section 5.2 that IlrrB —— = 1, meaning for values of x near 0,
X— X

sinx = x. Since the slope of the liney = xis 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sinx” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 6.1.1. To find the derivative of fat x = 1, we needed
to evaluate a limit. To find the derivative of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific do something return
N , ,
number ¢ to fand ¢ number f'(c)
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This process describes a function; given one input (the value of ¢), we return
exactly one output (the value of f'(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

do something return

input variable x — to f and x ™ function £'(x)

The output is the “derivative function,” f/(x). The f’(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.

Definition 6.1.4 Derivative Function

Let f be a differentiable function on an open interval /. The function

f/(X) = lim f(X—Fh’), _f(X>

h—0

is the derivative of f.

Notation:
Let y = f(x). The following notations all represent the derivative of f:

g e 4
T dx oax” T

d
Important: The notation E): is one symbol; it is not the fraction “dy/dx”. The

notation, while somewhat confusing at first, was chosen with care. A fraction—
looking symbol was chosen because the derivative has many fraction—like prop-
erties. Among other places, we see these properties at work when we talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 6.1.5 Finding the derivative of a function
Let f(x) = 3x* + 5x — 7 as in Example 6.1.1. Find f’ ().

SOLUTION We apply Definition 6.1.4.
 fix+h) —f(x)
I = J\ AT ) —J\A)
160 s h
i 3(x+h)>+5(x+h)—7— (3 +5x—7)
T o0 h
. 3h? 4 6xh + 5h
= lim ——M—
h—0 h
= lim(3h +6x+5)
h—0
=6x+5

Sof’(x) = 6x+5. Recall earlier we found that f/(1) = 11and f/(3) = 23. Note
our new computation of f’(x) affirm these facts.
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Example 6.1.6 Finding the derivative of a function

Let f(x) = ﬁ Find f’(x).

SOLUTION We apply Definition 6.1.4.
- flx+h) - f(x)
/ —
f109 = /!ino h
i 1
— lim X+h+1 x+1
h—0 h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

1 x+1 B x+h+1
h—oh <(x—|— N(x+h+1) (x+ 1)(x+h+1)>

Cim L <x+1(x+h+1)>
h—oh \ (x+1)(x+h+1)
1 —h

= lim —-

h—0 h ((x—i— 1)(x+h+1)>

— i -1

) (x+1)(x+h+1)

B -1

C (x+1)(x+1)

-1
(x+1)%

Sof'(x) = ()(_7_71)2 To practice using our notation, we could also state

d/ 1\ 1
dx \x+1)  (x+1)2

Example 6.1.7 Finding the derivative of a function
Find the derivative of f(x) = sin x.

SOLUTION Before applying Definition 6.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sinx at x = 0, whereas we settled
for an approximation in Example 6.1.4.

f/(X) — lim sin(x + h) —sinx Use trig identity

T s h sin(x + h) = sinxcosh + cosxsin h
. sinxcosh 4+ cosxsinh — sinx

= lim (regroup)
h—0 h
. sinx(cosh — 1) + cosxsinh

= lim (split into two fractions)
h—0 h
. sinx(cosh —1)  cosxsinh cosh — 1 sinh

= lim + use lim ———— =0and lim — =1
h—0 h h h—0 h h—0 h

=sinx-0+4cosx-1

=cosx!

We have found that when f(x) = sinx, f’(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine function is a nice
function. Then again, perhaps this is not entirely surprising. The sine function
is periodic — it repeats itself on regular intervals. Therefore its rate of change
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also repeats itself on the same regular intervals. We should have known the
derivative would be periodic; we now know exactly which periodic function it is.

Thinking back to Example 6.1.4, we can find the slope of the tangent line to
f(x) = sinxatx = O using our derivative. We approximated the slope as 0.9983;
we now know the slope is exactly cos0 = 1.

Example 6.1.8 Finding the derivative of a piecewise defined function
Find the derivative of the absolute value function,

—Xx x<0

o=l ={ %o

See Figure 6.1.6.

SOLUTION We need to evaluate lim . As fis piecewise—
h—0

defined, we need to consider separately the limits when x < 0 and when x > 0.

flix+h) — fix)
h

When x < 0:

L . a
When x > 0, a similar computation shows that s (x) =1
We need to also find the derivative at x = 0. By the definition of the deriva-
tive at a point, we have

. 0+ h) — f(0)

o) — i I f0)
£1(0) = lim h

Since x = 0is the point where our function’s definition switches from one piece
to other, we need to consider left and right-hand limits. Consider the following,

where we compute the left and right hand limits side by side.

SO+ —f0) o f0+h) —f0)
h—0~ h h—0+ h
 —h-0 . h-0
lim = lim —— =
h—0~— h h—ot+ h
lim —1=-1 lim 1=1
h—0— h—0+

The last lines of each column tell the story: the left and right hand limits are
not equal. Therefore the limit does not exist at 0, and fis not differentiable at 0.

So we have
oy ) 1 x<0
f(X)_{ 1 x>0
Atx = 0, f’(x) does not exist; there is a jump discontinuity at 0; see Figure 6.1.7.

So f(x) = |x]| is differentiable everywhere except at 0.

The point of non-differentiability came where the piecewise defined func-
tion switched from one piece to the other. Our next example shows that this

0.5 +

t t t > X
-1 —0.5 0.5 1

Figure 6.1.6: The absolute value function,
f(x) = |x|. Notice how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.

Figure 6.1.7: A graph of the derivative of
flx) = Il.
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0.5 +

NTSE S

Figure 6.1.8: A graph of f(x) as defined in
Example 6.1.9.

0.5 +

NS

Figure 6.1.9: A graph of f'(x) in Example
6.1.9.
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does not always cause trouble.

Example 6.1.9 Finding the derivative of a piecewise defined function

i <
Find the derivative of f(x), where f(x) = { SIZX i N Z;;

. See Figure 6.1.8.
SoLuTioN Using Example 6.1.7, we know that when x < 7/2, f'(x) =
cos x. It is easy to verify that when x > /2, f’(x) = 0; consider:

"mw: Iimg: lim 0 = 0.
h—0 h h—0 h h—0

So far we have y
, . cosx x<m/2
f(X)_{ 0 x>m/2°
We still need to find f/(7/2). Notice at x = 7/2 that both pieces of f’ are 0,
meaning we can state that f'(7/2) = 0.
Being more rigorous, we can again evaluate the difference quotient limit at
x = 7/2, utilizing again left and right—hand limits:

lim f(mw/2+ h) —f(7/2) _ lim f(w/2+ h) —f(7/2) _
h—0— h h—0+ h
. sin(w/2 + h) —sin(7/2) Loo1-1
hl—lgL h - hL'T* h
. T . T\ e ™ . O
hi"gL sin(%) cos(h) + smf(}h) cos(%) —sin(%) _ h|_|,n3+ .=
lim 1-cos(h) +sin(h)-0—1 _ 0.
h—0— h
0.

Since both the left and right hand limits are 0 at x = 7/2, the limit exists and
f'(7/2) exists (and is 0). Therefore we can fully write f' as

iy cosx x<m/2
f(X)_{ 0 x>m/2°

See Figure 6.1.9 for a graph of this function.

Recall we pseudo—defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo—definition for
differentiability as well: it is a continuous function that does not have any “sharp
corners.” One such sharp carner is shown in Figure 6.1.6. Even though the func-
tion fin Example 6.1.9 is piecewise—defined, the transition is “smooth” hence it
is differentiable. Note how|in the graph of f in Figure 6.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivative mean?”



Exercises 6.1

Terms and Concepts

1. T/F:Letfbe a position function. The average rate of change
on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definition of the derivative of a function at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
tions 6.1.1 and 6.1.4.

5. Lety = f(x). Give three different notations equivalent to

tlf'/ (X) .II

6. If two lines are perpendicular, what is true of their slopes?

Problems

In Exercises 7 — 14, use the definition of the derivative to com-
pute the derivative of the given function.

10. g(x) = x
11. h(x) =x

12. f(x) =3¢ —x+ 4

1
13. = -
r(x) N
1
14. =
r(s) P

In Exercises 15 — 22, a function and an x-value c are given.
(Note: these functions are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equation of the tangent line at x = c.

(b) Give the equation of the normal line at x = c.
15. f(x) = 6,atx = —2.
16. f(x) = 2x,atx = 3.
17. f(x) =4 —3x,atx =7.

18. g(x) = x*, atx = 2.

19. h(x) = X, atx = 4.

20. f(x) =3x" —x+4,atx = —1.

1
21, r(x) = ¥ atx = —2.

22, r(x) = ﬁ, atx = 3.

In Exercises 23 — 26, a function f and an x—value a are given.
Approximate the equation of the tangent line to the graph of
fatx = a by numerically approximating f'(a), usingh = 0.1.

23. fx) =xX"+2x+1,x=3

10
24, f(X) = m,X: 9

25. f(x) =¢e", x=2
26. f(x) = cosx,x =0

27. The graph of f(x) = x> — 1is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (—1,0), (0, —1)
and (2, 3).

(b) Using the definition, find ().

(c) Find the slope of the tangent line at the points
(—=1,0), (0,—1) and (2, 3).

y

Nov

N

1
28. The graph of f(x) = o]

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0,1) and
(1,0.5).

(b) Using the definition, find f'(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1,0.5).

/

|

fiey
N
~
Wy
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In Exercises 29 — 32, a graph of a function f(x) is given. Using
the graph, sketch f'(x).

29.

30.

31.

32.

In Exercises 33 - 34, a graph of a function g(x) is given. Using
the graph, answer the following questions.
1. Whereis g(x) > 0?
2. Whereis g(x) < 0?
3. Whereis g(x) = 0?

1. Whereisg'(x) < 0?
2. Whereis g’'(x) > 0?
3. Whereis g’'(x) = 0?

y
5 4

33.

[N

In Exercises 35 — 36, a function f(x) is given, along with its do-
main and derivative. Determine if f(x) is differentiable on its
domain.

_ (5—6x)x/?

35. f(x) = /x3(1 — x), domain = [0, 1], f'(x) = BN

_sin (V)

36. f(x) = cos (v/x), domain = [0, 00), f'(x) = NG

Review

2
2x — 35
37. Approximate lim H—X
x—5 x2 — 10.5x + 27.5
38. Use the Bisection Method to approximate, accurate to two
decimal places, the root of g(x) = x* + x> + x — 1 on
[0.5,0.6].

39. Give intervals on which each of the following functions are
continuous.

(a) L (c) V5—x

e+ 1

(b) = d) V5%

x2—1

40. Use the graph of f(x) provided to answer the following.

(a) lim flx) =? () lim f(x) =?
(b) lim f(x) =? (d) Where is f continu-
=3t ous?




6.2 Interpretations of the Derivative

The previous section defined the derivative of a function and gave examples of
how to compute it using its definition (i.e., using limits). The section also started
with a brief motivation for this definition, that is, finding the instantaneous ve-
locity of a falling object given its position function. The next section will give us
more accessible tools for computing the derivative, tools that are easier to use
than repeated use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do | compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

Interpretation of the Derivative #1: Instantaneous Rate of Change

The previous section started with an example of using the position of an
object (in this case, a falling amusement—park rider) to find the object’s veloc-
ity. This type of example is often used when introducing the derivative because
we tend to readily recognize that velocity is the instantaneous rate of change
of position. In general, if fis a function of x, then f’(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
tive answers “When x changes, at what rate does f change?” Thinking back to
the amusement—park ride, we asked “When time changed, at what rate did the
height change?” and found the answer to be “By —64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “90
km/h.” Five minutes later, you wonder how far you have travelled. Certainly, lots
of things could have happened in those 5 minutes; you could have intentionally
sped up significantly, you might have come to a complete stop, you might have
slowed to 30 km/h as you passed through construction. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximation of
the distance travelled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate x time.” In this case, we assume a
constant rate of 90 km/h with a time of 5/60 hours. Hence we would approxi-
mate the distance travelled as 7.5 km.

Referring back to the falling amusement—park ride, knowing thatat t = 2 the
velocity was —64 ft/s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelerating as they fell would inform us that this is an under—approximation. If
all we knew was that f(2) = 86 and f'(2) = —64, we'd know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the Derivative

It is useful to recognize the units of the derivative function. If y is a function
of x, i.e., y = f(x) for some function f, and y is measured in metres and x in
seconds, then the units of y’ = f’ are “metres per second,” commonly written
as “m/s” Ingeneral, if y is measured in units P and x is measured in units Q, then
y' will be measured in units “P per Q”, or “P/Q.” Here we see the fraction—-like

6.2 Interpretations of the Derivative

Note: The original textbook, having been
written in the USA, used primarily impe-
rial units. We considered converting ev-
erything to metric, including the amuse-
ment park example, but this would have
involved a fair amount of work, including
replacing several of the diagrams in the
previous section. We feel confident that
the typical Canadian student is capable
of working in either system of measure-
ment.
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behaviour of the derivative in the notation:

d its of
the units of ald M.
dx units of x

Example 6.2.1 The meaning of the derivative: World Population

Let P(t) represent the world population t minutes after 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7,028,734, 178 (www.prb.org). It
is also fairly accurate to state that P’(0) = 156; that is, at midnight on January 1,
2012, the population of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the population grew by about 28, 800- 156 = 4,492, 800 people.

Example 6.2.2 The meaning of the derivative: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
itive) profit making just one widget; the start—up costs will likely exceed $10.
Mathematically, we would write this as P(1) < 0.

Whatdo P(1000) = 500and P’(1000) = 0.25 mean? Approximate P(1100).

SOLUTION The equation P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P/(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other information to use, our best approximation
for P(1100) is:

P(1100) ~ P(1000) + P’(1000) x 100 = $500 + 100 - 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance travelled assumed the rate of change was constant.
In Examples 6.2.1 and 6.2.2 we made similar approximations. We were given
rate of change information which we used to approximate total change. Nota-
tionally, we would say that

fle+h) = f(c) +f'(c) - h.

I ” o u III

This approximation is best when h is “smal Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Derivative and Motion

One of the most fundamental applications of the derivative is the study of
motion. Let s(t) be a position function, where t is time and s(t) is distance. For
instance, s could measure the height of a projectile or the distance an object has
travelled.

Let’s let s(t) measure the distance travelled, in feet, of an object after t sec-
onds of travel. Then s’(t) has units “feet per second,” and s’(t) measures the
instantaneous rate of distance change — it measures velocity.

Now consider v(t), a velocity function. That is, at time t, v(t) gives the ve-
locity of an object. The derivative of v, v/(t), gives the instantaneous rate of



velocity change — acceleration. (We often think of acceleration in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleration, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and time is measured in seconds, then the units of acceleration
(i.e., the units of v/(t)) are “feet per second per second,” or (ft/s)/s. We often
shorten this to “feet per second squared,” or ft/s?, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32 ft/s? or g = 9.8 m/s%. What do these numbers mean?

A constant acceleration of 32( ft/s)/s means that the velocity changes by 32
ft/s each second. For instance, let v(t) measures the velocity of a ball thrown
straight up into the air, where v has units ft/s and t is measured in seconds. The
ball will have a positive velocity while travelling upwards and a negative velocity
while falling down. The acceleration is thus —32 ft/s2. If v(1) = 20 ft/s, then
when t = 2, the velocity will have decreased by 32 ft/s; that is, v(2) = —12 ft/s.
We can continue: v(3) = —44 ft/s, and we can also figure that v(0) = 42 ft/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 6.2.1 The Derivative and Motion

1. Let s(t) be the position function of an object. Then s’(t) is the
velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v/(t) is the
acceleration function of the object.

We now consider the second interpretation of the derivative given in this
section. This interpretation is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spective.

Interpretation of the Derivative #2: The Slope of the Tangent Line

fle+h) —f(c)
h

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f: (¢, f(c)) and (c-+h, f(c+h)). As h shrinks to 0, these two points come close
together; in the limit we find f'(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a|constant rate of change, but we can measure their instantaneous rate of
change at a given x value ¢ by computing f’(c). We can get an idea of how fis
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Given a function y = f(x), the difference quotient gives a

Example 6.2.3 Understanding the derivative: the rate of change

Consider f(x) = x* as shown in Figure 6.2.1. It is clear that at x = 3 the function
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

SOLUTION We can answer this directly after the following section, where

6.2

16

12

Interpretations of the Derivative

Figure 6.2.1: A graph of f(x) = x*.
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Figure 6.2.2: A graph of f(x) = x* and tan-
gent lines.

y
s 1 %)

10

5 +
1%
X

i

Figure 6.2.3: Graphsof fand f’ in Example
6.2.4, along with tangent lines in (b).

4 /
3 -4

t t t X
2.8 3 3.2

Figure 6.2.4: Zooming in on f and its tan-
gent line at x = 3 for the function given
in Examples 6.2.4 and 6.2.5.
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we learn to quickly compute derivatives. For now, we will answer graphically,
by considering the slopes of the respective tangent lines.

With practice, one can fairly effectively sketch tangent lines to a curve at a
particular point. In Figure 6.2.2, we have sketched the tangent linestofatx = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three times as fast.

Example 6.2.4 Understanding the graph of the derivative

Consider the graph of f(x) and its derivative, f'(x), in Figure 6.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of fatx = 1, x = 2,
and x = 3.

SOLUTION To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f’.

The slope of the tangent line to fat x = 1is f'(1); this looks to be about —1.

The slope of the tangent line to fat x = 2 is f/(2); this looks to be about 4.

The slope of the tangent line to fat x = 3 is f/(3); this looks to be about 3.

Using these slopes, the tangent lines to f are sketched in Figure 6.2.3(b). In-
cluded on the graph of f’ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help better visualize the y value of f’ at those points.

Example 6.2.5 Approximation with the derivative
Consider again the graph of f(x) and its derivative f’(x) in Example 6.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SOLUTION Figure 6.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes an excellent
approximation of f. Since lines are easy to deal with, often it works well to ap-
proximate a function with its tangent line. (This is especially true when you don’t
actually know much about the function at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 6.2.4, it was not explicitly
computed. Recall that the tangent line to fatx = cisy = f'(c)(x — ¢) + f(c).
While fis not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f’(3) = 3, we can compute the tangent line to be approximately y = 3(x—3)+4.
It is often useful to leave the tangent line in point—slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f31)~y(3.1)=3(3B.1-3)+4=.1%x3+4=43.
We approximate f(3.1) = 4.3.
To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 6.2.5, f(x) = —x> + 7x* — 12x + 4. We can evaluate

f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computation. In reality, we often only know two things:

1. what f(c) is, for some value of ¢, and
2. whatf/(c)is

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f”
for the location, just an observation. This is enough to create an approximating
function for f.



6.2

This last example has a direct connection to our approximation method ex-
plained above after Example 6.2.2. We stated there that

fle+h) = f(c) +£(c) - h.

If we know f(c) and f’(c) for some value x = ¢, then computing the tangent
line at (c,f(c)) is easy: y(x) = f'(c)(x — ¢) + f(c). In Example 6.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = ¢
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c + h), assuming again that h is “small.” Note:

y(c+h) =f'(c)((c+h) —c) +flc) =f'(c) - h + flc).

This is the exact same approximation method used above! Not only does it make
intuitive sense, as explained above, it makes analytical sense, as this approxima-
tion method is simply using a tangent line to approximate a function’s value.

The importance of understanding the derivative cannot be understated. When
fis a function of x, f'(x) measures the instantaneous rate of change of f with re-
spect to x and gives the slope of the tangent line to f at x.

Interpretations of the Derivative
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Exercises 6.2
Terms and Concepts In Exercises 15 — 18, graphs of functions f(x) and g(x) are

given. Identify which function is the derivative of the other.

1. What is the instantaneous rate of change of position

<

called?
4 g(x)
2. Given afunction y = f(x), in your own words describe how 27 S0
to find the units of f'(x). 15. } : o
—4 -2 2 4
3. What functions have a constant rate of change? 2
—4
Problems v
a -t
X f(x
4. Given f(5) = 10 and f'(5) = 2, approximate f(6). Al 7 )
16. .
5. Given P(100) = —67 and P/(100) = 5, approximate —
P(110). 2 f
4|
6. Given z(25) = 187 and Z'(25) = 17, approximate z(20).
y
7. Knowing f(10) = 25 and f'(10) = 5 and the methods de- 5 4
scribed in this section, which approximation is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning. 17. )
oo s
8. Given f(7) = 26 and f(8) = 22, approximate f'(7). 9
9. Given H(0) = 17 and H(2) = 29, approximate H’(2). o
y
10. Let V(x) measure the volume, in decibels, measured inside ) 1

arestaurant with x customers. What are the units of V'(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a 18.

straight line t seconds after starting. What are the units of 2 4
!

v'(t)?
( ) g(x)

12. The height H, in feet, of ariver is recorded t hours after mid-
night, April 1. What are the units of H'(t)?

\!\3
|
\\

13. Pisthe profit, in thousands of dollars, of producing and sell- Review

ing c cars. . .. .
J In Exercises 19 — 20, use the definition to compute the deriva-

. , tives of the following functions.
(a) What are the units of P'(c)?

(b) Whatis likely true of P(0)? 19. f(x) = 5x*
20. f(x) = (x — 2)3

14. T is the temperature in degrees Fahrenheit, h hours after

midnight on July 4 in Sidney, NE.
g 4 ¥ In Exercises 21 — 22, numerically approximate the value of

(a) What are the units of " (h)? f'(x) at the indicated x value.
(b) Is T'(8) likely greater than or less than 0? Why? 21. f(x) = cosxatx = .

(c) Is T(8) likely greater than or less than 0? Why? 22. f(x) = v/xatx = 9.
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6.3 Basic Differentiation Rules

The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx -+ b. What is y’? With-
out limits, recognize that linear function are characterized by being functions
with a constant rate of change (the slope). The derivative, y’, gives the instan-
taneous rate of change; with a linear function, this is constant, m. Thus y’ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax? + bx + c. Using the definition of the derivative, we have:

a(x+h)?> +b(x+h) +c— (ax* + bx +¢)

12 T
fiix) = flylno h
. ah* 4+ 2ahx + bh
= lim —MMM—
h—0 h
= lim (ah + 2ax + b)
h—0
= 2ax+b.

Soif y = 6x* + 11x — 13, we can immediately compute y’ = 12x + 11.

In this section (and in some sections to follow) we will learn some of what
mathematicians have already discovered about the derivatives of certain func-
tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 6.3.1 Derivatives of Common Functions

1. Constant Rule: d .
o 5. —(sinx) = cosx

— (c) = 0, where cis a constant. dx

dx d
6. —(cosx) = —sinx
2. Power Rule: " dx
d, . ) .
— (x") =nx""*, where n is an d o x
ox integer, n > 0. 7 dx () =e
d
8. —(lnx) = —
2 n%)

This theorem starts by stating an intuitive fact: constant functions have no
rate of change as they are constant. Therefore their derivative is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form y = x") are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = €*: it is its own derivative. We also
see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f/(x)? According to the Power Rule,

o= = Ty =10=1

6.3 Basic Differentiation Rules
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Chapter 6 Derivatives

Figure 6.3.1: A graph of f(x) = x?, along
with its derivative f'(x) = 3x* and its tan-
gent lineatx = —1.

You may recall from high school that the
binomial coefficients are the numbers
that appearin Pascal’s Triange. If we num-
ber the rows of Pascal’s triangle begin-
ning from the top at row zero, then the
numbers in row n are given by (Z), for
k=0,1,2,....n.

In particular, note that:

(04 ()= ()=
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Example 6.3.1
Let f(x) = x°.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s practice using this theorem.

Using Theorem 6.3.1 to find, and use, derivatives

1. Find f'(x).
2. Find the equation of the line tangent to the graph of fat x = —1.

3. Use the tangent line to approximate (—1.1)3.

I

. Sketch f, f and the found tangent line on the same axis.

SOLUTION

1. The Power Rule states that if f(x) = x3, then f’(x) = 3x%.

2. To find the equation of the line tangent to the graph of fat x = —1, we
need a point and the slope. The pointis (—1,f(—1)) = (—1,—1). The
slopeisf’(—1) = 3. Thusthe tangent line has equationy = 3(x—(—1))+
(—1) =3x+2.

3. We can use the tangent line to approximate (—1.1)3 as —1.1is close to
—1. We have

(113 ~3(-11)+2=-13.

We can easily find the actual answer; (—1.1)* = —1.331.

4. See Figure 6.3.1.

It is easy to use Definition 6.1.4 to verify the Constant Rule, and with a bit of

work we can confirm the Power Rule for small values of n. But how do we know
that the Power Rule holds in general? One way to tackle this problem relies on
a famous result from Algebra: the Binomial Theorem.

Theorem 6.3.2 Binomial Theorem

For any real numbers a and b, and any positive integer n, we have

(@a+b)" =a"+ <'17) a" b+ (g) a" b+ (n i 1) ab" 4 b",

where (Z) (read, “n choose k”) is the binomial coefficient given by

n\ n! _nn—=1)---(n—k+1)
<k>_k!(n—k)!_ 1-2---k '

With Theorem 6.3.2 in hand, we can quickly establish the Power Rule using

the definition of the derivative. Given f(x) = x”, where n is a positive integer,


https://en.wikipedia.org/wiki/Binomial_coefficient

6.3 Basic Differentiation Rules

we have:
/ _ (X + h) _f(X)
160 = /llno h
— iim (x+h)"—x"
" hs0 h
n nflh h") — x"
= lim (" + nx +o ) - x (Using Theorem 6.3.2)
h—0 h
nxX""th(Mx"2h%> 4+ - .-+ h"
= lim (2) (Cancelling the x" terms)
h—0 h

= lim(nx""t 4 <n>x”2h + -4+ nxh"2 4+ h""1)  (Dividing by h)
h—0 2

=nx"! (Setting h = 0)

The fact that the derivative of sin(x) is cos(x) was established in Example
6.1.7; the fact that the derivative of cos(x) is — sin(x) is established similarly,
and left as an exercise. We aren’t yet in a position to rigorously establish the
derivative formulas for e and In(x), but we can show that it’s at least plausible
that the exponential function is its own derivative. For f(x) = e*, Definition 6.1.4
tells us:

- fx+h) —f(x)
! —
100 = fim, h
) e)(—i-h — e
= h
_oeX.eh — e
= lim ——— (Laws of exponents) “y =3

h—0
ef(eh —1
= lim Q (Factoring)
h—0 h 3
h
e"—1 2
=€ lim .
h—0

It seems we are stuck on this last limit. But notice that -

eh—1 e 0 Figure 6.3.2: The graph y = d*, for three

lim = lim ———— =7(0
h—0 h h—0 f( ); valuesofa > 1

so f/(x) = f'(0)e*, where f’(0) is simply the slope of the tangent line to the
graph y = e at x = 0. Looking at the graph of y = d* for several values of
a > 1, we see that this slope depends on the value of a. One way of defining
the number e used as the base of the natural exponential is that this is the value
of a such that the slope of the tangent line at x = 0 is exactly one; that is, such
that f(0) = 1. With this definition, we immediately find that f'(x) = €*, as
expected.

The derivative of In(x) can be obtained using the Chain Rule (Section 6.5,
and the fact that e"® = x. We will state the result here without proof.

Theorem 6.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but
it does not tell how to compute the derivative of y = 2x3, y = x> + sinx nor
y = x3sinx. The following theorem helps with the first two of these examples
(the third is answered in the next section).
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Chapter 6 Derivatives

Theorem 6.3.3 Properties of the Derivative

Let f and g be differentiable on an open interval / and let ¢ be a real
number. Then:

1. Sum/Difference Rule:

(00 £ 900) = 2 (70) = £ (a00) =70 £ 900

2. Constant Multiple Rule:

i em) - ) e 40

Theorem 6.3.3 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 6.1.5 that we found, using the limit definition,
the derivative of f(x) = 3x*> + 5x — 7. We can now find its derivative without
expressly using limits:

i(3x2+5x+7) :31()(2) +51(x) +i(7)
dx dx dx dx
—3.2x4+5-140
= 6x + 5.

We were a bit pedantic here, showing every step. Normally we would do all

d
the arithmetic and steps in our head and readily find o (3X2+5x+ 7) = 6x+5.
X

Both rules in Theorem 6.3.3 are easily established using the definition of the
derivative. We will leave the Constant Multiple Rule as an exercise, and demon-
strate that the Sum Rule is true. Suppose that we are given two differentiable
functions f and g. Recalling how the sum f + g is defined, and using Definition
6.1.4, we have:

f+g)x+h) —(f+9)(x)

(f+9)(x) = lim

h—0 h
_ o U0 ) £t ) — () +9(x)
h—0 h
i SOt h) ) + (9(x £ h) —g(x)
h—0 h
i JOER) S0 gl h) — g()
h—0 h h—0 h
=£(0)+9 (¥,
Example 6.3.2 Using the tangent line to approximate a function value

Let f(x) = sinx + 2x + 1. Approximate f(3) using an appropriate tangent line.

SOLUTION This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all time.
One must make a judgment using whatever seems reasonable. In this example,
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the actual answer is f{(3) = sin 3+ 7, where the real problem spot is sin 3. What
is sin3?

Since 3 is close to 7, we can assume sin3 = sinw = 0. Thus one guess is
f(3) &~ 7. Can we do better? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = .

Using Theorem 6.3.1 we find f’(x) = cos x+ 2. The slope of the tangent line
is thus f/(7) = cos 7|+ 2 = 1. Also, f(7) = 2w + 1 = 7.28. So the tangent line
tothe graphof fatx|=7misy=1(x — 7))+ 2r+ 1 =x+ 7+ 1 ~ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximation is that f(3) ~ 7.14.

Using a calculator, we get an answer accurate to 4 places after the decimal:
f(3) = 7.1411. Our initial guess was 7; our tangent line approximation was more
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy sometime, but your phone could probably give you
the answer. Rather, [the point is to say that tangent lines are a good way of
approximating, and many scientists, engineers and mathematicians often face
problems too hard to solve directly. So they approximate.

Higher Order Derivatives
The derivative of a function f is itself a function, therefore we can take its

derivative. The following definition gives a name to this concept and introduces
its notation.

Definition 6.3.1 Higher Order Derivatives

Let y = f(x) be a differentiable function on /. The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:

" d (. d (dy dzy "
0= 5 (rw) = 5 () =55 ="

2. The third derivative of f is:

7100 = (1) = 2 (4F) =52 v

"~ odx dx \d2 )~ d

3. The n*" derivative of fis:

d d [d"-y\  dvy
(n) — (n—1) — — — v
F ) dx (f (X)) dx (dx"—1> v

In general, when finding the fourth derivative and on, we resort to thef(“) (%)
notation, not f"”/(x); after a while, too many ticks is confusing.

Let’s practice using this new concept.

Example 6.3.3 Finding higher order derivatives
Find the first four derivatives of the following functions:

1. f(x) = 4x? 3. f(x) = 5e*

2. f(x) =sinx

6.3 Basic Differentiation Rules

Note: Definition 6.3.1 comes with the
caveat “Where the corresponding limits
exist.” With f differentiable on /, it is pos-
sible that f’ is not differentiable on all of
1/, and so on.
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SOLUTION

1. Using the Power and Constant Multiple Rules, we have: f’(x) = 8x. Con-
tinuing on, we have

d
f'=—)=8 =0 f9x=0

Notice how all successive derivatives will also be 0.

2. We employ Theorem 6.3.1 repeatedly.

f'(x) = cosx; f"(x) = —sinx; " (x) = —cosx; F®(x) = sinx.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23 (x) is?)

3. Employing Theorem 6.3.1 and the Constant Multiple Rule, we can see that

£100 = () = £ (x) = £@ () = 5e*.

Interpreting Higher Order Derivatives

What do higher order derivatives mean? What is the practical interpreta-
tion?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function fis the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 6.2.1, f’ describes the rate of position change: velocity.
We now consider f”/, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement—park riders free—falling with posi-
tion function f(t) = —16t> + 150. It is easy to compute f'(t) = —32t ft/s and
f"(t) = —32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s*.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”

Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of series makes extensive use of higher order derivatives.



Exercises 6.3

Terms and Concepts

1. What is the name of the rule which states that % (x") =

nx"fl, where n > 0 is an integer?
2. Whatis i(Inx)?
dx

3. Give an example of a function f(x) where f'(x) = f(x).

4. Give an example of a function f(x) where f'(x) = 0.

5. The derivative rules introduced in this section explain how
to compute the derivative of which of the following func-

tions?
e fix) = 3—2 e j(x) = sinxcosx
e gx) =3¢ —x+17 . k(x)=e"
e h(x) =5Inx o m(x) = v/x

6. Explain in your own words how to find the third derivative

of a function f(x).

7. Give an example of a function where f'(x) # Oandf” (x) =

0.

8. Explain in your own words what the second derivative

“means.”

9. If f(x) describes a position function, then f’(x) describes

what kind of function? What kind of function is f'(x)?

10. Let f(x) be a function measured in pounds, where x is mea-

sured in feet. What are the units of f”(x)?

Problems

In Exercises 11 — 26, compute the derivative of the given func-

tion.
11. f(x) =7 —5x+ 7
12. g(x) = 14x° + 7% + 11x — 29
13. m(t) =9 — 1 +3t—8
14. f(6) = 9sinf + 10cos 6
15. f(r) = 6e"
16. g(t) = 10t* — cost + 7sint
17. f(x) =2Inx —x
18. p(s) =3+ 31 + 12 +s5+1

19. h(t) = e' —sint —cost

20.

21.

22.

23.

24.

25.

26.

flx) = In(5x)

f(t) =In(17) + €* +sinw/2

g(t) = (1+3¢)?

g(x) = (2x—5)°

fl) = (1 —x)°

flx) = (2 = 3

A property of logarithms is that log, x = :;’:—:Z, for all

basesa,b > 0,7# 1.
(a) Rewrite this identity when b = e, i.e., using log, x =
Inx, with a = 10.
(b) Use part (a) to find the derivative of y = log,, x.

(c) Use part (b) to find the derivative of y = log, x, for
anya >0, # 1.

In Exercises 27 — 32, compute the first four derivatives of the
given function.

27.

28.

29.

30.

31.

32.

flx) = x°

g(x) = 2 cos x

h(t) =t —¢'

p(0) = 6* — ¢
£(6) = sin6 — cos 0
f(x) = 1,100

In Exercises 33 — 38, find the equations of the tangent and
normal lines to the graph of the function at the given point.

33.

34.

35.

36.

37.

38.

fx) =x —xatx=1
ft)y=e"+3att=0

g(x) =Inxatx=1

f(x) = 4sinxatx = /2
f(x) = —2cosxatx = /4

f(x) =2x+3atx=5

Review

39.

Given that ® = 1, approximate the value of %! using the
tangent line to f(x) = e atx = 0.
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Important: %(f(x)g(x)) # f'(x)g’ (x)!
While this answer is simpler than the
Product Rule, it is wrong. If it were true,
then we’d have

d o d . d, . .
&(x)—&(x)-a(x)_li_l!

In fact, we'd have %(x”) = 1 for ev-

ery positive integer n, contradicting the
Power Rule.

20 +
15

10 +

2

Figure 6.4.1: A graph of y = 5x* sinx and
its tangent line at x = /2.
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6.4 The Product and Quotient Rules

The previous section showed that, in some ways, derivatives behave nicely. The
Constant Multiple and Sum/Difference Rules established that the derivative of

f(x) = 5x* + sin x was not complicated. We neglected computing the derivative
of things like g(x) = 5x*sinx and h(x) = Ssl% on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
you would probably guess wrong.) For these, we need the Product and Quotient
Rules, respectively, which are defined in this section.

We begin with the Product Rule.

Theorem 6.4.1 Product Rule

Let f and g be differentiable functions on an open interval I. Then fg is a
differentiable function on /, and

(fg)'(x) = f'(x)g(x) + f(x)g" (x).

In the Leibniz notation, the Product Rule is written

& (ro0ate)) = (2109) s +100 ().

We practice using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 6.4.1 Using the Product Rule
Use the Product Rule to compute the derivative of y = 5x®sinx. Evaluate the
derivative at x = /2.

SOLUTION To make our use of the Product Rule explicit, let’s set f(x) =

5x? and g(x) = sinx. We easily compute/recall that f'(x) = 10x and g’(x) =
cos x. Employing the rule, we have

d 2 : 2
d—(Sx smx) = 10xsin x 4+ 5x° cos x.
X

At x = /2, we have

"(7/2) 107 sin (T> +5 (W)zcos (W) 5

™ =10—- = = — ) =5m.

4 2 2 2 2

We graph y and its tangent line at x = /2, which has a slope of 57, in Figure
6.4.1. While this does not prove that the Produce Rule is the correct way to han-
dle derivatives of products, it helps validate its truth.

We now investigate why the Product Rule is true.

Example 6.4.2 A proof of the Product Rule
Use the definition of the derivative to prove Theorem 6.4.1.

SOLUTION By the limit definition, we have

(f9)'(x) = lim flx+h)g(x +hh) —f)g()




We now do something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of —f(x)g(x+h)+f(x)g(x+h), then do some regrouping
as shown.

fx+h)g(x + h) — f(x)g(x)

(fa)' (x) = ’!iLnO h (now add O to the numerator)
_ i PRI ) 05l 1) Sl 1) =050
(foc+ g+ h) = f0)gx + h) ) + (Fx)glx+ ) = £x)g(x))
- /!iLno h
_ i P RIS ) SO0l )y )= C000)
(factor)
= ;gnowgﬂw h) + lim f(X)M (apply limits)

=f'(x)g(x) +f(x)g"(x)

Notice that when we applied the limit in the last step, we relied on the fact that
since g is assumed to be differentiable at x, it is continuous at x, and therefore,

lim g(x -+ h) = g(x).

It is often true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 6.4.3 Exploring alternate derivative methods

Lety = (x* + 3x + 1)(2¥* — 3x + 1). Find y’ two ways: first, by expanding
the given product and then taking the derivative, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SOLUTION We first expand the expression for y; a little algebra shows
thaty = 2x* + 3x® — 6x2 + 1. It is easy to compute y’:

y = 8x® 4+ 9x% — 12x.
Now apply the Product Rule.
y' = (2x+3)(2¢ —3x+1) + (X* + 3x + 1)(4x — 3)
= (84X —7x+3) + (4 +9x* —5x — 3)
=8¢ + 9x* — 12x.

The uninformed usually assume that “the derivative of the product is the prod-
uct of the derivatives.” Thus we are tempted to say thaty’ = (2x+3)(4x—3) =
8x2 4+ 6x — 9. Obviously thisis not correct.

Example 6.4.4 Using the Product Rule with a product of three functions
Let y = x* Inxcosx. Find y’.

SOLUTION We have a product of three functions while the Product Rule
only specifies how to handle a product of two functions. Our method of handling
this problem is to simply group the latter two functions together, and consider
y = x*(Inxcosx). Following the Product Rule, we have

y' =3x"(Inxcosx) + (xa)%(lnxcosx)

6.4 The Product and Quotient Rules
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The Quotient Rule is not hard to use, al-
though it might be a bit tricky to remem-
ber. A useful mnemonic works as follows.
Consider a fraction’s numerator and de-
nominator as “HI” and “LO”, respectively.
Then

d (HI) _LO- dHI-HI- dLO

dx \ LO LOLO ’

read “low dee high minus high dee low,
over low low.” Said fast, that phrase
can roll off the tongue, making it easy to
memorize. The “dee high” and “dee low”
parts refer to the derivatives of the nu-
merator and denominator, respectively.
As an unexpected side benefit, you will
also have an opportunity to practice your
yodelling.
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To evaluate (Inxcos x)l, we apply the Product Rule again:

1
= 3x*(Inxcosx) + (x*) (= cosx + Inx(—sinx))
X
1
=3x?Inxcosx +x>= cos x + x> Inx(— sinx)
X

Recognize the pattern in our answer above: when applying the Product Rule to
a product of three functions, there are three terms added together in the final
derivative. Each term contains only one derivative of one of the original func-
tions, and each function’s derivative shows up in only one term. It is straightfor-
ward to extend this pattern to finding the derivative of a product of 4 or more
functions.

We consider one more example before discussing another derivative rule.

Example 6.4.5 Using the Product Rule
Find the derivatives of the following functions.

1. f(x) =xInx

2. g(x) =xInx — x.

SOLUTION Recalling that the derivative of Inx is 1/x, we use the Product
Rule to find our answers.

d
1. —(xlnx) =1-Inx+x-1/x=Inx+1.
dx

2. Using the result from above, we compute

d
—(Xlnx—x) =Ihx+1—1=Inx.
dx

This seems significant; if the natural log function In x is an important function (it
is), it seems worthwhile to know a function whose derivative is Inx. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 6.4.2 Quotient Rule

Let f and g be differentiable functions defined on an open interval |/,
where g(x) # 0 on I. Then f/g is differentiable on /, and

N\ Fx)g(x) — fix)g’ (x)
(5) 0= |

Let’s practice using the Quotient Rule.
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Example 6.4.6 Using the Quotient Rule
5x2
Let f(x) = —. Find f'(x).
fx) = = Find £'(x)

SOLUTION Directly applying the Quotient Rule gives:

d (5%x*\ _ 10x-sinx —5x?-cosx
dx o :

sin x sin x

The Quotient Rule allows us to fillin holes in our understanding of derivatives

of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 6.4.7 Using the Quotient Rule to find < ( tanx).
Find the derivative of y = tanx.

SOLUTION At first, one might feel unequipped to answer this question.
But recall that tan x = sin x/ cos x, so we can apply the Quotient Rule.

i(tanx) _ 9 (sinx
dx " dx \ cosx

. . y
€OS X cos X — sin x(— sinx)

cos? x
2 2
COs“ X + sin“ x
cos? x
1
cos? x -
= sec? x.

N

NIR
V)
ENERE S

This is a beautiful result. To confirm its truth, we can find the equation of the

tangent line to y = tanx at x = /4. The slope is sec’(7/4) = 2; y = tanx,

along with its tangent line, is graphed in Figure 6.4.2. Figure 6.4.2: A graph of y = tanx along
with its tangent line at x = 7 /4.

—10 |

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sinx in Example
6.1.7 and stated the derivative of the cosine function in Theorem 6.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 6.3.1 and the Quotient Rule.

Theorem 6.4.3 Derivatives of Trigonometric Functions

d d

1. —(sinx) = cosx 2. —(cosx) = —sinx
dx ( ) dx ( )
d 2 d 2

3. —(tanx) = sec” x 4., —(cotx) = —csc™x
S (1anx) 2 (cotx)

5. — (secx) = secxtanx 6. i(cscx) = —cscxcotx
dx dx

To remember the above, it may be helpful to keep in mind that the deriva-
tives of the trigonometric functions that start with “c” have a minus sign in them.
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The only times it is really necessary — that
is, worthwhile — to simplify a product or
quotient rule derivative on a test is if you
are trying to determine the values of x
at which the derivative is zero (there will
be plenty of that to come!) or in some
cases, if a second derivative is required,
and simplifying first makes that computa-
tion easier. (Also keep in mind that the
person grading your test will be looking
for the product or quotient rule pattern,
so the unsimplified answer is sometimes
the easiest to identify as the correct one})
However, for written assignments where
you have the luxury of taking your time
to perfect your presentation, a simplified
answer is usually preferable.
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Example 6.4.8 Exploring alternate derivative methods
5x

In Example 6.4.6 the derivative of f(x) = —— was found using the Quotient
sinx

Rule. Rewriting f as f(x) = 5x* cscx, find f/ using Theorem 6.4.3 and verify the
two answers are the same.

SOLUTION We found in Example 6.4.6 that the f'(x)

10x sin x — 5x% cos x

)
sin” x
We now find f’ using the Product Rule, considering f as f(x) = 5x* csc x.

d
! 2
Xx) = — | 5x cscx)
10 =—(

= 10xcsc x 4 5x*(— cscx cot x) (now rewrite trig functions)

10x , —1 cosx
T 5yt —— .

sinx sinx sinx

10x  —5x%cosx )
=+ — (get common denominator)
sinx sin® x

10x sin x — 5x% cos x

sin? x

Finding f’ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. It is up to you if you wish to work to “simplify” your results into a form
that is most readable and useful to you.

The Quotient Rule gives other useful results, as shown in the next example.

Example 6.4.9 Using the Quotient Rule to expand the Power Rule
Find the derivatives of the following functions.
1
1. f(x) = -
£ =

1
2. flx) = L where n > 0is an integer.

SOLUTION We employ the Quotient Rule.
0-x—1-1 1
1 f/(X): T:—sz
0-x"—1-nx"1 nx" 1 n
2. fl(x) = = — = — .
(Xn)Z X2n Xn+1

1
The derivative of y = — turned out to be rather nice. It gets better. Con-
b%

d /1 d/ _,
o (2) =5
dx \ x" dx

= _anjrl (rewrite algebraically)

= —nx~ (D)

sider:

(apply result from Example 6.4.9)




This is reminiscent of the Power Rule: multiply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.

Theorem 6.4.4 Power Rule with Integer Exponents

Let f(x) = x", where n # 0 is an integer. Then

ffx)=n-x"""1

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 6.4.10 Exploring alternate derivative methods

2 —3x+1
Let f(x) = % Find f'(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing fas f(x) = (x¥* — 3x + 1) - x_* and applying the Product and
Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SOLUTION
1. Applying the Quotient Rule gives:

(2x=3) x—(¥®=3x+1)-1 x-1 1
X2 TR :1_)?'

flx) =

2. By rewriting f, we can apply the Product and Power Rules as follows:

Fl)=(2x=3) - x "+ (=3x+1)- (-1)x7?
2x—-3 x*-3x+1

X X2
_2x2—3x X2 —3x+1
e X2
X -1 1
T X2 _1_;2’

the same result as above.

1
3. As x # 0, we can divide through by x first, giving f(x) = x — 3 + < Now

apply the Power Rule.
1

_)?,

flix) =1

the same result as before.

6.4 The Product and Quotient Rules
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Example 6.4.10 demonstrates three methods of finding f'. One is hard pressed
to argue for a “best method” as all three gave the same result without too much
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f’, including:

1_Xi2: (ZX_3)X—)(()2(2_3X+1)1 _ (2X—3)'X71+(X2_3X+1)'(_1)X72~

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin x
is cos x.” The Sum/Difference, Constant Multiple, Power, Product and Quotient
Rules show us how to find the derivatives of certain combinations of these func-
tions. The next section shows how to find the derivatives when we compose
these functions together.



Exercises 6.4

Terms and Concepts

d
1. T/F: The Product Rule states that ™ (x2 sinx) = 2xcosx.
x

d 2
2. T/F: The Quotient Rule states that — X— = cosx.
dx \ sinx 2x

3. T/F: The derivatives of the trigonometric functions that
start with “c” have minus signs in them.

4. What derivative rule is used to extend the Power Rule to
include negative integer exponents?

5. T/F: Regardless of the function, there is always exactly one
right way of computing its derivative.

6. Inyour own words, explain what it means to make your an-
swers “clear.”

Problems

In Exercises 7 — 10:
(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.
7. f(x) = x(x* + 3x)
8. g(x) = 2(5x%)
9. h(s) = (25 — 1)(s + 4)
10. f(x) = (X +5)(3 — x°)

In Exercises 11 — 14:
(a) Use the Quotient Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Quotient Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x ;r 3
12. g(x) = %
13. h(s) = %

14. f(t) = t:J:ll

In Exercises 15 — 36, compute the derivative of the given func-
tion.

15. f(x) = xsinx
16. f(x) = x* cos x

17. f(x) = e*Inx

18. f(t) = tiz(csct _4)

x+7
19. =
9(x) X—5
tS
20. g(t) = ——
9(t) cost — 2t2

21. h(x) = cotx — €
22. f(x) = (tanx) Inx
23. h(t) =7 +6t—2

X e

24. f(x) 2

25. f(x) = (3x* + 8x + 7)€"

26. g(t) =

7x—1

27. =(16x° +24x* +3x)—— =~
fix) = (16x" + 24x" + 3x) 16x3 + 24x% + 3x

28. f(t) = t(sect +e')

sinx
29 ) = oo 3
3 . sin6
cos X X
31. = — 4+ —
fx) X + tanx

32. g(x) = €*(sin(w/4) — 1)
33. g(t) = 4te' —sintcost

t?sint+ 3
34. h(t) = t2cost + 2

35. f(x) = x*¢* tanx

36. g(x) = 2xsinxsecx
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In Exercises 37 — 40, find the equations of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = €°(s* +2) at (0, 2).
38. g(t) =tsintat (3, —3)

2

2

39. g(x) = ’11 at (2, 4)
40. g(6) = W at (0,1)

In Exercises 41 — 44, find the x—values where the graph of the
function has a horizontal tangent line.

41. f(x) = 6x* — 18x — 24

42. f(x) = xsinxon [—1,1]

43. f(x) = x—)i(— -
2
44. f(x) = Xil

In Exercises 45 — 48, find the requested derivative.

45. f(x) = xsinx; find f” (x).
46. f(x) = xsinx; find ¥ (x).
47. f(x) = cscx; find £/ (x).

48. f(x) = (X — 5x +2) (¢ +x — 7); find f® (x).

Review

In Exercises 49 — 52, use the graph of f(x) to sketch f'(x).

51.




6.5 The Chain Rule

We have covered almost all of the derivative rules that deal with combinations
of two (or more) functions. The operations of addition, subtraction, multiplica-
tion (including by a constant) and division led to the Sum and Difference rules,
the Constant Multiple Rule, the Power Rule, the Product Rule and the Quotient
Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function
“inside” another).

One example of a composition of functions is f(x) = cos(x?). We currently
do not know how to compute this derivative. If forced to guess, one would likely
guess f'(x) = —sin(2x), where we recognize — sin x as the derivative of cos x
and 2x as the derivative of x2. However, this is not the case; f/(x) # — sin(2x).
In Example 6.5.4 we'll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. We write (fo g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write fo g or f(g) and read it as “f of g.” Before
giving the corresponding differentiation rule, we note that the rule extends to
multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 6.5.1 Exploring similar derivatives

Find the derivatives of F1(x) = (1 — x)?, F,(x) = (1 —x)3,and F3(x) = (1 —
x)*. (We'll see later why we are using subscripts for different functions and an
uppercase F.)

SOLUTION In order to use the rules we already have, we must first ex-
pand each function as F1(x) = 1 — 2x + x?, F(x) = 1 — 3x + 3x* — x* and
F3(x) =1 —4x+6x* — 46 + x*.

It is not hard to see that:

Fi(x) = =24 2x,
Fy(x) = —3 + 6x — 3x? and
Fi(x) = —4 4 12x — 12x% + 4x°.
An interesting fact is that these can be rewritten as
Fi(x) = —2(1—x), Fy(x) = —3(1 —x)? and Fj(x) = —4(1 —x)>.

A pattern might jump out at you; note how the we end up multiplying by the old
power and the new power is reduced by 1. We also always multiply by (—1).
Recognize that each of these functions is a composition, letting g(x) = 1 —x:

Fi(x) = fi(g(x)), where fy(x) = x?,
Fa(x) = f2(g(x)), where fo(x) = »°,
F3(x) = f3(g(x)), where f3(x) = x*.

We’'ll come back to this example after giving the formal statements of the
Chain Rule; for now, we are just illustrating a pattern.

When composing functions, we need to make sure that the new function is
actually defined. For instance, consider f(x) = y/x and g(x) = —x*> — 1. The
domain of f excludes all negative numbers, but the range of g is only negative

6.5 The Chain Rule
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numbers. Therefore the composition f(g(x)) = v/ —x? — 1 is not defined for
any x, and hence is not differentiable.

The following definition takes care to ensure this problem does not arise.
We’ll focus more on the derivative result than on the domain/range conditions.

Theorem 6.5.1 The Chain Rule

Let g be a differentiable function on an interval /, let the range of g be a
subset of the interval J, and let f be a differentiable function on J. Then
y = f(g(x)) is a differentiable function on /, and

y'=f"(a(x))-g'(x).

To help understand the Chain Rule, we return to Example 6.5.1.
Example 6.5.2 Using the Chain Rule
Use the Chain Rule to find the derivatives of the following functions, as given in
Example 6.5.1.

SOLUTION Example 6.5.1 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confusion, we
ignore most of the subscripts here.

Fi(x) = (1 —x)%
We found that
y = (1—x)*> =f(g(x)), where f(x) = x> and g(x) =1 — x.
To find y’, we apply the Chain Rule. We need f'(x) = 2xand g’(x) = —1.
Part of the Chain Rule uses f’(g(x)). This means substitute g(x) for x in the

equation for f/(x). Thatis, f’(x) = 2(1 — x). Finishing out the Chain Rule we
have

Lety = (1 —x)® = f(g(x)), where f(x) = x* and g(x) = (1 — x). We have
f'(x) = 3x%,s0f'(g(x)) = 3(1 — x)2. The Chain Rule then states

y' =F(g())-9'(x) =3(1 —x)?*- (=1) = =3(1 —x)*.
F3(x) = (1 —x)*

Finally, when y = (1 — x)*, we have f(x) = x* and g(x) = (1 — x). Thus
f'(x) =4 and f'(g(x)) = 4(1 — x)3. Thus

y' =f"(gx) g'(x) =4(1—x*(-1) = —4(1 - x)*.

Example 6.5.2 demonstrated a particular pattern: when f(x) = x", then
y' =n-(g(x))""1-g’(x). This is called the Generalized Power Rule.
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Theorem 6.5.2 Generalized Power Rule

Let g(x) be a differentiable function and let n # 0 be an integer. Then

2 (50") =n- (g0)" g (x).

This allows us to quickly find the derivative of functions like y = (3x*> — 5x +
7 + sinx)?°. While it may look intimidating, the Generalized Power Rule states
that
y' =20(3x% — 5x + 7 +sinx)® - (6x — 5 + cos x).

Treat the derivative—taking process step—by—step. In the example just given,
first multiply by 20, the rewrite the inside of the parentheses, raising it all to
the 19" power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the Chain Rule.

Example 6.5.3 Using the Chain Rule \
Find the derivatives of the following functions: 0571 \

1. y=sin2x 2.y=In(4*—-2x*) 3 y=e X ; \ ; X

2 2
SOLUTION
—0.5
1. Consider y = sin2x. Recognize that this is a composition of functions,
where f(x) = sinx and g(x) = 2x. Thus
—1 1

y' =f'(g(x)) - g'(x) = cos(2x) - 2 = 2 cos 2x.
Figure 6.5.1: f(x) = cos x* sketched along

2. Recognize that y = In(4x®> — 2x?) is the composition of f(x) = Inx and with its tangent line at x = 1.
g(x) = 4x3 — 2x%. Also, recall that
d (In ) 1
x)==.
dx X
This leads us to:
1 12x* —4x  4x(3x—1)  2(3x—1
Y o= (123 — ) = e X3x—1) _ 206x—1)
4x3 — 2x? 453 — 2x2  2x(2x% — x) 2% — x
3. Recognize thaty = e~ is the composition of f(x) = e and g(x) = —x?.

Remembering that f'(x) = €*, we have

2

y' =e . (=2x) = (—2x)e™™.

Example 6.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x%. Find the equation of the line tangent to the graph of fatx = 1.

SOLUTION The tangent line goes through the point (1, f(1)) ~ (1,0.54)
with slope f'(1). To find f’, we need the Chain Rule.
f'(x) = —sin(x?) - (2x) = —2xsinx?. Evaluated at x = 1, we have f'(1) =

—2sin1 ~ —1.68. Thus the equation of the tangent line is
y = —1.68(x — 1) + 0.54.

The tangent line is sketched along with fin Figure 6.5.1.
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Derivatives

The Chain Rule is used often in taking derivatives. Because of this, one can
become familiar with the basic process and learn patterns that facilitate finding
derivatives quickly. For instance,

, _ (anything)’

d
2 (In(anythi ): .
dx( n(anything) anything

1
- . thi
anything (anything)

A concrete example of this is

d 455 4 sinx + e
—(In 3x15—cosx+e"> = :
dx( ( ) 3x15 — cosx + eX

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the nu-
merator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of x. We then

say
I

() =5

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar functions.

d d
1. &(u”) =n-u" 1.y 4, a(cosu) =—u’-sinu.
d d
2. a(e“) =u' e 5. E(tan u) =u'-secu.
3 i(smu) u’-cosu
" dx o

Of course, the Chain Rule can be applied in conjunction with any of the other
rules we have already learned. We practice this next.

Example 6.5.5 Using the Product, Quotient and Chain Rules
Find the derivatives of the following functions.

5x3

1 flx) =x>sin2x® 2. f(x) = gt
SOLUTION

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step—
by-step.

£ (x) = x°(6x* cos 2x*) + 5x* (sin 2x*) = 6x” cos 2x* + 5x* sin 2x°.
2. We must employ the Quotient Rule along with the Chain Rule. Again, pro-

ceed step—by-step.

e (15¢2) — 53 ((—2x)e™) e (10x* + 15x%)
(e,xz)z = e—2x

—e (10x* + 15x%).

flx) =




A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g’ (x). Just rewrite f(x), then find g’(x). Then move on to the f'(x)g(x) part.
Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the Chain Rule itself several times, as shown in the next
example.

Example 6.5.6 Using the Chain Rule multiple times
Find the derivative of y = tan®(6x> — 7x).

SOLUTION Recogniza that we have the g(x) = tan(6x> — 7x) function
“inside” the f(x) = x° function; that is, we have y = (tan(6x> —7x))5. We begin
using the Generalized Power|Rule; in this first step, we do not fully compute the
derivative. Rather, we are approaching this step—by-step.

y' =5(tan(6x* — 7x))* - g’ ().
We now find g’ (x). We again need the Chain Rule;
g’ (x) = sec’(6x® — 7x) - (18x* — 7).
Combine this with what we found above to give

y' = 5(tan(6x* — 7x))* - sec?(6x* — 7x) - (18x2 — 7)
= (90x* — 35) sec’(6x® — 7x) tan*(6x> — 7x).

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many vertical
asymptotes and 6x> — 7x grows so very fast. The important thing to learn from
this is that the derivative can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 6.5.7 Using the Product, Quotient and Chain Rules

—2\ _ cin(p8x
Find the derivative of f(x) = xcosl(:]((xz)+ SS)I;)(e )

SOLUTION This function likely has no practical use outside of demon-
strating derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the Chain Rule three times.

f'x) =
In(x* 4 5x*)- |:(X (—sin(x72)) - (=2x73) + 1- cos(x?))
—2sin(e®) - cos(e™) - (4e*)
—(xcos(xfz) - sinz(e“")) : 2:21725,(1)5‘
(In(x2 + 5x4))°

6.5 The Chain Rule
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The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that derivatives can be computed systemati-
cally, no matter how arbitrarily complicated the function is.

The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 6.5.8 The Chain Rule and exponential functions
Use the Chain Rule to find the derivative of y = 2*.

SOLUTION We only know how to find the derivative of one exponential
function, y = €*. We can accomplish our goal by rewriting 2 in terms of e.
Recalling that e and In x are inverse functions, we can write

2 = e|n2 and so y = X — (eInZ)X _ ex(InZ).

The function is now the composition y = f(g(x)), with f(x) = e* and g(x) =
x(In2). Since f’(x) = e* and g’(x) = In 2, the Chain Rule gives

y' =" n2.

Recall that the e*("2) term on the right hand side is just 2%, our original function.
Thus, the derivative contains the original function itself. We have

Yy =y-In2=2".1n2.

We can extend this process to use any base a, where a > 0 and a # 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the derivative rule of €, allows us to find the derivatives of all exponential
functions.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 6.5.3 Derivatives of Exponential Functions

Let f(x) = o, fora > 0,a # 1. Then fis differentiable for all real
numbers and

f'(x)=Ina-d.

Alternate Chain Rule Notation

It is instructive to understand what the Chain Rule “looks like” using ”%” no-
tation instead of y’ notation. Suppose that y = f(u) is a function of u, where
u = g(x) is a function of x, as stated in Theorem 6.5.1. Then, through the com-
position f o g, we can think of y as a function of x, as y = f(g(x)). Thus the
derivative of y with respect to x makes sense; we can talk about %. This leads
to an interesting progression of notation:



y' =f'(g(x))-g'(x)

d

% =y'(u)-u'(x) (since y = f(u) and u = g(x))

d

v_ ﬂ . ﬂ (using “fractional” notation for the derivative)
dx du dx

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving
dy dy
dx  dx’
It is important to realize that we are not cancelling these terms; the derivative
notation of % is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behaviour. It makes applying the Chain
Rule easy with multiple variables. For instance,
dy dy dO dA
dt — dO dA  dt’
where () and A are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 6.5.2. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast
as the rate at which the x gear makes a revolution. Using the terminology of

calculus, the rate of u-change, with respect to x, is % =2.

Likewise, every revolution of u causes 3 revolutions of y: % = 3. How does
y change with respect to x? For each revolution of x, y revolves 6 times; that is,
d dy du
l:l.izz.gza
dx du dx
We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So often the
functions that we deal with are compositions of two or more functions, requir-
ing us to use this rule to compute derivatives. It is also often used in real life
when actual functions are unknown. Through measurement, we can calculate

(or, approximate) % and %. With our knowledge of the Chain Rule, we can find
dy
dx*

In the next section, we use the Chain Rule to justify another differentiation

technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider x*> + y*> = 1, which describes the unit
circle. We may still be interested in finding slopes of tangent lines to the circle at
various points. The next section shows how we can find % without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.

6.5 The Chain Rule

Figure 6.5.2: A series of gears to demon-

strate the Chain Rule. Note how ﬂ =
dy du

du dx
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Exercises 6.5

Terms and Concepts

1.

. T/F: i(In(xz)) =7

. T/F:

T/F: The Chain Rule describes how to evaluate the deriva-
tive of a composition of functions.

d
. T/F: The Generalized Power Rule states that o (g(x)") =
x

n(g(x))nfl.

dx

d X\~ L X
&(3)'”1'1 3"

dxidx.dt

. T/F: —

dy_a d7y

fx) = (Inx—|—x2)3

Problems

In Exercises 7 — 36, compute the derivative of the given func-
tion.

7. f(x) = (45 —x)*°

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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A = (3t —2)°

. g(0) = (sin @ + cos 0)*

h(t) = e+
f) = (Inx+x)?
flx) =27

f00 = (x+3)*

f(x) = cos(3x)
g(x) = tan(5x)
h(0) = tan (6 + 40)
g(t) =sin (£ + 3)
h(t) = sin® (2t)

p(t) = cos® (£ + 3t + 1)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

g(r)=4
g(t) — 5C0$t
g(t) = 15
3W
m(w) = w
h(t) = 2'4+3
T3t42
341
m(w) = S
3¢ +
X
f(X) = 272

f(x) = x*sin(5x)

) = (6 +x)°(3x* + 2x)3
g(t) = cos(t* + 3t) sin(5t — 7)
f(x) = sin(3x + 4) cos(5 — 2x)

g(t) = cos(%)es‘f2

sin (4x + 1)

0= "5 sy
_ (4x+1)
T = "an(s0

In Exercises 37 - 40, find the equations of tangent and normal
lines to the graph of the function at the given point. Note: the
functions here are the same as in Exercises 7 through 10.

37.

38.

39.

40.

41.

fix) = (43 —x)Patx=0
f(ty=@Bt—2)%att=1
g(#) = (sinf 4 cosf)* at§ = 7/2

h(t) =¥ T latt=—1

d
Compute — (In(kx)) two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule In(ab) = Ina + In b,
then taking the derivative.



d k
42. C te — (| t :
ompute dx( n(x")) two ways

(a) Using the Chain Rule, and
(b) by first using the logarithm rule In(a”) = pIna, then
taking the derivative.

Review

43. The “wind chill factor” is a measurement of how cold it
“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25°F outside
with a wind of w mph.

(a) What are the units of W' (w)?
(b) What would you expect the sign of W’(10) to be?
44. Find the derivatives of the following functions.

(a) f(x) = x*¢* cotx

(b) g(x) = 2"3*4*
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/: THE GRAPHICAL BEHAVIOUR
OF FUNCTIONS

Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

7.1 Extreme Values

Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object travelled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 7.1.1 Extreme Values

Let f be defined on an interval | containing c.

is the minimum (also, absolute minimum) of f on / if f(c) <
forall xin /.

1. f(c
fx
2. f(c
fix

is the maximum (also, absolute maximum) of f on / if f(c) >
forallxin /.

~— — NN

The maximum and minimum values are the extreme values, or extrema,
of fonl.

Consider Figure 7.1.1. The function displayed in (a) has a maximum, but
no minimum, as the interval over which the function is defined is open. In (b),
the function has a minimum, but no maximum; there is a discontinuity in the
“natural” place for the maximum to occur. Finally, the function shown in (c) has
both a maximum and a minimum; note that the function is continuous and the
interval on which it is defined is closed.

It is possible for discontinuous functions defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

Theorem 7.1.1 The Extreme Value Theorem

Let f be a continuous function defined on a closed interval /. Then f has
both a maximum and minimum value on /.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to form a more general and powerful method for finding extreme values.

|
N)

|
-
-
N~

|
N

|
N
-
N

(c)

Figure 7.1.1: Graphs of functions with and
without extreme values.

Note: The extreme values of a function

are “y” values, values the function attains,
not the input values.

Note: While Theorem 7.1.1 is intuitively
plausible, a rigorous proof is actually
quite technical, and beyond the scope of
this text.



Chapter 7 The Graphical Behaviour of Functions

(5,25)

20 +

(0,0

(—1, —11)

=20 (3, —27)

Figure 7.1.2: A graph of f(x) = 2 — 9x*
as in Example 7.1.1.

Note: The terms local minimum and local
maximum are often used as synonyms for
relative minimum and relative maximum.

As it makes intuitive sense that an ab-
solute maximum is also a relative max-
imum, Definition 7.1.2 allows a relative
maximum to occur at an interval’s end-
point.

Figure 7.1.3: A graph of f(x) = (3x* —
4x* — 12x* +5)/5 as in Example 7.1.2.

Figure 7.1.4: A graph of f(x) = (x —
1)*2 + 2 asin Example 7.1.3.
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Example 7.1.1 Approximating extreme values
Consider f(x) = 2x*> — 9x* on | = [—1, 5], as graphed in Figure 7.1.2. Approxi-
mate the extreme values of f.

SOLUTION The graphis drawn in such a way to draw attention to certain
points. It certainly seems that the smallest y value is —27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of /, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than —27. Since the problem asks for an approximation, we
approximate the extreme values to be 25 and —27.

Notice how the minimum value came at “the bottom of a hill,” and the maxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [—1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

Definition 7.1.2 Relative Minimum and Relative Maximum

Let f be defined on an interval / containing c.

1. If there is an open interval containing ¢ such that f(c) is the mini-
mum value, then f(c) is a relative minimum of f. We also say that
fhas a relative minimum at (c, f(c)).

2. If there is an open interval containing ¢ such that f(c) is the maxi-
mum value, then f(c) is a relative maximum of f. We also say that
f has a relative maximum at (c, f(c)).

The relative maximum and minimum values comprise the relative ex-
trema of f.

We briefly practice using these definitions.

Example 7.1.2 Approximating relative extrema
Consider f(x) = (3x*—4x* —12x>+5) /5, as shown in Figure 7.1.3. Approximate
the relative extrema of f. At each of these points, evaluate f'.

SOLUTION We still do not have the tools to exactly find the relative
extrema, but the graph does allow us to make reasonable approximations. It
seems f has relative minima at x = —1 and x = 2, with values of f(—1) = 0 and
f(2) = —5.4. It also seems that f has a relative maximum at the point (0, 1).

We approximate the relative minima to be 0 and —5.4; we approximate the
relative maximum to be 1.

It is straightforward to evaluate f'(x) = £(12x* — 12x* —24x) atx = 0,1
and 2. In each case, f/(x) = 0.

Example 7.1.3 Approximating relative extrema
Approximate the relative extrema of f(x) = (x—1)%/3+2, shown in Figure 7.1.4.
At each of these points, evaluate f'.

SOLUTION The figure implies that f does not have any relative maxima,
but has a|relative minimum at (1, 2). In fact, the graph suggests that not only



is this point a relative minimum, y = f(1) = 2 is the minimum value of the
function.
We compute f'(x) = 2(x — 1)~*/3. When x = 1, f/ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 7.1.3 Critical Numbers and Critical Points

Let f be defined at c. The value c is a critical number of fif f'(c) = 0 or
f’(c) is not defined. The value f(c) is then referred to as a critical value
of f.

If ¢ is a critical number of f, then the point (c, f(c)) is a critical point of f.

Theorem 7.1.2 Relative Extrema and Critical Points

Let a function f be defined on an open interval | containing ¢, and let f
have a relative extremum at the point (c, f(c)). Then cis a critical number
of f.

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(x) = x3. Since f'(x) = 3x%, itis
straightforward to determine that x = 0 is a critical number of f. However, f has
no relative extrema, as illustrated in Figure 7.1.5.

Let us pause briefly to try to understand why Theorem 7.1.2 is true. To be-
gin, suppose that our function f has a relative maximum at the point (c, f(c)).
(The argument for a relative minimum is similar.) If f(c) is undefined, then cis a
critical number, and there is nothing to prove, so we suppose that f is differen-
tiable at ¢, and try to see why it must be that ' (c) = 0. Consider the difference
quotient

Since f has a relative maximum at ¢, we know that f(c) > f(c+ h) for sufficiently
small values of h, so f(c + h) — f(c) < 0. Since f'(c) exists, we know that the
above limit must exist; in particular, the left-hand limit must equal the right hand
limit. On the other hand, since f(c + h) — f(c) < 0, we have

i S D) —£0)
h—0— h

b

since h < 0in the left-hand limit, while

LR

h—0+ ’

since h > 0 for the right-hand limit. The only way these two limits can agree is
if both limits are equal to zero which proves that f(c) = 0.

7.1 Extreme Values

-1 1
Figure 7.1.5: A graph of f(x) = x* which

has a critical value of x = 0, but no rela-
tive extrema.
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40 +

20 +

1 2
(a)
x %)
0 o0
1 -7
3 45

(b)

Figure 7.1.6: Finding the extreme values
of f(x) = 2x*+3x* —12xin Example 7.1.4.

) 5
(a)
x  f(x)
—4 25
0 1
2 3

(b)

Figure 7.1.7: Finding the extreme values
of a piecewise—defined function in Exam-

ple 7.1.5.
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Theorem 7.1.1 states that a continuous function on a closed interval will have
absolute extrema, that is, both an absolute maximum and an absolute minimum.
These extrema occur either at the endpoints or at critical values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea 7.1.1 Finding Extrema on a Closed Interval

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of fon [a, b]:

1. Evaluate f at the endpoints a and b of the interval.
2. Find the critical numbers of fin [a, b].
3. Evaluate f at each critical number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of fis the least of these values.

We practice these ideas in the next examples.

Example 7.1.4 Finding extreme values
Find the extreme values of f(x) = 2x* + 3x?> — 12x on [0, 3], graphed in Figure
7.1.6(a).

SOLUTION We follow the steps outlined in Key Idea 7.1.1. We first eval-
uate f at the endpoints:

f(0)=0 and f£(3)=45.

Next, we find the critical values of fon [0,3]. f'(x) = 6x* + 6x — 12 =

6(x + 2)(x — 1); therefore the critical values of fare x = —2 and x = 1. Since
x = —2 does not lie in the interval [0, 3], we ignore it. Evaluating f at the only
critical number in our interval gives: f(1) = —7.

The table in Figure 7.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is —7.

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 7.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 7.1.5 Finding extreme values
Find the maximum and minimum values of f on [—4, 2], where

(x—1)* x<0
f("):{ Y41 x>0

SOLUTION Here f is piecewise—defined, but we can still apply Key Idea
7.1.1. Evaluating f at the endpoints gives:

f(—4) =25 and f(2)=3.



We now find the critical numbers of f. We have to define f’ in a piecewise man-

ner; it is
2(x—1) x<O0
"(x) = )
f() {1 x>0

Note that while fis defined for all of [—4, 2], f' is not, as the derivative of f does
not exist when x = 0. (From the left, the derivative approaches —2; from the
right the derivative is 1.) Thus one critical number of fis x = 0.

We now set f'(x) = 0. When x > 0, f'(x) is never 0. When x < 0, f'(x) is
also never 0, so we find no critical values from setting f'(x) = 0.

So we have three important x values to consider: x = —4,2 and 0. Evaluat-
ing f at each gives, respectively, 25, 3 and 1, shown in Figure 7.1.7(b). Thus the
absolute minimum of fis 1, the absolute maximum of fis 25, confirmed by the
graph of f.

Example 7.1.6 Finding extreme values
Find the extrema of f(x) = cos(x?) on [—2, 2], graphed in Figure 7.1.8(a).

SOLUTION We again use Key Idea 7.1.1. Evaluating f at the endpoints of
the interval gives: f(—2) = f(2) = cos(4) ~ —0.6536. We now find the critical
values of f.

Applying the Chain Rule, we find f'(x) = —2xsin(x?). Set f’(x) = 0 and
solve for x to find the critical values of f.

We have f’(x) = 0 when x = 0 and when sin(x?) = 0. In general, sint = 0
whent=...— 27, —7,0,7,... Thussin(x*) = 0whenx? = 0, m,2m,... (x*is

always positive so we ignore —, etc.) Sosin(x?) = Owhenx = 0, £/, =27, . . ..

The only values to fall in the given interval of [—2, 2] are —/7 and /7, approx-
imately £1.77.

We again construct a table of important values in Figure 7.1.8(b). In this
example we have 5 values to consider: x = 0, £2, /7.

From the table it is clear that the maximum value of f on [—2, 2] is 1; the
minimum value is —1. The graph in Figure 7.1.8 confirms our results.

We consider one more example.

Example 7.1.7 Finding extreme values
Find the extreme values of f(x) = /1 — x?, graphed in Figure 7.1.9(a).

SOLUTION A closed interval is not given, so we find the extreme values
of f on its domain. fis defined whenever 1 — x> > 0; thus the domain of fis
[—1, 1]. Evaluating f at either endpoint returns 0.

—X
Using the Chain Rule, we find f'(x) = —
V1—x?

found when f’(x) = 0 or when f is undefined. It is straightforward to find that
f'(x) = 0when x = 0, and f’ is undefined when x = +1, the endpoints of the
interval. The table of important values is given in Figure 7.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

. The critical points of f are

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next section, we further our study of the information we can
glean from “nice” functions with the Mean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

7.1 Extreme Values

0.5
t t t > X
—2 —1 1 2
705 1
—1 |
(a)
X fx)
-2 —0.65
—\/T -1
0 1
VT -1
2 —0.65

(b)

Figure 7.1.8: Finding the extrema of
f(x) = cos(x*) in Example 7.1.6.

x_ fx)
-1 0
0o 1
1 0

(b)

Figure 7.1.9: Finding the extrema of the
half—circle in Example 7.1.7.
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Exercises 7.1

Terms and Concepts In Exercises 9 — 16, evaluate f’'(x) at the points indicated in
the graph.
2
. P ” L 9. f(¥) = 5—=
1. Describe what an “extreme value” of a function is in your x2+1
own words. v
(0,2)
2
2. Sketch the graph of a function fon (—1, 1) that has both a
maximum and minimum value. 1]
3. Describe the difference between absolute and relative . e
maxima in your own words.

4. Sketch the graph of a function f where f has a relative max- y
imum at x = 1 and f'(1) is undefined. 51 2.4v2)

5. T/F: If cis a critical value of a function f, then f has either a

relative maximum or relative minimum at x = c. 2 f
+ + X
6. Fill in the blanks: The critical points of a function f are -2 ©0 2
found where f’(x) is equal to or where f'(x) is
11. f(x) =sinx
y
(7/2,1)
1]
Problems | \
2 4
In Exercises 7 — 8, identify each of the marked points as being -1 4 By
T/2, —1
an absolute maximum or minimum, a relative maximum or (3/2,~1)
minimum, or none of the above.
12. f(x) = xXvV4 —x
y
2 1 5 |
7.
(4,0)
- X
-2 0,00 2 4
-2 A
y
C
)
B D
8.
+ X
2 4 \
E
A (2,1)
—2 + X
5 10
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14. f(x) = Vx* —2x +1

—0.5

2
x> x<0
16. = =
6. f(x) { x x>0
y
I
0.5 |
—}1 4}).5 (0,0) ois
—0.5

In Exercises 17 — 26, find the extreme values of the function
on the given interval.

17. f(x) =X +x+4 on [-1,2]
18. f(x) =x* — gxz —30x+3 on [0,6]
19. f(x) = 3sinx on [r/4,27/3].
20. f(x) =xX*V4—x2 on [-2,2].

21. f(x):x—i—% on [1,5].

22, f(x) = on [-3,5].

23. f(x) = e*cosx on [0,m].
24. f(x) = €"sinx on [0,m].

__Inx

25. f(x) on [1,4].

26. f(x) =x>—x on [0,2].

Review
27. Find £, where X’y — y’x = 1.

28. Find the equation of the line tangent to the graph of x* +
y> + xy = 7 at the point (1, 2).

29. Letf(x) = ® +x.

Evaluate Iij}) M
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Figure 7.2.1: A graph of a function f used
to illustrate the concepts of increasing
and decreasing.

Note: Some authors define a function to
be increasing if fla) < f(b) whenever
a < b (with a similar definition for de-
creasing), and say that a function f sat-
isfying our definition is strictly increasing
(similarly, strictly decreasing). This is a
perfectly reasonable definition, although
it does have the odd consequence that,
with this definition, a constant function
would be simultaneously increasing and
decreasing.

Figure 7.2.2: Examining the secant line of
an increasing function.
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7.2 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f'(x) = 0 or f’ does
not exist, and points ¢ where f’(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 7.2.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that fis increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 7.2.1 Increasing and Decreasing Functions

Let f be a function defined on an interval /.
1. fisincreasing on / if for every a < bin |, f(a) < f(b).
2. fis decreasing on / if for every a < bin I, f(a) > f(b).

A function is nonincreasing when a < b in I implies f(a) > f(b), with a
similar definition holding for nondecreasing.

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differentiable function on an open interval /, such as the one shown in Figure
7.2.2,and let a < b be given in I. The secant line on the graph of ffrom x = a
to x = b is drawn; it has a slope of (f(b) — f(a))/(b — a). But note:

Average rate of
= change of fon
[a,b]is > 0.

f(b) — f(a) numerator > 0

N slope of the
b—a denominator > 0

secant line > 0

We have shown mathematically what may have already been obvious: when
fis increasing, its secant lines will have a positive slope. Now recall the Mean
Value Theorem guarantees that there is a number ¢, where a < ¢ < b, such that

By considering all such secant lines in /, we strongly imply that f/(x) > Oon /. A
similar statement can be made for decreasing functions.

Our above logic can be summarized as “If fis increasing, then f is probably
positive.” Theorem 7.2.1 below turns this around by stating “If f’ is positive,
then fis increasing.” This leads us to a method for finding when functions are
increasing and decreasing.



7.2 Increasing and Decreasing Functions

Theorem 7.2.1 Test For Increasing/Decreasing Functions

Let f be a continuous function on [a, b] and differentiable on (a, b).
1. If f'(c) > Oforall cin (a,b), then fis increasing on [a, b].
2. Iff'(c) < Oforallcin (a,b), then fis decreasing on [a, b].

3. Iff'(c) = 0forall cin (a, b), then fis constant on [a, b].

Let f be differentiable on an interval / and let a and b be in / where f'(a) > 0 Note: Parts 1 & 2 of Theorem 7.2.1 also
andf’(b) < 0. Iff’ is continuous on [a, b], it follows from the Intermediate Value hold iff'(C_) = 0 for a finite number of
Theorem that there must be some value c between aand b where f'(c) = 0. If f/ values of cin /.

is not continuous on [a, b], it can happen that f' changes sign at a point c where
f'(c) is undefined, so we should account for these points as well. This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 7.2.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differentiable function on an interval I. To find intervals on
which fis increasing and decreasing:

1. Find the critical values of f. That is, find all ¢ in / where f'(c) = 0
or f is not defined.

2. Use the critical values to divide / into subintervals.

3. Pick any point p in each subinterval, and find the sign of f'(p).

, o ) . Note: Recall that not all points ¢ where
(a) If f'(p) > 0, then fis increasing on that subinterval. £/(c) is undefined are critical points. It

(b) Iff'(p) < O, then fis decreasing on that subinterval. could be that f'(c) is undefined because
cis not in the domain of f; for example, at

a vertical asymptote. Even though these
points are not critical points, we still in-
clude them in our sign diagram, since it’s
possible that f’ changes sign at such a

To implement Key Idea 7.2.1, we use a visual aid called a sign diagram for f’.
A sign diagram for a function g consists of the following:

* A number line representing the domain of the function g. point.
* A solid dot marking each point x where g(x) = 0.
* A hollow dot marking each point where g(x) is undefined.

¢ Between each pair of dots, either a + sign or — sign to indicate whether
the function is positive or negative on that interval.

We demonstrate using this process in the following example.

Example 7.2.1 Finding intervals of increasing/decreasing
Let f(x) = x> + x% — x + 1. Find intervals on which fis increasing or decreasing.

SOLUTION Using Key Idea 7.2.1, we first find the critical values of f. We
have f/(x) = 3x* + 2x — 1 = (3x — 1)(x + 1), so f'(x) = 0 when x = —1 and
when x = 1/3. f’ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
tire domain of f which is (—0o0,00). We thus break the whole real line into
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(0

Figure 7.2.4: A graph of f(x) in Example
7.2.1, showing where f is increasing and
decreasing.

266

three subintervals based on the two critical values we just found: (—oo, —1),
(—1,1/3) and (1/3, c0). This is shown in Figure 7.2.3.

+ — -

|
-
wir @

f’ >0 incr f’ < 0 decr f' > 0 incr

Figure 7.2.3: Sign diagram for f’ in Example 7.2.1.

We now pick a value p in each subinterval and find the sign of f'(p). All we
care about is the sign, so we do not actually have to fully compute f'(p); pick
“nice” values that make this simple.

Subinterval 1, (—oo, —1): We (arbitrarily) pick p = —2. We can compute
f'(=2) directly: f'(—2) = 3(—2)? +2(—2) — 1 = 7 > 0. We conclude that fis
increasing on (—oo, —1).

Note we can arrive at the same conclusion without computation. For in-
stance, we could choose p = —100. The first term in f/(—100), i.e., 3(—100)? is
clearly positive and very large. The other terms are small in comparison, so we
know f’(—100) > 0. All we need is the sign.

Subinterval 2, (—1,1/3): We pick p = 0 since that value seems easy to dzal
with. f'(0) = —1 < 0. We conclude fis decreasing on (—1,1/3).

Subinterval 3, (1/3,00): Pick an arbitrarily large value for p > 1/3 and note
that f(p) = 3p? + 2p — 1 > 0. We conclude that fis increasing on (1/3, cc).

We can verify our calculations by considering Figure 7.2.4, where fis graphed.
The graph also presents f’; note how f/ > 0 when fis increasing and f' < 0
when fis decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = —1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical values is important; once we know
the significant points are x = —1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relationship between increasing/decreasing and the
sign of f’. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the critical points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f’ is straightforward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has options for finding needed information.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”



In Section 7.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice—versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = ¢, after which it de-
creases. A quick sketch helps confirm that f(c) must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
ceptin a theorem.

Theorem 7.2.2 First Derivative Test

Let f be differentiable on an interval / and let ¢ be a critical number in /.

1. If the sign of f’ switches from positive to negative at c, then f(c) is
a relative maximum of f.

2. If the sign of f' switches from negative to positive at ¢, then f(c) is
a relative minimum of f.

3. If " is positive (or, negative) before and after ¢, then f(c) is not a
relative extrema of f.

Example 7.2.2 Using the First Derivative Test
Find the intervals on which f is increasing and decreasing, and use the First
Derivative Test to determine the relative extrema of f, where

x*+3
foo = x—1°
SOLUTION We start by noting the domain of f: (—o0,1) U (1, 00). Key

Idea 7.2.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 7.2.1 to both
intervals of the domain of f.

Since fis not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a critical value of
f, but we will include it in our list of critical values that we find next.

Using the Quotient Rule, we find

X —2—3

f/(X) - (X— 1)2

We need to find the critical values of f; we want to know when f/(x) = 0 and
when f’ is not defined. That latter is straightforward: when the denominator
of f'(x) is 0, ' is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f’(x) = 0 when the numerator of f'(x) is 0. That occurs when x*> — 2x — 3 =
(x—3)(x+1) =0;i.e,whenx=—1,3.

We have found that f has two critical numbers, x = —1,3,andatx = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(—=o00,—-1), (-1,1), (1,3) and (3,00).

7.2

Increasing and Decreasing Functions

267



Chapter 7 The Graphical Behaviour of Functions

y
201 f(x)
10 +
(%)
—— + — X
e 4
—10 |
—20 |

Figure 7.2.6: A graph of f(x) in Example
7.2.2, showing where f is increasing and
decreasing.

Note: with a bit of practice, you might
find that you can fill out sign diagrams
quickly, without needing to use test val-
ues in each interval. One strategy is the
following: start on the far left (or far
right). Determine the sign in the first in-
terval, and work left-to-right (or right-to-
left). Each time you pass a point where f’
is zero or undefined, check the factored
expression for f'. Did this point come
from an even power, or an odd power?
If the power is even, leave the sign un-
changed. If the power is odd, change
the sign. In Example 7.2.2, the critical
numbers —1 and 3 come from odd pow-
ers. (Recall (x + 1) = (x + 1)~) The
vertical asymptote contributes the even
power (x — 1)% in the denominator. Thus,
we see sign changes at —1 and 3, but the
sign is the same on either side of 1.
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Pick a number p from each subinterval and test the sign of f/ at p to determine
whether fis increasing or decreasing on that interval. Again, we do well to avoid
complicated computations; notice that the denominator of f' is always positive
so we can ignore it during our work.

Interval 1, (—oo, —1):  Choosing a very small number (i.e., a negative number
with a large magnitude) p returns p> — 2p — 3 in the numerator of f’; that will
be positive. Hence fis increasing on (—oo, —1).

Interval 2, (—1,1): Choosing 0 seems simple: f'(0) = —3 < 0. We conclude
fis decreasing on (—1,1).

Interval 3, (1,3): Choosing 2 seems simple: f'(2) = —3|< 0. Again, fis
decreasing.

Interval 4, (3,00): Choosing an very large number p from this subinterval will
give a positive numerator and (of course) a positive denominator. So fis increas-
ing on (3, 00).

In summary, fis increasing on the set (—oo, —1) U (3, 00) and is decreasing
ontheset (—1,1)U(1,3). Since atx = —1, the sign of f’ switched from positive
to negative, Theorem 7.2.2 states that f(—1) is a relative max|mum of f. At x =
3, the sign of f’ switched from negative to positive, meaning f(3) is a relative
minimum. At x = 1, fis not defined, so there is no relative extrema at x = 1.

rel. rel.
max min
+ - - +
< L 4 @ >
-1 1 3
f' > 0 incr f’ < 0 decr f' < 0 decr 5/ >0 incr

Figure 7.2.5: Sign diagram for f’ in Example 7.2.2.

This is summarized in the number line shown in Figure 7.2.5. Also, Figure
7.2.6 shows a graph of f, confirming our calculations. This figure also shows
f’, again demonstrating that f is increasing when f’ > 0 and|decreasing when
f' <o.

One is often tempted to think that functions always alternate “increasing,
decreasing, increasing, decreasing,...” around critical values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a critical value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 7.2.3 Using the First Derivative Test
Find the intervals on which f(x) = x8/3 — 4x?/3 is increasing and decreasing and
identify the relative extrema.

SOLUTION We again start with taking a derivative. Since we know we
want to solve f'(x) = 0, we will do some algebra after taking the derivative.

f(x):x§—4x§
8 s 8 _1
"(X) = =x3 — —x"3
f'(x) 3X 53X
8 1/
= —X 3()(3_1)
3
8 1,
=-x3(x -1
H - )
8
:gx’%(x—l)(x—i—l).



This derivation of f’ shows that f/(x) = 0 when x = +1 and f’ is not de-
fined when x = 0. Thus we have 3 critical values, breaking the number line into
4 subintervals as shown in Figure 7.2.7.

Interval 1, (0o, —1): We choose p = —2; we can easily verify that f'(—2) < 0.
So fis decreasing on (—oo, —1).

Interval 2, (—1,0): Choose p = —1/2. Once more we practice finding the sign
of f/(p) without computing an actual value. We have f’(p) = (8/3)p~*/3(p —
1)(p + 1); find the sign of each of the three terms.

_1
3P -+l
S N e e’

<0 <0 >0

We have a “negative X negative X positive” giving a positive number; f is in-
creasing on (—1,0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

We have 2 positive factors and one negative factor; f'(p) < 0 and so fis de-
creasing on (0, 1).

Interval 4, (1, oo): Similar work to that done for the other three intervals shows
that f/(x) > 0 on (1, c0), so fis increasing on this interval.

rel. rel. rel.
min max min
— + - -
< L 2 L 2 >
—1 0 1
f' <0 incr f’ > 0 decr f’ < 0 decr f' > 0 incr

Figure 7.2.7: Sign diagram for f in Example 7.2.3.

We conclude by stating that fis increasing on (+1,0)U(1, co) and decreasing
on (—oo, —1) U (0,1). The sign of f' changes from negative to positive around
x = —land x = 1, meaning by Theorem 7.2.2 that f(—1) and f(1) are relative
minima of f. As the sign of f’ changes from positive to negative at x = 0, we
have a relative maximum at f(0). Figure 7.2.8 shows a graph of £, confirming our
result. We also graph f’, highlighting once more that fis increasing when f’ > 0
and is decreasing when f’ < 0.

We have seen how the first derivative of a function helps determine when
the function is going “up” or “down.” In the next section, we will see how the
second derivative helps determine how the graph of a function curves.

7.2

Increasing and Decreasing Functions

1)

Figure 7.2.8: A graph of f(x) in Example
7.2.3, showing where f is increasing and
decreasing.

269



270

Exercises 7.2

Terms and Concepts

1. Inyour own words describe what it means for a function to
be increasing.

2. What does a decreasing function “look like”?

3. Sketch a graph of a function on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a function describing a situation where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Functions always switch from increasing to decreasing,
or decreasing to increasing, at critical points.

6. Afunction f has derivative f'(x) = (sinx + 2)e* ™%, where
f'(x) > 1forall x. Is fincreasing, decreasing, or can we not
tell from the given information?

Problems

In Exercises 7 — 14, a function f(x) is given.
(a) Compute f'(x).

(b) Graph f and f’ on the same axes (using technology is
permitted) and verify Theorem 7.2.1.

7. fx) =2x+3

8. f(x) =x* —3x+5

9. f(x) = cosx
10. f(x) =tanx
1. fx) =x* =5 +7x—1
12 fx) =2¢ —x* +x—1

13. f(x) = x* —5x% + 4

14.

1

=53

In Exercises 15 — 24, a function f(x) is given.

15.

16.

17.

(a) Give the domain of f.
(b) Find the critical numbers of f.

(c) Create a number line to determine the intervals on
which fis increasing and decreasing.

(d) Use the First Derivative Test to determine whether
each critical point is a relative maximum, minimum,
or neither.

fx) =x" +2x—3

fxX)=x+3¢+3

fx) =2 4+x —x+3

18. f(x) =x =3¢ +3x—1
1
19. f(x) = 12
X —4
20. f(x) = 21
X
20 = s
CEEI
22. f(x) = —
23. f(x) = sinxcosxon (—m, ).
24. f(x) = x> — 5x
Review

25.

26.

Consider f(x) = x* — 3x + 5 on [—1, 2]; find ¢ guaranteed
by the Mean Value Theorem.

Consider f(x) = sinxon [—7/2, 7/2]; find ¢ guaranteed by
the Mean Value Theorem.



7.3 Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f’, can relay important information about f. We
now apply the same technique to f’ itself, and learn what this tells us about f.

The key to studying f’ is to consider its derivative, namely f”, which is the
second derivative of f. When f” > 0, f’ is increasing. When f” < 0, f’ is
decreasing. f’ has relative maxima and minima where f” = 0 or is undefined.

This section explores how knowing information about f” gives information
about f.

Concavity

We begin with a definition, then explore its meaning.

Definition 7.3.1 Concave Up and Concave Down

Let f be differentiable on an interval /. The graph of f is concave up on /
if f” is increasing. The graph of fis concave down on / if f’ is decreasing.
If f" is constant then the graph of fis said to have no concavity.

The graph of a function fis concave up when f’ is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 7.3.1, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a small value of f. On the right, the tangent line
is steep, upward, corresponding to a large value of f’.

If a function is decreasing and concave up, then its rate of decrease is slow-
ing; itis “levelling off” If the function is increasing and concave up, then the rate
of increase is increasing. The function is increasing at a faster and faster rate.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function fis concave down when f is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 7.3.2, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a large value of f’. On the right, the tangent
line is steep, downward, corresponding to a small value of .

If a function is increasing and concave down, then its rate of increase is slow-
ing; itis “levelling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section and to find intervals on which a graph is concave up or down.
That is, we recognize that f’ is increasing when f”/ > 0, etc.

Theorem 7.3.1 Test for Concavity

Let f be twice differentiable on an interval /. The graph of fis concave up
if f > 0on/l andis concave down if f” < Qon .

7.3 Concavity and the Second Derivative

t t X
-2 2

Figure 7.3.1: A function f with a concave
up graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are increasing.

Note: We often state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admittedly terrible, but it
works.

Figure 7.3.2: A function f with a concave
down graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are decreasing.

Note: Geometrically speaking, a function
is concave up if its graph lies above its tan-
gent lines. A function is concave down if
its graph lies below its tangent lines.

271



Chapter 7 The Graphical Behaviour of Functions

f/ < 0, decreasing
f” < 0, c. down

£/ > 0,increasing
f” < 0, c. down

£’ > 0, increasing
" >0,cup

f! < 0, decreasing
' >0cup

Figure 7.3.3: Demonstrating the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relation-
ships with the first and second deriva-
tives.

15 +

10 +

Figure 7.3.4: A graph of a function with
its inflection points marked. The inter-
vals where concave up/down are also in-
dicated.

< @ >
0

f’" <0cdown f” >0c up

Figure 7.3.5: A sign diagram for f" deter-
mining the concavity of fin Example 7.3.1.

Figure 7.3.6: A graph of f(x) used in Ex-
ample 7.3.1.
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If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 7.3.2 Point of Inflection

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 7.3.4 shows a graph of a function with inflection points labelled.

If the concavity of f changes at a point (c,f(c)), then f’ is changing from
increasing to decreasing (or, decreasing to increasing) at x = c¢. That means that
the sign of f”’ is changing from positive to negative (or, negative to positive) at
x = c. This leads to the following theorem.

Theorem 7.3.2 Points of Inflection

If (¢, f(c)) is a point of inflection on the graph of f, then either f/(c) = 0
or f"" is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 7.3.1 Finding intervals of concave up/down, inflection points
Let f(x) = x> — 3x + 1. Find the inflection points of f and the intervals on which
it is concave up/down.

SoLuTioN We start by finding f/(x) = 3x* — 3 and f”/(x) = 6x. To find
the inflection points, we use Theorem 7.3.2 and find where f”(x) = 0 or where
f" is undefined. We find f” is always defined, and is 0 only when x = 0. So the
point (0,1) is the only possible point of inflection.

This possible inflection point divides the real line into two intervals, (—oo, 0)
and (0, 00). We use a process similar to the one used in the previous section to
determine increasing/decreasing. Pick any ¢ < 0; f"/(c) < 0 so fis concave
down on (—o0, 0). Pickany ¢ > 0; f”(c) > 0so fis concave up on (0, o). Since
the concavity changes at x = 0, the point (0, 1) is an inflection point.

The number line in Figure 7.3.5 illustrates the process of determining con-
cavity; Figure 7.3.6 shows a graph of fand f/, confirming our results. Notice how
fis concave down precisely when "/ (x) < 0 and concave up wheiif”(x) > 0.

Example 7.3.2 Finding intervals of concave up/down, inflection points
Let f(x) = x/(x*> — 1). Find the inflection points of f and the intervals on which
it is concave up/down.

SOLUTION We need to find f’ and f”’. Using the Quotient Rule and sim-
plifying, we find




To find the possible points of inflection, we seek to find where f”/(x) = 0 and
where f” is not defined. Solving f”/(x) = 0 reduces to solving 2x(x* + 3) = 0;
we find x = 0. We find that f” is not defined when x = =+1, for then the
denominator of f” is 0. We also note that f itself is not defined at x = =1,
having a domain of (—oo0, —1) U (—1,1) U (1, c0). Since the domain of fis the
union of three intervals, it makes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflection at x = +1 as
they are not part of the domain, but we must still consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switcharex = -1, x =0
and x = 1, which split the number line into four intervals as shown in Figure
7.3.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f/ on the interval.

Interval 1, (—oco, —1): Select a number c in this interval with a large magnitude
(for instance, ¢ = —100). The denominator of " (x) will be positive. In the
numerator, the (c? + 3) will be positive and the 2¢ term will be negative. Thus
the numerator is negative and f/(c) is negative. We conclude fis concave down
on (—oo, —1).

Interval 2, (—1,0): For any number c in this interval, the term 2c in the numer-
ator will be negative, the term (c? + 3) in the numerator will be positive, and
the term (c* — 1)3 in the denominator will be negative. Thus f”/(c) > 0 and fis
concave up on this interval.

Interval 3, (0, 1): Any number cin this interval will be positive and “small.” Thus
the numerator is positive while the denominator is negative. Thus f/(c) < 0
and fis concave down on this interval.

Interval 4, (1, c0): Choose a large value for c. It is evident that f/(c) > 0, so we
conclude that fis concave up on (1, o).

— + — +
< L 2 >

f"” <0 c. down f”" >0cup " < 0 c. down f" >0cup

Figure 7.3.7: Sign diagram for f” in Example 7.3.2.

We conclude that fis concave up on (—1,0) U (1, c0) and concave down on
(—o0, —1)U(0, 1). There is only one point of inflection, (0, 0), as fis not defined
at x = £1. Our work is confirmed by the graph of fin Figure 7.3.8. Notice how
fis concave up whenever f” is positive, and concave down when f” is negative.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f/(x) = 0 or when f’ is undefined. Likewise,
the relative maxima and minima of f are found when f”(x) = 0 or when f” is
undefined; note that these are the inflection points of f.

What does a “relative maximum of f’ ” mean? The derivative measures the
rate of change of f; maximizing f’ means finding where fis increasing the most —
where f has the steepest tangent line. A similar statement can be made for min-
imizing f'; it corresponds to where f has the steepest negatively—sloped tangent
line.

We utilize this concept in-the next example.

Example 7.3.3 Understanding inflection points

The sales of a certain product over a three-year span are modelled by S(t) =
t* — 8t2 + 20, where t is the time in years, shown in Figure 7.3.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

7.3 Concavity and the Second Derivative

—10 +

Figure 7.3.8: A graph of f(x) and f”(x) in
Example 7.3.2.

20

s(t)

15 +

10 +

Figure 7.3.9: A graph of S(t) in Example
7.3.3, modelling the sale of a product over
time.
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20
s(t)

10 +

—10 | s'(t)

Figure 7.3.10: A graph of 5(t) in Example
7.3.3 along with S'(t).

Figure 7.3.11: A graph of f(x) = x"
Clearly fis always concave up, despite the
fact that f”/(x) = 0 when x = 0. It this
example, the possible point of inflection
(0,0) is not a point of inflection.

10 +

c. down

= rel. max 5 +

—5 c.up

=> rel. min

—10 |

Figure 7.3.12: Demonstrating the fact
that relative maxima occur when the
graph is concave down and relative min-
ima occur when the graph is concave up.
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SOLUTION We want to maximize the rate of decrease, which is to say,
we want to find where S’ has a minimum. To do this, we find where S” is 0. We
find $’(t) = 4t — 16t and S” (t) = 12t*> — 16. Setting S”(t) = 0 and solving, we
gett = \/m ~ 1.16 (we ignore the negative value of t since it does not lie in
the domain of our function S).

This is both the inflection point and the point of maximum decrease. This
is the point at which things first start looking up for the company. After the
inflection point, it will still take some time before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S’(t) is given in Figure 7.3.10. When S'(t) < 0, sales are
decreasing; note how at t & 1.16, S’(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t &~ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “levelling off.”

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f”(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f/(x) = 0
without concavity changing is f(x) = x*. Atx = 0, f”(x) = 0 but f is always
concave up, as shown in Figure 7.3.11.

The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value cor-
responded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function fis concave up, then that critical value
must correspond to a relative minimum of f, etc. See Figure 7.3.12 for a visual-
ization of this.

Theorem 7.3.3 The Second Derivative Test
Let ¢ be a critical value of f where f"(c) is defined.
1. If f”(c) > 0, then f has a local minimum at (c, f(c)).

2. Iff”(c) < 0, then f has a local maximum at (c, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f”(c) > 0, then the graph is concave up at a critical point ¢ and f’ itself
is growing. Since f'(c) = 0 and f’ is growing at ¢, then it must go from negative
to positive at c. This means the function goes from decreasing to-increasing, in-
dicating a local minimum at c.

Example 7.3.4 Using the Second Derivative Test
Let f(x) = 100/x + x. Find the critical points of f and use the Second Derivative
Test to label them as relative maxima or minima.

SOLUTION We find f/(x) = —100/x* + 1 and f”(x) = 200/x3. We set
f'(x) = 0and solve for x to find the critical values (note that f’ is not defined at
x = 0, but neither is f so this is not a critical value.) We find the critical values
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are x = £10. Evaluating f”" at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evaluating f”(—10) = —0.1 < 0, determining a relative maximum a0 |
at x = —10. These results are confirmed in Figure 7.3.13. £ (10) > 0

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of 20 10 10 20
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter
5 we saw how limits explained asymptotic behaviour. In the next section we
combine all of this information to produce accurate sketches of functions.

Figure 7.3.13: A graph of f(x) in Example
7.3.4. The second derivative is evaluated
at each critical point. When the graph is
concave up, the critical point represents
a local minimum; when the graph is con-
cave down, the critical point represents a
local maximum.
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Exercises 7.3

Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave
down on (0, co) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

4. lIsis possible for a function to be increasing and concave up
on (0, co) with a horizontal asymptote of y = 1? If so, give
a sketch of such a function.

Problems

In Exercises 5 — 14, a function f(x) is given.
(a) Compute f”(x).

(b) Graph fand f" on the same axes (using technology is
permitted) and verify Theorem 7.3.1.

5. f(x) = —7x+3

6. f(x) = —4xX +3x—8

7. f(x) = 4x +3x—8

8 f(X)=x* =3 +x—1
9. f(x) = =X +x —2x+5
10. f(x) = sinx

11. f(x) =tanx

1
12. f(x) = el
13. flx) = %
14, 1) =

In Exercises 15 — 28, a function f(x) is given.
(a) Find the possible points of inflection of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

15. f(x) =x" —2x+1
16. f(x) = —x* —5x+7
17. fx) =X —x+1

18. f(x) = 2 —3x +9x +5

19. f(x) = 4+ = —2x+3

IN K

x
3

20. f(x) = —3x* +8x° + 6x° — 24x 42
4 3 2
21 f(x) =x"—4x +6x" —4x+1

22. f(x) = secxon (—37/2,37/2)

1
24. f(x) = xz)i -

25. f(x) = sinx + cosxon (—m, )

26. f(x) = x€"

27. f(x) =X Inx

28. f(x) =e™*
In Exercises 29 — 42, a function f(x) is given. Find the critical
points of f and use the Second Derivative Test, when possi-
ble, to determine the relative extrema. (Note: these are the
same functions as in Exercises 15 — 28.)

29. fx) =xX —2x+1

30. f(x) = —x* —5x+ 7

31 f(x) =x* —x+1

32, f(x) =2x° =38 +9x+5

33. f(x) = —2x+3

X

3

34, f(x) = —3x* + 8%’ + 6x* — 24x + 2
4 3 2

35. f(x) =x" —4x +6x" —4x+1

36. f(x) =secxon (—3w/2,37/2)



1
38. f(x) = ﬁ

39. f(x) = sinx + cosxon (—m, )

42. fix) =e™"
In Exercises 43 — 56, a function f(x) is given. Find the x val-
ues where f'(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercises 15 — 28.)

43, f(x) =x* —2x+1

44, f(x) = —xX* —5x+7

45. f(x) =x —x+1

46. f(x) =2x* =3¢ +9x+5

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

xX* e

f(X): Z+§—2X+3
f(x) = —3x" 4+ 8x° + 6x" — 24x + 2
f) =x*—a +6x —4x+1
f(x) = secxon (—37/2,37/2)

1
fix) = x24+1

X
fx) = 2_1
f(x) = sinx 4 cosxon (—m, )
flx) = e
fx) =X Inx
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7.4 Curve Sketching

We have been learning how we can understand the behaviour of a function
based on its first and second derivatives. While we have been treating the prop-
erties of a function separately (increasing and decreasing, concave up and con-
cave down, etc.), we combine them here to produce an accurate graph of the
function without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. We will see that our method is not particularly fast —it will require
time (but it is not hard). So again: why bother?

We are attempting to understand the behaviour of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behaviour we care about is
explained by f’ and f”. Understanding the interactions between the graph of f
and f/ and " is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands—on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of functions and gives a framework for putting that
information together. It is followed by several examples.

Key ldea 7.4.1 Curve Sketching

To produce an accurate sketch a given function f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such as where a denominator
is 0 or where negatives appear under the radical.

2. Find the x- and y-intercepts of f, if possible; construct a sign dia-
gram for f.

3. Find the location of any vertical asymptotes of f (usually done in
conjunction with item 2 above). Use your sign diagram to deter-
mine whether f(x) is approaching co or infty on either side of each
vertical asymptote.

4. Consider the limits f(x) and lim f(x) to determine the end
X X— 00

lim
——00
behaviour of the function.
5. Compute f’, and find the critical points of f.

(continued)




Key Idea 7.4.1 Curve Sketching — Continued

6. Construct a sign diagram for f'; classify the critical points using the
first derivative test. Determine the intervals on which fis increas-
ing or decreasing.

7. Compute f” and find the possible points of inflection of f.

8. Construct a sign diagram for f”, and determine the intervals on
which the graph of fis concave up or concave down.

9. Plotthe intercepts and asymptotes of fon a set of coordinate axes.
Roughly sketch the behaviour of f near the asymptotes. Then plot
the critical points and inflection points.

10. Sketch the graph of f by connecting the points plotted so far with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y intercepts where-applicable.

Example 7.4.1 Curve sketching
Use Key Idea 7.4.1 to sketch f(x) = 3x®> — 10x?> 4+ 7x + 5.

SOLUTION We follow the steps outlined in the Key Idea.

1.

The domain of fis the entire real line; there are no values x for which f(x)
is not defined.

. The y-intercept is given by f(0) = 5. Determining the x-intercepts would

involve finding the (quite likely irrational) zeros of a cubic polynomial, so
we skip this step for now. (We may have to settle for approximate ze-
ros later.) Since we don’t know the zeros of f, we can’t construct a sign
diagram for f.

. There are no vertical asymptotes, since the domain of fis R.

We determine the end behaviour using limits as x approaches =infinity.

X_Ijrlw f(x) = —0 XI_i)m flx) = 0.

We do not have any horizontal asymptotes. (But it is still useful to know
the direction in which the graph is headed at either end.)

Find the critical points of f. We compute f/(x) = 9x* — 20x + 7. Use the
Quadratic Formula to find the roots of f’:

204 ,/(—20)2 — 4(9)(7)
o 2(9)

1
= (10 + \/37> = x ~ 0.435,1.787.

Construct a sign diagram for f’. We found that the critical points of f are

_10-V37 _10+v37 _

C
! 9 9

Cy.

With f'(x) = 9(x — ¢1)(x — ¢;) we quickly see that f/(x) > 0forx < ¢; or
x> ¢, and f'(x) < 0forc; < x < c,.

7.4  Curve Sketching
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(a)

<

10 +

(b)

(c)

Figure 7.4.4: Sketching fin Example 7.4.1.
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The sign diagram for f’ is given by:
+ - +
®

f' > 0 incr f’ < 0 decr f'|> 0 incr

Figure 7.4.1: Sign diagram for f’ in Example 7.4.1.

From the sign diagram, we see that fis increasing on (—o0, ¢1) U (¢, 00)
(where f/(x) > 0, and fis decreasing on (cy, ¢;) (where f'(x) < 0).

Since f’ changes from positive to negative at ¢;, we know that (¢;,f(c1))
is a local maximum, and since f’ changes from negative to positive at ¢,
we know that (¢, f(cy)) is a local minimum.

7. Find the possible points of inflection of f. We compute "/ (x) = 18x — 20.
We have
f"(x) =0=x=10/9 ~ 1.111.

8. Construct a sign diagram for f”/. We have only one zero for f”, and we
easily see that f/(x) > 0 for x > 10/9, and f”(x) < 0 for x < 10/9. The
sign diagram for f’ is given below, with the critical points also indicated
for reference:

— +

L
C 10
9

<

f” <0 c. down f">0cup

Figure 7.4.2: Sign diagram for f”’ in Example 7.4.1.

9. We plot the appropriate points on axes as shown |n Figure 7.4.4(a) and
connect the points with straight lines. In Figure 7.4.4(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at

y = 5 and crosses the x axis near x = —0.424. In Figure 7.4.4(c) we show
a graph of f drawn with a computer program, verifying the accuracy of our
sketch.

Example 7.4.2 Curve sketching

X —x—2
Sketch f(x) = ———.
fx) X2 —x—6
SOLUTION We again follow the steps outlined in Key Idea 7.4.1.

1. In determining the domain, we assume it is all real numbers and look for
restrictions. We find that at x = —2 and x = 3, f(x) is not defined. So the
domain of fis D = {real numbers x | x # —2,3}.

2. The numerator of f factors as (x — 2)(x + 1), so f(x) = O0forx = —1

and x = 2; these are the x-intercepts of f. The y-intercept is given by
f(0) =1/3.
Our function has two zeros and two points at which it is undefined. Note
that f(x) changes sign at each of these points, so we need to indicate each
of them in our sign diagram. We use hollow dots to indicate the points at
which fis undefined, giving us the following sign diagram:
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f>0 f<o f>0 f<o f>0

Figure 7.4.3: Sign diagram for fin Example 7.4.2.

3. We ssee from the sign diagram for fin Figure 7.4.3 that f has vertical asymp-

totes at x = —2 and x = 3; moreover, we can deduce the following
asymptotic behaviour: at x = —2
lim f(x) =400 and lim  f(x) = —o0,
Xx——2- x——27F
andatx =3

lim f(x) = —o0 and lim f(x) = +o0.

X—3— x—3+t

4. Thereis ahorizontal asymptoteof y = 1, as
X
1.

flx) = 1andXILm f(x) =

lim
——00

5. To find the critical values of f, we first find f/(x). Using the Quotient Rule,

we find
, —8x+4 —8x+4
)= 2 2 2’
(x> +x—6) (x—3)2(x+2)
sof’(x) = 0whenx = 1/2, and f’ is undefined when x = —2, 3. Since f’
is undefined only when fis, these are not critical values. The only critical
value is x = 1/2. The sign diagram for f' is given as follows:

- + — —

|

N
NI~ @

w

f’ >0 incr f’ >0 incr f’ < 0 decr f’ < 0 decr

Figure 7.4.5: Sign diagram for f’ in Example 7.4.2.

From the sign diagram for f’, we see that f'(x) changes from positive to
negative at x = 1/2, so we have a local maximum at (1/2,f(1/2)). We
also see that fis increasing on (—oo, —2) U (—2,1/2) and decreasing on
(1/2,3) U (3, 00).

6. To find the possible points of inflection, we find f”(x), again employing
the Quotient Rule:
24x> — 24x + 56
f/I(X) — + .
(x—3)(x+2)?

7. We find that "/ (x) is never O (setting the numerator equal to 0 and solving
for x, we find the only roots to this quadratic are imaginary) and f” is

undefined when x = —2, 3. Thus concavity will possibly only change at
x = —2 and x = 3. The sign diagram is given by:
-2 3

f”>0cup f’ <O0cdown f” >0cup

Figure 7.4.6: Sign diagram for f”’ in Example 7.4.2.
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From the sign diagram we see that the graph of fis concave up on (—oo, —2)U
(3,00) and concave down on (—2, 3)

8. In Figure 7.4.9(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the function looks like (these lines effectively only convey increas-

4 ing/decreasing information). In Figure 7.4.9(b), we adjust the graph with

the appropriate concavity. We also show f crossing the x axis at x = —1

and x = 2.

Figure 7.4.9(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

y Example 7.4.3 Curve sketching
5(x—2 1
Sketchf()() = w
x>+ 2x+4

SOLUTION We again follow Key Idea 7.4.1.

4 1. We assume that the domain of fis all real numbers and consider restric-
tions. The only restrictions come when the denominator is 0, but this
never occurs. Therefore the domain of fis all real numbers, R.

2. The x-intercepts of fare (—1,0), and (2, 0), and the y-interceptis (0, —5/2).

(b) The sign diagram of f is given below:
+ — +
° o
-1 2

f>o0 f<o f>0

Y

<
A

Figure 7.4.7: Sign diagram for fin Example 7.4.3.

3. Since the domain of fis R, there are no vertical asymptotes.

4. We have a horizontal asymptote of y = 5,as lim f(x) = lim f(x) = 5.
X— — 00 X— 00

. 5. We find the critical values of f by setting f'(x) = 0 and solving for x. We
C .
find

Figure 7.4.9: Sketching fin Example 7.4.2. 15X(X 4 4)
'X) = ——-———= = f'(x) =0when x = —4,0.
f'x) (x> 4+ 2x + 4)? fix)

6. The sign diagram for f’ is given by:
+ - +

< L L 4 >
—4 0

f' > 0 incr f’ < 0 decr f’ > 0 incr

Figure 7.4.8: Sign diagram for f’ in Example 7.4.3.

From the sign diagram, we see that f’(x) changes from positive to negative
atx = —4, so (—4,f(—4)) is a relative maximum, and f’(x) changes from
negative to positive at x = 0, so (0,f(0)) is a relative minimum. We also
see that fis increasing on (—oo, —4) U (0, 00), and decreasing on (—4, 0).

282



7.4  Curve Sketching

7. We find the possible points of inflection by solving f”/(x) = 0 for x. We

find
30x% + 180x% — 240
F = -2 T
(> +2x+4)3
The cubic in the numerator does not factor very “nicely.” We instead v
approximate the roots (with the help of a computer) at c; = —5.759,

¢, = —1.305 &nd ¢z = 1.064. The sign diagram for f” is given by:

< L 2 L 4
(3% C2

— + -+
L
C3

f’<0cdown f”">0cup f” <0c f6wn0c up

Figure 7.4.10: Sign diagram for f”’ in Example 7.4.3.

8. In Figure 7.4.12(a) we plot the significant points from the number line as
well as the two roots of f, x = —1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
7.4.12(b), we edd concavity. Figure 7.4.12(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? Itis not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puting than we are. In general, computers graph functions much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecting lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noticeable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as (c)
Mathematica, use special algorithms to plot lots of points only where the graph
is “curvy.”

Figure 7.4.12: Sketching f in Example
7.4.3.
In Figure 7.4.11, a graph of y = sinx is given, generated by Mathematica.
The small points represent each of the places Mathematica sampled the func-
tion. Notice how at the “bends” of sin x, lots of points are used; where sinx
is relatively straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behaviour” is accurate.) In fact, in the interval of
length 0.2 centered around 7 /2, Mathematica plots 72 of the 431 points plot-
ted; that is, it plots about 17% of its points in a subinterval that accounts for
about 3% of the total interval length.
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10

0.5

-0.5

-1.0

Figure 7.4.11: A graph of y = sin x generated by Mathematica.

How does Mathematica know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivatives of a function work together to provide a measurement of “curvi-
ness.” Mathematica employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behaviour of the
function at a few key places.” In Example 7.4.3, we were able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond curve
sketching. The next chapter explores some of these applications, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differentiation.
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Exercises 7.4

Terms and Concepts

1. Why is sketching curves by hand beneficial even though
technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of functions, it is useful to find
the critical points.

4. T/F: When sketching graphs of functions, it is useful to find
the possible points of inflection.

5. T/F: When sketching graphs of functions, it is useful to find
the horizontal and vertical asymptotes.

6. T/F: When sketching graphs of functions, one need not plot
any points at all.
Problems

In Exercises 7 — 12, practice using Key Idea 7.4.1 by applying
the principles to the given functions with familiar graphs.

7. f(x) = 2x+ 4

8 f(x) = —x+1

9. f(x) =sinx
10. f(x) =€*
11, f(x) = %
12. f(x) = Xlz

In Exercises 13 — 26, sketch a graph of the given function us-
ing Key Idea 7.4.1. Show all work; check your answer with
technology.

13. f(x) =x> —2X" +4x+1

14. f(x) = —x* + 55 —3x+2

15. f(x) =x + 38 +3x+1
16. fx) =x =X —x+1
17. f(x) = (x —2)In(x — 2)

18. f(x) = (x—2)*In(x — 2)

X —4
19. f(x) = "

X —4x+3
20. f(x) = P

X —2x+1
2L ) = et s

22, f(x) =xvx+1
23. f(x) = x*e"

24. f(x) = sinxcosxon [—m, 7]

25. f(x) = (x—3)*> 42
a\2/3
26. f(x) = %

In Exercises 27 — 30, a function with the parameters g and b
are given. Describe the critical points and possible points of
inflection of fin terms of a and b.

_a
x2 + b?

27. f(x) =
28. f(x) = ax* +bx+1
29. f(x) = sin(ax + b)
30. f(x) = (x—a)(x — b)

31. Given x> +y* = 1, use implicit differentiation to find £
and %. Use this information to justify the sketch of the

unit circle.
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We have spent considerable time considering the derivatives of a function
and their applications. In this section, we are going to starting thinking in “the
other direction.” That s, given a function f(x), we are going to consider functions
F(x) such that F'(x) = f(x). Here, we will only consider very basic examples, and
leave most of the heavy lifting to later courses. The importance of antideriva-
tives becomes apparent in Math 1560, once integration and the Fundamental
Theorem of Calculus have been introduced. More advanced techniques for find-
ing antiderivatives are taught in Math 2560.

7.5 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y’ = 2x?

Can you find another?

And yet another?

Hopefully one was able to come up with at least one solution: y = x?. “Find-
ing another” may have seemed impossible until one realizes that a function like
y = x? + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x*> + 123,456, 789 also has a deriva-
tive of 2x. The differential equation y’ = 2x has many solutions. This leads us
to some definitions.

Definition 7.5.1 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F/(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted

by .
/ f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give us more antiderivatives, it gives us all
of them.

Theorem 7.5.1 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x) on an interval /. Then there
exists a constant C such that, on /,
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Given a function f defined on an interval / and one of its antiderivatives F,
we know all antiderivatives of f on I have the form F(x) + C for some constant
C. Using Definition 7.5.1, we can say that

/f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notation.

Integration Differential  Constant of
symbol of x integration

/ |
\/f;x) dx = FT(X) +C

One

Integrand antiderivative

Figure 7.5.1: Understanding the indefinite integral notation.

Figure 7.5.1 shows the typical notation of the indefinite integral. The inte-
gration symbol, f is in reality an “elongated S,” representing “take the sum.”
We will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The f
symbol and the differential dx are not “bookends” with a function sandwiched in
between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Example 7.5.1 Evaluating indefinite integrals
Evaluate /sinxdx.

SOLUTION We are asked to find all functions F(x) such that F'(x) =
sin x. Some thought will lead us to one solution: F(x) = — cos x, because 2 (— cos x) =
sinx.

The indefinite integral of sin x is thus — cos x, plus a constant of integration.
So:

/sinxdx: —cosx + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sinx dx

presents us with a differential, dy = sin x dx. It is asking: “What is y?” We found
lots of solutions, all of the formy = —cosx + C.
Letting dy = sin x dx, rewrite

/sinxdx as /dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y 4 C, where Cis a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = — cos x.
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Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 7.5.2 Evaluating indefinite integrals
Evaluate /(3x2 +4x+5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x* + 4x + 5.
When taking derivatives, we can consider functions term—by—term, so we can
likely do that here.

What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x> + Cy, where C; is a constant.

What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x? + G5,
where G, is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x+ Cs,
where C; is a constant.

Our answer appears to be
/(3X2—|—4x—|—5) dx=x+C +2x°+C, +5x+GC.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

/(3x2+4x+5)dx:x3+2x2+5x+c.

It is easy to verify our answer; take the derivative of x> + 2x3 + 5x + C and
see we indeed get 3x% + 4x + 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

a ( [ 10 dx) — 1.

Differentiation “undoes” the work done by antidifferentiation.

For ease of reference, and to stress the relationship between derivatives and
antiderivatives, we include below a list of many of the common differentiation
rules we have learned, along with the corresponding antidifferentiation rules.
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Theorem 7.5.2

Common Differentiation Rules

Common Indefinite Integral Rules

Derivatives and Antiderivatives

1 Z(cf(x) =c-f'(x) 1. [c-f(x)dx=c- [f(x)dx
2. L(f(x) £g(x)) = 2. [ (f(x) £g(x)) dx =
f'(x) £ d'(x) [ f(x) dx £ [ g(x) dx
3. £(¢)=0 3. fodx=C
4. Z(x) =1 4. [ldx= [dx=x+C
5. L(x") =n-x""1 5. [X"dx= 75X 4+ C (-
6. Z(sinx) = cosx 6. [cosxdx=sinx+C
7. Z(cosx) = —sinx 7. [sinxdx= —cosx+C
8. Z(tanx) = sec’x 8. [sec?xdx=tanx+C
9. Z(cscx) = —cscxcotx 9. [cescxcotxdx = —cscx+ C
10. d%(secx) = secxtanx 10. fsecxtanxdx:secx+C
11. & (cotx) = —csc®x 11. [esc?xdx = —cotx+ C
12. L(e") =¢ 12. [e*dx=e"+C
13. (o) =Ina-a* 13. [a*dx=:L-a"+C
14. L(nx) =1 14. [Tdx=In|x|+C

We highlight a few important points from Theorem 7.5.2:

* Rule #1 states [ ¢ f(x) dx = c- [ f(x) dx. This is the Constant Multiple
Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d% (3x2) is just as easy to

compute as < (x2)). An example:

/Scosxdx: 5- /cosxdx: 5. (sinx+ C) =5sinx+ C.
In the last step we can consider the constant as also being multiplied by
5, but “5 times a constant” is still a constant, so we just write “C”.

¢ Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
7.5.2. So:

/(3X2—|—4x—|—5)dx:/3X2dx—|—/4xdx+/5dx
:3/x2dx+4/xdx+/5dx
1

3.5 14 beisyc
3 2

=x+ 2% +5x+C
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In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

e Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n £ —1. This is important: f% dx #
“2x% + C”; rather, see Rule #14.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

¢ Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 6.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We
can now go “the other way:” the antiderivative of an acceleration function gives
a velocity function, etc. While there is just one derivative of a given function,
there are infinitely many antiderivatives. Therefore we cannot ask “What is the
velocity of an object whose acceleration is —32ft/s%?”, since there is more than
one answer.

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 7.5.3 Solving initial value problems
The acceleration due to gravity of a falling object is —32 ft/s?. At time t = 3,
a falling object had a velocity of —10 ft/s. Find the equation of the object’s

velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:

e The acceleration, i.e., v/(t) = —32, and

* the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antiderivative of
v/(t) = —32. So we begin by finding the indefinite integral of —32:

/(—32) dt = —32t+ C = v(t).

Now we use the fact that v(3) = —10 to find C:

v(t) = —32t+C
v(3) = —10
—32(3)+C=-10
C=286
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Thus v(t) = —32t+ 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

43
—32t+86 =0 = t=1—6’&“2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 7.5.4 Solving initial value problems
Find f(t), given that f”/(t) = cost, f/(0) = 3 and f(0) =

SOLUTION We start by finding f'(t), which is an antiderivative of f”/(t):

/f”(t) dt:/costdt:sint+C:f/(t)-

So f'(t) = sint + C for the correct value of C. We are given that f/(0) = 3,
so:
f/(0)=3 = sin0+C=3 = C=3.

Using the initial value, we have found f'(t) = sint + 3.
We now find f(t) by integrating again.

/f /smt+3)d = —cost+3t+C.
We are given that f(0) = 5, so

—cos0+3(0)+C=5
—1+C=5
C=6

Thus f(t) = —cost + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

If you continue on to Math 1560, you will see how position and velocity are
unexpectedly related by the areas of certain regions on a graph of the velocity
function, and how the Fundamental Theorem of Calculus ties together areas and
antiderivatives.
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Exercises 7.5

Terms and Concepts

1.

. The derivative of a position function is a

Define the term “antiderivative” in your own words.

. Is it more accurate to refer to “the” antiderivative of f(x) or

“an” antiderivative of f(x)?

. Use your own words to define the indefinite integral of

fx).

. Fill in the blanks: “Inverse operations do the

things in the order.”

. What is an “initial value problem”?

func-
tion.

. The antiderivative of an acceleration functionis a

function.

. If F(x) is an antiderivative of f(x), and G(x) is an antideriva-

tive of g(x), give an antiderivative of f(x) + g(x).

Problems

In Exercises 9 — 27, evaluate the given indefinite integral.

9.

10.

11.

12.

13.

14

15.

16

17.

18.

/3x3dx
/xsdx
/(1Ox2—2)dx
[

/lds

[ b
[2a
./%dx
/sec29d0
/sin9d0

19.

20.

21.

22

23.

24

25.

26.

27.

28

/(secxtanx + cscx cot x) dx

/Se(’ do
/3f dt
i
2
/(2t+ 3)% dt
. /(t2 +3)(£ — 2t) dt
/sza dx
/e” dx
/adx

. This problem investigates why Theorem 7.5.2 states that
1
/fdx: In|x| + C.
X

(a) What is the domain of y = Inx?

(b) Find dix(ln x).

(c) What is the domain of y = In(—x)?
(d) Find £ (In(—x)).

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > O orx < 0. In

1
one expression, give a formula for / 5 dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 — 39, find f(x) described by the given initial
value problem.

29.

30.

31.

32.

33.

34.

35.

f'(x) = sinxand f(0) = 2
f'(x) = 5¢*and f(0) = 10

f'(x) =4 — 3¢ andf(—1) = 9
f'(x) = sec* xand f(w/4) = 5
f'(x) =7"andf2) =1

f"(x) =5andf’(0) = 7,£(0) = 3

F/(x) = 7xand f'(1) = —1, (1) = 10



36. f”(x) = 5¢" and f'(0) = 3,(0) = 5 Review

37. f"(0) =sinfandf'(m) = 2,f(r) = 4 40. Use information gained from the first and second deriva-
1
tives to sketch = .
38. f”(x) = 24x* + 2 — cosxand f'(0) = 5, f(0) = 0 ves to sketeh flx) = 5=
39. f"(x) =0andf'(1) =3,f(1) =1 41. Giveny = x*e* cosx, find dy.
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11.

13.

15.

17.

19.

21.
23.
25.

For f(x) = 2xand g(x) = 1

s f+9)(2) = %
f-g)(—1
c (9—H(1) (

(fa) (2) = %

§
3

For f(x) = x?> and g(x) = 7
F+9@) =73
f-9)(=1) =0
(g-H1) =0

(fa) (3) =

SOIEER

Forf(x) =2x+landg(x) = x—2
e (f+g)(x) = 3x — 1 Domain: (—00, )
. (f_
e (fg)(x) = 2x*> — 3x — 2 Domain: (—o0, c0)
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g)(x) = x + 3 Domain: (—o0, 00)

Forf(x) = x> and g(x) = 3x — 1
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L] (f_
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g)(x) = x* — 3x + 1 Domain: (—oo, c0)
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-
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31.

33.

35.

37.

39.

41.

43,

45.

47.

49.

51.

(3=

Forf(x) = x> and g(x) = 2x + 1,

* (gof)(0)=1 e (gof)(—3) =19
s (fog)(-1) =1 e (fog)(}) =4
s (fof)(2)=16 e (fof)(=2)=16

For f(x) = 4 — 3xand g(x) = |x|,

* (gof)(0) =4 e (gof)(—3) =13
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* (fog)(x) = — %5, domain: (—o0, —3) U (=3, 00)
e (fof)(x) = 9x — 4, domain: (—oo, o0)
55. Forf(x) = 527 and g(x) = 2l
* (gof)(x) = 2L, domain:
(=00, =3) U (=3,0),U(0,00)
* (fog)(x) = éii;, domain:
(—00,—5) U (=2,0) U(0,00)
e (fof)(x) = 347, domain:
(-0, =3 U (31U (1)

57. (hogof)(x) = |v/—2x =
\/—2|x], domain: {0}

= —24/x, domain: [0, 00)

59. (gofoh)(x) =

61. (fohog)(x) = —2|vX|

v/—2x, domain: (—oo0, 0]

63. Letf(x) = 2x + 3 and g(x) = x3, then p(x) = (g o f)(x).

65. Letf(x) = 2x —landg(x) = ﬁ, then h(x) = (g o f)(x).

67. Letf(x) =5x+landg(x) = %, 2 then r(x) = (g o f)(x).

69. Letf(x) = |x]and g(x) = %, then g(x) = (g o f)(x).

71. Letf(x) = 2xand g(x) = 2L, then v(x) = (g o f)(%).
1 X +2

73. fix) = .

75. f~1(x) =3x—10

77. ) = 2(x—5)2 + 3, x>5

79. f1

)
*)
)
81 flx)=3x¥+1
83. f1(x) =5+ Vx+25
)

85. flx)=3—-vx+4
87. F1(x) = 4x — 3
X

1,y Mx+1
89. f~1(x) = > 3

1,y —3Xx—2
91. f1(x) = 3
Chapter 3
Section 3.1

1L y+1=3(x-3)

y=3x—10
3. y+1=—-(x+7)
y=—-x—28
5. y—4=-1(x—10)
— 1
y—*§X+6
7.y—117=0
y =117
9. y—2v3=-5(x—+/3)
y=-5x+7V3
11. y:—§x

3

= (x+42+1,x> -4

13.
15.
17.
19.
21.

23.

25.

27.
29.
31.
33.
35.
37.
39.
41.
43,
45,
47.

y=§x—8

y=5
y=—3x+%
y=—x
fx)y=2x—1

slope:m =2
y-intercept: (0, —1)
x-intercept: (%,0)

xT
fl)=3
slope:m =10
y-intercept: (0, 3)
Xx-intercept: none
Yy
4+
]
J
24
1+
—2-1 1 2 =z
f) = 3x+3
slope:m_g
y-intercept: (0, %)
x-intercept: (—1,0)
)
24
1+
T
—2 1 2 =z
—14
X=—6orx==6
x=—-3orx=11
__1 _ 1
X=—30rx= g5
x=—3orx=3
x:—%
x=1
x=-1,x=0o0orx=1
X=—2o0orx=2
X:—%orx:l
x=1
X—%orx:s



49. f(x) = |x| + 4

No zeros

No x-intercepts
y-intercept (0, 4)
Domain (—oo, 00)
Range [4, c0)
Decreasing on (—oo, 0]
Increasing on [0, co)

Relative and absolute minimum at (0, 4)

No relative or absolute maximum

51. f(x) = =3|x|

53.

f0)=0

x-intercept (0, 0)
y-intercept (0, 0)
Domain (—oo, 00)
Range (—o0, 0]
Increasing on (—oo, 0]
Decreasing on [0, co)

Relative and absolute maximum at (0, 0)

No relative or absolute minimum

—_

N+

Lo+

Yy
—-2-1 1 2
2R
34
44
54
—6+
fx) = 3l2x =1
f(3) =0
x-intercepts (,0)
y-intercept (0, %)
Domain (—oo, 00)
Range [0, o)
Decreasing on (—oo, %]
Increasing on [%, oo)
Relative and absolute min. at (,0)
No relative or absolute maximum
Yy
1 2 3 4

55. f(x) =

57.

59.

2—x

2—x

No zeros

No x-intercept

y-intercept (0, 1)

Domain (—o0,2) U (2, 00)

Range {—1,1}

Constant on (—o0, 2)

Constant on (2, 00)

Absolute minimum at every point (x, —1) where x > 2
Absolute maximum at every point (x, 1) where x < 2
Relative maximum AND minimum at every point on the graph

1
1 ]

—_t

o+

Lo+

NN

o4
8

]

1+ 60— >

Re-write f(x) = |x 4+ 2| — xas

_ —2x—2 if x<-=2
foo = { 2 if x>-2
No zeros

No x-intercepts

y-intercept (0, 2)

Domain (—o0, 00)

Range [2, o)

Decreasing on (—oo, —2]

Constant on [—2, 00)

Absolute minimum at every point (x, 2) where x > —2
No absolute maximum

Relative minimum at every point (x, 2) where x > —2

Relative maximum at every point (x, 2) where x > —2

= N W

|
Lo+
|
N+
|
—_
—_ 4+
N+
8

Re-write f(x) = |x 4+ 4| + [x — 2| as

—2x—2 if x< -4
fx) = 6 if —4<x<2

2x+2 if x>2

No zeros
No x-intercept
y-intercept (0, 6)
Domain (—o0, 00)
Range [6, 00)
Decreasing on (—oco, —4]
Constant on [—4, 2]
Increasing on [2, c0)
Absolute minimum at every point (x, 6) where —4 < x < 2
No absolute maximum
Relative minimum at every point (x, 6) where —4 < x < 2
Relative maximum at every point (x, 6) where —4 < x < 2

A5



Yy Y

]+

71

yal

U

51

44

31

921

14

5 3—-2-1 1 2 3 =
61. f(x) = —(x+2)2=—x*—4x—4
x-intercept (—2,0) 67. f(x) = =32 +5x+4=—-3(x— ,) 4 ﬁ
y-intercept 0,—4) x-intercepts (i, O) and (ﬂ, O)
Domain: (—o0, 00) 6 6
Range: (—o0, 0] y-intercept (0, 4)
Increasing on (—oo, —2] Domain: (700750)
Decreasing on [—2, 00) Range: (—oo, 2]
Vertex (—2,0) is a maximum Increasing on (—oo, g}
Axis of symmetry x = —2 Decreasing on |2, 00)
y Vertex (67 B is a maximum

Axis of symmetry x = 2

63. f(x) = —2(x +1)> +4 = —2x* —4x 42
x-intercepts (—1 — v/2,0) and (=1 4+ v/2,0)

y-intercept (0, 2) -1
Domain: (—oo, 00)

Range: (—o0, 4] 24
Increasing on (—oo, —1]
Decreasing on [—1, co)
Vertex (—1,4) is a maximum

Axis of symmetry x = —1
ymmen 69. (—o0,—2) U (2, 00)
71. (—o00,1] U [3,00)
73, ( )
77. (—oo,—4)u(§,oo)
1 e 79. (00, —5)
B [7,3]
83. (—o0,00)
1 1
85. (=00, —3) U (=3,0)
87. (—o0,00
65. f(x) = =3¢ +4x—7=-3(x—2)? - 1 ( .)
No x-intercepts 89. No solution
y-intercept (0, —7) 91. (o, 1)
Domain: (—o0, 00)
Range: (—oo, — 137] 93. ( ] [5+\ﬁ )
2
Increasing on ( Zoo, 2] 95. 22— v7,—24 V7] UL
Decreasing on %, oo) o o .
Vertex (2, — 1) is a maximum 7. (=00, —=1JU{0} U [1, 00)
Axis ofsymmetryx—% 99. (—oc0 l)U( 3+;/>)



Section 3.2

1. f(x) =4 —x—3x?

Degree 2
Leading term —3x? R )
Leading coefficient —3 9 7 x

Constant term 4
Asx — —o0, f(x) = —oc0
As x — 00, f(x) = —o0

3. q(r) =1—16r* 17. Q(x) = (x+5)%(x — 3)*
Degree 4 x = —5 multiplicity 2
Leading term —16r* x = 3 multiplicity 4
Leading coefficient —16
Constant term 1
Asr — —oo, q(r) — —o0
Asr — oo, q(r) = —oo

5. f(x) = V3x7 +22.5x10 — mx” + 1
Degree 17
Leading term v/3x%7

Leading coefficient /3 5432112345,
Constant term % ’

Asx — —00, f(x) = —oo

As x — oo, f(x) = oo 19. H) = (3 —1t) (2 +1)
7. P(x) = (x—1)(x—2)(x—3)(x—4) x = 3 multiplicity 1
Degree 4

Leading term x*

Leading coefficient 1 \ Y

Constant term 24

Asx — —00, P(x) — oo

As x — 00, P(x) = oo i é §\( t
9. f(x) = =23 (x + 1) (x + 2)?

Degree 6

Leading term —2x°
Leading coefficient —2

Constant term 0 21.
Asx — —o00, f(x) = —oo
Asx — 00, f(x) = —00 23. 4 6t—6
11 a(x) = x(x +2)? 25. 6yt +y—1
x = 0 multiplicity 1
x = —2 multiplicity 2 27. —4t3 — 32 +8t+6
Y 29. 12545 — 27
31, 72
33. 3 -5
75~ o 35. h? + 2xh — 2h
37. quotient: 5x — 8, remainder: 9

39. quotient: 3, remainder: 18
13. f(x) = —2(x —2)?(x + 1)

= iplici t 1 15
x=2 muIt'lpI.|C|'ty.2 41. quotient: — — —, remainder: — —
x = —1 multiplicity 1 2 4 4

2 1
43. quotient: 5’ remainder: —x + 5

45. quotient: w, remainder: 2w

_:2 _\/5 - 47. quotient:! t2 + t/4 4+ 2v/2, remainder: 0

49,
51.
15. F(x) = x3(x + 2)? 53.
x = 0 multiplicity 3
x = —2 multiplicity 2 Section 3.3

INote: V16 = 2v/2.



X
- o = 3x—6

Domain: (—o0,2) U (2, 00)
Vertical asymptote: x = 2
Asx — 27, f(x) = —o0 As x — 00, the graph is below y = §x+ %
Asx — 2T f(x) — oo

No holes in the graph 15. f(x) =

No holes in the graph
Slant asymptote: y = %x + %1

As x — —oo, the graph is above y = %x + %

—5x* —3x3 +x2 — 10

Horizontal asymptote: y = % X3 =32 +3x—1
Y 1y } —5x* — 3 +x2 — 10
Asx — —oo,f(x) — 3 = PRy
i

As x — 00, f(x) — % Domain: (—oo, 1) U (1, 00)
fx) = X X Vertical asymptotes: x = 1

' R +x—12  (x+4)(x—3) QSXHiJr,f(X)ﬁ‘OO
Domain: (—oo, —4) U (—4,3) U (3, o0) 5);—|> _ ,);(x) — h—oo
Vertical asymptotes: x = —4,x = 3 No holes in the grap

Slant asymptote: y = —5x — 18
As x — —o0, the graph is above y = —5x — 18
As x — o0, the graph is below y = —5x — 18

Asx — —47 ,f(x) = —o0
Asx — —4% f(x) — oo
Asx — 37 ,f(x) & —oo

Asx — 3T, f(x) — oo 18 — 2x?
No holes in the graph 17. fix) = 2_9 —2
Horizontal asymptote: y = 0 Domain: (—oo, —3) U (—3,3) U (3, 00)
Asx — —oo, f(x) — 0~ No vertical asymptotes
As x — 00, f(x) — 0T Holes in the graph at (-3, —2) and (3, —2)
£ x—+7 Eorlzonti asymptote y = -
)= ——= -
x13)2 sx — Foo, f(x) =
Domain: (—o0, —3) U (=3, 00) 19. x=-%
Vertical asymptote: x = —3 _
Asx — —37,f(x) — oo 21 x=-1
Asx — =31 f(x) = oo 23. No solution
No holes in the graph 25. (—2,00)
Horizontal asymptote: y = 0 ’
Asx — —o0,f(x) — 0~ 27. (-1 0) U (1,00)
Asx — 0o, f(x) — 0T 29. (—o00,—3)U(—3,2) U (4,00)
4x
._f(x):m 31. (—1,0]U(2,00)
Domain: (—oo, 00) 33. (—o00,1] U [2,00)
No vertical asymptotes 35. (=00, —3) U [~2v2,0] U [2v/2,3)
No holes in the graph
Horizontal asymptote: y = 0 37. [-3 0) U (0,4) U [5,00)
As X — —00,f(x) — 0~ Section 3.4
Asx — 00, f(x) — 0T
¥ —x—12 x—4 1. log,(8) =3
- S0 = X2 +x— :X—Z 3. log,(32) = 2
Domain: (—oc _3) U (—3,2) U (2, 00) T 2
Vertical asymptote: x = 2 5. loga (%) = —%
Asx — 27 f(x) = oo >
Asx — 2T f(x) = —c0 7. In(1) =0
7
Hole at (—3,7) 5 (25)% s

Horizontal asymptote: y = 1
Asx = —oo, f(x) — 1T 1. (&)= 3
Asx — 00, f(x) — 1~

1

8 ( ) 13. 107t =o0.
+ 2%% + x x(x+1
- flx) = = 15. ez = L
—x—2 x—2 Ve
Domam. ( 00, —1) U (—1,2) U (2,00) 17. logg(216) = 3
Vertical asymptote: x = 2 1
Asx — 27 ,f(x) = —o0 19. logs (3¢) = —2
Asx — 2T f(x) = oo _3
Hole at (—1,0) 21 logss(216) = 3
Slant asymptote: y = x + 3 23. logi(216) = —3
As x — —o0, the graph is below y = x + 3 ° 2
As x — oo, the graph is above y = x + 3 25. 108 1505000 = —©
2x> +5x—3 27. In(e’) =3
)=
(3X+22) (2.00) 29. logg(1) =0
Domain: (—oo, —%) U (—%,00
» 73 37 % 1
Vertical asymptote: x = 7% 31 logg (V/36) = 4
Asx — —g_, (x) — 33, 360836(216) — 216

Asx — =27 f(x) = —o0 35. In(e®) =5



37. log <\/3 105) =3
39. logs (3'&3%) =1

41. log, (37 °&:(@)) = 1

43. (—o0,00)
45. (5,00)
47. (—2,—1) U (1,00) 67. Domain of g: (—20, 00)
Range of g: (—o0, )
49. (4,7)
Yy
51. (—o00,00)

i
|
53. (—o0,—7) U (1, 00) :

55. (0,125) U (125, 00) 10 | 10 20 30 40 50 60 70 80 90 100 T

57. (—o0,—3)U (3,2) -2
-3 VA .z = —20
59. Domain of g: (—o0, 00)
Range of g: (0, 00) 69. Domain of g: (0, co)
Range of g: (—o0, 00)
Yy
Y
30 T

20 A
\7
10 4
P S T N N B
UL
10 10 30 40 50 60 70 80 X

=N Wk

71. 7 — logy,(X® + 4)

73. log(1.23) + 37
61. Domain of g: (—o0, 00) 75

. logs(x —5) +lo 5
Range of g: (—20, c0) gs (X — 5) + logs (x + 5)

77. 1-2 + logy () + log 1 y—2)+ log 1 2 +2y+4)
79. 2logs(x) — 4 — 4logs(y)

81. 12 — 12logg(x) — 4 logg(y)

83. —2+ % Iog% (x) — Iog% (y) — % Iog% (2)

85. In(x*y?)

y
87. logs <y%)

89. In

91. In

63. Domain of g: (—o0, 00) 93. log (m
Range of g: (0, 00)
95. In (x e)

97. log, (xv/x — 1)

99, 7—1 — plx—1)In(7)

101, (2) =3

103. log;(12) ~ 2.26186

105. logg(72) A~ 2.38685
\N . 107. |0g%(1000) ~ —13.52273

e Chapter 4

65. Domain of g: (0, co)
Range of g: (—o0, 00) Section 4.1



11.

13.

15.

17.

19.

A.10

. cos(0) =1, sin(0) =0

. cos(m) = —1, sin(m) =0

7 24
21. Ifsin(f) = 5 with 6 in Quadrant IV, then cos(0) = —.

V5
=

25
. 5 . 12
23. Ifsin(f) = — with # in Quadrant I, then cos(f) = — —.
13 13
. 2 .
25. Ifsin(f) = 3 with 6 in Quadrant l1l, then cos(§) = —
2/5 5
27. Ifsin(9) = ?\[ and g < 0 <, then cos(f) = —%.

3
29. Ifsin(f) = —0.42and 7 < 0 < %, then

cos(f) = —+/0.8236 ~ —0.9075.

1 5
31. sin(f) = 5 when 6 = g + 2wk orf = ?ﬂ + 27k for any integer

k.

33. sin(d) = 0 when 6 = rk for any integer k.

3 2
35. sin(f) = i when 6 = g + 27wk or 6 = ?77 + 2wk for any

integer k.
) 3w )
37. sin(d) = —1when§ = > + 2mk for any integer k.

39. cos(f) = —1.001 never happens

Section 4.2

1. cos(0) =1, sin(0) =0

11. cos

15. cos
17. cos

19. cos

(
(
(
(
(



21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

53.

55.

57.

59.
61.
63.
65.
67.
69.
71.
73.
75.
77.
79.
81.
83.

sin(0) = %,cos 0) = —%,tan(ﬁ) csc(9) g sec(f) =
-2, cot(f) = —%
sin(9) = %,cos(&) = %,tan(&) = csc(&) 247sec(&) =
275,cot(9) = %
sin(9) = —%,cos(&) 107tan(9) ‘F ,csc(f) =
10\F ,sec(f) = cot(9) 39—\/15
sin(9) = 2\[ ,cos(f) = S,tan(e) = —2,cs¢(f) =
sec(0) V5, cot(6) f%
sin(6) —%,cos(&) = —@,tan(ﬁ) = Ts,csc(ﬂ) =

sin(6) = — Y0 cos(9) = — Y1 tan(9) = /10, csc(f) =
‘/11?, sec(f) = —v/11, cot(h) = L

tan(6) = v/3when § = g + mk for any integer k

csc(f) = —1whenf = 3% + 27k for any integer k.

tan(f) = 0 when 6 = 7k for any integer k

5
csc(f) = 2whenf = g + 27wk or 6 = ?ﬂ' + 27k for any integer
k.

3
tan(f) = —1when § = Tﬂ— + 7k for any integer k
1
csc(f) = -5 never happens
27 .
tan() = —v/3 when § = 3 + mk for any integer k
37T X
cot(d) = —1when§ = " + mk for any integer k
3
tan(t) = % when t = g + 7k for any integer k

csc(t) = 0 never happens

3 5
tan(t) = S whent = % + mk for any integer k

2v/3 s 2T
csc(t) = ?\[ when t = 3 + 2nkort = 3 + 27k for any
integer k

63 — 1002

41

63 + 1002

85.
87.
89.
91.
93.
95.
97.
99.
101.
103.
Section 4.3
1.
3.
5.
7. cos(75°) = @
9. sin(105°) = ‘/g%ﬁ
11. cot(255°) = ﬁ;i —2-3
(m) V6 + V2
13. cos | — | =——
12 4
137 3-43
15. tan<f)_3+\/§ VY
17. t (17—”) =243
. tan 12 =
117
19. cot (f) =—(2+ \/§)
™
21. sec( E> =v6—2
23.  (a) cos(a+fB) = _M
30
(b) sin(a + B) = 28;70‘5
 —28+V2
(c) tan(a+ p) = PR -
-4+ 72
(d) cos(a—p) = —0
. o 28+/2
(e) sin(la—B) = 0
_28+V2
(f) tan(ae — B) = Py A
25.  (a) csc(a—B) = 7%
125
(b) sec(a+ B) = PEE
117
(c) cot(a+pB) = oy
27.
29.
31.
33.
35.
37.

41

A.l11



A.12

39.

41.

43.

45.

47.

49.

51.

53.

55.

vV2—+3
cos(75°) = 7\/
2
2 -2
cos(67.5°) = 7\[
2
2 2
tan(112.5°) = — +v2
2-+2
. T 2 — \/f;‘
sin <E> =0
n () = VISR
)
336
e sin(20) = e
0y _ V2
* sin (2> =
527
e cos(20) = e
V2
. 0y - V<
cos <2> 10
336
e tan(20) = o
1
2y — _=
 tan(8) = -1
120
e sin(20) = 169
3v13
® sin (%) = —
13
119
e cos(20) = ~ 169
213
. 0y — V-2
cos <2> 3
120
e tan(260) = 1
3
0\ _
ton () = -3
24
e sin(20) = 5
5
cin(4) = 2
7
e cos(20) = 3
2V5
. 0y — 2V°2
cos <2> c
24
e tan(260) = -7
can(2) =2
120
e sin(20) = ~ 6o
V26
® sin (g) = —
26
119
e cos(20) = Teo
5126
L] Q —_— e ———
cos (2> e
120
e tan(260) = BT

=—-1-+2

4
57. e sin(20) = 5

e sin (g) -

50 — 10v/5

10

e cos(20) = —z

. cos(g) -

4
e tan(20) = 3

can(§) =2

59.
61.
63.
65.
67.
69.
71.

73.

cos(56) — cos(96)
2

cos(46) + cos(86)
2

sin(20) + sin(46)
2

75.

77.

79.

V50 + 10v/5

10

81. —2cos (29> sin <§0)
2 2

83. 2cos(40)sin(56)

)s
85. —+/2sin (9— 5)
4

87.

89.

14x
91, ——
x2 + 49
93.
95.
97.
99.

101.
Section 4.4

1. y =3sin(x)
Period: 27
Amplitude: 3
Phase Shift: 0
Vertical Shift: 0

Y
31

10

_ 5-5V5

INEE S




3. y= —2cos(x)
Period: 27
Amplitude: 2
Phase Shift: 0
Vertical Shift: 0

Y
24

|
:]..

—94

5 = sin(x+7r)
Ly= 3

Period: 27
Amplitude: 1

Phase Shift: — il
Vertical Shift: 0

Y

ol

1 1 ™
7. y=——-cos| =x+ —
3 (2 3)

Period: 47
Amplitude: —
P 3

Phase Shift: 721

Vertical Shift: 0
Y

W=

™ 4
3 3

w‘f‘“
)
,

9 sin T 2
. y=si —X— =] =
y 4

Period: 27
Amplitude: 1

Phase Shift: —% (You need to use

y= —sin | x+ % — 2 to find this.)
Vertical Shift: —2

3rm 5w Im
4 4 4
1 3 P ™ 1
.y=——cos|2x+ — | — =
Y 2 3 2
Period: 7
Amplitude: 3
Phase Shift: I
61
Vertical Shift: —
Y
1+
_m ™ 3 o 51
6 _ 11 3 6
2
Al
13 t T
.y=tan|x— —
y 3
Period: w
_x [
6 12 6

1

15. y= 3 tan(—2x — 7) + 1

is equivalent to

1

y= -3 tan(2x + ) + 1

via the Even / Odd identity for tangent.

Period: il

2

A.13
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o
—

)
)-

3
sin (5x+

2T

4 sin (x +

2v/3 cos(x) — 2sin(x)

29. f(x)

)

Vi
6

(5x) — ? sin(5x) =

1
— = cos

31 f(x)

5sin (x +

()=

2
— —— cos

sin(x) >
57r>

X+ =

2

5
5cos(

33. f(x) =

35.

14

37.
39.
41.
43,

)

™
4

-2
_x— =

)
(

i
X — =
4

Start with y = sin

21. y =csc (
Period: 27
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45.
47.
49.
Section 4.5
™
1. arcsin(—1) = ——
(-1 =3
. V2 Tr
3. arcsin| — | = ——
2 4
5. arcsin(0) =0
. V2 ™
7. arcsin | — | = —
2 4
s
9. arcsin(l) = —
(W=7
3 5
11. arccos —i )
2 6
1 2
13. arccos [ —= | =
( 2 3
1 ™
15. arccos | — | = —
2 3
3
17. arccos i = T
2 6
m
19. arctan (—\/5) = _§
3
21. arctan —£ -_I
3 6
3
23. arctan i .
3 6

25. arctan (\/§)

a8 wia

27. arccot (—1) =
29. arccot (0) =
31. arccot (1) =

33. arcsec(2) =

Wiy &MY N

35. arcsec (\ﬁ) = %

23
37. arcsec —\f I
3 6

39. arcsec(1) =0

D

41. arcsec(—2) = T

3
2+/3 7
43. arcsec —i -
3
7

45. arcesc (—2) =

2v/3
47. arccsc <\3[

o3

w|F

wly

49. arcsec(—2) =

51.

53.

55.

57.

59.

61.

63.

65.
67.

69.

71.
73.
75.
77.

79.

81.

83.

85.

87.

89.

91.

93.

95.

97.

99.

101.

103.

105.

107.

109.

111.

2V3 51
arcsec | —— = —
3 6

arcesc (—2) = —g

vulw NP

(s ()
sin ( arcsin | —
5
) . (5 . )
sin (arcsm <7)) is undefined.
(smes (-3)) =3
cos ( arccos | — = = ——
2 2

cos (arccos (—0.998)) = —0.998

IS

5

12

tan (arctan (—1)) =

)
oo (5)

tan (arctan (37))
cot (arccot (—v/3)) = —V/3
cot (arccot (—0.001)) = —0.001

-1
m

sec (arcsec (2)) =2

1
sec (arcsec (E)) is undefined.

sec (arcsec (1177)) = 1177

(e (52)) =
CsC | arccsc —? —?

csc (arcesc (1.0001)) = 1.0001

ron(n(2)
o)) -3
arcain (s () ) =

13

3 3
( (271')) 27
arccos | cos [ — =—
3 3
(=(-5)) =3
arccos [cos [ ——= ) ) = =
6 6
m ’Tr
arctan ( tan ( — = -
((3)) =3
arctan (tan (7)) =

A.15



113.

115.

117.

119.

121.

123.

125.

127.

129.

131.

133.

135.

137.

139.

141.

143.

145.

147.

149.

151.

153.

155.

157.

159.

161.

163.

S

sin (arctan (—2)) = —

sin (arcesc (—3)) = —

S Wl
N m‘

cos (arctan (v/7)) = "

cos (arcsec (5)) =

(e (-3)

1
tan (arccot (12)) = o

cot (arccos <\£§>> =3

cot (arctan (0.25)) = 4

) 12 13
sec | arcsin | —— = —
13 5

(SN

V3

. 13 120
sin { 2arccsc [ — = —
5 169

. 3 7

cos | 2arcsin | = = —

5 25

cos (2arccot (—v/5)) = g

A.16

).

3
tan (arctan(3) + arccos (7§>>

165. sin (arccos (x)) = V1 —x2for—1 <x <1
X
167. tan(arcsin (x)) = ——=for—1 <x <1
(Eresn ) = i
1
169. csc(arccos (x)) = ——=for—1 <x <1
(orecos 00) = 7=
171. sin(2arccos (x)) = 2xv/1 —x2for—1 < x <1
173. sin(arccos(2x)) = V1 — 4x? for —% <x< %
Va — 2
175. cos (arcsin <{>> —vi=x for—2 <x<2
2 2
1 1
177. sin(2arcsin(7x)) = 14x\/1 — 49x2 for -5 <x< 5
. ) 1 1
179. cos(2 arcsin(4x)) = 1 — 32x* for ~a <x< n
181. sin (arcsin(x) + arccos(x)) = 1for —1 <x <1
2xv/1 — x2
183. tan (2arcsin(x)) = —————— forxin
1—2x2
2 2 2 2
_1’_£ U _£7£ U £71 2
2 2 2 2
Chapter 5
Section 5.1
1. Answers will vary.
3. F
5. Answers will vary.
7. -1
9. Limit does not exist
11. 1.5
13. Limit does not exist.
15. 1
h f(a+hi):f(a)
—0.1 —7
17. _—o0.01 —7 The limit seems to be exactly 7.
0.01 -7
0.1 —7
h f(a+h')]—f(a)
—0.1 4.9
19. —0.01 4.99 The limit is approx. 5.
0.01 5.01
0.1 5.1
h f(a+h)—f(a)
h
—-0.1 29.4
21. —0.01 29.04 The limit is approx. 29.
0.01 28.96
0.1 28.6
h f(a+h)—f(a)
h
-0.1 —0.998334
23.  —0.01 —0.999983 The limitis approx. —1.
0.01 —0.999983
0.1 —0.998334
Section 5.2
1. Answers will vary.

2The equivalence for x = 41 can be verified independently of the derivation of the formula, but Calculus is required to fully understand what is
happening at those x values. You’ll see what we mean when you work through the details of the identity for tan(2t). For now, we exclude x = +1
from our answer.



3. Asxis near 1, both fand g are near 0, but f is approximately twice
the size of g. (l.e., f(x) ~ 2g(x).)
5.9
7. 0
9. 3
11. 3
13. 1
15. 0
17. 7
19. 1/2
21. Limit does not exist
23. 2
25. IS~ 0.6064
27. -8
29. 10
31. —-3/2
33. 0
35. 1
37. 3
39. 1
41. (a) Apply Part 1 of Theorem 5.2.1.
(b) Apply Theorem 5.2.6; g(x) = ¥ is the same as g(x) = 1
everywhere except at x = 0. Thus Xli_rpo g(x) = Xli_r)no 1=1.
(c) The function f(x) is always 0, so g(f(x)) is never defined as
g(x) is not defined at x = 0. Therefore the limit does not
exist.
(d) The Composition Rule requires that x“j}) g(x) be equal to
g(0). They are not equal, so the conditions of the
Composition Rule are not satisfied, and hence the rule is
not violated.
Section 5.3
1. The function approaches different values from the left and right;
the function grows without bound; the function oscillates.
3. F
5. (a) 2
(b) 2
() 2
(d) 1
(e) Asfis not defined for x < 0, this limit is not defined.
(f) 1
7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e)
(f)
9. (a)

(b)
(c)
(d)

N N N N O O

11.  (a)
(b)
(c)
(d)
(e)
(f)
(8)
(h) Not defined
13. (a) 2
(b) —4
(c) Does not exist.
(d)
15. (a)
(b)
(c)
(d)
(e)
(f)
(8)
(h)
17. (a) 1 —cos?a = sin

(b) sinZa
2

N N N O N N N

N N N O O O O N

N

2q

(c) sin
(d) sin?a
19. (a) 4
(b) 4
(c) 4
(d) 3
21, (a) -1
(b) 1
(c) Does not exist
(d) 0
23. 2/3

a

25. -9

Section 5.4

F
F
T

Answers will vary.

LU N VW e

(a) oo
(b) oo
1. (a) 1
(b) O
() 1/2
(d) 1/2
13. (a) Limit does not exist
(b) Limit does not exist

15. Tables will vary.

A.17



17.

19.
21.
23.
25.
27.
29.
31.

X fx)

29  —15.1224 ‘
@ 59 1591y 'tseemslim. ;- fix) = —oco.
2999  —1599.12
_x  fO
31 16.8824 .
b} 301 160.88 'tSeemslimisai fX) = oo
3.001  1600.88

(c) It seems limy_3 f(x) does not exist.

Tables will vary.

X f(x)
(@) 2.9 132.857 Itseemslim, ,;— f(x) = oo.
2.99 12124.4
x fx)
(b) 3.1 108.039 It seems lim,_, 54 f(x) = oo.
3.01 11876.4

(c) It seems limy—3 f(x) = oo.

Horizontal asymptote at y = 2; vertical asymptotes at x = —5, 4.

Horizontal asymptote at y = 0; vertical asymptotes at x = —1, 0.

No horizontal or vertical asymptotes.
o0

—o0

Solution omitted.

Yes. The only “questionable” place is at x = 3, but the left and
right limits agree.

Section 5.5

11.

13.
15.
17.

19.

21.

23.
25.
27.
29.
31.
33.
35.
37.

A.18

© N v ow e

. Answers will vary.

. Aroot of a function fis a value c such that f(c) = 0.

F
T
F
No; XILmJ(x) = 2, while f(1) = 1.

No; f(1) does not exist.
Yes

(@) No; fO) #£(=2)

Jm,
(b) Yes
(c) No; f(2) is not defined.
(a) Yes
(b) Yes
(a) Yes
(b) Yes
(00, 00)
[=2,2]
(=00, —v/6] and [v/6, 00)
(=00, 00)
(0,00)
(=00,0]
Yes, by the Intermediate Value Theorem.

We cannot say; the Intermediate Value Theorem only applies to
function values between —10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1,1.5] [1,1.25] [1.125,1.25]
[1.1875,1.25] [1.21875,1.25]
[1.234375,1.2421875]

[1.234375,1.25]
[1.234375,1.2382813)

41. Approximate root is x = 0.69. The intervals used are:
[0.65,0.7] [0.675,0.7] [0.6875,0.7]
[0.6875,0.69375] [0.690625, 0.69375]

43.  (a) 20
(b) 25
(c) Limit does not exist
(d) 25

45. Answers will vary.

Chapter 6

Section 6.1

T
. Answers will vary.
. Answers will vary.
.ffx)=0
() =-3
11. b (x) = 3%°
13. r'(x) = St
15. (@) y=6

(b) x=-2
17. (a) y=-3x+4

(b) y=1/3(x—7) — 17
19. (a) y=48(x—4)+64

(b) y=—%(x—4)+64
21, (a) y=-1/4(x+2)—1/2

(b) y=4(x+2)—1/2
23. y=8.1(x—3)+ 16
25. y=7.77(x —2) + €%, ory = 7.77(x — 2) + 7.39.

© N U w e

27. (a) Approximations will vary; they should match (c) closely.

(b) f'(x) = 2x
(c) At(—1,0),slopeis —2. At (0, —1), slope is 0. At (2, 3),
slope is 4.
y
3]
5l
1]
+ X
2 - 12 3 a4
—1
29.
y
54
+ X
-2 A1 2
31. 5




33.

35.

37.

(a) Approximately on (—2,0) and (2, c0).

(b) Approximately on (—oo, —2) and (0, 2).

(c) Approximately atx = 0, +2.

(d) Approximately on (—oo, —1) and (1, c0).

(e) Approximately on (—1,1).

(f) Approximately at x = +1.
limy_, o+ fi(“hz*f(o) = 0; note also that lim,_, o+ f'(x) = 0. So f
is differentiable at x = 0.
limy, _ o— }w = —o0; note also that
lim,_,,— f'(x) = —o0. So fis not differentiable at x = 1.
fis differentiable on [0, 1), not its entire domain.
Approximately 24.

(a) (—o0,00)

(b) (=00, —-1) U (~1,1) U (1,00)

(¢) (—o0,5]

(d) [-V5,V5]

Section 6.2

N 0w e

. Velocity

. Linear functions.

—-17

. f(10.1) is likely most accurate, as accuracy is lost the farther from

x = 10 we go.

9. 6
11. ft/s?
13. (a) thousands of dollars per car
(b) Itis likely that P(0) < 0. That is, negative profit for not
producing any cars.

15. f(x) = ¢'(x)

17. Either g(x) = f’(x) or f(x) = ¢’ (x) is acceptable. The actual
answer is g(x) = f’(x), but is very hard to show that f(x) # g’ (x)
given the level of detail given in the graph.

19. f/(x) = 10x

21. f'(w) = 0.

Section 6.3

1. Power Rule.

3. One answer is f(x) = 10e*.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x — 205.

9. f’(x) is a velocity function, and f'/ (x) is acceleration.

11. f'(x) = 14x —5

13. m/(t) =45t* — 22 + 3

15. f/(r) = 6e"

17. fl)=2 -1

19. h'(t) = et —cost +sint

21 f/(t) =0

23. g'(x) = 24x* — 120x + 150

25. F'(x) = 18x — 12

27. f'(x) = 6x5 £ (x) = 30x* £/ (x) = 120x3 f¥) (x) = 360x2

29. W(t)=2t—eth’(t) =2 —et W (t) = —et N () = —et

31

33.

35.

39.

f'(0) = cos@ +sindf"(0) = —sinh 4 cosl
() = —cos @ — sin 0 f) (A) = sinf — cos §
Tangent line: y = 2(x — 1)

Normal line: y = —1/2(x — 1)

Tangentline:y =x—1

Normal line:y = —x+ 1

. Tangentline: y = \ﬁ(x— %) -2

Normal line: y = %(X - %) - V2

The tangent line to f(x) = eXatx = 0isy = x + 1; thus
e’ ~y(0.1) = 1.1.

Section 6.4

11.

13.

15.
17.

19.

21.

23.

25.
27.

29.

31
33.
35.
37.

39.

41.
43,
45,
47.

N oW

—

(@ f/(x) = (x> +3x) + x(2x + 3)
(b) f'(x) = 3x* +6x

(c) They are equal.
h'(s)=2(s+4)+ (2s—1)(1)
(b) h'(s)=4s+7

(a

(c) They are equal.

X(2X)— Xz
@) f'(x) = w

(b) f/(x)=1-3
(c) They are equal.

300y 2
() h,(S) _ 4 (0)1653;(125 )

(b) h'(s) = —9/4s—%
(c) They are equal.
f'(x) = sinx + xcos x

f’(x):exlnx+e’(%

g'(x) = (X_,lsz)z

h (x) = —csc? x — e
h'(t) =14t +6
f'(x) = (6x + 8)e + (3x* + 8x + 7)€
=7
_ sin? (x)4-cos? (x)+3 cos(x)
f/(X) - (cos(x)+3)2
fl(X) — *XSiﬂ)()EfCDSX + tanxt;nxzsxecz X
g'(t) = 128%e! + 4t3e! — cos? t + sin’t

f'(x) = 2xe* tan x = x?e tan x + x>~ sec? x

Tangent line: y = 2x + 2
Normal line: y = —1/2x 4 2

Tangent line:y = 4
Normal line: x = 2

x=13/2
f'(x) is never 0.
f"(x) = 2cosx — xsinx

F"(x) = cot? xcscx + csc x

A.19



. Answers will vary.
. Answers will vary.

F

N U0 ow R

. A: none; the function isn’t defined here. B: abs. max & rel. max C:
3ozt 28 rel. min D: none; the function isn’t defined here. E: none F: rel.
min G: rel. max

9. f/(0) =0
11. f'(x/2) =0f'(37/2) =0
64 13. f’(2) is not defined f/(6) = 0
¢ | 15. f'(0) =0
2\ 17. min: (—0.5,3.75)
X max: (2, 10)
-2 19. min: (7/4,3v/2/2)
-4 f max: (7/2,3)
51, -6 | 21. min: (v/3,2V/3)
max: (5,28/5)
23. min: (7, —e™)
T max: (m/4, ﬁ%m)
F 25. min: (1,0)
T max: (e, 1/e)

49 61

Section 6.5

. (%) = 10(4x3 — x)? - (12¢% — 1) = (120x* — 10)(4x* — x)° 27. ¥ = %

© N v ow P

. g’ (0) = 3(sin@ + cos 0)?(cos O — sin ) 29. 32 +1
11 f/(x) = 3(Inx+x?)2(2 + 20 Section 7.2
183, f/(0) =a(x+ 1)1 3)

15. ¢’ (x) = 5sec?(5x)

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
17. g'(t) = cos (£ + 1) <5t47t%> x=2.
5. False; for instance, y = x3 is always increasing though it has a

rp — 2002 (2
19. p’(t) = —3cos?(t* + 3t + 1) sin(t* + 3t + 1)(2t + 3) critical point at x — 0.

21. f'(x) =2/x
23. g'(r) =In4 -4
25. g'(t) =0

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.
t t) _ (ot t .

27. f'(x) = 62 (n 2)2(32+§;2+3)((|n3)3) 13. Graph and verify.

15. domain: (—o0, 00)

2. /(0 = 20337241 - % ) (n2220)

o cp.atc=—1;

31 f/(x) = decreasing on (—oo, —1);

502 4+ x)*(2x+ 1) (3%* +2x)% +3(x% +x)°(3x* + 2x)2 (125 + 2) increasing on (—1, 00);

l. minatx = —1.
33. f/(x) = 3cos(3x + 4) cos(5 — 2x) + 2sin(3x + 4) sin(5 — 2x) rel. min atx
17. domain=(—o0, 00)

35, F/(x) = 4(5x—9)3 cos(4x+1) —15 sin(4x+1) (5x—9)?

(5x—9)6 cp.atc = 2(-1+7);
37. Tangentline:y =0 decreasing on (é(fl —/7), %(71 +V7));
Normal line: x = 0 increasing on (—oo, %(—1 —V7)u (%(—1 +/7),0);
39. Tangentline:y = —3(f — 7/2) +1 rel. minatx = 1(—1+/7);
Normal line:y =1/3(0 — 7/2) + 1 rel. max atx = %(—1 — V7).
41. In both cases the derivative is the same: 1/x. 19. domain=(—o0, c0)
43, (a) ° F/mph cp.atc=1;
(b) The sign would be negative; when the wind is blowing at decreasing on (1, oc)
10 mph, any increase in wind speed will make it feel colder, increasing on (—oo, 1);
i.e., a lower number on the Fahrenheit scale. rel. max atx = 1.
Chapter 7 21. domain=(—o0, —2) U (~2,4) U (4, o0)
no c.p.;
Section 7.1 decreasing on entire domain, (—oo, —2) U (—2,4) U (4, 00)

A.20



23.

25.

domain=(—o00, 00)

cp.atc= —3n/4,—7/4,7/4,310/4;

decreasing on (=37 /4, —7/4) U (7/4,37/4);
increasing on (—m, —37/4) U (—7/4,7/4) U (31/4,7);
rel. minatx = —7n /4,371 /4;

rel. max atx = —37/4, /4.

c=1/2

Section 7.3

1
3
5.
7
9

13.
15.
17.

19.

21.
23.

25.
27.

29.
31.
33.
35.
37.
39.
41.
43.
45.
47.

49.
51.
53.
55.

. Answers will vary.

. Yes; Answers will vary.

Graph and verify.

. Graph and verify.
. Graph and verify.
11.

Graph and verify.
Graph and verify.
Possible points of inflection: none; concave up on (—oo, 00)

Possible points of inflection: x = 0; concave down on (—o0, 0);
concave up on (0, 00)

Possible points of inflection: x = —2/3, 0; concave down on
(—2/3,0); concave up on (—oo, —2/3) U (0, o)

Possible points of inflection: x = 1; concave up on (—o0, 00)

Possible points of inflection: x = il/\/g; concave down on

(—1/+/3,1/+/3); concave up on (—oo, —1/4/3) U (1/+/3, 00)

Possible points of inflection: x = —7 /4, 37/4; concave down on
(—m/4,3m/4) concave up on (—m, —7/4) U (37/4, )

Possible points of inflection: x = 1/e3/2; concave down on
(0,1/€3/2) concave up on (1/€3/2, c0)

min: x =1

max: x = —1/v/3 min: x =1//3
min: x =1

min: x =1

max: x =0

max: x = 7/4; min: x = —37 /4
min: x = 1/\/e

f' has no maximal or minimal value.
f’ has a minimal value at x = 0

Possible points of inflection: x = —2/3,0; f/ has a relative min
at: x = 0; relative max at: x = —2/3

£’ has no relative extrema
f/ has a relative max at x = —1/+/3; relative min at x = 1//3
f has a relative min at x = 37/4; relative max atx = —7 /4

f’ has a relative min at x = 1/V/e3 = e~3/2

Section 7.4

1.
3.

Answers will vary.

T

5.
7.

11.
13.
15.
17.
19.
21.
23.
25,
27.

29.

31.

T

A good sketch will include the x and y intercepts and draw the
appropriate line.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Critical point: x = 0 Points of inflection: b/+/3
Critical points: x = w, where n is an odd integer Points of
inflection: (nm — b)/a, where n is an integer.

% = —x/y, so the function is increasing in second and fourth

quadrants, decreasing in the first and third quadrants.

2
% = —1/y — x*/y3, which is positive when y < 0 and is
negative when y > 0. Hence the function is concave down in the

first and second quadrants and concave up in the third and fourth
quadrants.

Section 7.5

O N U W e

13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.

35.
37.
39.
41.

. Answers will vary.
. Answers will vary.
. Answers will vary.
. velocity

. 3/4x* +C

11.

10/33 —2x+C
s+C

—-3/(t)+C
tanf + C

secx —cscx + C
3/In3+C

4/3t3 +6t2 +9t+C
x0/6+C

ax + C

—cosx—+3
=347
7/In74+1—-49/In7
2oy

6 —sin(0) —m+4
3x —2

dy = (2xe* cos x + x%e* cos x — x?e* sin x)dx

A.21






Index

€, 2

¢,2

x-axis, 10
x-coordinate, 10
y-axis, 10
y-coordinate, 10

abscissa, 10
absolute maximum, 257
absolute minimum, 257
absolute value
definition of, 46
properties of, 47
acceleration, 227
amplitude, 141
angle
reference, 108
antiderivative, 286
arccosecant
calculus friendly
definition of, 162
graph of, 162
properties of, 162
trigonometry friendly
definition of, 160
graph of, 159
properties of, 160
arccosine
definition of, 154
graph of, 153
properties of, 154
arccotangent
definition of, 157
graph of, 156
properties of, 157
arcsecant
calculus friendly
definition of, 162
graph of, 162
properties of, 162
trigonometry friendly
definition of, 160
graph of, 159
properties of, 160
arcsine
definition of, 154
graph of, 153
properties of, 154
arctangent
definition of, 157
graph of, 156

A.23

properties of, 157
argument

of a function, 17

of a logarithm, 92

of a trigonometric function, 139

asymptote
horizontal, 198
vertical, 196

asymptote
horizontal

formal definition of, 75
intuitive definition of, 75

location of, 77
slant
determination of, 79

formal definition of, 79

slant (oblique), 79
vertical

formal definition of, 75
intuitive definition of, 75

location of, 76

Bisection Method, 209

Cartesian coordinate plane, 10

Cartesian coordinates, 10
Chain Rule, 248
notation, 252
change of base formulas, 99
circular function, 115
codomain, 17
Cofunction Identities, 125
common base, 87
common logarithm, 89
complex number
definition of, 4
set of, 4
composite function
definition of, 26
concave down, 271
concave up, 271
concavity, 271
inflection point, 271
test for, 271
constant function
as a horizontal line, 44
Constant Multiple Rule
of derivatives, 234
of integration, 289

constant term of a polynomial, 57

continuous, 60



continuous function, 204

properties, 207
coordinates

Cartesian, 10
cosecant

graph of, 143

of an angle, 115

properties of, 145
cosine

graph of, 139

of an angle, 105, 115

properties of, 138
cotangent

graph of, 147

of an angle, 115

properties of, 149
critical number, 259
critical point, 259
curve sketching, 278

decreasing function, 264
finding intervals, 265
degree of a polynomial, 57
dependent variable, 17
depreciation, 87
derivative
acceleration, 227
as a function, 219
at a point, 215
basic rules, 231
Chain Rule, 248, 252
Constant Multiple Rule, 234
Constant Rule, 231
exponential functions, 252
First Deriv. Test, 267
Generalized Power Rule, 249
higher order, 235
interpretation, 236
interpretation, 225
motion, 227
normal line, 217
notation, 219, 235
Power Rule, 231, 243
Product Rule, 238
Quotient Rule, 240
second, 235
Second Deriv. Test, 274
Sum/Difference Rule, 234
tangent line, 215
third, 235
trigonometric functions, 241
velocity, 227
diagram
Venn Diagram, 3
Difference Identity
for cosine, 123, 128
for sine, 126, 128
for tangent, 128
differentiable, 215
discontinuity, 207

discontinuity
essential, 208
infinite, 208
jump, 208
removable, 208
discriminant
of a quadratic equation, 52
trichotomy, 52
distance
definition, 13
distance formula, 14

domain, 17
domain
implied, 19

Double Angle Identities, 128

empty set, 3,4
end behaviour
of f(x) = ax", n even, 59
of f(x) = ax", n odd, 60
of a function graph, 58
polynomial, 62
Even/Odd Identities, 123
exponential function
algebraic properties of, 95
change of base formula, 99
common base, 87
definition of, 86
graphical properties of, 87
inverse properties of, 95
natural base, 87
one-to-one properties of, 95
extrema
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
finding, 260
relative, 258
Extreme Value Theorem, 257
extreme values, 257

First Derivative Test, 267
floor function, 204
frequency
of a sinusoid, 141
function
absolute value, 46
argument, 17
arithmetic, 23
as a process, 17, 30
circular, 115
composite
definition of, 26
constant, 44
continuous, 60
definition, 17
dependent variable of, 17
difference, 23
exponential, 86
independent variable of, 17



inverse
definition of, 30
properties of, 31
solving for, 34
uniqueness of, 31
linear, 43
logarithmic, 89
notation, 17
one-to-one, 32
periodic, 138
piecewise, 46
polynomial, 56
product, 23
guadratic, 49
quotient, 23
rational, 73
smooth, 60
sum, 23
fundamental cycle
of y = cos(x), 139

Generalized Power Rule, 249
graph
hole in, 76

Half-Angle Formulas, 131
hole

in a graph, 76

location of, 76
horizontal asymptote

formal definition of, 75

intuitive definition of, 75

location of, 77
Horizontal Line Test (HLT), 32

implied domain of a function, 19
increasing function, 264

finding intervals, 265
indefinite integral, 286
independent variable, 17
indeterminate form, 171, 197
inflection point, 272
initial value problem, 290
integer

definition of, 4

set of, 4
integration

indefinite, 286

notation, 287

Power Rule, 290

Sum/Difference Rule, 289
Intermediate Value Theorem, 208
Intermediate Value Theorem

polynomial zero version, 60
intersection of two sets, 2
interval

definition of, 6

notation for, 6
inverse

of a function

definition of, 30

properties of, 31
solving for, 34
uniqueness of, 31
invertibility
function, 32
invertible
function, 30
irrational number
definition of, 4
set of, 4

leading coefficient of a polynomial, 57
leading term of a polynomial, 57
limit
at infinity, 198
definition, 176
difference quotient, 175
does not exist, 174, 189
indeterminate form, 171, 197
informal definition, 176
left handed, 188
of infinity, 194
one sided, 188
properties, 178
pseudo-definition, 172
right handed, 188
Squeeze Theorem, 181
line
linear function, 43
point-slope form, 43
slope of, 41
slope-intercept form, 43
linear function, 43
logarithm
algebraic properties of, 96
change of base formula, 99
common, 89
general, “base b”, 89
graphical properties of, 90
inverse properties of, 95
natural, 89
one-to-one properties of, 95

maximum
absolute, 257
and First Deriv. Test, 267
and Second Deriv. Test, 274
relative/local, 258
midpoint
definition of, 15
midpoint formula, 15
minimum
absolute, 257
and First Deriv. Test, 267, 274
relative/local, 258
multiplicity
effect on the graph of a polynomial, 63
of a zero, 63

natural base, 87
natural logarithm, 89



natural number

definition of, 4

set of, 4
Newton’s Law of Cooling, 88
normal line, 217

oblique asymptote, 79
one-to-one function, 32
ordered pair, 10
ordinate, 10

origin, 10

parabola

graph of a quadratic function, 49

vertex, 49
period
of a function, 138
periodic function, 138
phase, 141
phase shift, 141
point of inflection, 272
point-slope form of a line, 43
polynomial function
constant term, 57
definition of, 56
degree, 57
end behaviour, 58
leading coefficient, 57
leading term, 57
zero
multiplicity, 63
Power Reduction Formulas, 130
Power Rule
differentiation, 231, 238, 243
integration, 290
power rule
for absolute value, 47
for exponential functions, 95
for logarithms, 96
product rule
for absolute value, 47
for exponential functions, 95
for logarithms, 96
Product to Sum Formulas, 133
Pythagorean Identities, 117

quadrants, 12

quadratic formula, 51

quadratic function
definition of, 49
general form, 50
standard form, 50

Quotient Identities, 116

Quotient Rule, 240

quotient rule
for absolute value, 47
for exponential functions, 95
for logarithms, 96

rate of change
slope of a line, 42

rational functions, 73
rational number
definition of, 4
set of, 4
real number
definition of, 3, 4
setof, 3,4
Reciprocal Identities, 116
reference angle, 108
Reference Angle Theorem
for cosine and sine, 109
reflection
of a point, 13

secant
graph of, 143
of an angle, 115
properties of, 145
Second Derivative Test, 274
set
definition of, 1
empty, 3,4
exclusion, 2
inclusion, 2
intersection, 2
roster method, 1
set-builder notation, 1
sets of numbers, 4
union, 2
verbal description, 1
set-builder notation, 1
sign diagram, 265
sign diagram
polynomial function, 61
sine
graph of, 139
of an angle, 105, 115
properties of, 138
sinusoid
amplitude, 141
graph of, 141
phase shift, 141
slant asymptote, 79
slant asymptote
determination of, 79
formal definition of, 79
slope
definition, 41
of a line, 41
rate of change, 42
slope-intercept form of a line, 43
smooth, 60
Squeeze Theorem, 181
subset
definition of, 2
Sum Ildentity
for cosine, 123, 128
for sine, 126, 128
for tangent, 128
Sum to Product Formulas, 133



Sum/Difference Rule
of derivatives, 234
of integration, 289
symmetry
about the x-axis, 12
about the y-axis, 12
about the origin, 12

tangent

graph of, 146

of an angle, 115

properties of, 149
tangent line, 215
trichotomy, 5

union of two sets, 2
Unit Circle
important points, 110

variable
dependent, 17
independent, 17
velocity, 226
Venn Diagram, 3
vertex
of a parabola, 49
vertical asymptote
formal definition of, 75
intuitive definition of, 75
location of, 76

zero
multiplicity of, 63



Differentiation Rules

d d 1 d
1. —(ex)=c 10. — (@) =Ina-d* 19. — (sin"'x) = —— 28. — (sechx) = — sechxtanhx
dx( ) dx( ) dx( ) V1—x2 dx( )
d d 1 d —1 d
2. —(utv)y=du £V 11. — (Inx) = = 20. — (cos™1x) = —— 29. — (cschx) = — csch xcoth x
dx dx X dx V1—x2 dx
d d 1 1 d -1 d
3. —(w-vy=uw'+duv 12 — (log,x) = — - = 21, — (escix) = —— 30. — (cothx) = — csch? x
dx( ) * dx( 8 X) Ina x dx( ) xVx2 —1 dx( )
f—u d d 1 d 1
4, g fuy_w-ow 43 9 (sinx) = cosx 22, — (sec™lx) = ——— 31. — (cosh™1x) = ———
dx \v v2 dx dx xVx2 —1 dx x2 —1
d o d _ d ., 1 d, 1
. — = 14. — (cosx) = —sinx 23. — (tan” " x) = —— 32. — (sinh™ " x) = ——
5. 2 () = o/ (v = (cosx) o ) = g (67 =
d d d, -1 d i =
. — = 15. — (cscx) = —cscxcotx 24, — (cot” " x) = —— 33. — (sech” "x) = ——
6 dx (=0 dx ( ) dx ( ) 1+ x2 dx ( ) xV1 — x2
d d d _ d . —1
7. — =1 16. — (secx) = secxtanx 25. — (coshx) = sinhx 34, — (csch™ " x) = ———
= = (secx) = (coshx) o () = s
d d d 1
8. dix (") =nmx""1 17. p” (tanx) = sec? x 26. P (sinhx) = cosh x 35, e (tanhflx) =T
d d R d R d . 1
e — 18. — (cotx) = —csc 27. — (tanhx) = sech 36. — (coth =
9 dx () =¢" dx (cotx) X dx ( %) X dx ( X) 1—x2
Integration Rules
1 X
1. c- f(x dx:c/fx dx 11. tanxdx = —In|cosx| + C 22. /7dx:sin*1<7)+c
[ e 0 |cosx S x
1 1 X
2. /fx):l:g X) dx = 12. secxdx =In|secx +tanx| + C 23. /711 =Zsec (2 c
() % o | Y a) b

[0 ot [ o) ax 13,
3. /O dx=C 14,

cscxdx = —In|cscx + cotx| + C 24, /coshxdxzsinhx+c

/cotxdx:ln|sinx|+C 25. /sinhxdx:coshx+c
4. /1dx:x+C N
15. /sec xdx =tanx +C 26. /tanhxdx:ln(coshx)+C
1
5. /x”dx:—x"JrlJrC,n;éfl 5
n+1 16. /csc xdx =—cotx+C 27. /cothxdx:ln|sinhx|+C
n# -1
1
6. /exdx:e"JrC 17. /secxtanxdx:secx—i—c 28. /7dx:ln x+/x2 —a?| +¢C
— e+ v |
1 1
X dx = — - d* 18. cscx cotx dx = — csc C — — dx = 2 2
7. /a dx e+ C / xcot x dx x4+ 29. /\/mdx In|x+vVx2+a?|+C
1 1 1
8. /‘7dx:ln\x|+c 19. /coszxdx:fx+fs|n(2x)+c 30. /;dx:iln atx +C
X 2 4 a? — x2 2 |la—x
1 1
. i — f 1 1 X
9. /cosxdx:5|nx+c 20. /smzxdx_—x——sm (x)+c¢ 31, / dx = = In (7) +cC
2 4 xva? — x2 a a++va? —x?
- 1 1. 1% 1 1 X
10. sinxdx = —cosx+ C 21 -5 dx=—tan - +C 32. /7dx:fln 7 _l4c
@+a " a a wira T a etV




The Unit Circle

< (—1,0)

Common Trigonometric Identities

Pythagorean Identities
sin®x 4 cos’x =1
tan’x + 1 = sec’x

1+ cot? x = csc? x

Sum to Product Formulas

Cofunction Identities

LT

sin | — — x) = cosx
2
™ .

cos| — —x) =sinx
2

T
tan (— —x) = cotx
2

X X
sinx+siny25in( ery) cos(

. . . (x—y) (X
SINX —SIny = 2sin 2 Cos

X+
cosx+cosy2cos<

) (x-i-
COSX — cosy = —2sin

Product to Sum Formulas

1
sinxsiny = E(cos(x —y) — cos(x + y))

COSXCOsy =

Ll ST

sinxcosy =

(cos(x —y) + cos(x +y))

(sin(x+y) +sin(x — y))

Definitions of the Trigonometric Functions

y

A

Unit Circle Definition

A

8

™

CSC| — — X | = secx
2
™

sec E_X = CSCX

us
cot (— - x) = tanx
2

Power-Reducing Formulas

.9 1 —cos2x

sin“x = ————
2

2 1 + cos 2x

Cos“ X = ———
2

2 1 —cos2x

tan“x = ————

1+ cos 2x

(4
\f)
&

Adjacent

4
Right Triangle Definition

sind =y cosf = x
1 1
csc) == secl = -
> X y X
tan@:z cot0:{
bt y
(6] H
sinf = — cscl = —
o H 0
3
o A H
2. cosf = - sect = —
™ H A
0 A
tanf = — cotf = —
A 0}

Double Angle Formulas
sin 2x = 2sin xcos x
_ 2 .2
COS 2X = COS” X — sin“ x
=2cos’x—1
=1—2sin’x
2tanx

tan2x = ———
1—tan‘x

Even/0Odd Identities

sin(—x) = —sinx
cos(—x) = cosx
tan(—x) = —tanx
csc(—x) = —cscx
sec(—x) = secx
cot(—x) = —cotx

Angle Sum/Difference Formulas

sin(x & y) = sinxcosy & cosxsiny

cos(x + y) = cosxcosy F sinxsiny

tan(xty) =

tanx £ tany
1 Ftanxtany



Areas and Volumes

Triangles Right Circular Cone
h=asind Volume = 27r2h
Area = 1bh Surface Area =

wrv/r2 + h? + wr?

Law of Cosines:

b
2 =a*+b?>—2abcosb
Parallelograms Right Circular Cylinder
Area = bh Volume = 7r?h e

Surface Area = h
b 2xrh + 27r?
Trapezoids Sphere
a

Area = 2(a+ b)h ; Volume = $7r?

E h Surface Area =47r?

. 7

Circles General Cone
Area = 7r? Area of Base = A

Circumference = 27rr Volume = 1Ah

Sectors of Circles General Right Cylinder

0 in radians Area of Base = A
Area = 16r? Volume = Ah
s=rf

<
o
(%)




Algebra

Factors and Zeros of Polynomials
Let p(x) = apX" + ap_1x""1 + - - - + a1x + ap be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax* + bx + ¢, and 0 < b? — 4ac, then the real zeros of p are x = (—b + v/b?2 — 4ac)/2a

Special Factors

XX —a*>=(x—a)(x+a) X —a®=(x—a)(®+ax+a®)
X +ad=(x+a)(x* —ax+a?) X —a* = (® —a?)(* + a?)
(x+y)" =x"+ nx""ly + ’7("2?1)Xn—2y2 Xyl 0

(X _ y)n —x" — an—ly + "("zjl)xn—zyz — et nxyn—l Fy

Binomial Theorem
(X+y)? =x+2xy + 2 (x—y)?=x>—2xy + )2
(x+y)?=x+32y+3x2 + )3 -y =x -3y +3xy2 — )3
X+ =x*+83y +6x%2 + axy? +y* (x—y)* =x* — A3y + 6x2y2 — AxyP + Y4

—~
>

Rational Zero Theorem
If p(x) = apx" + an—1X""Y 4+ - 4 a1x + ag has integer coefficients, then every rational zero of p is of the form x = r/s,
where ris a factor of ag and s is a factor of a,,.

Factoring by Grouping
acx® 4+ adx® + bex + bd = ax?(ex + d) + b(ex + d) = (ax® + b)(cx + d)

Arithmetic Operations

d+b b
ab+ac=a(b+c) ad + b art

c_
d  bd c

a b
:7—|—7
c ¢

+

B-0@-2 Y-z 53

(E) - \b/ \c be b b
d c
(b) ab a—b b-a ab + ac
al—- | =— = =b+c
c c c—d d-c
Exponents and Radicals
a®=1, a#0 (ab)*=0a*b* o =" Ja=a'/? % = JYa=a'"

X X 1 n
(9) _T am = gm/n a—X:; Vab = {/av/b (a*) = a¥ \"/g:\n/a



Additional Formulas

Summation Formulas:
n

i:”lz n(n+1)(2n+1) o 5 [(nin+1)\?

Trapezoidal Rule:

b
/ flx) dx ~ % [fx2) + 2f(x2) + 2f(x3) + ... + 2f(xn) + f(Xn11)]

O [ max £ ()]

with Error <

Simpson’s Rule:

A

b
/ f(x) dx =~ TX [f(xl) + 4f(x2) + 2f(x3) + 4f(xa) + ... + 2f(Xn—1) + 4f(xn) —|—f(xn+1)]

(b—a)®

with Error < Bon [ max |£®) (x)]]

Arc Length: Surface of Revolution:
b b
L:/ T+ f'(x)? dx S:Zﬂ'/ fOO/1+f(x)? dx

(where f(x) > 0)

b
S:27T/ x/1+f'(x)? dx

(where a, b > 0)

Work Done by a Variable Force: Force Exerted by a Fluid:

b b
W:/ F(x) dx F:/ wd(y) ¢(y) dy

Taylor Series Expansion for f(x):

F(c)
2!

F(c)

n!

(X—c)2+)¥(x—c)3 + .t

pn(x) = fle) +f'(e)(x — ) +

Maclaurin Series Expansion for f(x), where c = 0:

f//(o) 5 f///(O)X3 - f(n)(o)xn
> .

P(x) = fO) + f/(O)x + =% + 1=




Summary of Tests for Series:

Condition(s) of

Condition(s) of

Test Series . Comment
Convergence Divergence
o0
This test cannot be used to
th-T I 0
nth-ierm z; Gn i 9 7 show convergence.
n=
> 1
Geometric Series Zr” Ir <1 Il >1 Sum = ——
— 1—r
o0 a
Telescoping Series Z by — bnta) lim b, =1L Sum = (Z b,,) —
n=1 oo n=1
o0
-Series >1 <1
P Z (an + b P P=
n=1
00 oo OO
a(n) dn a(n) dn =
Integral Test zan /1 (n) /1 (n) an = a(n) must be
. o continuous
n=0 is convergent is divergent
o0 o0
~ > b > b
Direct Comparison Z an n=0 n=0
=0 converges and diverges and
0<a,<b, 0<b,<a,
o0 o0
b b
oo Z " Z " Also diverges if
Limit Comparison Z an n=0 n=0 .
converges and diverges and lim a,/b, = o0
n=0 n—00
lim a,/b, >0 lim a,/b, >0
n—oo n—o0
- {an} must be positive
a a . .
Ratio Test Zan lim 2 <1 lim = > 1 Also diverges if
n—oo  Qap n—oo  dp .
n=0 lim apy1/a, = 00
n—00
{an} must be positive
oo
Root Test Zan lim (a,,)l/" <1 lim (a,,)l/n >1 Also diverges if
n—oo n—o00 . 1//7
n=0 lim (a,)”" =

n—oo
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