
M�ã« 1560 C�½�ç½çÝ I
Fall 2018 Edition,University of Lethbridge

An adaptation of the APEX Calculus textbook, edited by Sean Fitzpatrick

Gregory Hartman, Ph.D.
Department of Applied Mathematics

Virginia Military Institute

Contributing Authors
Troy Siemers, Ph.D.

Department of Applied Mathematics

Virginia Military Institute

Brian Heinold, Ph.D.
Department of Mathematics and Computer Science

Mount Saint Mary’s University

Dimplekumar Chalishajar, Ph.D.
Department of Applied Mathematics

Virginia Military Institute

Editor
Jennifer Bowen, Ph.D.

Department of Mathematics and Computer Science

The College of Wooster



Copyright © 2018 Gregory Hartman
Licensed to the public under Creative Commons
Attribution-Noncommercial 4.0 International Public
License

This version of the text was assembled and edited by Sean
Fitzpatrick, University of Lethbridge, November 2015, re-
vised most recently in May 2018.
This work is licensed under the Creative Commons
Attribution-Noncommercial-ShareAlike 4.0 International
Public License



Contents

Table of Contents iii

Preface v

1 Limits 1
1.1 An Introduction To Limits . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal Definition of a Limit . . . . . . . . . . . . . . . . . . . . 9
1.3 Finding Limits Analytically . . . . . . . . . . . . . . . . . . . . . 16
1.4 One Sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Limits Involving Infinity . . . . . . . . . . . . . . . . . . . . . . 32
1.6 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Derivatives 51
2.1 Instantaneous Rates of Change: The Derivative . . . . . . . . . 51
2.2 Interpretations of the Derivative . . . . . . . . . . . . . . . . . 65
2.3 Basic Differentiation Rules . . . . . . . . . . . . . . . . . . . . 71
2.4 The Product and Quotient Rules . . . . . . . . . . . . . . . . . 78
2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.6 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . 96
2.7 Derivatives of Inverse Functions . . . . . . . . . . . . . . . . . 105

3 The Graphical Behaviour of Functions 111
3.1 Extreme Values . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.2 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . 118
3.3 Increasing and Decreasing Functions . . . . . . . . . . . . . . . 123
3.4 Concavity and the Second Derivative . . . . . . . . . . . . . . . 130
3.5 Curve Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4 Applications of the Derivative 145
4.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.4 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5 Taylor Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 168

5 Integration 179
5.1 Antiderivatives and Indefinite Integration . . . . . . . . . . . . 179
5.2 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . 187
5.3 Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.4 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . 210
5.5 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5.6 Area Between Curves . . . . . . . . . . . . . . . . . . . . . . . 236



Contents

A Solutions To Selected Problems A.1

Index A.13

iv



PÙ�¥���
This a custom textbook that covers the entire curriculum (as of September

2017) for the course Math 1560 (Calculus I) at the University of Lethbridge at
minimal cost to the student. It is also anOpen Education Resource. As a student,
you are free to keep asmany copies as youwant, for as long as youwant. You can
print it, in whole or in part, or share it with a friend. As an instructor, I am free to
modify the content as I see fit, whether this means editing to fit our curriculum,
or simply correcting typos.

Most of this textbook is adapted from the APEX Calculus textbook project,
which originated in the Department of Applied Mathematics at the Virginia Mil-
itary Institute. (See apexcalculus.com.) On the following page you’ll find the
original preface from their text, which explains their project inmore detail. They
haveproduced calculus textbook that is free in two regards: it’s free to download
from their website, and the authors have made all the files needed to produce
the textbook freely available, allowing others (such as myself) to edit the text to
suit the needs of various courses (such as Math 1560).

What’s even better is that the textbook is of remarkably high production
quality: unlike many free texts, it is polished and professionally produced, with
graphics on almost every page, and a large collection of exercises (with selected
answers!).

I hope that you find this textbook useful. If you find any errors, or if you have
any suggestions as to how the material could be better arranged or presented,
please let me know. (The great thing about an open source textbook is that it
can be edited at any time!) In particular, if you find a particular topic that you
think needs further explanation, or more examples, or more exercises, please
let us know. My hope is that this text will be improved every time it is used for
this course.

Sean Fitzpatrick
Department of Mathematics and Computer Science

University of Lethbridge
May, 2018

http://www.apexcalculus.com
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PÙ�¥��� ãÊ APEX C�½�ç½çÝ
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay better understand what you will find beyond this
page.

This text is Part I of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector–valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.apexcalculus.com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High–level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower–level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

vi

http://apexcalculus.com
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Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.



APEX – Affordable Print and Electronic teXts

APEX is a consortium of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military Institute, through a generous
Jackson–Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com for more information.

• More useful numbering of Examples, Theorems, etc. “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integrationwith Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com
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Figure 1.1.1: sin(x)/x near x = 1.
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Figure 1.1.2: sin(x)/x near x = 0.

1: L®Ã®ãÝ
Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× time.” But what if the rate is not constant
– can distance still be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
Isaac Newton and Gottfried Leibniz, are credited with independently formulat-
ing a systemof computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundation of “the calculus” is the limit. It is a tool to describe a par-
ticular behaviour of a function. This chapter begins our study of the limit by
approximating its value graphically and numerically. After a formal definition of
the limit, properties are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An Introduction To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the function y =
sin x
x

. When x is near the value 1, what value (if
any) is y near?

While our question is not precisely formed (what constitutes “near the value
1”?), the answer does not seemdifficult to find. Onemight think first to look at a
graph of this function to approximate the appropriate y values. Consider Figure
1.1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives



x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 1.1.3: Approximate values of
sin(x)/x with x near 1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.1.4: Approximate values of
sin(x)/x with x near 0.
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Figure 1.1.5: Graphically approximating a
limit in Example 1.1.1.

Chapter 1 Limits

no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f. The expression “the
limit of y as x approaches 1” describes a number, often referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definition; this is a pseudo-definition that will allow us to
explore the idea of a limit. A more detailed, but still informal, definition of the
limit is given in Definition 1.1.1 at the end of this section. The precise definition
is given in the next section.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.1.3.

Notice that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the function at that particular x value; we are only concerned
with the values of the function when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.1.2. The table in Figure 1.1.4
shows the value of sin(x)/x for values of x near 0. Ten places after the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concernedwith the value of our function at x = 0, only on the behaviour
of the function near 0.

This numerical method gives confidence to say that 1 is a good approxima-
tion of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 1.1.1 Approximating the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

2



x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.1.6: Numerically approximating
a limit in Example 1.1.1.
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Figure 1.1.7: Graphically approximating a
limit in Example 1.1.2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 1.1.8: Numerically approximating
a limit in Example 1.1.2.

1.1 An Introduction To Limits

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.1.5 and
1.1.6, respectively.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a better approximation.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a function. Sometimes a function may act “erratically” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing utilities are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.2 Approximating the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function, so it
behaves differently on either side of 0. Figure 1.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

3
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Figure 1.1.9: Observing no limit as x → 1
in Example 1.1.3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 1.1.10: Values of f(x) near x = 1 in
Example 1.1.3.
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Figure 1.1.11: Observing no limit as x →
1 in Example 1.1.4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 1.1.12: Values of f(x) near x = 1 in
Example 1.1.4.

Chapter 1 Limits

Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The function f(x)may approach different values on either side of c.

2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches c without approaching a spe-
cific value.

We’ll explore each of these in turn.

Example 1.1.3 Different Values Approached From Left and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given in Figures
1.1.9 and 1.1.10, respectively. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the left), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 1.1.4 The Function Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x − 1)2 are given in Figures
1.1.11 and 1.1.12, respectively. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.

4
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Figure 1.1.14: Interpreting a difference
quotient as the slope of a secant line.

1.1 An Introduction To Limits

Example 1.1.5 The Function Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figures 1.1.13.
Figure 1.1.13(a) shows f(x) on the interval [−1, 1]; notice how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillation, as x approaches
0, f(x) approaches 0. However, Figure 1.1.13(b) zooms in on sin(1/x), on the
interval [−0.1, 0.1]. Here the oscillation is even more pronounced. Finally, in
the table in Figure 1.1.13(c), we see sin(1/x) evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many times! Because of this oscillation,

lim
x→0

sin(1/x) does not exist.
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 1.1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 1.1.5.

Limits of Difference Quotients

We have approximated limits of functions as x approached a particular num-
ber. We will consider another important kind of limit after explaining a few key
ideas.

Let f(x) represent the position function, in feet, of some particle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the particle is at position 10 ft., and when x = 5, the particle is at 20 ft. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the particle travelled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f(5)− f(1)
5− 1

=
10
4

= 2.5ft/s.

This difference quotient can be thought of as the familiar “rise over run”
used to compute the slopes of lines. In fact, that is essentially what we are
doing: given two points on the graph of f, we are finding the slope of the secant
line through those two points. See Figure 1.1.14.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
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Figure 1.1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.1.16: The difference quotient
evaluated at values of h near 0.

Chapter 1 Limits

consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.15. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

Despite the importance of limits to calculus, we often settle for an impre-
cise, intuitive understanding of what the limit of a function means. The precise
definition of the limit omitted from a course like Math 1560, and left for later
courses, such as Math 3500. For this course, we will use the following informal
definition.

Definition 1.1.1 Informal Definition of the Limit

Let I be an open interval containing c, and let f be a function defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim
x→c

f(x) = L,

if we can make the value of f(x) arbitrarily close to L by choosing x ̸= c
sufficiently close to c.

The formal definition of the limit makes precise the meaning of the phrases
“arbitrarily close” and “sufficiently close”. The problem with the definition we
have given is that, while it gives an intuitive understanding of themeaning of the
limit, it’s of no use for proving theorems about limits. In Section 1.3 wewill state
(but not prove) several theorems about limits which will allow use to compute
their values analytically, without recourse to tables of values.
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1.1 An Introduction To Limits

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. Your instructor may choose to skip Section
1.2, inwhich case it can be considered optional reading for the interested reader.
In the following exercises, we continue our introduction and approximate the
value of limits.
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Exercises 1.1
Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situations where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quotient?

6. When x is near 0, sin x
x

is near what value?

Problems
In Exercises 7 – 16, approximate the given limits both numer-
ically and graphically.

7. lim
x→1

x2 + 3x− 5

8. lim
x→0

x3 − 3x2 + x− 5

9. lim
x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

14. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

15. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

16. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 17 – 24, a function f and a value a are
given. Approximate the limit of the difference quotient,
lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π

8



1.2 Formal Definition of a Limit

1.2 Formal Definition of a Limit
This section introduces the formal definition of a limit. Many refer to this as “the
epsilon, delta,” definition, referring to the letters ε and δ of the Greek alphabet.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x-value, c, we say that “the
limit of the function f, as x approaches c, is a value L”:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if “y is near L” whenever “x is near c.”

The problem with these definitions (as with Definition 1.1.1 from Section
1.1 is that the words “tends,” “approach,” and especially “near” are not exact.
In what way does the variable x tend to, or approach, c? How near do x and y
have to be to c and L, respectively?

The definition we describe in this section comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lower-case Greek letter
delta, or δ, and the y-tolerance is denoted by lower-case epsilon, or ε. One
more rephrasing of 3′ nearly gets us to the actual definition:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathematically as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Letting the symbol “−→” represent the word “implies,” we can rewrite 3′′ as

|x− c| < δ −→ |y− L| < ε or c− δ < x < c+ δ −→ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any positive (but typically
small) values. Finally, we have the formal definition of the limit with the notation
seen in the previous section.

Definition 1.2.1 The Limit of a Function f

Let I be an open interval containing c, and let f be a function defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x ̸= c, if
|x− c| < δ, then |f(x)− L| < ε.

9
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Chapter 1 Limits

Note the order in which ε and δ are given. In the definition, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An example will help us understand this definition. Note that the explana-
tion is long, but it will take one through all steps necessary to understand the
ideas.

Example 1.2.1 Evaluating a limit using the definition
Show that lim

x→4

√
x = 2.

SÊ½çã®ÊÄ Beforeweuse the formal definition, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

1.5 < y < 2.5
1.5 <

√
x < 2.5

1.52 < x < 2.52

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ < 1.75. See Figure 1.2.1.

Given the y tolerance ε = 0.5, we have found an x tolerance, δ < 1.75, such
that whenever x is within δ units of 4, then y is within ε units of 2. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is 0.01, i.e., ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have δ < 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if ε = 0.5, then δ < 1.75 and if ε = 0.01, then δ ≤
0.0399. A pattern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of 2:

|y− 2| < ε

−ε < y− 2 < ε (Definition of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2). (Rewrite in the desired form)
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One word of caution is needed here. It
may seem a bit annoying/pedantic, but if
we really want to be precise in our argu-
ments, we should point out a flaw in our
“proof”: it won’t work if ε ≥ 4. This
shouldn’t really occur since ε is supposed
to be small, but it could happen. In the
cases where ε ≥ 4, taking δ = 1 would
do the job. If we want to cover all possi-
bilities, we should define δ to be themin-
imum of 1 and 4ε− ε2.
Actually, if we’re being really careful, we
should point out that our argument is
flawed as soon as ε > 2, since in the
“square all” step, we’d be squaring a neg-
ative number on the left-hand side. (As
we hope the reader is aware, squaring
both sides of an inequality is only a valid
step when both sides are positive.)

1.2 Formal Definition of a Limit

The “desired form” in the last step is “4− something < x < 4+ something.”
Sincewewant this last interval to describe an x tolerance around 4, we have that
either δ < 4ε− ε2 or δ < 4ε+ ε2, whichever is smaller:

δ < min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, the minimum is δ < 4ε − ε2. That’s the formula: given an ε, set
δ < 4ε− ε2.

We can check this for our previous values. If ε = 0.5, the formula gives
δ < 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ < 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, set δ < 4ε − ε2. Then if |x − 4| < δ (and x ̸= 4), then
|f(x) − 2| < ε, satisfying the definition of the limit. We have shown formally
(and finally!) that lim

x→4

√
x = 2.

The previous examplewas a little long in thatwe sampled a few specific cases
of ε before handling the general case. Normally this is not done. The previous
example is also a bit unsatisfying in that

√
4 = 2; why work so hard to prove

something so obvious? Many ε-δ proofs are long and difficult to do. In this sec-
tion, we will focus on examples where the answer is, frankly, obvious, because
the non–obvious examples are even harder. In the next section we will learn
some theorems that allow us to evaluate limits analytically, that is, without us-
ing the ε-δ definition.

Example 1.2.2 Evaluating a limit using the definition
Show that lim

x→2
x2 = 4.

SÊ½çã®ÊÄ Let’s do this example symbolically from the start. Let ε > 0
be given; we want |y − 4| < ε, i.e., |x2 − 4| < ε. How do we find δ such that
when |x− 2| < δ, we are guaranteed that |x2 − 4| < ε?

This is a bit trickier than the previous example, but let’s start by noticing that
|x2 − 4| = |x− 2| · |x+ 2|. Consider:

|x2 − 4| < ε −→ |x− 2| · |x+ 2| < ε −→ |x− 2| < ε

|x+ 2|
. (1.1)

Could we not set δ =
ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assumption. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In particular, we can (probably) assume that
δ < 1. If this is true, then |x − 2| < δ would imply that |x − 2| < 1, giving
1 < x < 3.

Now, back to the fraction
ε

|x+ 2|
. If 1 < x < 3, then 3 < x + 2 < 5 (add 2

to all terms in the inequality). Taking reciprocals, we have
1
5
<

1
|x+ 2|

<
1
3

which implies

1
5
<

1
|x+ 2|

which implies

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ <
ε

5
. To see why, let consider what follows when

we assume |x− 2| < δ:
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Chapter 1 Limits

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(Multiply by |x+ 2|)

|x2 − 4| < |x+ 2| · ε
5

(Combine left side)

|x2 − 4| < |x+ 2| · ε
5
< |x+ 2| · ε

|x+ 2| = ε (Using (1.2) as long as δ < 1)

We have arrived at |x2−4| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assumption; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of ε. The dotted inner lines show the bound-
aries defined by setting δ = ε/5. Note how these dotted lines are within the
dashed lines. That is perfectly fine; by choosing xwithin the dotted lines we are
guaranteed that f(x) will be within ε of 4.

In summary, given ε > 0, set δ = min{1, ε/5}. (We want δ ≤ ε/5, but
part of our argument relies on the assumption that δ ≤ 1, and this fails in the
case that ε > 5.) Then |x − 2| < δ implies |x2 − 4| < ε (i.e. |y − 4| < ε) as
desired. This shows that lim

x→2
x2 = 4. Figure 1.2.2 gives a visualization of this; by

restricting x to values within δ = ε/5 of 2, we see that f(x) is within ε of 4.

Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by assuming

1. |f(x) − L| < ε, then perform some algebraic manipulations to give an
inequality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch–work” phase
of our proof. Once we have δ, we can formally start with |x − c| < δ and use
algebraic manipulations to conclude that |f(x) − L| < ε, usually by using the
same steps of our “scratch–work” in reverse order.

We highlight this process in the following example.

Example 1.2.3 Evaluating a limit using the definition
Prove that lim

x→1
(x3 − 2x) = −1.

SÊ½çã®ÊÄ We start our scratch–work by considering |f(x)−(−1)| < ε:

|f(x)− (−1)| < ε

|x3 − 2x+ 1| < ε (Now factor)
|(x− 1)(x2 + x− 1)| < ε

|x− 1| < ε

|x2 + x− 1|
. (1.3)

12



1.2 Formal Definition of a Limit

We are at the phase of saying that |x − 1| < something, where something=
ε/|x2 + x− 1|. We want to turn that something into δ.

Since x is approaching 1, we are safe to assume that x is between 0 and 2.
So

0 < x < 2
0 < x2 < 4. (squared each term)

Since 0 < x < 2, we can add 0, x and 2, respectively, to each part of the inequal-
ity and maintain the inequality.

0 < x2 + x < 6
−1 < x2 + x− 1 < 5. (subtracted 1 from each part)

In Equation (1.3), we wanted |x−1| < ε/|x2+ x−1|. The above shows that
given any x in [0, 2], we know that

x2 + x− 1 < 5 which implies that
1
5
<

1
x2 + x− 1

which implies that
ε

5
<

ε

x2 + x− 1
. (1.4)

So we set δ < ε/5. This ends our scratch–work, and we begin the formal proof
(which also helps us understand why this was a good choice of δ).

Given ε, let δ < ε/5. We want to show that when |x − 1| < δ, then |(x3 −
2x)− (−1)| < ε. We start with |x− 1| < δ:

|x− 1| < δ

|x− 1| < ε

5
|x− 1| < ε

5
<

ε

|x2 + x− 1|
(for x near 1, from Equation (1.4))

|x− 1| · |x2 + x− 1| < ε

|x3 − 2x+ 1| < ε

|(x3 − 2x)− (−1)| < ε,

which is what we wanted to show. Thus lim
x→1

(x3 − 2x) = −1.

We illustrate evaluating limits once more.

Example 1.2.4 Evaluating a limit using the definition
Prove that lim

x→0
ex = 1.

SÊ½çã®ÊÄ Symbolically, we want to take the equation |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Here is our scratch–work:

|ex − 1| < ε

−ε < ex − 1 < ε (Definition of absolute value)
1− ε < ex < 1+ ε (Add 1)

ln(1− ε) < x < ln(1+ ε) (Take natural logs)

13



Note: Recall ln 1 = 0 and ln x < 0 when
0 < x < 1. So ln(1 − ε) < 0, hence we
consider its absolute value.

Chapter 1 Limits

Making the safe assumption that ε < 1 ensures the last inequality is valid (i.e.,
so that ln(1−ε) is defined). We can then set δ to be the minimum of | ln(1−ε)|
and ln(1+ ε); i.e.,

δ = min{| ln(1− ε)|, ln(1+ ε)} = ln(1+ ε).

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (Definition of absolute value)
− ln(1+ ε) < x < ln(1+ ε).

ln(1− ε) < x < ln(1+ ε). (since ln(1− ε) < − ln(1+ ε))

The above line is true by our choice of δ and by the fact that since | ln(1− ε)| >
ln(1+ ε) and ln(1− ε) < 0, we know ln(1− ε) < − ln(1+ ε).

1− ε < ex < 1+ ε (Exponentiate)
−ε < ex − 1 < ε (Subtract 1)

In summary, given ε > 0, let δ = ln(1 + ε). Then |x − 0| < δ implies
|ex − 1| < ε as desired. We have shown that lim

x→0
ex = 1.

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
1 instead. By using the substitution u = x−c, this reduces to showing limu→0 eu =
1 which we just did in the last example. As an added benefit, this shows that in
fact the function f(x) = ex is continuous at all values of x, an important concept
we will define in Section 1.6.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square–
roots and exponentials. It is very difficult to prove, using the techniques given
above, that lim

x→0
(sin x)/x = 1, as we approximated in the previous section.

There is hope. The next section shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of the following
section are employed.
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “definition” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be positive.

4. T/F: δ must always be positive.

Problems
In Exercises 5 – 14, prove the given limit using an ε− δ proof.

5. lim
x→4

(2x+ 5) = 13

6. lim
x→5

(3− x) = −2

7. lim
x→3

(
x2 − 3

)
= 6

8. lim
x→4

(
x2 + x− 5

)
= 15

9. lim
x→1

(
2x2 + 3x+ 1

)
= 6

10. lim
x→2

(
x3 − 1

)
= 7

11. lim
x→2

5 = 5

12. lim
x→0

(
e2x − 1

)
= 0

13. lim
x→1

1
x
= 1

14. lim
x→0

sin x = 0 (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = 0.)
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Chapter 1 Limits

1.3 Finding Limits Analytically
In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is 1) make a really
good approximation either graphically or numerically, and 2) verify our approx-
imation is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome (and in all likelihood beyond
the scope of your course), this section gives a series of theorems which allow us
to find limits much more quickly and intuitively.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Properties
Let b, c, L and K be real numbers, let n be a positive integer, and let f and g be
functions with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. Identity lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar Multiples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. Quotients: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L
(If n is even then require f(x) ≥ 0 on I.)

9. Compositions: Adjust our previously given limit situation to:

lim
x→c

f(x) = L, lim
x→L

g(x) = K and g(L) = K.

Then lim
x→c

g(f(x)) = K.

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 1.3.1 Using basic limit properties
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:
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1.3 Finding Limits Analytically

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMultiple and Sum/Difference rules, we find that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar Multiple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the function. This holds
true for all polynomials, and also for rational functions (which are quotients of
polynomials), as stated in the following theorem.

Theorem 1.3.2 Limits of Polynomial and Rational Functions

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 1.3.2 Finding a limit of a rational function
Using Theorem 1.3.2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 1.3.2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.
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Chapter 1 Limits

It was likely frustrating in Section 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.2.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behaviour is particularly “nice” in terms of limits. In the next section, we will
give a formal name to these functions that behave “nicely.”

Theorem 1.3.3 Special Limits

Let c be a real number in the domain of the given function and let n be a positive integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Example 1.3.3 Evaluating limits analytically
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straightforward application of Theorem1.3.3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 1.3.3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.3 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.
18



1.3 Finding Limits Analytically

4. Again, we can approach this in two ways. First, we can use the exponen-
tial/logarithmic identity that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the limit Composition Rule of Theorem 1.3.1. Using The-
orem 1.3.3, we have lim

x→1
ln x = ln 1 = 0. Applying the Composition rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

5. We encountered this limit in Section 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condition of Theorem 1.3.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are still unable to eval-
uate this limit with tools we currently have at hand.

The section could have been titled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of functions, we can find limits involving sums,
products, powers, etc., of these functions. We further the development of such
comparative tools with the Squeeze Theorem, a clever and intuitive way to find
the value of some limits.

Before stating this theorem formally, suppose we have functions f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 1.3.4 Squeeze Theorem

Let f, g and h be functions on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate functions bywhich to “squeeze”
the given function of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluating
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.
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Chapter 1 Limits

Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
1.3.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

Figure 1.3.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

Multiply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequalities, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequalities hold for all values of θ near 0, even negative values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth mentioning. First, one
might be discouraged by this application, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
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Figure 1.3.2: Graphing f in Example 1.3.5
to understand a limit.

1.3 Finding Limits Analytically

will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ratio of x and sin x
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = x and y = sin x are
essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equalling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulting in a limit of 1.

Our final theorem for this section will be motivated by the following exam-
ple.

Example 1.3.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SÊ½çã®ÊÄ We begin by attempting to apply Theorem 1.3.2 and substi-
tuting 1 for x in the quotient. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the theorem.
By graphing the function, as in Figure 1.3.2, we see that the function seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quotient can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.
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Chapter 1 Limits

The function is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the function at 1, only the value the function approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.

The key to the above example is that the functions y = (x2− 1)/(x− 1) and
y = x+1 are identical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 1.3.6 Limits of Functions Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

tional function of the form g(x)/f(x) and directly evaluating the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 1.3.6. We demon-
strate this once more.

Example 1.3.6 Evaluating a limit using Theorem 1.3.6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SÊ½çã®ÊÄ We attempt to apply Theorem 1.3.2 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, synthetic division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x − 3) terms as long as x ̸= 3. Using Theorem 1.3.6 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.
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1.3 Finding Limits Analytically

We end this section by revisiting a limit first seen in Section 1.1, a limit of
a difference quotient. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Example 1.3.7 Evaluating the limit of a difference quotient
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first attempt should be to em-
ploy Theorem 1.3.2 and substitute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.6, as h ̸= 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.3; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.6 we give
a name to this nice behaviour; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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Exercises 1.3
Terms and Concepts
1. Explain in your ownwords, without using ε-δ formality, why

lim
x→c

b = b.

2. Explain in your ownwords, without using ε-δ formality, why
lim
x→c

x = c.

3. What does the text mean when it says that certain func-
tions’ “behaviour is ‘nice’ in terms of limits”? What, in par-
ticular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following information:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relative sizes of f(x) and g(x)
as x approaches 1?

6. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
In Exercises 7 – 14, use the following information to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

• lim
x→9

f(x) = 6, lim
x→6

f(x) = 9, f(9) = 6

• lim
x→9

g(x) = 3, lim
x→6

g(x) = 3, g(6) = 9

7. lim
x→9

(f(x) + g(x))

8. lim
x→9

(3f(x)/g(x))

9. lim
x→9

(
f(x)− 2g(x)

g(x)

)

10. lim
x→6

(
f(x)

3− g(x)

)
11. lim

x→9
g
(
f(x)
)

12. lim
x→6

f
(
g(x)

)
13. lim

x→6
g
(
f(f(x))

)
14. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

In Exercises 15 – 18, use the following information to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

• lim
x→1

f(x) = 2, lim
x→10

f(x) = 1, f(1) = 1/5

• lim
x→1

g(x) = 0, lim
x→10

g(x) = π, g(10) = π

15. lim
x→1

f(x)g(x)

16. lim
x→10

cos
(
g(x)

)
17. lim

x→1
f(x)g(x)

18. lim
x→1

g
(
5f(x)

)
In Exercises 19 – 34, evaluate the given limit.

19. lim
x→3

x2 − 3x+ 7

20. lim
x→π

(
x− 3
x− 5

)7

21. lim
x→π/4

cos x sin x

22. lim
x→1

2x− 2
x+ 4

23. lim
x→0

ln x

24. lim
x→3

4x
3−8x

25. lim
x→π/6

csc x

26. lim
x→0

ln(1+ x)

27. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

28. lim
x→π

3x+ 1
1− x

29. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

30. lim
x→0

x2 + 2x
x2 − 2x

31. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

32. lim
x→2

x2 − 10x+ 16
x2 − x− 2

33. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16
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34. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 35 – 38, where appro-
priate, to evaluate the given limit.

35. lim
x→0

x sin
(
1
x

)

36. lim
x→0

sin x cos
(

1
x2

)
37. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

38. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

Exercises 39 – 43 challenge your understanding of limits but
can be evaluated using the knowledge gained in this section.

39. lim
x→0

sin 3x
x

40. lim
x→0

sin 5x
8x

41. lim
x→0

ln(1+ x)
x

42. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

43. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)
)
does not exist.

(d) Show why the answer to part (c) does not violate the
Composition Rule of Theorem 1.3.1.

25



The precise versions of these definitions,
in the language of Section 1.2 are as fol-
lows:
For the right-hand limit, lim

x→c+
f(x) = L if

and only if for every ε > 0, there exists a
δ > 0 such that if c < x < c + δ, then
|f(x)− L| < ε.
The definition of the left-hand limit is sim-
ilar, with the condition c < x < c + δ
replaced by c− δ < x < c.

Chapter 1 Limits

1.4 One Sided Limits
We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tediousmethod for evaluating them. The previous section gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and rational, trigono-
metric, exponential and logarithmic functions (and their sums, products, etc.) all
behave “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions failed to exist:

1. The function approached different values from the left and right,

2. The function grows without bound, and

3. The function oscillates.

In this sectionwe explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with definitions that are very similar to the definition
of the limit given in Section 1.1, but the notation is slightly different and “x ̸= c”
is replaced with either “x < c” or “x > c.”

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits

Left-Hand Limit
Let f be a function defined on (a, c) for some a < c and let L be a real
number.
We say that the limit of f(x), as x approaches c from the left, is L, or, the
left–hand limit of f at c is L, and write

lim
x→c−

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x < c sufficiently
close to c.

Right-Hand Limit
Let f be a function defined on (c, b) for some b > c and let L be a real
number. We say that the limit of f(x), as x approaches c from the right,
is L, or, the right–hand limit of f at c is L, and write

lim
x→c+

f(x) = L,

if we can make f(x) arbitrarily close to L by choosing x > c sufficiently
close to c.

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of c,” i.e., where x < c. The admittedly imperfect notation
x → c− is used to imply that we look at values of x to the left of c. The nota-
tion has nothing to do with positive or negative values of either x or c. A similar
statement holds for evaluating right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous sections
to help us evaluate these limits; we just restrict our view to one side of c.

We practice evaluating left- and right-hand limits through a series of exam-
ples.
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Figure 1.4.1: A graphof f in Example 1.4.1.

1.4 One Sided Limits

Example 1.4.1 Evaluating one sided limits
Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 1.4.1. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effective in evaluating the limits than using f itself. Therefore we will refer often
to the graph.

1. As x goes to 1 from the left, we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not matter that there is an “open circle” there; we are
evaluating a limit, not the value of the function. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
section. The function does not approach one particular value, but two
different values from the left and the right.

4. Using the definition and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a left-hand limit at 0 as f is

not defined for values of x < 0.

6. Using the definition and the graph, f(0) = 0.

7. As x goes to 2 from the left, we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the definition of the function show that f(2) is not defined.

Note how the left and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left and right-hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits

Let f be a function defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.
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Chapter 1 Limits

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 – 1.4.4 is that the value of the func-
tionmay/may not be equal to the value(s) of its left/right-hand limits, evenwhen
these limits agree.

Example 1.4.2 Evaluating limits of a piecewise–defined function
Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 . Evaluate the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ In this example, we evaluate each expression using just the
definition of f, without using a graph as we did in the previous example.

1. As x approaches 1 from the left, we consider a limit where all x-values are
less than 1. Thismeansweuse the 2−xpiece of the piecewise function f as
the domain for that piece is (0, 1). As the x-values near 1, 2−x approaches
1; that is, f(x) approaches 1. Therefore lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we consider a limit where all x-values
are greater than 1. Thismeanswe use the (x−2)2 piece of f as the domain
for that piece is (1, 2). As the x-values near 1, (x− 2)2 approaches 1; that
is, we see that again f(x) approaches 1. Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and left. Therefore lim

x→1
f(x) = 1.

4. Neither piece of f is defined for the x-value of 1; in other words, 1 is not
in the domain of f. Therefore f(1) is not defined.

5. As x approaches 0 from the right, we consider a limit where all x-values
are greater than 0. This means we use the 2− x piece of f. As the x-values
near 0, 2− x approaches 2; that is, f(x) approaches 2. So lim

x→0+
f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x approaches 2 from the left, we consider a limit where all x-values are
less than 2. This means we use the (x − 2)2 piece of f. As the x-values
near 2, (x− 2)2 nears 0; that is, f(x) approaches 0. So lim

x→2−
f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

We can confirm our analytic result by consulting the graph of f shown in Figure
1.4.2. Note the open circles on the graph at x = 0, 1 and 2, where f is not de-
fined.
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Figure 1.4.4: Graphing f in Example 1.4.4

1.4 One Sided Limits

Example 1.4.3 Evaluating limits of a piecewise–defined function
Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 1.4.3. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear by looking at the graph that both the left and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 1.4.4 Evaluating limits of a piecewise–defined function
Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 1.4.4. Evaluate the fol-

lowing.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear from the definition of the function and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 1.4.1 – 1.4.4 we were asked to find both lim
x→1

f(x) and f(1). Con-
sider the following table:

lim
x→1

f(x) f(1)

Example 1.4.1 does not exist 1
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1

Only in Example 1.4.4 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in the next section, entitled “Continuity.” In short, a continu-
ous function is one in which when a function approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually attains that value at c. Such functions behave

nicely as they are very predictable.
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Exercises 1.4
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→0−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→2+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined functions f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 1.5.1: Graphing f(x) = 1/x2 for
values of x near 0.

Chapter 1 Limits

1.5 Limits Involving Infinity

In Definition 1.1.1 we stated that in the equation lim
x→c

f(x) = L, both c and Lwere
numbers. In this section we relax that definition a bit by considering situations
when it makes sense to let c and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x2, as shown in Figure 1.5.1.
Note how, as x approaches 0, f(x) grows very, very large – in fact, it growswithout
bound. It seems appropriate, and descriptive, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notation such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

Definition 1.5.1 Limit of Infinity,∞

Let I be an open interval containing c, and let f be a function defined on
I, except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x ̸=
c sufficiently close to c.

• The limit of f(x), as x approaches c, is negative infinity, denoted
by

lim
x→c

f(x) = −∞,

if we can obtain any arbitrarily large negative value for f(x) by
choosing x ̸= c sufficiently close to c.

This is once again an informal definition, like Definition 1.1.1: we say that if
we get close enough to c, then we can make f(x) as large as we want, without
giving precise answers to the questions “How close?” or “How large?”

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly stating
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descriptive.

We define one-sided limits that approach infinity in a similar way.
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x → 1 in Example 1.5.1.
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Figure 1.5.3: Evaluating lim
x→0

1
x
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1.5 Limits Involving Infinity

Definition 1.5.2 One-Sided Limits of Infinity

• Let f be a function defined on (a, c) for some a < c.
The limit of f(x), as x approaches c from the left, is infinity, or, the
left-hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where a < x < c.

• Let f be a function defined on (c, b) for some b > c.
The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to c, where c < x < b.

• The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.5.1.

Example 1.5.1 Evaluating limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.5.2.

SÊ½çã®ÊÄ In Example 1.1.4 of Section 1.1, by inspecting values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
tion does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general, we
can see that as the difference |x − 1| gets smaller, the value of f(x) gets larger
and larger, so we may say lim

x→1
1/(x− 1)2 = ∞.

Example 1.5.2 Evaluating limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.5.3.

SÊ½çã®ÊÄ It is easy to see that the function grows without bound near
0, but it does so in differentways on different sides of 0. Since its behaviour is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.
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Figure 1.5.5: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

Chapter 1 Limits

Vertical asymptotes
The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 1.5.3 Vertical Asymptote

Let I be an interval that either contains c or has c as an endpoint, and let
f be a function defined on I, except possibly at c.
If the limit of f(x) as x approaches c from either the left or right (or both)
is∞ or−∞, then the line x = c is a vertical asymptote of f.

Example 1.5.3 Finding vertical asymptotes
Find the vertical asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ Vertical asymptotes occurwhere the function growswithout
bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the function take on
large values. In the case of the given function, the denominator is 0 at x = ±2.
Substituting in values of x close to 2 and−2 seems to indicate that the function
tends toward ∞ or −∞ at those points. We can graphically confirm this by
looking at Figure 1.5.4. Thus the vertical asymptotes are at x = ±2.

When a rational function has a vertical asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a vertical asymptote at x = 1,
as shown in Figure 1.5.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Cancelling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a little contrived. Another example demon-
strating this important concept is f(x) = (sin x)/x. We have considered this

function several times in the previous sections. We found that lim
x→0

sin x
x

= 1;
i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.
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1.5 Limits Involving Infinity

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respectively. However, 0/0 is not a valid arithmetical expression. It gives
no indication that the respective limits are 1 and 2.

With a little cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respective rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That workmay be algebraic (such as factoring and cancelling)
or it may require a tool such as the Squeeze Theorem. In a later section we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluating a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quantity
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞.

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be∞,−∞, or simply not exist if the
left- and right-hand limits do not match.
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Figure 1.5.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 1.5.4.

Chapter 1 Limits

Limits at Infinity and Horizontal Asymptotes

At the beginning of this sectionwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behaviour of the function
to the “far right” of the graph. Wemake this notionmore explicit in the following
definition.

Definition 1.5.4 Limits at Infinity and Horizontal Asymptote

Let L be a real number.

1. Let f be a function defined on (a,∞) for some number a. The
limit of f at infinity is L, denoted lim

x→∞
f(x) = L, if we can make the

value of f(x) arbitrarily close to L by choosing a sufficiently large
positive value of x.

2. Let f be a function defined on (−∞, b) for some number b. The
limit of f at negative infinity is L, denoted lim

x→−∞
f(x) = L, if we

can make the value of f(x) arbitrarily close to L by choosing a
sufficiently large negative value of x.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the line y = L is a
horizontal asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definition
with Definition 1.5.1.

Example 1.5.4 Approximating horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
mating the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.5.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1. Later, we will show how to deter-
mine this analytically.

Horizontal asymptotes can take on a variety of forms. Figure 1.5.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.5.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.5.7(c) shows that f(x) = (sin x)/x has even more interesting behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.5.7: Considering different types of horizontal asymptotes.

We can analytically evaluate limits at infinity for rational functions once we
understand lim

x→∞
1/x. As x gets larger and larger, 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x.

It is now not much of a jump to conclude the following: for any positive
integer n, we have

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence multiplying by 1), which is the largest power of x to appear
in the function. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.
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Chapter 1 Limits

Theorem 1.5.1 Limits of Rational Functions at Infinity

Let f(x) be a rational function of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then after dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indicative of some sort of infinite limit.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the function behaves
like an/(bmxm−n), which tends toward 0. If n > m, the function behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

, graphed in Figure 1.5.7(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is positive and−1 when x is negative. Hence we get
asymptotes of y = 1 and y = −1, respectively.

Example 1.5.5 Finding a limit of a rational function

Confirm analytically that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 1.5.4.

SÊ½çã®ÊÄ Before using Theorem 1.5.1, let’s use the technique of eval-
uating limits at infinity of rational functions that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
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Figure 1.5.8: Visualizing the functions in
Example 1.5.6.

1.5 Limits Involving Infinity

take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 1.5.1 directly; in this case n = m so the limit is the
ratio of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 1.5.6 Finding limits of rational functions
Use Theorem 1.5.1 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

SÊ½çã®ÊÄ

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.5.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the ratio of the coefficients of x2, which
is−1/3. See Figure 1.5.8(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 1.5.8(c).
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Exercises 1.5
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly stating that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly stating that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a vertical asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a function with a vertical asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
continuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the function.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

.....

−10

.

−5

.

5

.

10

. −1.

−0.5

.

0.5

.

1

.

x

.

y

12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

.....

−10

.

−5

.

5

.

10

. −100.

−50

.

50

.

100

.

x

.

y
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

..... −1.
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.
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.

1

.
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.

−3π

.

−2π

.

−π

.

π

.

2π

.

3π

.

4π

.

x

.

y

14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

.....
−10
.

−5
.

5
.

50

.

100

.

150

. x.

y

In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, identify the horizontal and vertical
asymptotes, if any, of the given function.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f continuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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Figure 1.6.1: A graphof f in Example 1.6.1.
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Figure 1.6.2: A graph of the step function
in Example 1.6.2.

Chapter 1 Limits

1.6 Continuity
As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to

1, f(x) is close to 3. We have seen, though, that this is not necessarily a good
indicator of what f(1) actually is. This can be problematic; functions can tend
to one value but attain another. This section focuses on functions that do not
exhibit such behaviour.

Definition 1.6.1 Continuous Function

Let f be a function defined on an open interval I containing c.

1. f is continuous at c if lim
x→c

f(x) = f(c).

2. f is continuous on I if f is continuous at c for all values of c in I. If f
is continuous on (−∞,∞), we say f is continuous everywhere.

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 1.6.1 Finding intervals of continuity
Let f be defined as shown in Figure 1.6.1. Give the interval(s) on which f is con-
tinuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for continuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be continuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is continuous at every point of (0, 3) except at x = 1.
Therefore f is continuous on (0, 1) and (1, 3).

Our definition of continuity (currently) only applies to open intervals. After
Definition 1.6.2, we’ll be able to say that f is continuous on [0, 1) and (1, 3].

Example 1.6.2 Finding intervals of continuity
The floor function, f(x) = ⌊x⌋, returns the largest integer smaller than, or equal
to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.6.2
demonstrates why this is often called a “step function.”

Give the intervals on which f is continuous.

SÊ½çã®ÊÄ We examine the three criteria for continuity.
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1.6 Continuity

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The function is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is continuous everywhere except at integer values of c. So
the intervals on which f is continuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definition of continuity on an interval specifies the interval is an open
interval. We can extend the definition of continuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

Definition 1.6.2 Continuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a < b.
f is continuous on [a, b] if:

1. f is continuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about continuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Using this new definition, we can adjust our answer in Example 1.6.1 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We
can also revisit Example 1.6.2 and state that the floor function is continuous on
the following half–open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is continuous everywhere; after all, if f is
continuous on [0, 1) and [1, 2), isn’t f also continuous on [0, 2)? Of course, the
answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.

Example 1.6.3 Determining intervals on which a function is continuous
For each of the following functions, give the domain of the function and the
interval(s) on which it is continuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|
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Chapter 1 Limits

SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a rational func-
tion, we apply Theorem 1.3.2 to recognize that f is continuous on all of its
domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 1.3.3 shows that sin x is continuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.3 shows that

f(x) =
√
x is continuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1.3.1 and

1.3.3 shows that f is continuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

function as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

function is continuous on all of its domain, giving that f is continuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is continuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transitions from one “piece” of its definition to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is continuous everywhere.

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.2 apply to continuity aswell.
Further, now knowing the definition of continuity we can re–read Theorem 1.3.3
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 1.6.1 Properties of Continuous Functions

Let f and g be continuous functions on an interval I, let c be a real number
and let n be a positive integer. The following functions are continuous on
I.

1. Sums/Differences: f± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (If n is even then require f(x) ≥ 0 on I.)

7. Compositions: Adjust the definitions of f and g to: Let f be
continuous on I, where the range of f on I is J,
and let g be continuous on J. Then g ◦ f, i.e.,
g(f(x)), is continuous on I.
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Figure 1.6.3: A graph of f in Example
1.6.4(1).

1.6 Continuity

Theorem 1.6.2 Continuous Functions

Let n be a positive integer. The following functions are continuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = csc x

5. f(x) = sec x

6. f(x) = cot x

7. f(x) = ax (a > 0)

8. f(x) = ln x

9. f(x) = n
√
x

We apply these theorems in the following Example.

Example 1.6.4 Determining intervals on which a function is continuous
State the interval(s) on which each of the following functions is continuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ Weexamine each in turn, applying Theorems 1.6.1 and 1.6.2
as appropriate.

1. The square–root terms are continuous on the intervals [1,∞) and (−∞, 5],
respectively. As f is continuous only where each term is continuous, f is
continuous on [1, 5], the intersection of these two intervals. A graph of f
is given in Figure 1.6.3.

2. The functions y = x and y = sin x are each continuous everywhere, hence
their product is, too.

3. Theorem 1.6.2 states that f(x) = tan x is continuous “on its domain.” Its
domain includes all real numbers except odd multiples of π/2. Thus the
intervals on which f(x) = tan x is continuous are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricting y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

Classifying discontinuities
We now know what it means for a function to be continuous, so of course we
can easily say what it means for a function to be discontinuous; namely, not
continuous. However, to better understand continuity it is worth our time to
discuss the different ways in which a function can fail to be discontinuous. By
definition, a function f is continuous at a point a in its domain if lim

x→a
f(x) = f(a).

If this equality fails to hold, then f is not continuous. We note, however, that
there are a number of different things that can go wrong with this equation.
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Figure 1.6.4: The graph of a function with
a removable discontinuity at x = 0

Figure 1.6.5: The graph of a function with
a jump discontinuity at x = 1

Figure 1.6.6: The graph of a function with
an infinite discontinuity at x = 2

Chapter 1 Limits

1. lim
x→a

f(x) = L exists, but L ̸= f(a), or f(a) is undefined. Such a discontinuity
is called a removable discontinuity.
A removable discontinuity can be pictured as a “hole” in the graph of f.
The term “removable” refers to the fact that by simply redefining f(a) to
equal L (that is, changing the value of f at a single point), we can create a
new function that is continuous at x = a, and agrees with f at all x ̸= a.

2. lim
x→a+

f(x) = L and lim
x→a−

f(x) = M exist, but L ̸= M. In this case the left and
right hand limits both exist, but since they are not equal, the limit of f as
x → a does not exist. Such a discontinuity is called a jump discontinuity.
The phrase “jump discontinuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The function f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negative) as x approaches a. Such
a discontinuity is called an infinite discontinuity.
Infinite discontinuities are most easily understood in terms of infinite lim-
its, which we will discuss in the next section.

4. limx→a f(x) does not exist, for reasons other than the above. Such discon-
tinuities are called essential discontinuities . With jump and infinite dis-
continuities, the limit fails to exist, but in ways that can still be described
or even quantified. Essential discontinuities include examples such as
f(x) = sin(1/x) as x → 0, where the function oscillates infinitely often, or
is otherwise so badly-behaved that the limit does not exist.

Consequences of continuity
A common way of thinking of a continuous function is that “its graph can be
sketched without lifting your pencil.” That is, its graph forms a “continuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definition glosses over some of the finer points of continuity. Very
strange functions are continuous that one would be hard pressed to actually
sketch by hand.

This intuitive notion of continuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is continuous on [1, 2] (i.e., its graph can be sketched as a continu-
ous curve from (1,−10) to (2, 5)) then we know intuitively that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some time, for instance, but we are guaranteed all
values between−10 and 5.

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.6.3 Intermediate Value Theorem

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value c in (a, b) such that f(c) = y.
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Figure 1.6.7: Graphing a root of f(x) =
x− cos x.

Iteration Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.6.8: Iterations of the Bisection
Method of Root Finding

1.6 Continuity

One important application of the Intermediate Value Theorem is root find-
ing. Given a function f, we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximation
of the root.

3. f(d) > 0: Thenwe know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
mation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.6.5 Using the Bisection Method
Approximate the root of f(x) = x − cos x, accurate to three places after the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure 1.6.7.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
Bisection Method, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Iteration 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
tinue to check the endpoints, just the midpoint. Thus we put the rest of
the iterations in Figure 1.6.8.

Notice that in the 12th iteration we have the endpoints of the interval each
starting with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places after the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where f is 0. The
IntermediateValue Theoremstates that the actual zero is still within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places after the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a 47



Chapter 1 Limits

second for the program to run the necessary 35 iterations. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iterations).

It is a simple matter to extend the Bisection Method to solve problems sim-
ilar to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function gwhere g(x) = f(x)−1. Then
use the Bisection Method to solve g(x) = 0.

Similarly, given two functions f and g, we can use the Bisection Method to
solve f(x) = g(x). Once again, create a new function hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In Section 4.1 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined continuity and explored properties of continuous functions, and

• considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.
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Exercises 1.6
Terms and Concepts
1. In your own words, describe what it means for a function

to be continuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a function?

4. Given functions f and g on an interval I, how can the Bisec-
tion Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is continuous at c.

6. T/F: If f is continuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is continuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is continuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is continuous on [0, 1) and [1, 2), then f is continu-
ous on [0, 2).

10. T/F: The sum of continuous functions is also continuous.

Problems
In Exercises 11 – 18, a graph of a function f is given along with
a value a. Determine if f is continuous at a; if it is not, state
why it is not.

11. a = 1
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2
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18. a = 3π/2
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In Exercises 19 – 22, determine if f is continuous at the indi-
cated values. If not, explain why.

19. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

20. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 23 – 34, give the intervals on which the given
function is continuous.

23. f(x) = x2 − 3x+ 9

24. g(x) =
√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s

32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

Exercises 35 – 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be continuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

36. Let g be continuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be continuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a function on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 – 42, use the Bisection Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given function in the given interval.

39. f(x) = x2 + 2x− 4 on [1, 1.5].

40. f(x) = sin x− 1/2 on [0.5, 0.55]

41. f(x) = ex − 2 on [0.65, 0.7].

42. f(x) = cos x− sin x on [0.7, 0.8].

Review

43. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

44. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

45. Give an example of function f(x) forwhich lim
x→0

f(x) does not
exist.
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2: D�Ù®ò�ã®ò�Ý
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivative. Limits describe where a function is going; derivatives describe
how fast the function is going.

2.1 Instantaneous Rates of Change: The Derivative
A common amusement park ride lifts riders to a height then allows them to free-
fall a certain distance before safely stopping them. Suppose such a ride drops
riders from a height of 150 feet. Students of physics may recall that the height
(in feet) of the riders, t seconds after free-fall (and ignoring air resistance, etc.)
can be accurately modelled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall after 2 seconds (corresponding
to a height of 86 ft.). How fast will the riders be travelling at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance
change in time

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If we make the time
interval small, we will get a good approximation. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximation of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 ft/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 ft/s.

We can do this for smaller and smaller intervals of time. For instance, over
a time span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 ft/s.



h
Average Velocity

ft/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1.2: Approximating the instan-
taneous velocity with average velocities
over a small time period h.

Chapter 2 Derivatives

Over a time span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 ft/s.

Whatwe are really computing is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are computing

f(2+ h)− f(2)
h

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0”
indeterminate form. So we employ a limit, as we did in Section 1.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 2.1.2. It looks as though the velocity is approaching−64 ft/s.
Computing the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2+ h, f(2+ h)). In Figure 2.1.1, the secant line corresponding to h = 1 is
shown in three contexts. Figure 2.1.1(a) shows a “zoomed out” version of fwith
its secant line. In (b), we zoom in around the points of intersection between
f and the secant line. Notice how well this secant line approximates f between
those twopoints – it is a commonpractice to approximate functionswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.1.1, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 2.1.1: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Definition 2.1.1 Derivative at a Point

Let f be a continuous function on an open interval I and let c be in I. The
derivative of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differentiable
at c; if the limit does not exist, then f is not differentiable at c. If f is
differentiable at every point in I, then f is differentiable on I.

Definition 2.1.2 Tangent Line

Let f be continuous on an open interval I and differentiable at c, for some
c in I. The line with equation ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivative of f at c.

Some examples will help us understand these definitions.
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Figure 2.1.3: A graph of f(x) = 3x2+5x−
7 and its tangent lines at x = 1 and x = 3.

Chapter 2 Derivatives

Example 2.1.1 Finding derivatives and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equation of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equation of the tangent line
to the graph f at x = 3.

SÊ½çã®ÊÄ

1. We compute this directly using Definition 2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equation, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definition,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equation y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 2.1.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing information from thederiva-
tive is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.
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Figure 2.1.4: A graph of f(x) = 3x2+5x−
7, along with its normal line at x = 1.
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Definition 2.1.3 Normal Line

Let f be continuous on an open interval I and differentiable at c, for some
c in I. The normal line to the graph of f at c is the line with equation

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the vertical line
through

(
c, f(c)

)
; that is, x = c.

Example 2.1.2 Finding equations of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 2.1.1. Find the equations of the normal
lines to the graph of f at x = 1 and x = 3.

SÊ½çã®ÊÄ In Example 2.1.1, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope−1/11. An equation for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is plotted with y = f(x) in Figure 2.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathematically, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ratio of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equation for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not–
so–difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f, the best linear approximation
to f is its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit from a tangent–line approxima-
tion is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example 2.1.3 Finding the derivative of a linear function
Consider f(x) = 3x + 5. Find the equation of the tangent line to f at x = 1 and
x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using Definition
2.1.1.
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Figure 2.1.5: f(x) = sin x graphed with an
approximation to its tangent line at x = 0.

Chapter 2 Derivatives

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only functions with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivative at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 2.1.4 Numerical approximation of the tangent line
Approximate the equation of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equation of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivative. This is where we will make an approximation.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximation of the equation of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.1.5. The graph seems to imply the
approximation is rather good.

Recall from Section 1.3 that lim
x→0

sin x
x

= 1, meaning for values of x near 0,
sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.1. To find the derivative of f at x = 1, we needed
to evaluate a limit. To find the derivative of f at x = 3, we needed to again
evaluate a limit. We have this process:

input specific
number c

do something
to f and c

return
number f ′(c)
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2.1 Instantaneous Rates of Change: The Derivative

This process describes a function; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
function f ′(x)

The output is the “derivative function,” f ′(x). The f ′(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.

Definition 2.1.4 Derivative Function

Let f be a differentiable function on an open interval I. The function

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivative of f.

Notation:
Let y = f(x). The following notations all represent the derivative of f:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notation
dy
dx

is one symbol; it is not the fraction “dy/dx”. The
notation, while somewhat confusing at first, was chosen with care. A fraction–
looking symbol was chosen because the derivative has many fraction–like prop-
erties. Among other places, we see these properties at workwhenwe talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 2.1.5 Finding the derivative of a function
Let f(x) = 3x2 + 5x− 7 as in Example 2.1.1. Find f ′(x).

SÊ½çã®ÊÄ We apply Definition 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computation of f ′(x) affirm these facts.
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Chapter 2 Derivatives

Example 2.1.6 Finding the derivative of a function
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply Definition 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

So f ′(x) =
−1

(x+ 1)2
. To practice using our notation, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 2.1.7 Finding the derivative of a function
Find the derivative of f(x) = sin x.

SÊ½çã®ÊÄ Before applyingDefinition 2.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we settled
for an approximation in Example 2.1.4.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig identity

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fractions)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine function is a nice
function. Then again, perhaps this is not entirely surprising. The sine function
is periodic – it repeats itself on regular intervals. Therefore its rate of change
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f(x) = |x|. Notice how the slope of
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Figure 2.1.7: A graph of the derivative of
f(x) = |x|.

2.1 Instantaneous Rates of Change: The Derivative

also repeats itself on the same regular intervals. We should have known the
derivative would be periodic; we now know exactly which periodic function it is.

Thinking back to Example 2.1.4, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivative. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 2.1.8 Finding the derivative of a piecewise defined function
Find the derivative of the absolute value function,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 2.1.6.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computation shows that
d
dx
(
x
)
= 1.

We need to also find the derivative at x = 0. By the definition of the deriva-
tive at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our function’s definition switches from one piece
to other, we need to consider left and right-hand limits. Consider the following,
where we compute the left and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the left and right hand limits are
not equal. Therefore the limit does not exist at 0, and f is not differentiable at
0. So we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump discontinuity at 0; see Figure 2.1.7.
So f(x) = |x| is differentiable everywhere except at 0.

The point of non-differentiability came where the piecewise defined func-
tion switched from one piece to the other. Our next example shows that this
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Figure 2.1.9: A graph of f ′(x) in Example
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Chapter 2 Derivatives

does not always cause trouble.

Example 2.1.9 Finding the derivative of a piecewise defined function
Find the derivative of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2 . See Figure 2.1.8.

SÊ½çã®ÊÄ Using Example 2.1.7, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We still need to find f ′(π/2). Notice at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quotient limit at
x = π/2, utilizing again left and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0.

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0.

Since both the left and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 2.1.9 for a graph of this function.

Recall we pseudo–defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo–definition for
differentiability as well: it is a continuous function that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.1.6. Even though the func-
tion f in Example 2.1.9 is piecewise–defined, the transition is “smooth” hence it
is differentiable. Note how in the graph of f in Figure 2.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”
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2.1 Instantaneous Rates of Change: The Derivative

Differentiablity on Closed Intervals

When we defined the derivative at a point in Definition 2.1.1, we specified
that the interval I over which a function f was defined needed to be an open
interval. Open intervals are required so that we can take a limit at any point c in
I, meaning we want to approach c from both the left and right.

Recall we also required open intervals in Definition 1.6.1 when we defined
what it meant for a function to be continuous. Later, we used one-sided limits to
extend continuity to closed intervals. We now extend differentiability to closed
intervals by again considering one-sided limits.

Ourmotivation is three-fold. First, we consider “common sense.” In Example
2.1.5 we found that when f(x) = 3x2+5x−7, f ′(x) = 6x+5, and this derivative
is defined for all real numbers, hence f is differentiable everywhere. It seems
appropriate to also conclude that f is differentiable on closed intervals, like [0, 1],
as well. After all, f ′(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) =
√
x. The domain of f is [0,∞). Is f differentiable

on its domain – specifically, is f differentiable at 0? (We’ll consider this in the
next example.)

Finally, in later sections, having the derivative defined on closed intervals will
prove useful. One such place is Section 7.4 where the derivative plays a role in
measuring the length of a curve.

After a formal definition of differentiability on a closed interval, we explore
the concept in an example.

Definition 2.1.5 Differentiability on a Closed Interval

Let f be continuous on [a, b] and differentiable on (a, b), and let the one-
sided limits

lim
h→0+

f(a+ h)− f(a)
h

and lim
h→0−

f(b+ h)− f(b)
h

exist. Then we say f is differentiable on [a, b].

For all the functions f in this text, we can determine differentiability on [a, b]
by considering the limits limx→a+ f ′(x) and limx→b− f ′(x). This is often easier to
evaluate than the limit of the difference quotient.

Example 2.1.10 Differentiability at an endpoint
Consider f(x) =

√
x = x1/2 and g(x) =

√
x3 = x3/2. The domain of each func-

tion is [0,∞). It can be shown that each is differentiable on (0,∞); determine
the differentiability of each at x = 0.

SÊ½çã®ÊÄ We start by considering f and take the right-hand limit of the
difference quotient:

lim
h→0+

f(a+ h)− f(a)
h

= lim
h→0+

√
0+ h−

√
0

h

= lim
h→0+

√
h
h

= lim
h→0+

1
h1/2

= ∞.

The one-sided limit of the difference quotient does not exist at x = 0 for f;
therefore f is differentiable on (0,∞) and not differentiable on [0,∞). 61
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We state (without proof) that f ′(x) = 1/
(
2
√
x
)
. Note that limx→0+ f ′(x) =

∞; this limit was easier to evaluate than the limit of the difference quotient,
though it required us to already know the derivative of f.

Now consider g:

lim
h→0+

g(a+ h)− g(a)
h

= lim
h→0+

√
(0+ h)3 −

√
0

h

= lim
h→0+

h3/2

h
= lim

h→0+
h1/2 = 0.

As the one-sided limit exists at x = 0, we conclude g is differentiable on its
domain of [0,∞).

We state (without proof) that g ′(x) = 3
√
x/2. Note that limx→0+ g ′(x) = 0;

again, this limit is easier to evaluate than the limit of the difference quotient.
The two functions are graphed in Figure 2.1.10. Note how f(x) =

√
x seems

to “go vertical” as x approaches 0, implying the slopes of its tangent lines are
growing toward infinity. Also note how the slopes of the tangent lines to g(x) =√
x3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific caseswhere
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later sections require a function f to be differ-
entiable on an open interval I; we could remove the word “open” and just use
“. . . on an interval I,” but choose to not do so in keeping with the current math-
ematical tradition. Our first use of differentiability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivativemean?”
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a position function. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definition of the derivative of a function at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
tions 2.1.1 and 2.1.4.

5. Let y = f(x). Give three different notations equivalent to
“f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems
In Exercises 7 – 14, use the definition of the derivative to com-
pute the derivative of the given function.

7. f(x) = 6

8. f(x) = 2x

9. f(t) = 4− 3t

10. g(x) = x2

11. h(x) = x3

12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x

14. r(s) = 1
s− 2

In Exercises 15 – 22, a function and an x–value c are given.
(Note: these functions are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equation of the tangent line at x = c.
(b) Give the equation of the normal line at x = c.

15. f(x) = 6, at x = −2.

16. f(x) = 2x, at x = 3.

17. f(x) = 4− 3x, at x = 7.

18. g(x) = x2, at x = 2.

19. h(x) = x3, at x = 4.

20. f(x) = 3x2 − x+ 4, at x = −1.

21. r(x) = 1
x
, at x = −2.

22. r(x) = 1
x− 2

, at x = 3.

In Exercises 23 – 26, a function f and an x–value a are given.
Approximate the equation of the tangent line to the graph of
f at x = a by numerically approximating f ′(a), using h = 0.1.

23. f(x) = x2 + 2x+ 1, x = 3

24. f(x) = 10
x+ 1

, x = 9

25. f(x) = ex, x = 2

26. f(x) = cos x, x = 0

27. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definition, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).
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28. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definition, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).
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In Exercises 29 – 32, a graph of a function f(x) is given. Using
the graph, sketch f ′(x).
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In Exercises 33 – 34, a graph of a function g(x) is given. Using
the graph, answer the following questions.

1. Where is g(x) > 0?
2. Where is g(x) < 0?
3. Where is g(x) = 0?

1. Where is g′(x) < 0?
2. Where is g′(x) > 0?
3. Where is g′(x) = 0?
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In Exercises 35 – 36, a function f(x) is given, along with its do-
main and derivative. Determine if f(x) is differentiable on its
domain.

35. f(x) =
√

x5(1− x), domain = [0, 1], f ′(x) = (5− 6x)x3/2

2
√
1− x

36. f(x) = cos
(√

x
)
, domain = [0,∞), f ′(x) = −

sin
(√

x
)

2
√
x

Review

37. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

38. Use the Bisection Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

39. Give intervals on which each of the following functions are
continuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

40. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f continu-
ous?
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Note: The original textbook, having been
written in the USA, used primarily impe-
rial units. We considered converting ev-
erything to metric, including the amuse-
ment park example, but this would have
involved a fair amount of work, including
replacing several of the diagrams in the
previous section. We feel confident that
the typical Canadian student is capable
of working in either system of measure-
ment.

2.2 Interpretations of the Derivative

2.2 Interpretations of the Derivative
The previous section defined the derivative of a function and gave examples of
how to compute it using its definition (i.e., using limits). The section also started
with a brief motivation for this definition, that is, finding the instantaneous ve-
locity of a falling object given its position function. The next section will give us
more accessible tools for computing the derivative, tools that are easier to use
than repeated use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do I compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

Interpretation of theDerivative #1: Instantaneous Rate of Change

The previous section started with an example of using the position of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is often used when introducing the derivative because
we tend to readily recognize that velocity is the instantaneous rate of change
of position. In general, if f is a function of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
tive answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When time changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “90
km/h.” Fiveminutes later, youwonder how far you have travelled. Certainly, lots
of things could have happened in those 5 minutes; you could have intentionally
sped up significantly, you might have come to a complete stop, you might have
slowed to 30 km/h as you passed through construction. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximation of
the distance travelled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate × time.” In this case, we assume a
constant rate of 90 km/h with a time of 5/60 hours. Hence we would approxi-
mate the distance travelled as 7.5 km.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 ft/s, we could reasonably assume that 1 second later the rid-
ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelerating as they fell would inform us that this is an under–approximation. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the Derivative

It is useful to recognize the units of the derivative function. If y is a function
of x, i.e., y = f(x) for some function f, and y is measured in metres and x in
seconds, then the units of y′ = f ′ are “metres per second,” commonly written
as “m/s.” In general, if y is measured in units P and x is measured in unitsQ, then
y′ will be measured in units “P per Q”, or “P/Q.” Here we see the fraction–like
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behaviour of the derivative in the notation:

the units of
dy
dx

are
units of y
units of x

.

Example 2.2.1 The meaning of the derivative: World Population
Let P(t) represent the world population t minutes after 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the population of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the population grew by about 28, 800 · 156 = 4, 492, 800 people.

Example 2.2.2 The meaning of the derivative: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
itive) profit making just one widget; the start–up costs will likely exceed $10.
Mathematically, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

SÊ½çã®ÊÄ The equation P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other information to use, our best approximation
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance travelled assumed the rate of change was constant.
In Examples 2.2.1 and 2.2.2 we made similar approximations. We were given
rate of change information which we used to approximate total change. Nota-
tionally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Derivative and Motion

One of the most fundamental applications of the derivative is the study of
motion. Let s(t) be a position function, where t is time and s(t) is distance. For
instance, s couldmeasure the height of a projectile or the distance an object has
travelled.

Let’s let s(t)measure the distance travelled, in feet, of an object after t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.66
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Figure 2.2.1: A graph of f(x) = x2.

2.2 Interpretations of the Derivative

Now consider v(t), a velocity function. That is, at time t, v(t) gives the ve-
locity of an object. The derivative of v, v ′(t), gives the instantaneous rate of
velocity change – acceleration. (We often think of acceleration in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleration, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and time is measured in seconds, then the units of acceleration
(i.e., the units of v ′(t)) are “feet per second per second,” or (ft/s)/s. We often
shorten this to “feet per second squared,” or ft/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32 ft/s2 or g = 9.8 m/s2. What do these numbers mean?

A constant acceleration of 32( ft/s)/s means that the velocity changes by 32
ft/s each second. For instance, let v(t) measures the velocity of a ball thrown
straight up into the air, where v has units ft/s and t is measured in seconds. The
ball will have a positive velocity while travelling upwards and a negative velocity
while falling down. The acceleration is thus −32 ft/s2. If v(1) = 20 ft/s, then
when t = 2, the velocity will have decreased by 32 ft/s; that is, v(2) = −12 ft/s.
We can continue: v(3) = −44 ft/s, and we can also figure that v(0) = 42 ft/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 2.2.1 The Derivative and Motion

1. Let s(t) be the position function of an object. Then s ′(t) is the
velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v ′(t) is the
acceleration function of the object.

We now consider the second interpretation of the derivative given in this
section. This interpretation is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spective.

Interpretation of the Derivative #2: The Slope of the Tangent Line

Given a function y = f(x), the difference quotient
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by computing f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 2.2.3 Understanding the derivative: the rate of change
Consider f(x) = x2 as shown in Figure 2.2.1. It is clear that at x = 3 the function
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?
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SÊ½çã®ÊÄ Wecananswer this directly after the following section, where
we learn to quickly compute derivatives. For now, we will answer graphically,
by considering the slopes of the respective tangent lines.

With practice, one can fairly effectively sketch tangent lines to a curve at a
particular point. In Figure 2.2.2, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three times as fast.

Example 2.2.4 Understanding the graph of the derivative
Consider the graph of f(x) and its derivative, f ′(x), in Figure 2.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.2.3(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help better visualize the y value of f ′ at those points.

Example 2.2.5 Approximation with the derivative
Consider again the graph of f(x) and its derivative f ′(x) in Example 2.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 2.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes an excellent
approximation of f. Since lines are easy to deal with, often it works well to ap-
proximate a functionwith its tangent line. (This is especially truewhen you don’t
actually know much about the function at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is often useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computation. In reality, we often only know two things:

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f ”
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for the location, just an observation. This is enough to create an approximating
function for f.

This last example has a direct connection to our approximation method ex-
plained above after Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then computing the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 2.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximationmethod used above! Not only does itmake
intuitive sense, as explained above, it makes analytical sense, as this approxima-
tion method is simply using a tangent line to approximate a function’s value.

The importanceof understanding thederivative cannot beunderstated. When
f is a function of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.
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Exercises 2.2
Terms and Concepts

1. What is the instantaneous rate of change of position
called?

2. Given a function y = f(x), in your own words describe how
to find the units of f ′(x).

3. What functions have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this section, which approximation is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a
straight line t seconds after starting. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours aftermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours after
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of functions f(x) and g(x) are
given. Identify which function is the derivative of the other.
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Review
In Exercises 19 – 20, use the definition to compute the deriva-
tives of the following functions.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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2.3 Basic Differentiation Rules

2.3 Basic Differentiation Rules
The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx+b. What is y ′? With-
out limits, recognize that linear function are characterized by being functions
with a constant rate of change (the slope). The derivative, y ′, gives the instan-
taneous rate of change; with a linear function, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax2 + bx+ c. Using the definition of the derivative, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

(ah+ 2ax+ b)

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this section (and in some sections to follow) we will learn some of what
mathematicians have already discovered about the derivatives of certain func-
tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

2. Power Rule:
d
dx
(
xn
)
= nxn−1, where n is an

integer, n > 0.

5.
d
dx

(sin x) = cos x

6.
d
dx

(cos x) = − sin x

7.
d
dx

(ex) = ex

8.
d
dx

(ln x) =
1
x

This theorem starts by stating an intuitive fact: constant functions have no
rate of change as they are constant. Therefore their derivative is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form y = xn) are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = ex: it is its own derivative. We also
see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.
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Figure 2.3.1: A graph of f(x) = x3, along
with its derivative f ′(x) = 3x2 and its tan-
gent line at x = −1.

You may recall from high school that the
binomial coefficients are the numbers
that appear in Pascal’s Triange. Ifwenum-
ber the rows of Pascal’s triangle begin-
ning from the top at row zero, then the
numbers in row n are given by

(n
k

)
, for

k = 0, 1, 2, . . . , n.
In particular, note that:(

n
0

)
= 1,

(
n
1

)
= n,

(
n
2

)
=

n(n− 1)
2

,

· · · ,

(
n

n− 1

)
= n,

(
n
n

)
= 1.

Chapter 2 Derivatives

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s practice using this theorem.

Example 2.3.1 Using Theorem 2.3.1 to find, and use, derivatives
Let f(x) = x3.

1. Find f ′(x).

2. Find the equation of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equation of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equation y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.3.1.

It is easy to use Definition 2.1.4 to verify the Constant Rule, and with a bit of
work we can confirm the Power Rule for small values of n. But how do we know
that the Power Rule holds in general? One way to tackle this problem relies on
a famous result from Algebra: the Binomial Theorem.

Theorem 2.3.2 Binomial Theorem

For any real numbers a and b, and any positive integer n, we have

(a+ b)n = an +
(
n
1

)
an−1b+

(
n
2

)
an−2b2 + · · ·+

(
n

n− 1

)
abn−1 + bn,

where
(n
k

)
(read, “n choose k”) is the binomial coefficient given by(

n
k

)
=

n!
k!(n− k)!

=
n(n− 1) · · · (n− k+ 1)

1 · 2 · · · k
.

With Theorem 2.3.2 in hand, we can quickly establish the Power Rule using
the definition of the derivative. Given f(x) = xn, where n is a positive integer,72
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Figure 2.3.2: The graph y = ax, for three
values of a > 1

In some Calculus textbooks, the deriva-
tives of f(x) = ex andg(x) = ln(x) are left
until after the Fundamental Theorem of
Calculus (see Theorem 5.4.1). In this ap-
proach, the logarithm is defined as an in-
tegral, and the exponential function as its
inverse. Interestingly enough, all of the
familiar properties of the logarithm can
be derived using properties of the inte-
gral.

2.3 Basic Differentiation Rules

we have:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)n − xn

h

= lim
h→0

(xn + nxn−1h+ · · ·+ hn)− xn

h
(Using Theorem 2.3.2)

= lim
h→0

nxn−1h
(n
2
)
xn−2h2 + · · ·+ hn

h
(Cancelling the xn terms)

= lim
h→0

(nxn−1 +

(
n
2

)
xn−2h+ · · ·+ nxhn−2 + hn−1) (Dividing by h)

= nxn−1 (Setting h = 0)

The fact that the derivative of sin(x) is cos(x) was established in Example
2.1.7; the fact that the derivative of cos(x) is − sin(x) is established similarly,
and left as an exercise. We aren’t yet in a position to rigorously establish the
derivative formulas for ex and ln(x), but we can show that it’s at least plausible
that the exponential function is its own derivative. For f(x) = ex, Definition
2.1.4 tells us:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

ex · eh − ex

h
(Laws of exponents)

= lim
h→0

ex(eh − 1)
h

(Factoring)

= ex lim
h→0

eh − 1
h

.

It seems we are stuck on this last limit. But notice that

lim
h→0

eh − 1
h

= lim
h→0

e0+h − e0

h
= f′(0),

so f ′(x) = f ′(0)ex, where f ′(0) is simply the slope of the tangent line to the
graph y = ex at x = 0. Looking at the graph of y = ax for several values of
a > 1, we see that this slope depends on the value of a. One way of defining
the number e used as the base of the natural exponential is that this is the value
of a such that the slope of the tangent line at x = 0 is exactly one; that is, such
that f′(0) = 1. With this definition, we immediately find that f ′(x) = ex, as
expected.

We will establish the formula for the derivative of f(x) = ln(x) in Section 2.7
as a special case of Theorem 2.7.1 (see Example 2.7.2).

Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but
it does not tell how to compute the derivative of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next section).
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Theorem 2.3.3 Properties of the Derivative

Let f and g be differentiable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant Multiple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem2.3.3 allows us to find the derivatives of awide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.5 that we found, using the limit definition,
the derivative of f(x) = 3x2 + 5x − 7. We can now find its derivative without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedantic here, showing every step. Normally we would do all
the arithmetic and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Both rules in Theorem 2.3.3 are easily established using the definition of the
derivative. We will leave the Constant Multiple Rule as an exercise, and demon-
strate that the Sum Rule is true. Suppose that we are given two differentiable
functions f and g. Recalling how the sum f + g is defined, and using Definition
2.1.4, we have:

(f+ g)′(x) = lim
h→0

(f+ g)(x+ h)− (f+ g)(x)
h

= lim
h→0

(f(x+ h) + g(x+ h))− (f(x) + g(x))
h

= lim
h→0

(f(x+ h)− f(x)) + (g(x+ h)− g(x))
h

= lim
h→0

f(x+ h)− f(x)
h

+ lim
h→0

g(x+ h)− g(x)
h

= f′(x) + g′(x).

Example 2.3.2 Using the tangent line to approximate a function value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all time.
One must make a judgment using whatever seems reasonable. In this example,
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Note: Definition 2.3.1 comes with the
caveat “Where the corresponding limits
exist.” With f differentiable on I, it is pos-
sible that f ′ is not differentiable on all of
I, and so on.

2.3 Basic Differentiation Rules

the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do better? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 2.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximation is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places after the decimal:
f(3) = 7.1411. Our initial guesswas 7; our tangent line approximationwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy sometime, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximating, and many scientists, engineers and mathematicians often face
problems too hard to solve directly. So they approximate.

Higher Order Derivatives

The derivative of a function f is itself a function, therefore we can take its
derivative. The following definition gives a name to this concept and introduces
its notation.

Definition 2.3.1 Higher Order Derivatives

Let y = f(x) be a differentiable function on I. The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivative of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivative of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

In general, when finding the fourth derivative and on, we resort to the f (4)(x)
notation, not f ′′′′(x); after a while, too many ticks is confusing.

Let’s practice using this new concept.

Example 2.3.3 Finding higher order derivatives
Find the first four derivatives of the following functions:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex
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Chapter 2 Derivatives

SÊ½çã®ÊÄ

1. Using the Power and Constant Multiple Rules, we have: f ′(x) = 8x. Con-
tinuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

Notice how all successive derivatives will also be 0.

2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the ConstantMultiple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

Interpreting Higher Order Derivatives

What do higher order derivatives mean? What is the practical interpreta-
tion?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.1, f ′ describes the rate of position change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement–park riders free–falling with posi-
tion function f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t ft/s and
f ′′(t) = −32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f.” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”

Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of seriesmakes extensive use of higher order derivatives.
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx
(
ln x
)
?

3. Give an example of a function f(x) where f ′(x) = f(x).

4. Give an example of a function f(x) where f ′(x) = 0.

5. The derivative rules introduced in this section explain how
to compute the derivative of which of the following func-
tions?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivative
of a function f(x).

7. Give an example of a functionwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second derivative
“means.”

9. If f(x) describes a position function, then f ′(x) describes
what kind of function? What kind of function is f ′′(x)?

10. Let f(x) be a function measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 26, compute the derivative of the given func-
tion.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this identity when b = e, i.e., using loge x =
ln x, with a = 10.

(b) Use part (a) to find the derivative of y = log10 x.
(c) Use part (b) to find the derivative of y = loga x, for

any a > 0, ̸= 1.

In Exercises 27 – 32, compute the first four derivatives of the
given function.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equations of the tangent and
normal lines to the graph of the function at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
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Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)!

While this answer is simpler than the
Product Rule, it is wrong. If it were true,
then we’d have

d
dx

(x2) = d
dx

(x) · d
dx

(x) = 1 · 1 = 1!

In fact, we’d have d
dx

(xn) = 1 for ev-
ery positive integer n, contradicting the
Power Rule.
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Figure 2.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

Chapter 2 Derivatives

2.4 The Product and Quotient Rules
The previous section showed that, in some ways, derivatives behave nicely. The
Constant Multiple and Sum/Difference Rules established that the derivative of
f(x) = 5x2 + sin xwas not complicated. We neglected computing the derivative
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivatives are
not as straightforward. (If you had to guesswhat their respective derivatives are,
youwould probably guess wrong.) For these, we need the Product andQuotient
Rules, respectively, which are defined in this section.

We begin with the Product Rule.

Theorem 2.4.1 Product Rule

Let f and g be differentiable functions on an open interval I. Then fg is a
differentiable function on I, and

(fg) ′(x) = f ′(x)g(x) + f(x)g ′(x).

In the Leibniz notation, the Product Rule is written

d
dx

(
f(x)g(x)

)
=

(
d
dx

f(x)
)
g(x) + f(x)

(
d
dx

g(x)
)
.

We practice using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 2.4.1 Using the Product Rule
Use the Product Rule to compute the derivative of y = 5x2 sin x. Evaluate the
derivative at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 10x sin x+ 5x2 cos x.

At x = π/2, we have

y ′(π/2) = 10
π

2
sin
(π
2

)
+ 5

(π
2

)2
cos
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
2.4.1. While this does not prove that the Produce Rule is the correct way to han-
dle derivatives of products, it helps validate its truth.

We now investigate why the Product Rule is true.

Example 2.4.2 A proof of the Product Rule
Use the definition of the derivative to prove Theorem 2.4.1.

SÊ½çã®ÊÄ By the limit definition, we have

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.
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2.4 The Product and Quotient Rules

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x)g(x+h)+f(x)g(x+h), then do some regrouping
as shown.

(fg) ′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x)g(x+ h)

)
+
(
f(x)g(x+ h)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)
h

+ lim
h→0

f(x)g(x+ h)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)− f(x)
h

g(x+ h) + lim
h→0

f(x)g(x+ h)− g(x)
h

(apply limits)

= f ′(x)g(x) + f(x)g ′(x)

Notice that when we applied the limit in the last step, we relied on the fact that
since g is assumed to be differentiable at x, it is continuous at x, and therefore,
lim
h→0

g(x+ h) = g(x).

It is often true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.3 Exploring alternate derivative methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivative, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a little algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′:

y ′ = 8x3 + 9x2 − 12x.

Now apply the Product Rule.

y ′ = (2x+ 3)(2x2 − 3x+ 1) + (x2 + 3x+ 1)(4x− 3)
=
(
4x3 − 7x+ 3

)
+
(
4x3 + 9x2 − 5x− 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivative of the product is the prod-
uct of the derivatives.” Thus we are tempted to say that y ′ = (2x+3)(4x−3) =
8x2 + 6x− 9. Obviously this is not correct.

Example 2.4.4 Using the Product Rule with a product of three functions
Let y = x3 ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three functionswhile the Product Rule
only specifies how to handle a product of two functions. Ourmethod of handling
this problem is to simply group the latter two functions together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = 3x2
(
ln x cos x

)
+ (x3)

d
dx
(
ln x cos x

)
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The Quotient Rule is not hard to use, al-
though it might be a bit tricky to remem-
ber. A useful mnemonic works as follows.
Consider a fraction’s numerator and de-
nominator as “HI” and “LO”, respectively.
Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low,
over low low.” Said fast, that phrase
can roll off the tongue, making it easy to
memorize. The “dee high” and “dee low”
parts refer to the derivatives of the nu-
merator and denominator, respectively.
As an unexpected side benefit, you will
also have an opportunity to practice your
yodelling.

Chapter 2 Derivatives

To evaluate
(
ln x cos x

)′, we apply the Product Rule again:
= 3x2

(
ln x cos x

)
+ (x3)

(1
x
cos x+ ln x(− sin x)

)
= 3x2 ln x cos x+ x3

1
x
cos x+ x3 ln x(− sin x)

Recognize the pattern in our answer above: when applying the Product Rule to
a product of three functions, there are three terms added together in the final
derivative. Each term contains only one derivative of one of the original func-
tions, and each function’s derivative shows up in only one term. It is straightfor-
ward to extend this pattern to finding the derivative of a product of 4 or more
functions.

We consider one more example before discussing another derivative rule.

Example 2.4.5 Using the Product Rule
Find the derivatives of the following functions.

1. f(x) = x ln x

2. g(x) = x ln x− x.

SÊ½çã®ÊÄ Recalling that the derivative of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= 1 · ln x+ x · 1/x = ln x+ 1.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= ln x+ 1− 1 = ln x.

This seems significant; if the natural log function ln x is an important function (it
is), it seems worthwhile to know a function whose derivative is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.2 Quotient Rule

Let f and g be differentiable functions defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differentiable on I, and(

f
g

)
′(x) =

f ′(x)g(x)− f(x)g ′(x)
g(x)2

.

Let’s practice using the Quotient Rule.
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Figure 2.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

2.4 The Product and Quotient Rules

Example 2.4.6 Using the Quotient Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SÊ½çã®ÊÄ Directly applying the Quotient Rule gives:

d
dx

(
5x2

sin x

)
=

10x · sin x− 5x2 · cos x
sin2 x

.

TheQuotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 2.4.7 Using the Quotient Rule to find d
dx

(
tan x

)
.

Find the derivative of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this question.
But recall that tan x = sin x/ cos x, so we can apply the Quotient Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beautiful result. To confirm its truth, we can find the equation of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.4.2.

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin x in Example
2.1.7 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Theorem 2.4.3 Derivatives of Trigonometric Functions

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
tives of the trigonometric functions that start with “c” have aminus sign in them.
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The only times it is really necessary – that
is, worthwhile – to simplify a product or
quotient rule derivative on a test is if you
are trying to determine the values of x
at which the derivative is zero (there will
be plenty of that to come!) or in some
cases, if a second derivative is required,
and simplifying first makes that computa-
tion easier. (Also keep in mind that the
person grading your test will be looking
for the product or quotient rule pattern,
so the unsimplified answer is sometimes
the easiest to identify as the correct one.)
However, for written assignments where
you have the luxury of taking your time
to perfect your presentation, a simplified
answer is usually preferable.

Chapter 2 Derivatives

Example 2.4.8 Exploring alternate derivative methods

In Example 2.4.6 the derivative of f(x) =
5x2

sin x
was found using the Quotient

Rule. Rewriting f as f(x) = 5x2 csc x, find f ′ using Theorem 2.4.3 and verify the
two answers are the same.

SÊ½çã®ÊÄ We found in Example 2.4.6 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 10x csc x+ 5x2(− csc x cot x) (now rewrite trig functions)

=
10x
sin x

+ 5x2 · −1
sin x

· cos x
sin x

=
10x
sin x

+
−5x2 cos x

sin2 x
(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. It is up to you if you wish to work to “simplify” your results into a form
that is most readable and useful to you.

The Quotient Rule gives other useful results, as shown in the next example.

Example 2.4.9 Using the Quotient Rule to expand the Power Rule
Find the derivatives of the following functions.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the Quotient Rule.

1. f ′(x) =
0 · x− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
0 · xn − 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivative of y =
1
xn

turned out to be rather nice. It gets better. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 2.4.9)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.
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2.4 The Product and Quotient Rules

This is reminiscent of the Power Rule: multiply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.

Theorem 2.4.4 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.10 Exploring alternate derivative methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the Quotient Rule gives:

f ′(x) =
(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewriting f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2

=
2x− 3

x
− x2 − 3x+ 1

x2

=
2x2 − 3x

x2
− x2 − 3x+ 1

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.

f ′(x) = 1− 1
x2
,

the same result as before.
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Chapter 2 Derivatives

Example 2.4.10 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=

(
2x− 3

)
· x−

(
x2 − 3x+ 1

)
· 1

x2
=
(
2x− 3

)
· x−1 +

(
x2 − 3x+ 1

)
· (−1)x−2.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin x
is cos x.” The Sum/Difference, Constant Multiple, Power, Product and Quotient
Rules show us how to find the derivatives of certain combinations of these func-
tions. The next section shows how to find the derivatives when we compose
these functions together.
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The Quotient Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivatives of the trigonometric functions that
start with “c” have minus signs in them.

4. What derivative rule is used to extend the Power Rule to
include negative integer exponents?

5. T/F: Regardless of the function, there is always exactly one
right way of computing its derivative.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the Quotient Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Quotient Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the derivative of the given func-
tion.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x
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In Exercises 37 – 40, find the equations of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π
2 ,−

3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
function has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested derivative.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 52, use the graph of f(x) to sketch f ′(x).
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2.5 The Chain Rule

2.5 The Chain Rule
We have covered almost all of the derivative rules that deal with combinations
of two (or more) functions. The operations of addition, subtraction, multiplica-
tion (including by a constant) and division led to the Sum and Difference rules,
the Constant Multiple Rule, the Power Rule, the Product Rule and the Quotient
Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function
“inside” another).

One example of a composition of functions is f(x) = cos(x2). We currently
do not know how to compute this derivative. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivative of cos x
and 2x as the derivative of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differentiation rule, we note that the rule extends to
multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.1 Exploring similar derivatives
Find the derivatives of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different functions and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each function as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interesting fact is that these can be rewritten as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A pattern might jump out at you; note how the we end upmultiplying by the old
power and the new power is reduced by 1. We also always multiply by (−1).

Recognize that each of these functions is a composition, letting g(x) = 1−x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example after giving the formal statements of the
Chain Rule; for now, we are just illustrating a pattern.

When composing functions, we need to make sure that the new function is
actually defined. For instance, consider f(x) =

√
x and g(x) = −x2 − 1. The

domain of f excludes all negative numbers, but the range of g is only negative
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Chapter 2 Derivatives

numbers. Therefore the composition f
(
g(x)

)
=

√
−x2 − 1 is not defined for

any x, and hence is not differentiable.
The following definition takes care to ensure this problem does not arise.

We’ll focus more on the derivative result than on the domain/range conditions.

Theorem 2.5.1 The Chain Rule

Let g be a differentiable function on an interval I, let the range of g be a
subset of the interval J, and let f be a differentiable function on J. Then
y = f(g(x)) is a differentiable function on I, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 2.5.1.

Example 2.5.2 Using the Chain Rule
Use the Chain Rule to find the derivatives of the following functions, as given in
Example 2.5.1.

SÊ½çã®ÊÄ Example 2.5.1 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means substitute g(x) for x in the

equation for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 2.5.2 demonstrated a particular pattern: when f(x) = xn, then
y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.
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Figure 2.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

2.5 The Chain Rule

Theorem 2.5.2 Generalized Power Rule

Let g(x) be a differentiable function and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the derivative of functions like y = (3x2 − 5x+
7 + sin x)20. While it may look intimidating, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivative–taking process step–by–step. In the example just given,
first multiply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the Chain Rule.

Example 2.5.3 Using the Chain Rule
Find the derivatives of the following functions:

1. y = sin 2x 2. y = ln(4x3 − 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composition of functions,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composition of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composition of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 2.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equation of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equation of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.1.
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Chapter 2 Derivatives

The Chain Rule is used often in taking derivatives. Because of this, one can
become familiar with the basic process and learn patterns that facilitate finding
derivatives quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the nu-
merator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar functions.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjunctionwith any of the other
rules we have already learned. We practice this next.

Example 2.5.5 Using the Product, Quotient and Chain Rules
Find the derivatives of the following functions.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the Quotient Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.
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2.5 The Chain Rule

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the Chain Rule itself several times, as shown in the next
example.

Example 2.5.6 Using the Chain Rule multiple times
Find the derivative of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(6x3 − 7x) function
“inside” the f(x) = x5 function; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivative. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many vertical
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivative can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.7 Using the Product, Quotient and Chain Rules

Find the derivative of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

SÊ½çã®ÊÄ This function likely has no practical use outside of demon-
strating derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the Chain Rule three times.

f ′(x) =
ln(x2 + 5x4)·

[(
x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)

)
−2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2)− sin2(e4x)

)
· 2x+ 20x3

x2 + 5x4


(
ln(x2 + 5x4)

)2 .
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Chapter 2 Derivatives

The reader is highly encouraged to look at each term and recognize why it is
there. This example demonstrates that derivatives can be computed systemati-
cally, no matter how arbitrarily complicated the function is.

The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 2.5.8 The Chain Rule and exponential functions
Use the Chain Rule to find the derivative of y = 2x.

SÊ½çã®ÊÄ We only know how to find the derivative of one exponential
function, y = ex. We can accomplish our goal by rewriting 2 in terms of e.
Recalling that ex and ln x are inverse functions, we can write

2 = eln 2 and so y = 2x =
(
eln 2
)x

= ex(ln 2).

The function is now the composition y = f(g(x)), with f(x) = ex and g(x) =
x(ln 2). Since f ′(x) = ex and g ′(x) = ln 2, the Chain Rule gives

y ′ = ex(ln 2) · ln 2.

Recall that the ex(ln 2) term on the right hand side is just 2x, our original function.
Thus, the derivative contains the original function itself. We have

y ′ = y · ln 2 = 2x · ln 2.

We can extend this process to use any base a, where a > 0 and a ̸= 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the derivative rule of ex, allows us to find the derivatives of all exponential
functions.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 2.5.3 Derivatives of Exponential Functions

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differentiable for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule Notation

It is instructive to understand what the Chain Rule “looks like” using “ dy
dx” no-

tation instead of y ′ notation. Suppose that y = f(u) is a function of u, where
u = g(x) is a function of x, as stated in Theorem 2.5.1. Then, through the com-
position f ◦ g, we can think of y as a function of x, as y = f(g(x)). Thus the
derivative of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesting progression of notation:
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Figure 2.5.2: A series of gears to demon-
strate the Chain Rule. Note how dy
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· du
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2.5 The Chain Rule

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fractional” notation for the derivative)

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not cancelling these terms; the derivative
notation of dy

du is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behaviour. It makes applying the Chain
Rule easy with multiple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 2.5.2. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast
as the rate at which the x gear makes a revolution. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revolution of u causes 3 revolutions of y: dy

du = 3. How does
y change with respect to x? For each revolution of x, y revolves 6 times; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So often the
functions that we deal with are compositions of two or more functions, requir-
ing us to use this rule to compute derivatives. It is also often used in real life
when actual functions are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the Chain Rule, we can find

dy
dx .

In the next section, we use the Chain Rule to justify another differentiation
technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay still be interested in finding slopes of tangent lines to the circle at
various points. The next section shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

tive of a composition of functions.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the derivative of the given func-
tion.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1
t )e

5t2

35. f(x) =
sin
(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equations of tangent and normal
lines to the graphof the function at the given point. Note: the
functions here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivative.
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42. Compute d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the derivative.

Review
43. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

44. Find the derivatives of the following functions.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Figure 2.6.1: A graph of the implicit func-
tion sin(y) + y3 = 6− x3.

Chapter 2 Derivatives

2.6 Implicit Differentiation
In the previous sections we learned to find the derivative, dy

dx , or y
′, when y is

given explicitly as a function of x. That is, if we know y = f(x) for some function
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differentiate to get y ′ = 2x.

Sometimes the implicit relationship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit function is given
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary functions. The surprising thing is, however, that we can still find y ′
via a process known as implicit differentiation.

Implicit differentiation is a technique based on the Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.1)

These equations look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit Differentiation
Find y ′ given that sin(y) + y3 = 6− x3.

SÊ½çã®ÊÄ We start by taking the derivative of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

The right hand side is easy; it returns−3x2.
The left hand side requiresmore consideration. We take thederivative term–

by–term. Using the technique derived from Equation 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Putting this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

96



.....

−2

.

2

.

−2

.

2

.

x

.

y

Figure 2.6.2: The function sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

2.6 Implicit Differentiation

Now solve for y ′.

cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equation for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit function sin y+ y3 = 6− x3. Plugging in 0 for y, we see the left hand
side is 0. Setting x = 3

√
6, we see the right hand side is also 0; the equation is

satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.2 Using Implicit Differentiation to find a tangent line
Find the equation of the line tangent to the curve of the implicitly defined func-
tion sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

SÊ½çã®ÊÄ In Example 2.6.1 we found that

y ′ =
−3x2

cos y+ 3y2
.

We find the slope of the tangent line at the point ( 3
√
6, 0) by substituting 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equation of the tangent line to the implicitly defined function
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differentiation. For the steps
below assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply
except that, because of the Chain Rule, we need to multiply each term by
y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.
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Figure 2.6.4: A graph of the implicitly de-
fined function sin(x2y2) + y3 = x+ y.
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Practical Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y ′, as the latter can be easily confused for y or y1.

Example 2.6.3 Using Implicit Differentiation
Given the implicitly defined function y3 + x2y4 = 1+ 2x, find y ′.

SÊ½çã®ÊÄ Wewill take the implicit derivatives termby term. Thederiva-
tive of y3 is 3y2y ′.

The second term, x2y4, is a little tricky. It requires the Product Rule as it is the
product of two functions of x: x2 and y4. Its derivative is x2(4y3y ′) + 2xy4. The
first part of this expression requires a y ′ becausewe are taking the derivative of a
y term. The second part does not require it because we are taking the derivative
of x2.

The derivative of the right hand side is easily found to be 2. In all, we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the left side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Factor out y ′ from the left side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equation of a tangent line
to this function at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this function. At this point, y ′ = 2/3. So the equation of the tangent
line is y = 2/3(x−0)+1. The function and its tangent line are graphed in Figure
2.6.3.

Notice how our function looks much different than other functions we have
seen. For one, it fails the vertical line test. Such functions are important in many
areas of mathematics, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit Differentiation
Given the implicitly defined function sin(x2y2) + y3 = x+ y, find y ′.

SÊ½çã®ÊÄ Differentiating term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy ′) + 2xy2

)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the derivatives of the other terms to the reader. After taking the
derivatives of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.

We now have to be careful to properly solve for y ′, particularly because of
the product on the left. It is best to multiply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.
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Figure 2.6.6: The unit circle with its tan-
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√
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2.6 Implicit Differentiation

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

A graph of this implicit function is given in Figure 2.6.4. It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the function in Figure

2.6.5.

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.
We investigate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

SÊ½çã®ÊÄ Taking derivatives, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the
derivative of the square root function? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.
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The trouble with this is that the Power Rule was initially defined only for
positive integer powers, n > 0. While we did not justify this at the time, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with positive integers. The Quotient Rule allowed us to extend
the Power Rule to negative integer powers. Implicit Differentiation allows us to
extend the Power Rule to rational powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
function implicitly as yn = xm. Now apply implicit differentiation.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y ′ = m · xm−1

y ′ =
m
n
xm−1

yn−1 (now substitute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1.

The above derivation is the key to the proof extending the Power Rule to ra-
tional powers. Using limits, we can extend this once more to include all powers,
including irrational (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for Differentiation

Let f(x) = xn, where n ̸= 0 is a real number. Then f is differentiable on
its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

This theorem allows us to say the derivative of xπ is πxπ−1.

We now apply this final version of the Power Rule in the next example, the
second investigation of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

SÊ½çã®ÊÄ This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8, 8), we take the derivative
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2.6 Implicit Differentiation

implicitly.

2
3
x−1/3 +

2
3
y−1/3y ′ = 0

2
3
y−1/3y ′ = −2

3
x−1/3

y ′ = −x−1/3

y−1/3

y ′ = −y1/3

x1/3
= − 3

√
y
x
.

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit Differentiation and the Second Derivative

Wecan use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find dy

dx , then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second derivative

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

SÊ½çã®ÊÄ We found that y ′ = dy
dx = −x/y in Example 2.6.5. To find y ′′,

we apply implicit differentiation to y ′.

y ′′ =
d
dx
(
y ′
)

=
d
dx

(
−x
y

)
(Now use the Quotient Rule.)

= −y(1)− x(y ′)
y2

replace y ′ with−x/y:

= −y− x(−x/y)
y2

= −y+ x2/y
y2

.

While this is not a particularly simple expression, it is usable. We can see that
y ′′ > 0 when y < 0 and y ′′ < 0 when y > 0. In Section 3.4, we will see how
this relates to the shape of the graph.

Logarithmic Differentiation

Consider the function y = xx; it is graphed in Figure 2.6.9. It is well–defined
for x > 0 and we might be interested in finding equations of lines tangent and
normal to its graph. How do we take its derivative?

The function is not a power function: it has a “power” of x, not a constant.
It is not an exponential function: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
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Figure 2.6.10: A graph of y = xx and its
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equation y = f(x), then use implicit differentiation to find y ′. We demonstrate
this in the following example.

Example 2.6.8 Using Logarithmic Differentiation
Given y = xx, use logarithmic differentiation to find y ′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of
both sides then applying implicit differentiation.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln x (now use implicit differentiation)

d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(substitute y = xx)

y ′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equation of the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equation for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equation of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure
2.6.10 graphs y = xx along with this tangent line.

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule to rational exponents, which we then extended to all real numbers.
In the next section, implicit differentiation will be used to find the derivatives of
inverse functions, such as y = sin−1 x.
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Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

functions and explicit functions.

2. Implicit differentiation is based on what other differentia-
tion rule?

3. T/F: Implicit differentiation can be used to find the deriva-
tive of y =

√
x.

4. T/F: Implicit differentiation can be used to find the deriva-
tive of y = x3/4.

Problems
In Exercises 5 – 12, compute the derivative of the given func-
tion.

5. f(x) =
√
x+ 1√

x

6. f(x) = 3√x+ x2/3

7. f(t) =
√
1− t2

8. g(t) =
√
t sin t

9. h(x) = x1.5

10. f(x) = xπ + x1.9 + π1.9

11. g(x) = x+ 7√
x

12. f(t) = 5√t(sec t+ et)

In Exercises 13 – 25, find dy
dx

using implicit differentiation.

13. x4 + y2 + y = 7

14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1

16. x
y
= 10

17. y
x
= 10

18. x2e2 + 2y = 5

19. x2 tan y = 50

20. (3x2 + 2y3)4 = 2

21. (y2 + 2y− x)2 = 200

22. x2 + y
x+ y2

= 17

23. sin(x) + y
cos(y) + x

= 1

24. ln(x2 + y2) = e

25. ln(x2 + xy+ y2) = 1

26. Show that dy
dx

is the same for each of the following implicitly
defined functions.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 27 – 32, find the equation of the tangent line to
the graph of the implicitly defined function at the indicated
points. As a visual aid, each function is graphed.

27. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).
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28. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).
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29. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4√108).
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30. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.
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31. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.

..... 2. 4. 6.

2
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4

.

6

.

(
4+3

√
3

2 , 1.5
)

.

(
3.5, 6+3

√
3

2

)

.
x

.

y

32. x2 + y3 + 2xy = 0

(a) At (−1, 1).

(b) At
(
−1, 1

2
(−1+

√
5)
)
.

(c) At
(
−1, 1

2
(−1−

√
5)
)
.

−2 2

−2

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

In Exercises 33 – 36, an implicitly defined function is given.

Find d2y
dx2

. Note: these are the same problems used in Exer-
cises 13 through 16.

33. x4 + y2 + y = 7

34. x2/5 + y2/5 = 1

35. cos x+ sin y = 1

36. x
y
= 10

In Exercises 37 – 42, use logarithmic differentiation to find
dy
dx

, then find the equation of the tangent line at the indicated
x–value.

37. y = (1+ x)1/x, x = 1

38. y = (2x)x
2
, x = 1

39. y = xx

x+ 1
, x = 1

40. y = xsin(x)+2, x = π/2

41. y = x+ 1
x+ 2

, x = 1

42. y = (x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0
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Figure 2.7.1: A function f alongwith its in-
verse f−1. (Note how it does not matter
which function we refer to as f; the other
is f−1.)
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Figure 2.7.2: Corresponding tangent lines
drawn to f and f−1.

2.7 Derivatives of Inverse Functions

2.7 Derivatives of Inverse Functions
Recall that a function y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, wedonot have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restricting f to (0,∞), f is one to one.

Now recall that one to one functions have inverses. That is, if f is one to
one, it has an inverse function, denoted by f−1, such that if f(a) = b, then
f−1(b) = a. The domain of f−1 is the range of f, and vice-versa. For ease of
notation, we set g = f−1 and treat g as a function of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two functions are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflection of f across the
line y = x. In Figure 2.7.1 we see a function graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relationship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.7.2 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflection across y = x, we
can see that the tangent line to g at the point (b, a) should have slope

1
f ′(a)

.

This then tells us that g ′(b) =
1

f ′(a)
.

Consider:

Information about f Information about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g ′(0.375) = 4/3

We have discovered a relationship between f ′ and g ′ in a mostly graphical
way. We can realize this relationship analytically as well. Let y = g(x), where
again g = f−1. Wewant to find y ′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit Differentiation, take the derivative of both sides of
this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y ′ = 1

y ′ =
1

f ′(y)

y ′ =
1

f ′(g(x))
.

This leads us to the following theorem.
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.. y. √
1 − x2

.

x

.

1

Figure 2.7.3: A right triangle defined by
y = sin−1(x/1) with the length of the
third leg found using the Pythagorean
Theorem.

Note: if we set y = arcsin x, then sin y =
x, and since sin2 y + cos2 y = 1, we get
cos2 y = 1 − sin2 y = 1 − x2. Thus,
cos(arcsin x) = ±

√
1− x2. Here, we see

a detail that was overlooked in the main
text: restricting the domain of sin x to
[−π/2, π/]means that y lies in this inter-
val, and thus, cos y ≥ 0, since the cosine
function is positive for angles in the first
and fourth quadrants. This means that
we can safely choose the positive square
root.
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Figure 2.7.4: Graphs of sin x and sin−1 x
along with corresponding tangent lines.

Chapter 2 Derivatives

Theorem 2.7.1 Derivatives of Inverse Functions

Let fbedifferentiable andone to oneon anopen interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse function of
f, and let f(a) = b for some a in I. Then g is a differentiable function on
J, and in particular,
1.
(
f−1)′ (b) = g ′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g ′(x) =

1
f ′(g(x))

The results of Theorem2.7.1 are not trivial; the notationmay seemconfusing
at first. Careful consideration, along with examples, should earn understanding.

In the next example we apply Theorem 2.7.1 to the arcsine function.

Example 2.7.1 Finding the derivative of an inverse trigonometric function
Let y = arcsin x = sin−1 x. Find y ′ using Theorem 2.7.1.

SÊ½çã®ÊÄ Adopting our previously definednotation, let g(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g ′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illuminating. Drawing a figure will
help, as shown in Figure 2.7.3. Recall that the sine function can be viewed as
taking in an angle and returning a ratio of sides of a right triangle, specifically,
the ratio “opposite over hypotenuse.” Thismeans that the arcsine function takes
as input a ratio of sides and returns an angle. The equation y = arcsin x can
be rewritten as y = arcsin(x/1); that is, consider a right triangle where the
hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resulting in

d
dx
(
arcsin x

)
= g ′(x) =

1√
1− x2

.

Of course, the function f(x) = sin(x) is far from being one to one; in fact,
it is periodic! In order to obtain a one to one function from sin(x), we restrict
its domain to [−π/2, π/2]; on this domain, sin is one to one, and the range is
[−1, 1], the complete range of the sine function. The arcsine function is defined
to be the inverse of this restricted sine function. Therefore the domain of y =
arcsin x is [−1, 1] and the range is [−π/2, π/2]. The fact that we have −1 ≤
x ≤ 1 means we don’t have to worry about negative values under the square
root in

√
1− x2. However, when x = ±1, note how the derivative of the arcsine

function is undefined; this corresponds to the fact that as x → ±1, the tangent
lines to arcsine approach vertical lines with undefined slopes.

In Figure 2.7.4 we see f(x) = sin x and f−1(x) = sin−1 x graphed on their re-
spective domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
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Note: Some textbooks assign the re-
stricted domains [−π/2, 0)∪ (0, π/2] for
csc(x) and [0, π/2) ∪ (π/2, π] for sec(x)
when defining csc−1(x) and sec−1(x).
While these domains are more conve-
nient for trigonometry, they are not idea
for calculus. If we use these domains in-
stead of the ones given in Figure 2.7.5,
then we must modify the derivative for-
mulas given in Theorem 2.7.2 as follows:

d
dx

(sec−1(x)) = 1
|x|

√
1− x2

,

and

d
dx

(csc−1(x)) = − 1
|x|

√
1− x2

.

See Exercise 30 for details.

2.7 Derivatives of Inverse Functions

(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a function and its inverse have
reciprocal slopes.

Using similar techniques, we can find the derivatives of all the inverse trigono-
metric functions. In Figure 2.7.5 we show the restrictions of the domains of the
standard trigonometric functions that allow them to be invertible.

Function Domain Range
Inverse
Function Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1(x) [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1(x) (−∞,∞) (−π/2, π/2)

csc x (0, π/2] ∪ (π, 3π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ [π, 3π/2) (−∞,−1] ∪ [1,∞) sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1(x) (−∞,∞) (0, π)

Figure 2.7.5: Domains and ranges of the trigonometric and inverse trigonometric functions.

Theorem 2.7.2 Derivatives of Inverse Trigonometric Functions

The inverse trigonometric functions are differentiable on all open sets
contained in their domains (as listed in Figure 2.7.5) and their derivatives
are as follows:

1. d
dx
(
sin−1(x)

)
=

1√
1− x2

2. d
dx
(
sec−1(x)

)
=

1
x
√
x2 − 1

3. d
dx
(
tan−1(x)

)
=

1
1+ x2

4. d
dx
(
cos−1(x)

)
= − 1√

1− x2

5. d
dx
(
csc−1(x)

)
= − 1

x
√
x2 − 1

6. d
dx
(
cot−1(x)

)
= − 1

1+ x2

Note how the last three derivatives are merely the opposites of the first
three, respectively. Because of this, the first three are used almost exclusively
throughout this text.

In Section 2.3, we stated without proof or explanation that
d
dx
(
ln x
)
=

1
x
.

We can justify that now using Theorem 2.7.1, as shown in the example.

Example 2.7.2 Finding the derivative of y = ln x
Use Theorem 2.7.1 to compute

d
dx
(
ln x
)
.

SÊ½çã®ÊÄ View y = ln x as the inverse of y = ex. Therefore, using our
standard notation, let f(x) = ex and g(x) = ln x. Wewish to find g ′(x). Theorem
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Note: In this section we have used
the two most common notations
for the inverse trigonometric func-
tions: arcsin(x), arccos(x), etc., and
sin−1(x), cos−1(x), etc. The latter
notation is probably the more common
(and most likely the one you’ll find on
your calculator), but it does have a
couple of flaws. First, as noted above,
we cannot take the inverse of an entire
trigonometric function, because none
of these functions are one to one. So,
for example, sin−1(x) is not the inverse
of sin(x): it is only the inverse of the
new function obtained by restricting the
domain of sin(x). The other, perhaps
more serious problem, is that this
notation collides unfortunately with
the notation sin2(x), cos2(x), etc. used
for powers of trigonometric functions.
While sin2(x) = (sin(x))2, sin−1(x) is not
the same thing as (sin(x))−1 (the latter
function being, in fact, csc(x))!
For these reasons, the somewhat more
clumsy ‘arc’ notation is preferred bymany
authors. We will use both notations in
this textbook; the reader is warned to
beware of the issues mentioned above
when using the ‘−1’ notation for inverse
trigonometric functions.

Chapter 2 Derivatives

2.7.1 gives:

g ′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
.

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.3 Glossary of Derivatives of Elementary Functions

Let u and v be differentiable functions, and let a, c and n be real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
sec x

)
= sec x tan x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
sec−1 x

)
= 1

x
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
csc x

)
= − csc x cot x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
csc−1 x

)
= − 1

x
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2
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Exercises 2.7
Terms and Concepts

1. T/F: Every function has an inverse.

2. In your own words explain what it means for a function to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given functions are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) = 3
x− 5

, x ̸= 5 and

g(x) = 3+ 5x
x

, x ̸= 0

8. f(x) = x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an invertible function f(x) is given along
with a point that lies on its graph. Using Theorem 2.7.1, eval-
uate

(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) = 1
1+ x2

, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the derivative of the given func-
tion.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) = sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 27, compute the derivative of the given func-
tion in two ways:

(a) By simplifying first, then taking the derivative, and
(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

27. f(x) = sin(cos−1 x)

In Exercises 28 – 29, find the equation of the line tangent to
the graph of f at the indicated x value.

28. f(x) = sin−1 x at x =
√

2
2

29. f(x) = cos−1(2x) at x =
√

3
4

30. Using the method of Example 2.7.1, verify the formulas for
the derivatives of sec−1(x) and csc−1(x) given in Theorem
2.7.2. In particular, make note of why the domains given
in Figure 2.7.5 are needed. What goes wrong if we instead
use the domains given in the marginal note on page 107?

Review
31. Find dy

dx , where x2y− y2x = 1.
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32. Find the equation of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

33. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Note: The extreme values of a function
are “y” values, values the function attains,
not the input values.

Note: While Theorem 3.1.1 is intuitively
plausible, a rigorous proof is actually
quite technical, and beyond the scope of
this text.
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Figure 3.1.1: Graphs of functionswith and
without extreme values.
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Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

3.1 Extreme Values
Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object travelled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 3.1.1. The function displayed in (a) has a maximum, but
no minimum, as the interval over which the function is defined is open. In (b),
the function has a minimum, but no maximum; there is a discontinuity in the
“natural” place for the maximum to occur. Finally, the function shown in (c) has
both a maximum and a minimum; note that the function is continuous and the
interval on which it is defined is closed.

It is possible for discontinuous functions defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

Theorem 3.1.1 The Extreme Value Theorem

Let f be a continuous function defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.
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Figure 3.1.2: A graph of f(x) = 2x3 − 9x2
as in Example 3.1.1.

Note: The terms local minimum and local
maximum are often used as synonyms for
relative minimum and relative maximum.

As it makes intuitive sense that an ab-
solute maximum is also a relative max-
imum, Definition 3.1.2 allows a relative
maximum to occur at an interval’s end-
point.
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4x3 − 12x2 + 5)/5 as in Example 3.1.2.

..... 1. 2.

1

.

2

.

3

.
x

.

y

Figure 3.1.4: A graph of f(x) = (x −
1)2/3 + 2 as in Example 3.1.3.

Chapter 3 The Graphical Behaviour of Functions

Example 3.1.1 Approximating extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.2. Approxi-
mate the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw attention to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximation, we
approximate the extreme values to be 25 and−27.

Notice how theminimum value came at “the bottom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

Definition 3.1.2 Relative Minimum and Relative Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a relative minimum of f. We also say that
f has a relative minimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maxi-
mum value, then f(c) is a relative maximum of f. We also say that
f has a relative maximum at (c, f(c)).

The relative maximum and minimum values comprise the relative ex-
trema of f.

We briefly practice using these definitions.

Example 3.1.2 Approximating relative extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 3.1.3. Approximate
the relative extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We still do not have the tools to exactly find the relative
extrema, but the graph does allow us to make reasonable approximations. It
seems f has relative minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relative maximum at the point (0, 1).

We approximate the relative minima to be 0 and−5.4; we approximate the
relative maximum to be 1.

It is straightforward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 3.1.3 Approximating relative extrema
Approximate the relative extrema of f(x) = (x−1)2/3+2, shown in Figure 3.1.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not only
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Figure 3.1.5: A graph of f(x) = x3 which
has a critical value of x = 0, but no rela-
tive extrema.

3.1 Extreme Values

is this point a relative minimum, y = f(1) = 2 is the minimum value of the
function.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 3.1.3 Critical Numbers and Critical Points

Let f be defined at c. The value c is a critical number of f if f ′(c) = 0 or
f ′(c) is not defined. The value f(c) is then referred to as a critical value
of f.

If c is a critical number of f, then the point (c, f(c)) is a critical point of f.

Theorem 3.1.2 Relative Extrema and Critical Points

Let a function f be defined on an open interval I containing c, and let f
have a relative extremumat the point (c, f(c)). Then c is a critical number
of f.

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straightforward to determine that x = 0 is a critical number of f. However, f has
no relative extrema, as illustrated in Figure 3.1.5.

Let us pause briefly to try to understand why Theorem 3.1.2 is true. To be-
gin, suppose that our function f has a relative maximum at the point (c, f(c)).
(The argument for a relative minimum is similar.) If f′(c) is undefined, then c is a
critical number, and there is nothing to prove, so we suppose that f is differen-
tiable at c, and try to see why it must be that f′(c) = 0. Consider the difference
quotient

f′(c) = lim
h→0

f(c+ h)− f(c)
h

.

Since f has a relative maximum at c, we know that f(c) ≥ f(c+h) for sufficiently
small values of h, so f(c + h) − f(c) ≤ 0. Since f′(c) exists, we know that the
above limitmust exist; in particular, the left-hand limitmust equal the right hand
limit. On the other hand, since f(c+ h)− f(c) ≤ 0, we have

lim
h→0−

f(c+ h)− f(c)
h

≥ 0,

since h < 0 in the left-hand limit, while

lim
h→0+

f(c+ h)− f(c)
h

≤ 0,

since h > 0 for the right-hand limit. The only way these two limits can agree is
if both limits are equal to zero which proves that f′(c) = 0.

113



..... 1. 2. 3.

20

.

40

.
x

.

y

(a)

x f(x)
0 0
1 −7
3 45

(b)

Figure 3.1.6: Finding the extreme values
of f(x) = 2x3+3x2−12x in Example 3.1.4.
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Figure 3.1.7: Finding the extreme values
of a piecewise–defined function in Exam-
ple 3.1.5.

Chapter 3 The Graphical Behaviour of Functions

Theorem3.1.1 states that a continuous function on a closed intervalwill have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at critical values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea 3.1.1 Finding Extrema on a Closed Interval

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the critical numbers of f in [a, b].

3. Evaluate f at each critical number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We practice these ideas in the next examples.

Example 3.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
3.1.6(a).

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 3.1.1. We first eval-
uate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the critical values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 =
6(x + 2)(x − 1); therefore the critical values of f are x = −2 and x = 1. Since
x = −2 does not lie in the interval [0, 3], we ignore it. Evaluating f at the only
critical number in our interval gives: f(1) = −7.

The table in Figure 3.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 3.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 3.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can still apply Key Idea
3.1.1. Evaluating f at the endpoints gives:

f(−4) = 25 and f(2) = 3.
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Figure 3.1.9: Finding the extrema of the
half–circle in Example 3.1.7.

Note: We implicitly found the derivative
of x2 + y2 = 1, the unit circle, in Ex-
ample 2.6.5 as dy

dx = −x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) =

√
1− x2. We found f ′(x) =

−x√
1−x2

. Recognize that the denominator
of this fraction is y; that is, we again found
f ′(x) = dy

dx = −x/y.

3.1 Extreme Values

We now find the critical numbers of f. We have to define f ′ in a piecewise man-
ner; it is

f ′(x) =

{
2(x− 1) x < 0
1 x > 0

.

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivative of f does
not exist when x = 0. (From the left, the derivative approaches −2; from the
right the derivative is 1.) Thus one critical number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0, so we find no critical values from setting f ′(x) = 0.

So we have three important x values to consider: x = −4, 2 and 0. Evaluat-
ing f at each gives, respectively, 25, 3 and 1, shown in Figure 3.1.7(b). Thus the
absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the
graph of f.

Example 3.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 3.1.8(a).

SÊ½çã®ÊÄ We again use Key Idea 3.1.1. Evaluating f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the critical
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the critical values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always positive sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 3.1.8(b). In this

example we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 3.1.8 confirms our results.

We consider one more example.

Example 3.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2, graphed in Figure 3.1.9(a).

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. Evaluating f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The critical points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straightforward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next section, we further our study of the informationwe can
glean from “nice” functions with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 3.1
Terms and Concepts

1. Describe what an “extreme value” of a function is in your
own words.

2. Sketch the graph of a function f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relative
maxima in your own words.

4. Sketch the graph of a function f where f has a relative max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a critical value of a function f, then f has either a
relative maximum or relative minimum at x = c.

6. Fill in the blanks: The critical points of a function f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, identify each of the marked points as being
an absolute maximum or minimum, a relative maximum or
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1
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14. f(x) = 3√x4 − 2x+ 1
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16. f(x) =
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x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the function
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x2y− y2x = 1.

28. Find the equation of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Figure 3.2.1: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 3.2.1.

Chapter 3 The Graphical Behaviour of Functions

3.2 The Mean Value Theorem
We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100 kilometres away, completing
the trip in two hours. At any point during the trip do you necessarily have to be
going 50 kilometres per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50 km/h (i.e. 100 kilometres in 2 hours), but the question is whether
or not your instantaneous speed is ever exactly 50 km/h. More simply, does
your speedometer ever read exactly 50 km/h?. The answer, under some very
reasonable assumptions, is “yes.”

Let’s now see why this situation is in a calculus textbook by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in kilometres)
travelled from your home at time t (in hours) where 0 ≤ t ≤ 2. In particular,
this gives f(0) = 0 and f(2) = 100. The slope of the secant line connecting the
starting and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50 km/h.

The slope at any point on the graph itself is given by the derivative f ′(t). So,
since the answer to the question above is “yes,” this means that at some time
during the trip, the derivative takes on the value of 50 km/h. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some time 0 ≤ c ≤ 2.

How about more generally? Given any function y = f(x) and a range a ≤
x ≤ b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equation f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two functions in an example.

Example 3.2.1 Comparing average and instantaneous rates of change
Consider functions

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.1(a) and (b), respectively. Both
functions have a value of 1 at a and b. Therefore the slope of the secant line
connecting the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1] such that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.

So what went “wrong”? It may not be surprising to find that the discontinu-
ity of f1 and the corner of f2 play a role. If our functions had been continuous
and differentiable, would we have been able to find that special value c? This is
our motivation for the following theorem.
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Figure 3.2.2: A graph of f(x) = x3−5x2+
3x + 5, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = 0.

3.2 The Mean Value Theorem

Theorem 3.2.1 The Mean Value Theorem of Differentiation

Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the functions in Example 3.2.1 fail are indeed that
f1 has a discontinuity on the interval [−1, 1] and f2 is not differentiable at the ori-
gin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.2 Rolle’s Theorem

Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.2.2 where the graph of a function f is given, where f(a) =
f(b). It shouldmake intuitive sense that if f is differentiable (and hence, continu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a relative maximum or minimum of f in (a, b). Rolle’s Theorem guarantees
at least one; there may be more.

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differentiable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.
Case 2: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a critical value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 3.1.2, cmust be a critical number of f; since f is differentiable,
we have that f ′(c) = 0, completing the proof of the theorem. �

We can now prove the Mean Value Theorem.
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Figure 3.2.3: Demonstrating the Mean
Value Theorem in Example 3.2.2.

Chapter 3 The Graphical Behaviour of Functions

Proof of the Mean Value Theorem
Define the function

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differentiable on (a, b) and continuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c ∈ (a, b) such
that g ′(c) = 0. But note that

0 = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. �

Going back to the very beginning of the section, we see that the only as-
sumption we would need about our distance function f(t) is that it be continu-
ous and differentiable for t from 0 to 2 hours (both reasonable assumptions). By
the Mean Value Theorem, we are guaranteed a time during the trip where our
instantaneous speed is 50 mph. This fact is used in practice. Some law enforce-
ment agencies monitor traffic speeds while in aircraft. They do not measure
speed with radar, but rather by timing individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some time.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indication about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

Example 3.2.2 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that satisfies the Mean
Value Theorem.

SÊ½çã®ÊÄ The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

We want to find c such that f ′(c) = 14. We find f ′(x) = 3x2 + 5. We set
this equal to 14 and solve for x.

f ′(x) = 14
3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.2.3 f is graphed with a dashed line representing the aver-
age rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how

these lines are parallel with (i.e., have the same slope as) the dashed line.
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3.2 The Mean Value Theorem

While the Mean Value Theorem has practical use (for instance, the speed
monitoring application mentioned before), it is mostly used to advance other
theory. We will use it in the next section to relate the shape of a graph to its
derivative.
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Exercises 3.2
Terms and Concepts

1. Explain in your own words what the Mean Value Theorem
states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises 3 – 10, a function f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) = 1
x2 − 2x+ 1

on [0, 2].

In Exercises 11 – 20, a function f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) = x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. f(x) = sin−1 x on [−1, 1].

Review
21. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

22. Describe the critical points of f(x) = cos x.

23. Describe the critical points of f(x) = tan x.
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Figure 3.3.1: A graph of a function f used
to illustrate the concepts of increasing
and decreasing.

Note: Some authors define a function to
be increasing if f(a) ≤ f(b) whenever
a < b (with a similar definition for de-
creasing), and say that a function f sat-
isfying our definition is strictly increasing
(similarly, strictly decreasing). This is a
perfectly reasonable definition, although
it does have the odd consequence that,
with this definition, a constant function
would be simultaneously increasing and
decreasing.
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Figure 3.3.2: Examining the secant line of
an increasing function.

3.3 Increasing and Decreasing Functions

3.3 Increasing and Decreasing Functions
Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 3.3.1 Increasing and Decreasing Functions

Let f be a function defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

A function is nonincreasing when a < b in I implies f(a) ≥ f(b), with a
similar definition holding for nondecreasing.

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differentiable function on an open interval I, such as the one shown in Figure
3.3.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathematically whatmay have already been obvious: when
f is increasing, its secant lines will have a positive slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing functions.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
positive.” Theorem 3.3.1 below turns this around by stating “If f ′ is positive,
then f is increasing.” This leads us to a method for finding when functions are
increasing and decreasing.
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Note: Parts 1 & 2 of Theorem 3.3.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

Note: Recall that not all points c where
f ′(c) is undefined are critical points. It
could be that f ′(c) is undefined because
c is not in the domain of f; for example, at
a vertical asymptote. Even though these
points are not critical points, we still in-
clude them in our sign diagram, since it’s
possible that f ′ changes sign at such a
point.

Chapter 3 The Graphical Behaviour of Functions

Theorem 3.3.1 Test For Increasing/Decreasing Functions

Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differentiable on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is continuous on [a, b], it follows from the Intermediate Value
Theorem that theremust be some value c between a and bwhere f ′(c) = 0. If f ′
is not continuous on [a, b], it can happen that f ′ changes sign at a point cwhere
f ′(c) is undefined, so we should account for these points as well. This leads us
to the following method for finding intervals on which a function is increasing
or decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differentiable function on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the critical values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the critical values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

To implement Key Idea 3.3.1, we use a visual aid called a sign diagram for f ′.
A sign diagram for a function g consists of the following:

• A number line representing the domain of the function g.

• A solid dot marking each point x where g(x) = 0.

• A hollow dot marking each point where g(x) is undefined.

• Between each pair of dots, either a + sign or − sign to indicate whether
the function is positive or negative on that interval.

We demonstrate using this process in the following example.

Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 3.3.1, we first find the critical values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
tire domain of f which is (−∞,∞). We thus break the whole real line into
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Figure 3.3.4: A graph of f(x) in Example
3.3.1, showing where f is increasing and
decreasing.

3.3 Increasing and Decreasing Functions

three subintervals based on the two critical values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.3.

−1 1
3f ′ > 0 incr f ′ < 0 decr f ′ > 0 incr

+ − +

Figure 3.3.3: Sign diagram for f ′ in Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computation. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly positive and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculations by considering Figure 3.3.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relationship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the critical points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straightforward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has options for finding needed information.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.” 125



Chapter 3 The Graphical Behaviour of Functions

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice–versa) at critical points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = c, after which it de-
creases. A quick sketch helps confirm that f(c) must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.2 First Derivative Test

Let f be differentiable on an interval I and let c be a critical number in I.

1. If the sign of f ′ switches from positive to negative at c, then f(c) is
a relative maximum of f.

2. If the sign of f ′ switches from negative to positive at c, then f(c) is
a relative minimum of f.

3. If f ′ is positive (or, negative) before and after c, then f(c) is not a
relative extrema of f.

Example 3.3.2 Using the First Derivative Test
Find the intervals on which f is increasing and decreasing, and use the First
Derivative Test to determine the relative extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noting the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a critical value of
f, but we will include it in our list of critical values that we find next.

Using the Quotient Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the critical values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That latter is straightforward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two critical numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).
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Figure 3.3.6: A graph of f(x) in Example
3.3.2, showing where f is increasing and
decreasing.

Note: with a bit of practice, you might
find that you can fill out sign diagrams
quickly, without needing to use test val-
ues in each interval. One strategy is the
following: start on the far left (or far
right). Determine the sign in the first in-
terval, and work left-to-right (or right-to-
left). Each time you pass a point where f ′
is zero or undefined, check the factored
expression for f ′. Did this point come
from an even power, or an odd power?
If the power is even, leave the sign un-
changed. If the power is odd, change
the sign. In Example 3.3.2, the critical
numbers −1 and 3 come from odd pow-
ers. (Recall (x + 1) = (x + 1)1.) The
vertical asymptote contributes the even
power (x−1)2 in the denominator. Thus,
we see sign changes at−1 and 3, but the
sign is the same on either side of 1.

3.3 Increasing and Decreasing Functions

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computations; notice that the denominator of f ′ is always positive
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negative number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be positive. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a positive numerator and (of course) a positive denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1) ∪ (3,∞) and is decreasing
on the set (−1, 1)∪(1, 3). Since at x = −1, the sign of f ′ switched from positive
to negative, Theorem 3.3.2 states that f(−1) is a relative maximum of f. At x =
3, the sign of f ′ switched from negative to positive, meaning f(3) is a relative
minimum. At x = 1, f is not defined, so there is no relative extrema at x = 1.

−1 31

f ′ > 0 incr

+

f ′ < 0 decr

−

f ′ < 0 decr

−

f ′ > 0 incr

+

rel.
max

rel.
min

Figure 3.3.5: Sign diagram for f ′ in Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.5. Also, Figure
3.3.6 shows a graph of f, confirming our calculations. This figure also shows
f ′, again demonstrating that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is often tempted to think that functions always alternate “increasing,
decreasing, increasing, decreasing,. . .” around critical values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a critical value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First Derivative Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
identify the relative extrema.

SÊ½çã®ÊÄ We again start with taking a derivative. Since we know we
want to solve f ′(x) = 0, we will do some algebra after taking the derivative.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).
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Figure 3.3.8: A graph of f(x) in Example
3.3.3, showing where f is increasing and
decreasing.

Chapter 3 The Graphical Behaviour of Functions

This derivation of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 critical values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we practice finding the sign
of f ′(p) without computing an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negative × negative × positive” giving a positive number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 positive factors and one negative factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.

−1 10

f ′ < 0 incr

−

f ′ > 0 decr

+

f ′ < 0 decr

−

f ′ > 0 incr

+

rel.
min

rel.
min

rel.
max

Figure 3.3.7: Sign diagram for f′ in Example 3.3.3.

Weconcludeby stating that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from negative to positive around
x = −1 and x = 1, meaning by Theorem 3.3.2 that f(−1) and f(1) are relative
minima of f. As the sign of f ′ changes from positive to negative at x = 0, we
have a relative maximum at f(0). Figure 3.3.8 shows a graph of f, confirming our
result. We also graph f ′, highlighting once more that f is increasing when f ′ > 0
and is decreasing when f ′ < 0.

We have seen how the first derivative of a function helps determine when
the function is going “up” or “down.” In the next section, we will see how the
second derivative helps determine how the graph of a function curves.
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Exercises 3.3
Terms and Concepts

1. In your own words describe what it means for a function to
be increasing.

2. What does a decreasing function “look like”?

3. Sketch a graph of a function on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a function describing a situation where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Functions always switch from increasing to decreasing,
or decreasing to increasing, at critical points.

6. A function f has derivative f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given information?

Problems
In Exercises 7 – 14, a function f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permitted) and verify Theorem 3.3.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a function f(x) is given.
(a) Give the domain of f.
(b) Find the critical numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First Derivative Test to determine whether

each critical point is a relative maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

Review
25. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

26. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We often state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.4.1: A function f with a concave
up graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are increasing.
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Figure 3.4.2: A function f with a concave
down graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admittedly terrible, but it
works.

Note: Geometrically speaking, a function
is concave up if its graph lies above its tan-
gent lines. A function is concave down if
its graph lies below its tangent lines.

Chapter 3 The Graphical Behaviour of Functions

3.4 Concavity and the Second Derivative
Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f ′, can relay important information about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivative, namely f ′′, which is the
second derivative of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relative maxima and minima where f ′′ = 0 or is undefined.

This section explores how knowing information about f ′′ gives information
about f.

Concavity

We begin with a definition, then explore its meaning.

Definition 3.4.1 Concave Up and Concave Down

Let f be differentiable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a function f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a function is decreasing and concave up, then its rate of decrease is slow-
ing; it is “levelling off.” If the function is increasing and concave up, then the rate
of increase is increasing. The function is increasing at a faster and faster rate.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “levelling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differentiable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.
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3.4 Concavity and the Second Derivative

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definition.

Definition 3.4.2 Point of Inflection

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a function with inflection points labelled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from positive to negative (or, negative to positive) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Points of Inflection

If (c, f(c)) is a point of inflection on the graph of f, then either f ′′(c) = 0
or f ′′ is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.1 Finding intervals of concave up/down, inflection points
Let f(x) = x3 − 3x+ 1. Find the inflection points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflection points, we use Theorem 3.4.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflection.

This possible inflection point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous section to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflection point.

The number line in Figure 3.4.5 illustrates the process of determining con-
cavity; Figure 3.4.6 shows a graph of f and f ′′, confirming our results. Notice how
f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 3.4.2 Finding intervals of concave up/down, inflection points
Let f(x) = x/(x2 − 1). Find the inflection points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the Quotient Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.
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Figure 3.4.9: A graph of S(t) in Example
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time.
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To find the possible points of inflection, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflection at x = ±1 as
they are not part of the domain, but we must still consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be positive. In the
numerator, the (c2 + 3) will be positive and the 2c term will be negative. Thus
the numerator is negative and f ′′(c) is negative. We conclude f is concave down
on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negative, the term (c2 + 3) in the numerator will be positive, and
the term (c2 − 1)3 in the denominator will be negative. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be positive and “small.” Thus
the numerator is positive while the denominator is negative. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).

−1 10

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

f ′′ < 0 c. down

−

f ′′ > 0 c. up

+

Figure 3.4.7: Sign diagram for f ′′ in Example 3.4.2.

We conclude that f is concave up on (−1, 0)∪ (1,∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflection, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 3.4.8. Notice how
f is concave upwhenever f ′′ is positive, and concave downwhen f ′′ is negative.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relative maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflection points of f.

What does a “relative maximum of f ′ ”mean? The derivative measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest negatively–sloped tangent
line.

We utilize this concept in the next example.

Example 3.4.3 Understanding inflection points
The sales of a certain product over a three-year span are modelled by S(t) =
t4 − 8t2 + 20, where t is the time in years, shown in Figure 3.4.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.
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3.4 Concavity and the Second Derivative

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Setting S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the negative value of t since it does not lie in

the domain of our function S).
This is both the inflection point and the point of maximum decrease. This

is the point at which things first start looking up for the company. After the
inflection point, it will still take some time before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.4.10. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “levelling off.”

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.11.

The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value cor-
responded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical value
must correspond to a relative minimum of f, etc. See Figure 3.4.12 for a visual-
ization of this.

Theorem 3.4.3 The Second Derivative Test

Let c be a critical value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a critical point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negative
to positive at c. This means the function goes from decreasing to increasing, in-
dicating a local minimum at c.

Example 3.4.4 Using the Second Derivative Test
Let f(x) = 100/x+ x. Find the critical points of f and use the Second Derivative
Test to label them as relative maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the critical values (note that f ′ is not defined at
x = 0, but neither is f so this is not a critical value.) We find the critical values
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Chapter 3 The Graphical Behaviour of Functions

are x = ±10. Evaluating f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evaluating f ′′(−10) = −0.1 < 0, determining a relative maximum
at x = −10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter
1 we saw how limits explained asymptotic behaviour. In the next section we
combine all of this information to produce accurate sketches of functions.
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

4. Is is possible for a function to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a function.

Problems

In Exercises 5 – 14, a function f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permitted) and verify Theorem 3.4.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a function f(x) is given.
(a) Find the possible points of inflection of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a function f(x) is given. Find the critical
points of f and use the Second Derivative Test, when possi-
ble, to determine the relative extrema. (Note: these are the
same functions as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)
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37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a function f(x) is given. Find the x val-
ues where f ′(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2
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3.5 Curve Sketching

3.5 Curve Sketching

We have been learning how we can understand the behaviour of a function
based on its first and second derivatives. While we have been treating the prop-
erties of a function separately (increasing and decreasing, concave up and con-
cave down, etc.), we combine them here to produce an accurate graph of the
function without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not particularly fast – it will require
time (but it is not hard). So again: why bother?

We are attempting to understand the behaviour of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behaviour we care about is
explained by f ′ and f ′′. Understanding the interactions between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands howan engineworks after looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of functions and gives a framework for putting that
information together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given function f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such aswhere a denominator
is 0 or where negatives appear under the radical.

2. Find the x- and y-intercepts of f, if possible; construct a sign dia-
gram for f.

3. Find the location of any vertical asymptotes of f (usually done in
conjunction with item 2 above). Use your sign diagram to deter-
mine whether f(x) is approaching∞ or infty on either side of each
vertical asymptote.

4. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behaviour of the function.

5. Compute f ′, and find the critical points of f.

(continued)
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Key Idea 3.5.1 Curve Sketching – Continued

6. Construct a sign diagram for f ′; classify the critical points using the
first derivative test. Determine the intervals on which f is increas-
ing or decreasing.

7. Compute f ′′ and find the possible points of inflection of f.

8. Construct a sign diagram for f ′′, and determine the intervals on
which the graph of f is concave up or concave down.

9. Plot the intercepts and asymptotes of f on a set of coordinate axes.
Roughly sketch the behaviour of f near the asymptotes. Then plot
the critical points and inflection points.

10. Sketch the graph of f by connecting the points plotted so far with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the entire real line; there are no values x for which f(x)
is not defined.

2. The y-intercept is given by f(0) = 5. Determining the x-intercepts would
involve finding the (quite likely irrational) zeros of a cubic polynomial, so
we skip this step for now. (We may have to settle for approximate ze-
ros later.) Since we don’t know the zeros of f, we can’t construct a sign
diagram for f.

3. There are no vertical asymptotes, since the domain of f is R.

4. We determine the end behaviour using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes. (But it is still useful to know
the direction in which the graph is headed at either end.)

5. Find the critical points of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
Quadratic Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

6. Construct a sign diagram for f ′. We found that the critical points of f are

c1 =
10−

√
37

9
<

10+
√
37

9
= c2.

With f ′(x) = 9(x− c1)(x− c2)we quickly see that f ′(x) > 0 for x < c1 or
x > c2, and f ′(x) < 0 for c1 < x < c2.
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Figure 3.5.4: Sketching f in Example 3.5.1.

3.5 Curve Sketching

The sign diagram for f ′ is given by:

c1 c2

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 3.5.1: Sign diagram for f ′ in Example 3.5.1.

From the sign diagram, we see that f is increasing on (−∞, c1) ∪ (c2,∞)
(where f ′(x) > 0, and f is decreasing on (c1, c2) (where f ′(x) < 0).
Since f ′ changes from positive to negative at c1, we know that (c1, f(c1))
is a local maximum, and since f ′ changes from negative to positive at c2,
we know that (c2, f(c2)) is a local minimum.

7. Find the possible points of inflection of f. We compute f ′′(x) = 18x− 20.
We have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

8. Construct a sign diagram for f ′′. We have only one zero for f ′′, and we
easily see that f ′′(x) > 0 for x > 10/9, and f ′′(x) < 0 for x < 10/9. The
sign diagram for f ′′ is given below, with the critical points also indicated
for reference:

c1c2 10
9

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 3.5.2: Sign diagram for f ′′ in Example 3.5.1.

9. We plot the appropriate points on axes as shown in Figure 3.5.4(a) and
connect the points with straight lines. In Figure 3.5.4(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.5.4(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 3.5.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restrictions. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. The numerator of f factors as (x − 2)(x + 1), so f(x) = 0 for x = −1
and x = 2; these are the x-intercepts of f. The y-intercept is given by
f(0) = 1/3.
Our function has two zeros and two points at which it is undefined. Note
that f(x) changes sign at each of these points, so we need to indicate each
of them in our sign diagram. We use hollow dots to indicate the points at
which f is undefined, giving us the following sign diagram:

139



Chapter 3 The Graphical Behaviour of Functions

−2 3−1 2

+

f > 0

+

f > 0

+

f > 0

−

f < 0

−

f < 0

Figure 3.5.3: Sign diagram for f in Example 3.5.2.

3. We see from the sign diagram for f in Figure 3.5.3 that f has vertical asymp-
totes at x = −2 and x = 3; moreover, we can deduce the following
asymptotic behaviour: at x = −2

lim
x→−2−

f(x) = +∞ and lim
x→−2+

f(x) = −∞,

and at x = 3

lim
x→3−

f(x) = −∞ and lim
x→3+

f(x) = +∞.

4. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

5. To find the critical values of f, we first find f ′(x). Using the Quotient Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

,

so f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not critical values. The only critical
value is x = 1/2. The sign diagram for f ′ is given as follows:

−2 1
2

3

+

f ′ > 0 incr

+

f ′ > 0 incr

−

f ′ < 0 decr

−

f ′ < 0 decr

Figure 3.5.5: Sign diagram for f ′ in Example 3.5.2.

From the sign diagram for f ′, we see that f ′(x) changes from positive to
negative at x = 1/2, so we have a local maximum at (1/2, f(1/2)). We
also see that f is increasing on (−∞,−2) ∪ (−2, 1/2) and decreasing on
(1/2, 3) ∪ (3,∞).

6. To find the possible points of inflection, we find f ′′(x), again employing
the Quotient Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

7. We find that f ′′(x) is never 0 (setting the numerator equal to 0 and solving
for x, we find the only roots to this quadratic are imaginary) and f ′′ is
undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3. The sign diagram is given by:

−2 3

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 3.5.6: Sign diagram for f ′′ in Example 3.5.2.
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Figure 3.5.9: Sketching f in Example 3.5.2.

3.5 Curve Sketching

From the sign diagramwe see that the graphof f is concaveupon (−∞,−2)∪
(3,∞) and concave down on (−2, 3)

8. In Figure 3.5.9(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the function looks like (these lines effectively only convey increas-
ing/decreasing information). In Figure 3.5.9(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.5.9(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 3.5.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider restric-
tions. The only restrictions come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. The x-intercepts of f are (−1, 0), and (2, 0), and the y-intercept is (0,−5/2).
The sign diagram of f is given below:

−1 2

+

f > 0

−

f < 0

+

f > 0

Figure 3.5.7: Sign diagram for f in Example 3.5.3.

3. Since the domain of f is R, there are no vertical asymptotes.

4. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

5. We find the critical values of f by setting f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

6. The sign diagram for f ′ is given by:

−4 0

+

f ′ > 0 incr

−

f ′ < 0 decr

+

f ′ > 0 incr

Figure 3.5.8: Sign diagram for f ′ in Example 3.5.3.

From the sign diagram,we see that f ′(x) changes frompositive to negative
at x = −4, so (−4, f(−4)) is a relative maximum, and f ′(x) changes from
negative to positive at x = 0, so (0, f(0)) is a relative minimum. We also
see that f is increasing on (−∞,−4)∪ (0,∞), and decreasing on (−4, 0).
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Figure 3.5.12: Sketching f in Example
3.5.3.

Chapter 3 The Graphical Behaviour of Functions

7. We find the possible points of inflection by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead
approximate the roots (with the help of a computer) at c1 = −5.759,
c2 = −1.305 and c3 = 1.064. The sign diagram for f ′′ is given by:

c1 c2 c3

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

−

f ′′ < 0 c. down

+

f ′′ > 0 c. up

Figure 3.5.10: Sign diagram for f ′′ in Example 3.5.3.

8. In Figure 3.5.12(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.12(b), we add concavity. Figure 3.5.12(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puting than we are. In general, computers graph functions much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecting lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noticeable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
Mathematica, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.11, a graph of y = sin x is given, generated by Mathematica.
The small points represent each of the places Mathematica sampled the func-
tion. Notice how at the “bends” of sin x, lots of points are used; where sin x
is relatively straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behaviour” is accurate.) In fact, in the interval of
length 0.2 centered around π/2, Mathematica plots 72 of the 431 points plot-
ted; that is, it plots about 17% of its points in a subinterval that accounts for
about 3% of the total interval length.
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1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.5.11: A graph of y = sin x generated byMathematica.

How does Mathematica know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivatives of a function work together to provide a measurement of “curvi-
ness.” Mathematica employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behaviour of the
function at a fewkey places.” In Example 3.5.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond
curve sketching. The next chapter explores some of these applications, demon-
strating just a few kinds of problems that can be solved with a basic knowledge
of differentiation.
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of functions, it is useful to find
the critical points.

4. T/F: When sketching graphs of functions, it is useful to find
the possible points of inflection.

5. T/F: When sketching graphs of functions, it is useful to find
the horizontal and vertical asymptotes.

6. T/F: When sketching graphs of functions, one need not plot
any points at all.

Problems
In Exercises 7 – 12, practice using Key Idea 3.5.1 by applying
the principles to the given functions with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given function us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a function with the parameters a and b
are given. Describe the critical points and possible points of
inflection of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differentiation to find dy
dx

and d2y
dx2 . Use this information to justify the sketch of the

unit circle.
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Figure 4.1.1: Demonstrating the geo-
metric concept behindNewton’sMethod.
Note how x3 is very close to a solution to
f(x) = 0.

4: AÖÖ½®��ã®ÊÄÝ Ê¥ ã«�
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In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method
Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar functions. Fortunately, there are methods that
can give us approximate solutions to equations like these. These methods can
usually give an approximation correct to as many decimal places as we like. In
Section 1.6 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will often converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equation of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equation:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximation xn, we can find the next approximation, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approximation is better than it ac-
tually is. These issues will be discussed at
the end of the section.
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Figure 4.1.2: A graph of f(x) = x3−x2−1
in Example 4.1.1.

Chapter 4 Applications of the Derivative

Key Idea 4.1.1 Newton’s Method

Let f be a differentiable function on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an initial approximation of the root. (This is
often done by looking at a graph of f.)

2. Create successive approximations iteratively; given an approxima-
tion xn, compute the next approximation xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places after
the decimal, using Newton’s Method and an initial approximation of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 4.1.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iterations of Newton’s Method to find a root accurate to the
first 3 places after the decimal; our final approximation is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
initial approximation of x0 = 1 was not particularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of initial calculation,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate initial approximation.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculation. Start by pressing 1 and then Enter.
(We have just entered our initial guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:
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Figure 4.1.3: A graph of f(x) = cos x − x
used to find an initial approximation of its
root.

4.1 Newton’s Method

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each timewepress the Enter key, we are finding the successive approximations,
x1, x2, …, and each one is getting closer to the root. In fact, once we get past
around x7 or so, the approximations don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many iter-
ations can be computed very quickly.

Example 4.1.2 Using Newton’s Method to find where functions intersect
Use Newton’s Method to approximate a solution to cos x = x, accurate to 5
places after the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equations like f(x) = g(x). However, this is
not a problem; we can rewrite the latter equation as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. Written this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starting value, x0. Consider Figure 4.1.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is pretty close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can continue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inputting
our initial approximation. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximations x2 and x3 did not differ for at least the first 5 places after the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interesting to see how we
found an approximation, accurate to as many decimal places as our calculator
displays, in just 4 iterations.

If you know how to program, you can translate the following pseudocode
into your favourite language to perform the computation in this problem.
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x0 = 0 with Newton’s Method fails.
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Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

Chapter 4 Applications of the Derivative

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approximation is stored in the variable oldx. We continue looping until
the difference between two successive approximations, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the initial guess, x0? Generally, the closer to the
actual root the initial guess is, the better. However, some initial guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a particularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analytically that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjusting the initial approximation x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.1.5(a) shows graphically the calculation of x1; notice how it is farther from the
root than x0. Figures 4.1.5(b) and (c) show the calculation of x2 and x3, which are
even farther away; our successive approximations are getting worse. (It turns
out that in this particular example, each successive approximation is twice as
far from the true answer as the previous approximation.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.
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Exercises 4.1
Terms and Concepts
1. T/F: Given a function f(x), Newton’s Method produces an

exact solution to f(x) = 0.

2. T/F: In order to get a solution to f(x) = 0 accurate to d
places after the decimal, at least d + 1 iterations of New-
tons’ Method must be used.

Problems
In Exercises 3 – 8, the roots of f(x) are known or are easily
found. Use 5 iterations of Newton’s Method with the given
initial approximation to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9 – 12, use Newton’s Method to approximate all
roots of the given functions accurate to 3 places after the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good initial approx-
imations.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13 – 16, use Newton’s Method to approximate
when the given functions are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good initial approx-
imations.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This section relies heavily on im-
plicit differentiation, so referring back to
Section 2.6 may help.

Recall that one millilitre is equal to one
cubic centimetre.

Chapter 4 Applications of the Derivative

4.2 Related Rates
When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6π cm determines
the radius must be 3 cm.

The topic of related rates takes this one step further: knowing the rate
at which one quantity is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5 centimetres per hour. At what rate
is the circumference growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
2πr. We are given information about how the length of r changes with respect
to time; that is, we are told dr

dt = 5 cm/h. We want to know how the length of C
changes with respect to time, i.e., we want to know dC

dt .
Implicitly differentiate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5 cm/h, we know

dC
dt

= 2π5 = 10π ≈ 31.4 cm/h.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 20 millilitres per second onto a flat
surface at a constant rate, forming a circular puddle that is 1/3 cm deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

SÊ½çã®ÊÄ

1. We can answer this question two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 20 ml/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/3 cm, the area must be growing by 60
cm2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

3 . Take
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4.2 Related Rates

the derivative of both sides with respect to t, employing implicit differen-
tiation.

V =
1
3
A

d
dt
(
V
)
=

d
dt

(
1
3
A
)

dV
dt

=
1
3
dA
dt

As dV
dt = 20, we know 20 = 1

3
dA
dt , and hence dA

dt = 60. Thus the area is
growing by 60 cm2/s.

2. To start, we need an equation that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this information.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 60 cm2/s. Solving for dr

dt , we have

dr
dt

=
30
πr

.

Note how our answer is not a number, but rather a function of r. In other
words, the rate at which the radius is growing depends on how big the
circle already is. If the circle is very large, adding 20 ml of water will not
make the circle much bigger at all. If the circle dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.
In someways, our problemwas (intentionally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 30 cm, the radius is growing at a rate of

dr
dt

=
30
30π

=
1
π
≈ 0.32cm/s.

Example 4.2.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “90 km/h”means the object is moving
away from the gun at a rate of 90 kilometres per hour, whereas a measurement
of “−50 km/h” would mean that the object is approaching the gun at a rate of
50 kilometres per hour.

If the radar gun is moving (say, attached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is travelling 100 km/h and gets a readout of
25 km/h, he knows that the car ahead of him is moving away at a rate of 25
kilometres per hour, meaning the car is travelling 125 km/h. (This straight–line

151



.. B = 1/2.

C

.

A
=

1/
2

.

N

. E.

Officer

.
Car

Figure 4.2.1: A sketch of a police car
(at bottom) attempting to measure the
speed of a car (at right) in Example 4.2.3.

Note: Example 4.2.3 is both interesting
and impractical. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.
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.
100mph

Figure 4.2.2: Tracking a speeding car (at
left) with a rotating camera.

Chapter 4 Applications of the Derivative

principle is one reason officers park on the side of the highway and try to shoot
straight back down the road. It gives the most accurate reading.)

Suppose an officer is driving due north at 50 km/h and sees a carmoving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of 30
km/h. By using landmarks, he believes both he and the other car are about 500
metres (1/2 of a kilometre) from the intersection of their two roads.

If the speed limit on the other road is 90 km/h, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.2.1, let’s label what we know
about the situation. As both the police officer and other driver are 1/2 km from
the intersection, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is travelling at 50 km/h; that is, dA
dt = −50. The

reason this rate of change is negative is that A is getting smaller; the distance
between the officer and the intersection is shrinking. The radar measurement
is dC

dt = 30. We want to find dB
dt .

We need an equation that relatesB toA and/or C. The Pythagorean Theorem
is a good choice: A2 + B2 = C2. Differentiate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2) = d

dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 92.42 km/h.

The other driver appears to be speeding slightly, but not enough to be worth
pulling over.

Example 4.2.4 Studying related rates
A camera is placed on a tripod 10ft from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promotional video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek information about how fast the camera is to turn;
therefore, we need an equation that will relate an angle θ to the position of the
camera and the speed and position of the car.

Figure 4.2.2 suggests we use a trigonometric equation. Letting x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1)

As the car ismoving at 100mph, wehave dx
dt = −100mph (as in the last example,

since x is getting smaller as the car travels, dx
dt is negative). We need to convert

themeasurements so they use the same units; rewrite -100mph in terms of ft/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280 ft
m

· 1
3600

hr
s

= −146.6ft/s.
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4.2 Related Rates

Now take the derivative of both sides of Equation (4.1) using implicit differenti-
ation:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
matics bears this out. In Equation (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67 ft/s, we have

dθ
dt

= −1 rad
10 ft

146.67 ft/s = −14.667 radians/s.

We find that dθ
dt is negative; this matches our diagram in Figure 4.2.2 for θ is

getting smaller as the car approaches the camera.
What is the practical meaning of −14.667 radians/s? Recall that 1 circular

revolution goes through 2π radians, thus 14.667 rad/s means 14.667/(2π) ≈
2.33 revolutions per second. The negative sign indicates the camera is rotating
in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’s Method uses the derivative to approximate roots of functions; this
section stresses the “rate of change” aspect of the derivative to find a relation-
ship between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differentiation is often used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situation introduced in Example 4.2.3.
How fast is the “other car” travelling if the officer and the
other car are each 1/2mile from the intersection, the other
car is travelling due west, the officer is travelling north at
50mph, and the radar reading is−80mph?

6. Consider the traffic situation introduced in Example 4.2.3.
Calculate how fast the “other car” is travelling in each of the
following situations.

(a) The officer is travelling due north at 50mph and is
1/2 mile from the intersection, while the other car is
1 mile from the intersection travelling west and the
radar reading is−80mph?

(b) The officer is travelling due north at 50mph and is
1 mile from the intersection, while the other car is
1/2mile from the intersection travelling west and the
radar reading is−80mph?

7. An F-22 aircraft is flying at 500mph with an elevation of
10,000ft on a straight–line path thatwill take it directly over
an anti–aircraft gun.

.

.

.

. θ.

x

.

10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircraft is flying at 500mph with an elevation of
100ft on a straight–line path that will take it directly over
an anti–aircraft gun as in Exercise 7 (note the lower eleva-
tion here).
How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24ft. ladder is leaning against a house while the base is
pulled away at a constant rate of 1ft/s.

.

.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30ft/min by a winch located 10ft above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20ft deep and 10ft across at
the top, is being filled with water at a rate of 10ft3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starting at empty?
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12. A rope, attached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connection point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ft) and begins to walk away at a rate
of 2ft/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situation described in Exercise 12. Suppose
the man starts 40ft from the weight and begins to walk
away at a rate of 2ft/s.

(a) How long is the rope?

(b) How fast is theweight rising after theman haswalked
10 feet?

(c) How fast is theweight rising after theman haswalked
30 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon lifts off from ground rising vertically. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the elevation of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5ft3/sec; the physical properties of the sand, in conjunc-
tion with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.

Chapter 4 Applications of the Derivative

4.3 Optimization
In Section 3.1 we learned about extreme values – the largest and smallest values
a function attains on an interval. We motivated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area
A man has 100 metres of fencing, a large yard, and a small dog. He wants to
create a rectangular enclosure for his dog with the fencing that provides the
maximal area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area function – after
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with 2 variables; we need to
reduce this down to a single variable. We know more about the situation: the
man has 100metres of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equation:

Perimeter = 100 = 2x+ 2y.

We now have 2 equations and 2 unknowns. In the latter equation, we solve
for y:

y = 50− x.

Now substitute this expression for y in the area equation:

Area = A(x) = x(50− x).

Note we now have an equation of one variable; we can truly call the Area a
function of x.

This function onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negative
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the critical points, we take the derivative of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only critical point. We evaluate
A(x) at the endpoints of our interval and at this critical point to find the extreme
values; in this case, all we care about is the maximum.
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Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.

4.3 Optimization

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625 m2. This is the
maximum. Since we earlier found y = 50 − x, we find that y is also 25. Thus
the dimensions of the rectangular enclosure with perimeter of 100 mwith max-
imum area is a square, with sides of length 25 m.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi–variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.1 Solving Optimization Problems

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We’ll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able function using substitutions derived from the other equa-
tions.

4. Identify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 Optimization: perimeter and area
Here is another classic calculus problem: A woman has a 100 metres of fencing,
a small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy. 157
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Chapter 4 Applications of the Derivative

This is our fundamental equation. This defines area as a function of two
variables, so we need another equation to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equation to a single variable. In the
perimeter equation, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a function of one variable.

4. We want the area to be nonnegative. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The latter inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We now find the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the critical points. We have A′(x) = 50 − x; setting this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
m2.

Keep in mind as we do these problems that we are practising a process; that
is, we are learning to turn a situation into a system of equations. These equa-
tions allow us to write a certain quantity as a function of one variable, which we
then optimize.

Example 4.3.3 Optimization: minimizing cost
A power line needs to be run from an power station located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power station to
the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ Wewill follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate solutions that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecting the two locations with a straight line. However, this requires
that all the wire be laid underwater, the most costly option. Second, we could
minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The optimal solution likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
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distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost function.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This function only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we still evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the critical values of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Setting c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3

≈ 416.67.

Evaluating c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 ft., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 ft.

In the exercises you will see a variety of situations that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equations from situations that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next section introduces our final application of the derivative: differen-
tials. Given y = f(x), they offer a method of approximating the change in y after
x changes by a small amount.
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Exercises 4.3
Terms and Concepts

1. T/F: An “optimization problem” is essentially an “extreme
values” problem in a “story problem” setting.

2. T/F: This section teaches one to find the extreme values of
a function that has more than one variable.

Problems

3. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of 100.

4. Find the minimum sum of two positive numbers whose
product is 500.

5. Find the maximum sum of two positive numbers whose
product is 500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimization in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross section, i.e., 2w+ 2h).

What is the maximum volume of a package with a square
cross section (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proportional
to its cross sectional widthw and the square of its height h;
that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a stick into a lake for her dog to fetch;
the stick is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.
How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Hint: the figure from
Example 4.3.3 can be useful.)

16. A woman throws a stick into a lake for her dog to fetch;
the stick is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.
How far along the shore should the dog run tominimize the
time it takes to get to the stick? (Google “calculus dog” to learn
more about a dog’s ability to minimize times.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Note: The function

ℓ(x) = f(c) + f′(c)(x− c)

is known as the linearization of f at c. It
is the linear function that best approxi-
mates the values of f near c.
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Figure 4.4.1: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to esti-
mate sin 1.1.

4.4 Differentials

4.4 Differentials
In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equation

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximations of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see howwe are approximating sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximation this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
representing a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a function approximateswell the values of that function
near x = c.

As the x value changes from c to c +∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Replacing f(c+∆x) with its tangent line approximation, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equation is important; it becomes the basis of the upcoming Def-
inition and Key Idea. In short, it says that when the x-value changes from c to
c+∆x, the y value of a function f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defini-
tion.
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Chapter 4 Applications of the Derivative

Definition 4.4.1 Differentials of x and y.

Let y = f(x) be differentiable. The differential of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
ential of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equation: f ′(x) = dy/dx. This states that
the derivative of f with respect to x is the differential of y divided by the differ-
ential of x; this is not the alternate notation for the derivative, dy

dx . This latter
notation was chosen because of the fraction–like qualities of the derivative, but
again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Key Idea 4.4.1 Differential Notation

Let y = f(x) be a differentiable function.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e.,∆x = dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by Equation (4.3), is an approximation of
the change in y value as x changes by∆x; dy ≈ ∆y.

What is the value of differentials? Like many mathematical concepts, differ-
entials provide both practical and theoretical benefits. We explore both here.

Example 4.4.1 Finding and using differentials
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

SÊ½çã®ÊÄ The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differential to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
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4.4 Differentials

our approximation is really good!)
So why bother?
In “most” real life situations, we do not know the function that describes

a particular behaviour. Instead, we can only take measurements of how things
change – measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

We use differentials oncemore to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques can
sometimes be used to easily compute something that looks rather hard.

Example 4.4.2 Using differentials to approximate a function value
Approximate

√
4.5.

SÊ½çã®ÊÄ We expect
√
4.5 ≈ 2, yet we can do better. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differentials,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as∫

f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practise finding differentials in general.

Example 4.4.3 Finding differentials
In each of the following, find the differential dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.
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Chapter 4 Applications of the Derivative

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f; we justmultiply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method of
making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this latter value as f(x) for some function f.
As the true length is x + ∆x, one really should have computed f(x + ∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differentials.

Example 4.4.4 Using differentials to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, estimate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equation “mass
= volume× density.” In this situation themass function is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differential of the mass is

dm = 31.4πr2dr.

The radius is to be 1 cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Is this error significant? It certainly depends on the application, but we can get
an idea by computing the relative error. The ratio between amount of error to
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4.4 Differentials

the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball

was supposed to be 10 cm, the same manufacturing tolerance would give a
propagated error in mass of ±12.33g, which corresponds to a percent error of
±0.188%. While the amount of error is much greater (12.33 > 0.493), the per-
cent error is much lower.

In this section, we’ve seen that differentials give us a useful way of approxi-
mating complicated functions. In the next section, we’ll see that these approxi-
mations can be improved by considering higher-degree polynomials, called Tay-
lor Polynomials.
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differentiable function y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: Differentials are important in the study of integration.

5. How are differentials and tangent lines related?

6. T/F: In real life, differentials are used to approximate func-
tion values when the function itself is not known.

Problems
In Exercises 7 – 16, use differentials to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17 – 30, compute the differential dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. f(x) = ln
(
sec x

)
Exercises 31 – 34 use differentials to approximate propagated
error.

31. A set of plastic spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bottom. What
is the propagated error if the timemeasurement is accurate
to 2/10ths of a second and the measured time is:

(a) 2 seconds?

(b) 5 seconds?

33. What is the propagated error in the measurement of the
cross sectional area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

34. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 35 – 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before computing.)

35. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.
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l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the questions of Exercise 35, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.

37. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercises 35 – 37 are essentially
the same. Which setup gives the most accurate result?

39. Consider the setup in Exercise 37. This time, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?
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Figure 4.5.1: Plotting y = f(x) and a table
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Figure 4.5.2: Plotting f, p2 and p4.

Chapter 4 Applications of the Derivative

4.5 Taylor Polynomials
Consider a function y = f(x) and a point

(
c, f(c)

)
. The derivative, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 4.5.1, we see a function y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximation is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 4.5.1 gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.
Let’s start with a general quadratic function

p(x) = a0 + a1x+ a2x2

We find the following:

p2(x) = a0 + a1x+ a2x2 p2(0) = a0
p2 ′(x) = a1 + 2a2x p2 ′(0) = a1
p2 ′′(x) = 2a2 p2 ′′(0) = 2a2.

To get the desired properties above, we must have

a0 = f(0) = 2, a1 = f ′(0) = 1, 2a2 = f ′′(0) = 2,

so a0 = 2, a1 = 1, and a2 = 2/2 = 1, giving us the polynomial

p2(x) = 2+ x+ x2.

We can repeat this approximation process by creating polynomials of higher de-
gree that match more of the derivatives of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f. Figure 4.5.2 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivatives at 0match
those of f.

How do we ensure that the derivatives of our polynomial match those of f?
We simply begin with a polynomial of the desired degree, compute its deriva-
tives, and compare them to those of f! Recall that each term in a polynomial
consists of a power of x, and a coefficient, like so: anxn. Our goal is to determine
the value for each coefficient an so that the derivatives of our polynomial match
those of our function f. If we take k derivatives of the term anxn, with k ≤ n, we
obtain

dk

dxk
(anxn) = n(n− 1) · · · (n− k+ 1)anxn−k.

For k < n, the expression above vanishes when we set x = 0. However, for
n = k, we obtain the constant value

dk

dxk
(akxk) = k · (k− 1) · · · 2 · 1ak. (4.4)
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The notation k! is read as “k factorial”. By
convention, we also define 0! = 1, mostly
because it makes our formulas look a lot
nicer.
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Figure 4.5.3: Plotting f and p13.

Historical note: Colin Maclaurin was a
Scottish mathematician, born in 1698.
He lived until 1746, and made a num-
ber of contributions to the development
of mathematics and physics. His elec-
tion as professor of mathematics at the
University of Aberdeen at the age of 19
made him the world’s youngest profes-
sor, a record he held until 2008! He was
also a staunch foe of the Jacobite Rebel-
lion, and was instrumental in the defence
of Edinburgh against the army of Bon-
nie Prince Charlie. (For more details, see
Wikipedia.)

4.5 Taylor Polynomials

Consider a polynomial

pn(x) = a0 + a1x+ · · ·+ akxk + · · ·+ anxn

of degree n. If we take k derivatives, all of the terms involving powers of x less
than k disappear, and when we set x = 0, all of the terms involving powers of x
larger than k disappear, leaving us with the single constant given in (4.4).

Recalling the notation k! = 1 ·2 ·3 · · · k for the product of the first k integers,
we have shown that

p(k)n (0) = k!ak.

If we want the derivatives of pn to agree with some unknown function f when
x = 0, then we must have

ak =
f(k)(0)
k!

.

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 4.5.3 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not particularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Thepolynomialswehave created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. In the discussion above, we concentrated on evaluating
the derivatives of f at 0; however, there is nothing special about this point. Just
as we can consider the linear approximation of a function near any point, so too
can we determine a polynomial approximation about any value c in the domain
of f. The only catch is that our polynomial will then be given in terms of powers
of x− c, rather than powers of x, as we see in the following definition.

Definition 4.5.1 Taylor Polynomial, Maclaurin Polynomial

Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will practice creating Taylor and Maclaurin polynomials in the following
examples.
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 4.5.4: The derivatives of f(x) = ex

evaluated at x = 0.

.....y = p5(x).
−2

.
2

.

5

.

10

.

x

.

y

Figure 4.5.5: A plot of f(x) = ex and its
5th degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 4.5.6: Derivatives of ln x evaluated
at x = 1.

Chapter 4 Applications of the Derivative

Example 4.5.1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creating a table of the derivatives of ex evaluated at x = 0.
In this particular case, this is relatively simple, as shown in Figure 4.5.4.
By the definition of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straightforward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 4.5.5.

Example 4.5.2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SÊ½çã®ÊÄ

1. We begin by creating a table of derivatives of ln x evaluated at x = 1.
While this is not as straightforward as it was in the previous example, a
pattern does emerge, as shown in Figure 4.5.6.
Using Definition 4.5.1, we have

pn(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2!

(x− c)2 + f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”
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Figure 4.5.7: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.
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y = ln x

.

y = p20(x)
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Figure 4.5.8: A plot of y = ln x and its 20th
degree Taylor polynomial at x = 1.

Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric functions, in practice they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

4.5 Taylor Polynomials

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximation as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 4.5.7 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximation is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 4.5.7 shows that p6(x) provides
less accurate approximations of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 4.5.8. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate functions f(x) in mainly two sit-
uations:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the ratio of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of computing cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of computing
such values using only operations usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.
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Note: one way of quantifying the extent
to which one function approximates an-
other is using the order to which they
agree. We say that two functions f and
g agree to order n at c if n is the largest
integer for which

lim
x→c

f(x)− g(x)
(x− c)n

= 0.

Taylor’s Theorem tells us that a function
and its degree n Taylor polynomial agree
to order n. Roughly speaking, this means
that their difference goes to zero faster
than thenth power of x−c as x approaches
c.

Chapter 4 Applications of the Derivative

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximation is?

Although much of the content presented in Calculus concerns the search for
exact answers to problems such as integration and differentiation, many practi-
cal applications of calculus involve attempts to find approximations; for exam-
ple, using Newton’sMethod to approximate the zeros of a function or numerical
integration to approximate the value of an integral that cannot be solved exactly.
Whenever an approximation is used, one naturallywishes to knowhowgood the
approximation is. In other words, we look for a bound on the error introduced
by working with an approximation. The following theorem gives bounds on the
error introduced in using a Taylor (and hence Maclaurin) polynomial to approx-
imate a function.

Theorem 4.5.1 Taylor’s Theorem

1. Let f be a function whose n+ 1th derivative exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2. |Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n + 1)th derivative is large on I, the error may be large; if x is far
from c, the error may also be large. However, the (n+ 1)! term in the denomi-
nator tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
ln 1.5 and ln 2 made in Example 4.5.2.

Example 4.5.3 Finding error bounds of a Taylor polynomial
Use Theorem 4.5.1 to find error bounds when approximating ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 4.5.2.

SÊ½çã®ÊÄ

1. We start with the approximation of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the better; it will give us a more accurate (and smaller!)
approximation of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.

The theorem references max
∣∣f (n+1)(z)

∣∣. In our situation, this is asking
“How big can the 7th derivative of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivative is y = −6!/x7. The largest value it attains on I is
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 4.5.9: A table of the derivatives of
f(x) = cos x evaluated at x = 0.

4.5 Taylor Polynomials

about 1506. Thus we can bound the error as:∣∣R6(1.5)
∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximation would be within about 2 thousandths of the actual
value, whereas the approximation was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivative of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)

∣∣ ≤ max
∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error estimate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
particularly useful.
In reality, our approximation was only off by about 0.07. However, we
are approximating ostensibly because we do not know the real answer. In
order to be assured that we have a good approximation, we would have
to resort to using a polynomial of higher degree.

We practice again. This time, we use Taylor’s theorem to find n that guaran-
tees our approximation is within a certain amount.

Example 4.5.4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivatives of f(x) = cos x. In the case of this trigonometric function, this is
easy. All derivatives of cosine are± sin x or± cos x. In all cases, these functions
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that satisfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <
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.
.. f(x) = cos x

Figure 4.5.10: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 4.5.11: A table of the derivatives of
f(x) =

√
x evaluated at x = 4.

.....

.. y =
√
x.

y = p4(x)
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Figure 4.5.12: A graph of f(x) =
√
x and

its degree 4 Taylor polynomial at x = 4.

Chapter 4 Applications of the Derivative

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivatives
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 4.5.9.
Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creating a Maclaurin
polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)(0)
8!

x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approximation is within 0.001 of the correct
answer. Technology shows us that our approximation is actually within about
0.0003 of the correct answer.

Figure 4.5.10 shows a graph of y = p8(x) and y = cos x. Note how well the
two functions agree on about (−π, π).

Example 4.5.5 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximating
√
3 with p4(3).

SÊ½çã®ÊÄ

1. We begin by evaluating the derivatives of f at x = 4. This is done in Figure
4.5.11. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fifth derivative of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus

∣∣R4(3)
∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approximation is accurate to at least the first 2 places after
the decimal. (It turns out that our approximation is actually accurate to 4
places after the decimal.) A graph of f(x) =

√
x and p4(x) is given in Figure

4.5.12. Note how the two functions are nearly indistinguishable on (2, 7).174
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Figure 4.5.13: A graph of y = −1/(x− 1)
and y = p3(x) from Example 4.5.6.

4.5 Taylor Polynomials

Our final example gives a brief introduction to using Taylor polynomials to
solve differential equations.

Example 4.5.6 Approximating an unknown function
A function y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y ′ = y2

(This second fact says that amazingly, the derivative of the function is actually
the function squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

SÊ½çã®ÊÄ Onemight initially think that not enough information is given
to find p3(x). However, note how the second fact above actually lets us know
what y ′(0) is:

y ′ = y2 ⇒ y ′(0) = y2(0).

Since y(0) = 1, we conclude that y ′(0) = 1.
Nowwe find information about y ′′. Starting with y ′ = y2, take derivatives of

both sides, with respect to x. That means we must use implicit differentiation.

y ′ = y2

d
dx
(
y ′
)
=

d
dx
(
y2
)

y ′′ = 2y · y ′.

Now evaluate both sides at x = 0:

y ′′(0) = 2y(0) · y ′(0)
y ′′(0) = 2

We repeat this once more to find y ′′′(0). We again use implicit differentiation;
this time the Product Rule is also required.

d
dx
(
y ′′
)
=

d
dx
(
2yy ′

)
y ′′′ = 2y ′ · y ′ + 2y · y ′′.

Now evaluate both sides at x = 0:

y ′′′(0) = 2y ′(0)2 + 2y(0)y ′′(0)
y ′′′(0) = 2+ 4 = 6

In summary, we have:

y(0) = 1 y ′(0) = 1 y ′′(0) = 2 y ′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differential equation we started with, y ′ = y2, where
y(0) = 1, can be solved without too much difficulty: y =

1
1− x

. Figure 4.5.13
shows this function plotted with p3(x). Note how similar they are near x = 0.
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Chapter 4 Applications of the Derivative

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solutions to differential equations. This topic is
often broached in introductory Differential Equations courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximation is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivative by studying how it relates to the graph of a function
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivative to yet more uses:

• Equation solving (Newton’s Method)

• Related Rates (furthering our use of the derivative to find instantaneous
rates of change)

• Optimization (applied extreme values), and

• Differentials (useful for various approximations and for something called
integration).

• Taylor Polynomials (useful when we need more precise approximations
than those given by differentials).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f, can we find a function whose derivative is f?
Be able to do so opens up an incredible world of mathematics and applications.
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Exercises 4.5
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) better and better
as n gets larger.

3. For some function f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some function f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given function.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given function.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the function value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 34, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = sin x.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1− x
.

33. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1+ x
.

34. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x centred at x = 1.
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In Exercises 35 – 37, approximate the solution to the given
differential equation with a degree 4 Maclaurin polynomial.

35. y′ = y, y(0) = 1

36. y′ = 5y, y(0) = 3

37. y′ = 2
y
, y(0) = 1
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5: IÄã�¦Ù�ã®ÊÄ
We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration
Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y ′ = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one solution: y = x2. “Find-

ing another” may have seemed impossible until one realizes that a function like
y = x2 + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x2 + 123, 456, 789 also has a deriva-
tive of 2x. The differential equation y ′ = 2x has many solutions. This leads us
to some definitions.

Definition 5.1.1 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F ′(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore antiderivatives, it gives us all
of them.

Theorem 5.1.1 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.
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Given a function f defined on an interval I and one of its antiderivatives F,
we know all antiderivatives of f on I have the form F(x) + C for some constant
C. Using Definition 5.1.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notation.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1.1: Understanding the indefinite integral notation.

Figure 5.1.1 shows the typical notation of the indefinite integral. The inte-
gration symbol,

∫
, is in reality an “elongated S,” representing “take the sum.”

We will later see how sums and antiderivatives are related.
The function we want to find an antiderivative of is called the integrand. It

contains the differential of the variable we are integratingwith respect to. The
∫

symbol and the differential dx are not “bookends”with a function sandwiched in
between; rather, the symbol

∫
means “find all antiderivatives of what follows,”

and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Example 5.1.1 Evaluating indefinite integrals
Evaluate

∫
sin x dx.

SÊ½çã®ÊÄ We are asked to find all functions F(x) such that F ′(x) =
sin x. Some thought will lead us to one solution: F(x) = − cos x, because
d
dx (− cos x) = sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integration.
So: ∫

sin x dx = − cos x+ C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question.
The integral ∫

sin x dx

presents us with a differential, dy = sin x dx. It is asking: “What is y?” We found
lots of solutions, all of the form y = − cos x+ C.

Letting dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.
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5.1 Antiderivatives and Indefinite Integration

Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.2 Evaluating indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a function F(x) whose derivative is 3x2 + 4x + 5.
When taking derivatives, we can consider functions term–by–term, so we can
likely do that here.

What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivative of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

Differentiation “undoes” the work done by antidifferentiation.
Theorem 2.7.3 gave a list of the derivatives of common functions we had

learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.
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Theorem 5.1.2 Derivatives and Antiderivatives

Common Differentiation Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant Multiple

Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being multiplied by
5, but “5 times a constant” is still a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C
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5.1 Antiderivatives and Indefinite Integration

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenting antidifferentiation as the “inverse operation” of

differentiation. Here is a useful quote to remember:
“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 2.3we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We
can now go “the other way:” the antiderivative of an acceleration function gives
a velocity function, etc. While there is just one derivative of a given function,
there are infinitely many antiderivatives. Therefore we cannot ask “What is the
velocity of an object whose acceleration is−32ft/s2?”, since there is more than
one answer.

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in
the form of an initial value, a value of the function that one knows beforehand.

Example 5.1.3 Solving initial value problems
The acceleration due to gravity of a falling object is −32 ft/s2. At time t = 3,
a falling object had a velocity of −10 ft/s. Find the equation of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity function, v(t). We know two
things:

• The acceleration, i.e., v ′(t) = −32, and

• the velocity at a specific time, i.e., v(3) = −10.

Using the first piece of information, we know that v(t) is an antiderivative of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86
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Chapter 5 Integration

Thus v(t) = −32t+86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 5.1.4 Solving initial value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an antiderivative of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the initial value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integrating again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, wewill see howareas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the nameof the theorem
that describes it: The Fundamental Theorem of Calculus.
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Exercises 5.1
Terms and Concepts
1. Define the term “antiderivative” in your own words.

2. Is it more accurate to refer to “the” antiderivative of f(x) or
“an” antiderivative of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operations do the
things in the order.”

5. What is an “initial value problem”?

6. The derivative of a position function is a func-
tion.

7. The antiderivative of an acceleration function is a
function.

8. If F(x) is an antiderivative of f(x), and G(x) is an antideriva-
tive of g(x), give an antiderivative of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem investigates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given initial
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
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36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use information gained from the first and second deriva-
tives to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 ft/s for 10 seconds. How far away from its starting point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
tion. In this case, Distance = 5ft/s× 10s= 50 feet.

It is interesting to note that this solution of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5ft/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5ft/s for 10 seconds,
then instantly reverses course at a rate of 2ft/s for 4 seconds. (Since the object
is travelling in the opposite direction when reversing course, we say the velocity
is a constant−2ft/s.) How far away from the starting point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 ft.

Hence the object is 42 feet from its starting location.
We can again depict this situation graphically. In Figure 5.2.2 we have the

velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.1 Finding position using velocity
The velocity of an object moving straight up/down under the acceleration of
gravity is given as v(t) = −32t+48, where time t is given in seconds and velocity
is in ft/s. When t = 0, the object had a height of 0 ft.

1. What was the initial velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

SÊ½çã®ÊÄ It is straightforward to find the initial velocity; at time t = 0,
v(0) = −32 · 0+ 48 = 48 ft/s.

To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we studied
in the previous section. We are told the initial height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫

(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the critical points of s by
setting its derivative equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.
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Chapter 5 Integration

(Notice how we ended up just finding when the velocity was 0ft/s!) The first
derivative test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36ft.

The height at time t = 2 is now straightforward to compute: it is s(2) = 32ft.

While we have answered all three questions, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straightforward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negative” area. That is, it represents the object coming back
toward its starting position. So to find the maximum distance from the starting
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48ft/s = 36ft,

which matches our previous calculation of the maximum height.
Finally, to find the height of the object at time t = 2 we calculate the total

“signed area” (where some area is negative) under the velocity function from
t = 0 to t = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the starting position at t = 0 to the position at time t = 2. That
is,

Displacement = Area above the t–axis− Area below t–axis.

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48ft/s)− 1

2
(.5s)(16ft/s) = 32ft.

This also matches our previous calculation of the height at t = 2.
Notice how we answered each question in this example in two ways. Our

firstmethodwas tomanipulate equations using our understanding of antideriva-
tives and derivatives. Our second method was geometric: we answered ques-
tions looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Section
5.4 will fully establish fact that the area under a velocity function is displace-
ment.

Given a graph of a function y = f(x), we will find that there is great use in
computing the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.
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5.2 The Definite Integral

Definition 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f.

We practice using this notation.

Example 5.2.2 Evaluating definite integrals
Consider the function f given in Figure 5.2.4.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negative area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.
Again, the region is a triangle, with height 5 times that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 1

2 (15)(1) = 7.5.

189



Chapter 5 Integration

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properties of the definite integral, given
here.

Theorem 5.2.1 Properties of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief justification of Theorem 5.2.1 here; details of the proof will
have to wait until the next section.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].

It is important to note that this still holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed asmerely a convention tomake other proper-
tiesworkwell. (Laterwewill see how this property has a justification all its
own, not necessarily in support of other properties.) Suppose b < a < c.
The discussion from the previous point clearly justifies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we still claim that, as originally stated,

∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)
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Figure 5.2.6: A graph of a function in Ex-
ample 5.2.3.

5.2 The Definite Integral

How do Equations (5.1) and (5.2) relate? Start with Equation (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) justifies changing the sign and switching the bounds of inte-

gration on the −
∫ a

b
f(x) dx term; when this is done, Equations (5.1) and

(5.2) are equivalent.
The conclusion is this: by adopting the convention of Property (3), Prop-
erty (2) holds no matter the order of a, b and c. Again, in the next section
we will see another justification for this property.

4,5. Each of these may be non–intuitive. Property (5) states that when one
scales a function by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 Evaluating definite integrals using Theorem 5.2.1.
Consider the graph of a function f(x) shown in Figure 5.2.6. Answer the follow-
ing:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a positive value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negative value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a positive number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.
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ple 5.2.4.
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Figure 5.2.9: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 Integration

The area definition of the definite integral allows us to use geometry to com-
pute the definite integral of some simple functions.

Example 5.2.4 Evaluating definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the function in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labelled R1 and R2. Both are triangles, so the area computation
is straightforward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negative area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding motion given velocity
Consider the graph of a velocity function of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity function gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starting position.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15ft/s.

At time t = 0, the displacement is 0; the object is at its starting position. At
time t = a, the object has moved backward 11 feet. Between times t = a and
t = b, the object moves forward 38 feet, bringing it into a position 27 feet for-
ward of its starting position. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starting position.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x2 is shaded. What
is its area? The function y = x2 is relatively simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next section we will explore how to find the areas of such regions.
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5 – 10, a graph of a function f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11 – 14, a graph of a function f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
tion.

11.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15 – 16, a graph of the velocity function of an ob-
ject moving in a straight line is given. Answer the questions
based on that graph.

15.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 3]?

16.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48ft.)

18. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s initial velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

initial height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 – 22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find nonzero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23 – 26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find nonzero values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 27 – 30, evaluate the given indefinite integral.

27.
∫ (

x3 − 2x2 + 7x− 9
)
dx

28.
∫ (

sin x− cos x+ sec2 x
)
dx

29.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

30.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.3.2: Approximating
∫ 4
0 (4x −

x2) dx using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 Integration

5.3 Riemann Sums

In the previous section we defined the definite integral of a function on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximation; we are including area in the rectangle
that is not under the parabola.

We have an approximation of the area, using one rectangle. How can we
refine our approximation tomake it better? The key to this section is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This partitions the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Left Hand
Rule says to evaluate the function at the left–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labelled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labelled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the function at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labelled “MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

these rules.

Example 5.3.1 Using the Left Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the Left Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.4(a) we see 4 rectangles drawn on f(x) = 4x − x2 using the Left
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our Left Hand Rule
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Figure 5.3.4: Approximating
∫ 4
0 (4x −

x2) dx in Example 5.3.1. In (a), the Left
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.

5.3 Riemann Sums

approximation:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.4(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangles seem to be themirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approximation gives the same answer as before, though calculated a differ-
ent way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.4(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximation of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximations of
∫ 4
0 (4x− x2) dx: 10 and 11.

Summation Notation

It is hard to tell at this moment which is a better approximation: 10 or 11?
We can continue to refine our approximation by using more rectangles. The
notation can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summation notation to ameliorate this problem.

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
writing

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summation notation and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure 5.3.3: Understanding summation notation.

The upper case sigma represents the term “sum.” The index of summation
in this example is i; any symbol can be used. By convention, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s practise using this notation.

Example 5.3.2 Using summation notation
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the positive odd integers). Evaluate
the following summations:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2
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SÊ½çã®ÊÄ

1.

6∑
i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starting value is different than 1:
7∑

i=3
(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

3.

4∑
i=1

(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84.
It might seem odd to stress a new, concise way of writing summations only

to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.

Theorem 5.3.1 Properties of Summations

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Example 5.3.3 Evaluating summations using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).
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Figure 5.3.5: Dividing [0, 4] into 16
equally spaced subintervals.

5.3 Riemann Sums

SÊ½çã®ÊÄ
6∑

i=1
(2i− 1) =

6∑
i=1

2i−
6∑

i=1
(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without writing out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful preparation.

Figure 5.3.5 shows a number line of [0, 4] divided, or partitioned, into 16
equally spaced subintervals. Wedenote 0 as x1; wehavemarked the values of x5,
x9, x13 and x17. We couldmark themall, but the figurewould get crowded. While
it is easy to figure that x10 = 2.25, in general, we want a method of determining
the value of xi without consulting the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)
Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is

[x2, x3]; the i th subinterval is [xi, xi+1].
When using the Left Hand Rule, the height of the i th rectangle will be f(xi).
Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximating
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

Left Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

199



.....
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

x

.

y

Figure 5.3.6: Approximating
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Chapter 5 Integration

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 5.3.1.

Example 5.3.4 Approximating definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summation formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+
(
(i+ 1)− 1

)
∆x

= i∆x

Using the summation formulas, consider:

∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

(∆x = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very little computation.
In Figure 5.3.6 the function and the 16 rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximation.

Notice Equation (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of ∆x), we can use that equation to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
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5.3 Riemann Sums

Equation (5.3) to save space. Note that∆x = 4/1000 = 0.004.

∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 10.666656

Usingmany,many rectangles, wehave a likely good approximationof
∫ 4
0 (4x−

x2)∆x. That is, ∫ 4

0
(4x− x2) dx ≈ 10.666656.

Before the above example, we statedwhat the summations for the Left Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rect-
angle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

One could partition an interval [a, b]with subintervals that do not have the same
size. We refer to the length of the i th subinterval as∆xi. Also, one could deter-
mine each rectangle’s height by evaluating f at any point ci in the i th subinterval.
Thus the height of the i th subinterval would be f(ci), and the area of the i th rect-
angle would be f(ci)∆xi. These ideas are formally defined below.

Definition 5.3.1 Partition

A partition ∆x of a closed interval [a, b] is a set of numbers x1, x2, . . .
xn+1 where

a = x1 < x2 < . . . < xn < xn+1 = b.

The length of the i th subinterval, [xi, xi+1], is ∆xi = xi+1 − xi. If [a, b] is
partitioned into subintervals of equal length, we let ∆x represent the
length of each subinterval.

The size of the partition, denoted ||∆x||, is the length of the largest
subinterval of the partition.

Summations of rectangleswith area f(ci)∆xi are named aftermathematician
Georg Friedrich Bernhard Riemann, as given in the following definition. 201
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Figure 5.3.7: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

Chapter 5 Integration

Definition 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let∆x be a partition of [a, b],
with

a = x1 < x2 < . . . < xn < xn+1 = b.

Let∆xi denote the length of the i th subinterval [xi, xi+1] and let ci denote
any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

Figure 5.3.7 shows the approximating rectangles of a Riemann sumof
∫ 4
0 (4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a particular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construction makes computations easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea 5.3.1 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of an equally spaced partition is xi = a+ (i − 1)∆x.
(Thus x1 = a and xn+1 = b.)

3. The Left Hand Rule summation is:
n∑

i=1
f(xi)∆x.

4. The Right Hand Rule summation is:
n∑

i=1
f(xi+1)∆x.

5. The Midpoint Rule summation is:
n∑

i=1
f
(
xi + xi+1

2

)
∆x.

Let’s do another example.

Example 5.3.5 Approximating definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.
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Figure 5.3.8: Approximating
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.

5.3 Riemann Sums

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summation
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summation techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that often each rectangle
includes area that should not be counted, but misses other area that should.
When the partition size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our function is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the function is negative, the rectangles have a “negative”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n until the very end.

Example 5.3.6 Approximating definite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 5.3.1, we know ∆x = 4−0
n = 4/n. We also

find xi = 0 +∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
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Chapter 5 Integration

proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6

(
recall

∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathematics has been
limited to geometry and algebra (finding areas and manipulating expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathematics tell us that as n gets large, the
approximation gets better. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantastic result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximation of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

204



.....
−1

.
1

.
2

.
3

.
4

.
5

.

50

.

100

. x.

y

Figure 5.3.9: Approximating
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

5.3 Riemann Sums

This section started with a fundamental calculus technique: make an ap-
proximation, refine the approximation to make it better, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.7 Approximating definite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have ∆x = 5−(−1)
n = 6/n.

We have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have
xi+1 = (−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-
plifications):

∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summation)

= ∆x4
n∑

i=1
i3 − 3∆x3

n∑
i=1

i2 + 3∆x2
n∑

i=1
i−

n∑
i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximating the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximation of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximation of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.
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Chapter 5 Integration

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not–very–restrictive conditions, that yes, it will al-
ways work.

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi+1)∆x

can be rewritten as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summation as a function of n.

An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the Left Hand Rule,

• SR(n) =
n∑

i=1
f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sumswere defined in Definition 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.1, let ∆xi denote the length
of the i th subinterval in a partition of [a, b] and let ||∆x|| represent the length
of the largest subinterval in the partition: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the partition is growing to
infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but getting small, and the height of each rectangle is
not necessarily determined by a particular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].
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5.3 Riemann Sums

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be continuous on the closed interval [a, b] and let SL(n), SR(n),
SM(n),∆x,∆xi and ci be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few sections here.

• Knowing the “area under the curve” can be useful. One commonexample:
the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivatives through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next sectionwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximations to get an exact answer.

2. What is the upper bound in the summation
14∑
i=7

(48i− 201)?

3. This section approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 12, write out each term of the summation and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13 – 16, write each sum in summation notation.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17 – 24, evaluate the summation using Theorem
5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ . . .+ 99+ 100

24. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 5.3.1 states
n∑

i=1

ai =

k∑
i=1

ai +

n∑
i=k+1

ai , so

n∑
i=k+1

ai =

n∑
i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem5.3.1, to eval-
uate the summations given in Exercises 25 – 28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3
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In Exercises 29 – 34, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

29.
∫ 3

−3
x2 dx, with 6 rectangles using the Left Hand Rule.

30.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

31.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

32.
∫ 3

0
2x dx, with 5 rectangles using the Left Hand Rule.

33.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

34.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 35 – 40, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 5.3.6

and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

35.
∫ 1

0
x3 dx, using the Right Hand Rule.

36.
∫ 1

−1
3x2 dx, using the Left Hand Rule.

37.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

38.
∫ 4

1
(2x2 − 3) dx, using the Left Hand Rule.

39.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

40.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 41 – 46, find an antiderivative of the given func-
tion.

41. f(x) = 5 sec2 x

42. f(x) = 7
x

43. g(t) = 4t5 − 5t3 + 8

44. g(t) = 5 · 8t

45. g(t) = cos t+ sin t

46. f(x) = 1√
x
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Chapter 5 Integration

5.4 The Fundamental Theorem of Calculus

Let f(t)be a continuous function definedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this concept into a function by letting
the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this function using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in particular, we can compute its
derivative. While thismay seem like an innocuous thing to do, it has far–reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1

Let f be continuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

entiable function on (a, b), and

F ′(x) = f(x).

Initially this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1
Let F(x) =

∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x.

This simple example reveals something incredible: F(x) is an antiderivative
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)
We have done more than found a complicated way of computing an an-

tiderivative. Consider a function f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

the properties of the definite integral found in Theorem 5.2.1, we know

∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using antiderivatives! This is the second part of the
Fundamental Theorem of Calculus.

210



5.4 The Fundamental Theorem of Calculus

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2

Let f be continuous on [a, b] and let F be any antiderivative of f. Then∫ b

a
f(x) dx = F(b)− F(a).

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of time in the previous section studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an antiderivative of f(x) = 4x− x2. All antideriva-
tives of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous section, just
with much less work.

Notation: A special notation is often used in the process of evaluating definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-
ing F(b)− F(a), the notation F(x)

∣∣∣b
a
is used. Thus the solution to Example 5.4.2

would be written as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.

The Constant C: Any antiderivative F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluating F(b) − F(a), so it does not matter what value is picked. This being
the case, we might as well let C = 0.

Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SÊ½çã®ÊÄ

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesting; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.
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Chapter 5 Integration

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesting; the integrand is a constant function, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
Notice how the evaluation of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

Understanding Motion with the Fundamental Theorem of
Calculus

We established, starting with Key Idea 2.2.1, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

functions. Specifically, if v(t) is a velocity function, what does
∫ b

a
v(t) dtmean?

The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any antiderivative of v(t). Since v(t) is a velocity function, V(t)
must be a position function, and V(b)− V(a)measures a change in position, or
displacement.

Example 5.4.4 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20ft/s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the initial height. (Note
that the ball has travelled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4ft.)

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. So inte-
grating a speed function gives total change of position, without the possibility
of “negative position change.” Hence the integral of a speed function gives dis-
tance travelled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
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5.4 The Fundamental Theorem of Calculus

then ∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F ′(x) = f(x). Using other notation,

d
dx
(
F(x)

)
= f(x). While we have

just practised evaluating definite integrals, sometimes finding antiderivatives is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. Functions written as F(x) =

∫ x
a f(t) dt are useful in such

situations.
It may be of further use to compose such a function with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivative of such a function? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 5.4.5 The FTC, Part 1, and the Chain Rule

Find the derivative of F(x) =
∫ x2

2
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the function G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

Practise this once more.

Example 5.4.6 The FTC, Part 1, and the Chain Rule

Find the derivative of F(x) =
∫ 5

cos x
t3 dt.

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

tive of F is straightforward:

F ′(x) = sin x cos3 x.
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Figure 5.4.3: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 5.4.7.

Chapter 5 Integration

Area Between Curves

Consider continuous functions f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.2. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathematical notation, the area is∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

Properties of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.3 Area Between Curves

Let f(x) and g(x) be continuous functions defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.7 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two functions, as done in Figure
5.4.3. The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.3, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6
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1 f(x) dx; the last rectangle matches the

area exactly.

5.4 The Fundamental Theorem of Calculus

The Mean Value Theorem and Average Value

Consider the graph of a function f in Figure 5.4.4 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.4.5; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too little,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Theorem 5.4.4 The Mean Value Theorem of Integration

Let f be continuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.4 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.1; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.8 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 5.4.3.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.4.6 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

Let f be a function on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shifted by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
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Chapter 5 Integration

5.4.7 for an illustration of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewritten as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, partition the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Multiply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1
f(ci)

1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definition.

Definition 5.4.1 The Average Value of f on [a, b]

Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

An application of this definition is given in the following example.
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5.4 The Fundamental Theorem of Calculus

Example 5.4.9 Finding the average value of a function
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in ft/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definition, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 ft/s.

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.9? We calculate
this by integrating its velocity function:

∫ 3
0 (t − 1)2 dt = 3 ft. Its final position

was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.

This section has laid the groundwork for a lot of great mathematics to fol-
low. The most important lesson is this: definite integrals can be evaluated using
antiderivatives. Since the previous section established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. The next chapter is devoted to tech-
niques of finding antiderivatives so that a wide variety of definite integrals can
be evaluated. Before that, the next section explores techniques of approximat-
ing the value of definite integrals beyond using the Left Hand, Right Hand and
Midpoint Rules. These techniques are invaluable when antiderivatives cannot
be computed, or when the actual function f is unknown and all we know is the
value of f at certain x-values.
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integration is most commonly used when
evaluating definite integrals?

3. T/F: If f is a continuous function, then F(x) =
∫ x

a
f(t) dt is

also a continuous function.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3√x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a positive, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a positive, even

integer.

30. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.
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In Exercises 31 – 34, find a value c guaranteed by the Mean
Value Theorem.

31.
∫ 2

0
x2 dx

32.
∫ 2

−2
x2 dx

33.
∫ 1

0
ex dx

34.
∫ 16

0

√
x dx

In Exercises 35 – 40, find the average value of the function on
the given interval.

35. f(x) = sin x on [0, π/2]

36. y = sin x on [0, π]

37. y = x on [0, 4]

38. y = x2 on [0, 4]

39. y = x3 on [0, 4]

40. g(t) = 1/t on [1, e]

In Exercises 41 – 46, a velocity function of an object moving
along a straight line is given. Find the displacement of the
object over the given time interval.

41. v(t) = −32t+ 20ft/s on [0, 5]

42. v(t) = −32t+ 200ft/s on [0, 10]

43. v(t) = 10ft/s on [0, 3].

44. v(t) = 2tmph on [−1, 1]

45. v(t) = cos t ft/s on [0, 3π/2]

46. v(t) = 4√t ft/s on [0, 16]

In Exercises 47 – 50, an acceleration function of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

47. a(t) = −32ft/s2 on [0, 2]

48. a(t) = 10ft/s2 on [0, 5]

49. a(t) = t ft/s2 on [0, 2]

50. a(t) = cos t ft/s2 on [0, π]

In Exercises 51 – 54, sketch the given functions and find the
area of the enclosed region.

51. y = 2x, y = 5x, and x = 3.

52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

53. y = x2 − 2x+ 5, y = 5x− 5.

54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 55 – 58, find F ′(x).

55. F(x) =
∫ x3+x

2

1
t
dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t+ 2) dt

58. F(x) =
∫ ex

ln x
sin t dt

219



Chapter 5 Integration

5.5 Substitution
The previous sections in this chapter introduced the antiderivative and con-
nected it to signed areas under a curve through the Fundamental Theorem of
Calculus. We will apply this result in the next section to the computation of area
between curves. Your next course in Calculus will explore more applications of
definite integrals than just area. As evaluating definite integrals will become
important, we will want to find antiderivatives of a variety of functions.

In Calculus II you will learn a variety of techniques of antidifferentiation,
whichwill be needed tomake use of themany applications of integration. While
not every function has an antiderivative in terms of elementary functions (a
concept introduced in the section on Numerical Integration), we can still find
antiderivatives of a wide variety of functions. In Math 1560 we will confine our-
selves to a single technique of integration: integration by substitution.

We motivate this section with an example. Let f(x) = (x2 + 3x − 5)10. We
can compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

We have established u as a function of x, so now consider the differential of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremultiplied; the dx is not “just sitting there.”
Return to the original integral and do some substitutions through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C
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One might well look at this and think “I (sort of) followed how that worked, but
I could never come up with that on my own,” but the process can be learned.
This section contains numerous examples through which the reader will gain
understanding andmathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differentiable functions and consider the deriva-
tive of their composition:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 5.5.1 Integration by Substitution

Let F and g be differentiable functions, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the antiderivative of the derivative of F

is just F, plus a constant. The “work” involved is making the proper substitution.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 5.5.1 Integrating by substitution
Evaluate

∫
x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(x2+5). (This is not always a good
choice, but it is often the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x does not
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physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now substitute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uating the derivative of the right hand side.

Example 5.5.2 Integrating by substitution
Evaluate

∫
cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” function. Letting u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equation by 5 to obtain 1

5du = dx. We can now substitute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 5.5.1 Substitution With A Linear Function

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Letting

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.
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Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 5.5.1, but we will only employ it after going through all of the steps.

Example 5.5.3 Integrating by substituting a linear function
Evaluate

∫
7

−3x+ 1
dx.

SÊ½çã®ÊÄ View the integrand as the composition of functions f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of substi-
tution, we let u = −3x+1, the inside function. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equation by −3 to obtain −du/3 = dx.
We can now evaluate the integral through substitution.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 5.5.1 is faster, recognizing that u is linear and a = −3. One may
want to continue writing out all the steps until they are comfortable with this
particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 5.5.4 Integrating by substitution
Evaluate

∫
sin x cos x dx.

SÊ½çã®ÊÄ There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is often beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The substitution becomes very straightforward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”
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Example 5.5.5 Integrating by substitution
Evaluate

∫
x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .

∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 5.5.6 Integrating by substitution
Evaluate

∫
1

x ln x
dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composition of functions. The line of thinking used in Example 5.5.5
is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, setting u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesting; the natural log of the natural log. Take the deriva-
tive to confirm this answer is indeed correct.
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Integrals Involving Trigonometric Functions

Section 6.3 delves deeper into integrals of a variety of trigonometric func-
tions; here we use substitution to establish a foundation that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our antideriva-
tive knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 5.5.7 Integration by substitution: antiderivatives of tan x
Evaluate

∫
tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composition of func-
tions may not be immediately obvious, recognize that cos x is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have
that du = − sin x dx, hence−du = sin x dx. We can integrate:∫

tan x dx =
∫

sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example 5.5.8 Integrating by substitution: antiderivatives of sec x
Evaluate

∫
sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of left field, but it works beautifully. Consider:∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 5.5.7 and 5.5.8
to find antiderivatives of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 5.5.2 Antiderivatives of Trigonometric Functions

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example 5.5.9 Integration by substitution: powers of cos x and sin x
Evaluate

∫
cos2 x dx.

SÊ½çã®ÊÄ We have a composition of functions as cos2 x =
(
cos x

)2.
However, setting u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equation is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.

Now use Key Idea 5.5.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

We’ll make significant use of this power–reducing technique in future sections.
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Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integration is tenuous and one may think that working with
the integrand will improperly change the results. Integration by substitution
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integration
easier to perform.

Example 5.5.10 Integration by substitution: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may try to start by setting u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of polynomial
functions), it is an almost universal rule that everything works better when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 times with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

Integrating x + 2 is simple. The fraction can be integrated by setting u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
du/2 = (x+ 1) dx and then consider the following:∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx =
∫ (

x+ 2+
3x+ 3

x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that after dividing, substitution was able to be
done. In later sections we’ll develop techniques for handling rational functions
where substitution is not directly feasible.

Example 5.5.11 Integration by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, substitution.

SÊ½çã®ÊÄ We already know how to integrate this particular example.
Rewrite

√
x as x 1

2 and simplify the fraction:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .
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We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫

(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and

x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situation, sub-
stitution is arguably more work than our other method. The fantastic thing is
that it works. It demonstrates how flexible integration is.

Substitution and Inverse Trigonometric Functions

When studying derivatives of inverse functions, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how Substitution can be used to “undo” certain derivatives that
are the result of the Chain Rule applied to Inverse Trigonometric functions. We
begin with an example.

Example 5.5.12 Integrating by substitution: inverse trigonometric functions
Evaluate

∫
1

25+ x2
dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivative of the arctan-
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gent function. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

=
1
25

1
1+

( x
5
)2 .

Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using Substitution. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 5.5.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 5.5.3 Integrals Involving Inverse Trigonometric Functions

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s practice using Theorem 5.5.3.

Example 5.5.13 Integrating by substitution: inverse trigonometric functions
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.

SÊ½çã®ÊÄ Each can be answered using a straightforward application of
Theorem 5.5.3.
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1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Most applications of Theorem 5.5.3 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 5.5.14 Integrating by substitution: completing the square
Evaluate

∫
1

x2 − 4x+ 13
dx.

SÊ½çã®ÊÄ Initially, this integral seems to have nothing in commonwith
the integrals in Theorem 5.5.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent function.

We see this by completing the square in the denominator. We give a brief
reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, getting 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9

We can now integrate this using the arctangent rule. Technically, we need to
substitute first with u = x− 2, but we can employ Key Idea 5.5.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Example 5.5.15 Integrals requiring multiple methods
Evaluate

∫
4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.
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5.5 Substitution

The first integral is handled using a straightforward application of Theorem5.5.3;
the second integral is handled by substitution, with u = 16−x2. We handle each
separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.

Substitution and Definite Integration

This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

1. Start with a definite integral
∫ b

a
f(x) dx that requires substitution.

2. Ignore the bounds; use substitution to evaluate
∫

f(x) dx and find an an-

tiderivative F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but substitution offers an alternative that is powerful
and amazing (and a little time saving).

At its heart, (using the notation of Theorem 5.5.1) substitution converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.

Theorem 5.5.4 Substitution with Definite Integrals

Let F and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.
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Figure 5.5.1: Graphing the areas de-
fined by the definite integrals of Example
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Chapter 5 Integration

In effect, Theorem 5.5.4 states that once you convert to integrating with re-
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 5.5.16 Definite integrals and substitution: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 5.5.4.

SÊ½çã®ÊÄ Observing the composition of functions, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x− 1, we are implicitly stating that g(x) = 3x− 1. Theorem
5.5.4 states that the new lower bound is g(0) = −1; the new upper bound is
g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 5.5.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 5.5.17 Definite integrals and substitution: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 5.5.4.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 5.5.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the latter here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

In Figure 5.5.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 5.5.4 guarantees that they have the same area.

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundation onwhichmost
other integration techniques are based.
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Exercises 5.5
Terms and Concepts

1. Substitution “undoes” what derivative rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of Substitution.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use Substitution to evaluate the indefi-
nite integral involving trigonometric functions.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 5.5.2 for the an-
swer; justify it through Substitution.

24.
∫

csc x dx. Do not just refer to Theorem 5.5.2 for the an-
swer; justify it through Substitution.

In Exercises 25 – 32, use Substitution to evaluate the indefi-
nite integral involving exponential functions.

25.
∫

e3x−1dx

26.
∫

ex
3
x2dx

27.
∫

ex
2−2x+1(x− 1)dx

28.
∫

ex + 1
ex

dx

29.
∫

ex

ex + 1
dx

30.
∫

ex − e−x

e2x
dx

31.
∫

33xdx

32.
∫

42xdx

In Exercises 33 – 36, use Substitution to evaluate the indefi-
nite integral involving logarithmic functions.

33.
∫

ln x
x

dx

34.
∫ (

ln x
)2

x
dx
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35.
∫ ln

(
x3
)

x
dx

36.
∫

1
x ln (x2)

dx

In Exercises 37 – 42, use Substitution to evaluate the indefi-
nite integral involving rational functions.

37.
∫

x2 + 3x+ 1
x

dx

38.
∫

x3 + x2 + x+ 1
x

dx

39.
∫

x3 − 1
x+ 1

dx

40.
∫

x2 + 2x− 5
x− 3

dx

41.
∫

3x2 − 5x+ 7
x+ 1

dx

42.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 43 – 52, use Substitution to evaluate the indefi-
nite integral involving inverse trigonometric functions.

43.
∫

7
x2 + 7

dx

44.
∫

3√
9− x2

dx

45.
∫

14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

48.
∫

x√
1− x4

dx

49.
∫

1
x2 − 2x+ 8

dx

50.
∫

2√
−x2 + 6x+ 7

dx

51.
∫

3√
−x2 + 8x+ 9

dx

52.
∫

5
x2 + 6x+ 34

dx

In Exercises 53 – 78, evaluate the indefinite integral.

53.
∫

x2

(x3 + 3)2
dx

54.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

55.
∫

x√
1− x2

dx

56.
∫

x2 csc2
(
x3 + 1

)
dx

57.
∫

sin(x)
√

cos(x)dx

58.
∫

sin
(
5x+ 1

)
dx

59.
∫

1
x− 5

dx

60.
∫

7
3x+ 2

dx

61.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

62.
∫

2x+ 7
x2 + 7x+ 3

dx

63.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

64.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

65.
∫

x
x4 + 81

dx

66.
∫

2
4x2 + 1

dx

67.
∫

1
x
√
4x2 − 1

dx

68.
∫

1√
16− 9x2

dx

69.
∫

3x− 2
x2 − 2x+ 10

dx

70.
∫

7− 2x
x2 + 12x+ 61

dx

71.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

72.
∫

x3

x2 + 9
dx
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73.
∫

x3 − x
x2 + 4x+ 9

dx

74.
∫

sin(x)
cos2(x) + 1

dx

75.
∫

cos(x)
sin2(x) + 1

dx

76.
∫

cos(x)
1− sin2(x)

dx

77.
∫

3x− 3√
x2 − 2x− 6

dx

78.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx
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Figure 5.6.1: Subdividing a region into
vertical slices and approximating the ar-
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Figure 5.6.2: Graphing an enclosed region
in Example 5.6.1.

Chapter 5 Integration

5.6 Area Between Curves
We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.5.4 and approach it instead using
the same partitioning arguments we used to identify the definite integral as a
limit of Riemann sums.

LetQ be the area of a region bounded by continuous functions f and g. If we
break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systematically break a region into subre-

gions. A graph will help. Consider Figure 5.6.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 5.6.1 (b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 5.6.1 (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem5.6.1 Area Between Curves
(restatement of Theorem 5.4.3)

Let f(x) and g(x) be continuous functions defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.6.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 5.6.2.

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.
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5.6 Area Between Curves

Example 5.6.2 Finding total area enclosed by curves
Find the total area of the region enclosed by the functions f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 5.6.3.

SÊ½çã®ÊÄ A quick calculation shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by computing
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integration returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12+ 8/3
= 37/12 = 3.083 units2.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 5.6.1. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

Example 5.6.3 Finding area: integrating with respect to y
Find the area of the region enclosed by the functions y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 5.6.4.

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we notice that the region’s “top” is defined by two different curves.
On [0, 1], the top function is y =

√
x + 2; on [1, 2], the top function is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3.

The second approach is clever and very useful in certain situations. We are
used to viewing curves as functions of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as functions of y: input a y-value and
an x-value is returned. We can rewrite the equations describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y+ 1.

Figure 5.6.5 shows the region with the boundaries relabelled. A differential
element, a horizontal rectangle, is also pictured. The width of the rectangle is
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Chapter 5 Integration

a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “bottom” x-value
is the smaller, i.e., the leftmost. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integrating the above function with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “bottom” functions exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 5.6.4 computes the area of a trian-
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Example 5.6.4 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+
5
2 , as shown in Figure 5.6.6.

SÊ½çã®ÊÄ Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

Total Area =

∫ 2

1

(
(x+ 1)− (−1

2
x+

5
2
)
)
dx+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5
2
)
)
dx

= 3/4+ 3/4
= 3/2.

We can also approach this by converting each function into a function of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstration purposes.

The “top” function is always x = 7−y
2 while there are two “bottom” func-

tions. Being mindful of the proper integration bounds, we have

Total Area =

∫ 2

1

(7− y
2

− (5− 2y)
)
dy+

∫ 3

2

(7− y
2

− (y− 1)
)
dy

= 3/4+ 3/4
= 3/2.

Of course, the final answer is the same. (It is interesting to note that the area of
all 4 subregions used is 3/4. This is coincidental.)
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Exercises 5.6
Terms and Concepts

1. T/F: The area between curves is always positive.

2. T/F: Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

4. Describe a situation where it is advantageous to find an
area enclosed by curves through integration with respect
to y instead of x.

Problems

In Exercises 5 – 12, find the area of the shaded region in the
given graph.
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12.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y

In Exercises 13 – 20, find the total area enclosed by the func-
tions f and g.

13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1

14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin x, g(x) = 2x/π

16. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4

17. f(x) = x, g(x) =
√
x

18. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3

19. The functions f(x) = cos(x) and g(x) = sin x intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

20. The functions f(x) = cos(2x) and g(x) = sin x intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

21. The functions f(x) = cos(2x) and g(x) = sin x intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 22 – 27, find the area of the enclosed region in
two ways:

1. by treating the boundaries as functions of x, and

2. by treating the boundaries as functions of y.

22.

.....
1

.
2

.
3

.

1

.

2

.

y = x2 + 1

.

y = 1
4 (x − 3)2 + 1

.

y = 1

. x.

y

23.

.....

y =
√

x

.

y = −2x + 3

.

y = − 1
2 x

.

1

.

2

. −1.

−0.5

.

0.5

.

1

.

x

.

y

24.

.....

y = x2

.

y = x + 2

.
−1

.
1

.
2

.

2

.

4

. x.

y

25.

x = 1
2 y

2

x = − 1
2 y + 1

1 2

−2

−1

1

x

y

26.

.....

y = x1/3

.

y =
√

x − 1/2

. 0.5. 1.

0.5

.

1

.
x

.

y

27.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y
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In Exercises 28 – 31, find the area triangle formedby the given
three points.

28. (1, 1), (2, 3), and (3, 3)

29. (−1, 1), (1, 3), and (2,−1)

30. (1, 1), (3, 3), and (3, 3)

31. (0, 0), (2, 5), and (5, 2)
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 1
Section 1.1

1. Answers will vary.
3. F
5. Answers will vary.
7. −1
9. Limit does not exist

11. 1.5
13. Limit does not exist.
15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly 7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx. −1.

Section 1.2

1. ε should be given first, and the restriction |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

3. T
5. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 4| < δ, |f(x)− 13| < ε.
Consider |f(x)− 13| < ε:

|f(x)− 13| < ε

|(2x+ 5)− 13| < ε

|2x− 8| < ε

2|x− 4| < ε

−ε/2 < x− 4 < ε/2.

This implies we can let δ = ε/2. Then:
|x− 4| < δ

−δ < x− 4 < δ

−ε/2 < x− 4 < ε/2
−ε < 2x− 8 < ε

−ε < (2x+ 5)− 13 < ε

|(2x+ 5)− 13| < ε,

which is what we wanted to prove.

7. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 3| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 3|:

|f(x)− 6| < ε

|x2 − 3− 6| < ε

|x2 − 9| < ε

|x− 3| · |x+ 3| < ε

|x− 3| < ε/|x+ 3|

Since x is near 3, we can safely assume that, for instance,
2 < x < 4. Thus

2+ 3 < x+ 3 < 4+ 3
5 < x+ 3 < 7
1
7
<

1
x+ 3

<
1
5

ε

7
<

ε

x+ 3
<

ε

5

Let δ = ε
7 . Then:

|x− 3| < δ

|x− 3| <
ε

7
|x− 3| <

ε

x+ 3

|x− 3| · |x+ 3| <
ε

x+ 3
· |x+ 3|

Assuming x is near 3, x+ 3 is positive and we can drop the
absolute value signs on the right.

|x− 3| · |x+ 3| <
ε

x+ 3
· (x+ 3)

|x2 − 9| < ε

|(x2 − 3)− 6| < ε,

which is what we wanted to prove.
9. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 1| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 6| < ε

|(2x2 + 3x+ 1)− 6| < ε

|2x2 + 3x− 5| < ε

|2x+ 5| · |x− 1| < ε

|x− 1| < ε/|2x+ 5|

Since x is near 1, we can safely assume that, for instance,
0 < x < 2. Thus

0+ 5 < 2x+ 5 < 4+ 5
5 < 2x+ 5 < 9
1
9
<

1
2x+ 5

<
1
5

ε

9
<

ε

2x+ 5
<

ε

5



Let δ = ε
9 . Then:

|x− 1| < δ

|x− 1| <
ε

9
|x− 1| <

ε

2x+ 5

|x− 1| · |2x+ 5| <
ε

2x+ 5
· |2x+ 5|

Assuming x is near 1, 2x+ 5 is positive and we can drop the
absolute value signs on the right.

|x− 1| · |2x+ 5| <
ε

2x+ 5
· (2x+ 5)

|2x2 + 3x− 5| < ε

|(2x2 + 3x+ 1)− 6| < ε,

which is what we wanted to prove.

11. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a constant
function, the latter inequality is simply |5− 5| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

13. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 1| < δ, |f(x)− 1| < ε.
Consider |f(x)− 1| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 1| < ε

|1/x− 1| < ε

|(1− x)/x| < ε

|x− 1|/|x| < ε

|x− 1| < ε · |x|

Since x is near 1, we can safely assume that, for instance,
1/2 < x < 3/2. Thus ε/2 < ε · x.
Let δ = ε

2 . Then:

|x− 1| < δ

|x− 1| <
ε

2
|x− 1| < ε · x
|x− 1|/x < ε

Assuming x is near 1, x is positive and we can bring it into the
absolute value signs on the left.

|(x− 1)/x| < ε

|1− 1/x| < ε

|(1/x)− 1| < ε,

which is what we wanted to prove.

Section 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 9

9. 0

11. 3

13. 3

15. 1

17. 0

19. 7

21. 1/2

23. Limit does not exist

25. 2

27. π2+3π+5
5π2−2π−3 ≈ 0.6064

29. −8

31. 10

33. −3/2

35. 0

37. 1

39. 3

41. 1

43. (a) Apply Part 1 of Theorem 1.3.1.
(b) Apply Theorem 1.3.6; g(x) = x

x is the same as g(x) = 1
everywhere except at x = 0. Thus lim

x→0
g(x) = lim

x→0
1 = 1.

(c) The function f(x) is always 0, so g
(
f(x)

)
is never defined as

g(x) is not defined at x = 0. Therefore the limit does not
exist.

(d) The Composition Rule requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the conditions of the
Composition Rule are not satisfied, and hence the rule is
not violated.

Section 1.4

1. The function approaches different values from the left and right;
the function grows without bound; the function oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2
(b) 2
(c) 2
(d) 0
(e) 2
(f) 2

A.2



(g) 2

(h) Not defined

13. (a) 2

(b) −4

(c) Does not exist.

(d) 2

15. (a) 0

(b) 0

(c) 0

(d) 0

(e) 2

(f) 2

(g) 2

(h) 2

17. (a) 1− cos2 a = sin2 a

(b) sin2 a

(c) sin2 a

(d) sin2 a

19. (a) 4

(b) 4

(c) 4

(d) 3

21. (a) −1

(b) 1

(c) Does not exist

(d) 0

23. 2/3

25. −9

Section 1.5

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; vertical asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; vertical asymptotes at x = −1, 0.

23. No horizontal or vertical asymptotes.

25. ∞
27. −∞
29. Solution omitted.

31. Yes. The only “questionable” place is at x = 3, but the left and
right limits agree.

Section 1.6

1. Answers will vary.

3. A root of a function f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ≠ f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] and [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. Yes, by the Intermediate Value Theorem.

37. We cannot say; the Intermediate Value Theorem only applies to
function values between−10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

41. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

43. (a) 20
(b) 25

A.3



(c) Limit does not exist

(d) 25

45. Answers will vary.

Chapter 2
Section 2.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 0

9. f ′(t) = −3

11. h′(x) = 3x2

13. r ′(x) = −1
x2

15. (a) y = 6

(b) x = −2

17. (a) y = −3x+ 4

(b) y = 1/3(x− 7)− 17

19. (a) y = 48(x− 4) + 64

(b) y = − 1
48 (x− 4) + 64

21. (a) y = −1/4(x+ 2)− 1/2

(b) y = 4(x+ 2)− 1/2

23. y = 8.1(x− 3) + 16

25. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.

27. (a) Approximations will vary; they should match (c) closely.

(b) f ′(x) = 2x

(c) At (−1, 0), slope is−2. At (0,−1), slope is 0. At (2, 3),
slope is 4.

29. .....

−2

.

−1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

31. .....

−2

.

−1

.

1

.

2

. −5.

5

.

x

.

y

33. (a) Approximately on (−2, 0) and (2,∞).

(b) Approximately on (−∞,−2) and (0, 2).

(c) Approximately at x = 0, ±2.

(d) Approximately on (−∞,−1) and (1,∞).

(e) Approximately on (−1, 1).

(f) Approximately at x = ±1.

35. limh→0+
f(0+h)−f(0)

h = 0; note also that limx→0+ f ′(x) = 0. So f
is differentiable at x = 0.
limh→0−

f(1+h)−f(1)
h = −∞; note also that

limx→1− f ′(x) = −∞. So f is not differentiable at x = 1.
f is differentiable on [0, 1), not its entire domain.

37. Approximately 24.

39. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]
(d) [−

√
5,
√
5]

Section 2.2

1. Velocity

3. Linear functions.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. ft/s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, negative profit for not

producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

Section 2.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity function, and f ′′(x) is acceleration.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2(x− π

4 )−
√
2

Normal line: y = −1√
2
(x− π

4 )−
√
2

A.4



39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

Section 2.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. f ′(x) = sin x+ x cos x

17. f ′(x) = ex ln x+ ex 1x

19. g′(x) = −12
(x−5)2

21. h′(x) = − csc2 x− ex

23. h′(t) = 14t+ 6

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

27. f ′(x) = 7

29. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

31. f ′(x) = −x sin x−cos x
x2 + tan x−x sec2 x

tan2 x

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

39. Tangent line: y = 4
Normal line: x = 2

41. x = 3/2

43. f ′(x) is never 0.

45. f ′′(x) = 2 cos x− x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x

49. .....
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51. .....
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Section 2.5

1. T
3. F
5. T
7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)
11. f ′(x) = 3

(
ln x+ x2

)
2( 1x + 2x)

13. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

15. g′(x) = 5 sec2(5x)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − 1
t3

)
19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)
21. f ′(x) = 2/x
23. g′(r) = ln 4 · 4r

25. g′(t) = 0

27. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

35. f ′(x) = 4(5x−9)3 cos(4x+1)−15 sin(4x+1)(5x−9)2
(5x−9)6

37. Tangent line: y = 0
Normal line: x = 0

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

41. In both cases the derivative is the same: 1/x.
43. (a) ◦ F/mph

(b) The sign would be negative; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Section 2.6

1. Answers will vary.
3. T
5. f ′(x) = 1

2 x
−1/2 − 1

2 x
−3/2 = 1

2
√

x −
1

2
√

x3

7. f ′(t) = −t√
1−t2

9. h′(x) = 1.5x0.5 = 1.5
√
x

11. g′(x) =
√

x(1)−(x+7)(1/2x−1/2)
x = 1

2
√

x −
7

2
√

x3

13. dy
dx = −4x3

2y+1

15. dy
dx = sin(x) sec(y)

17. dy
dx = y

x
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19. dy
dx = − 2 sin(y) cos(y)

x

21. dy
dx = 1

2y+2

23. If one takes the derivative of the equation, as shown, using the
Quotient Rule, one finds dy

dx =
− cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y) .

If one first clears the denominator and writes
sin(x) + y = cos(y) + x then takes the derivative of both sides,
one finds dy

dx =
1−cos(x)
1+sin(y) .

These expressions, by themselves, are not equal. However, for
values of x and y that satisfy the original equation (i.e, for x and y
such that sin(x)+y)

cos(y)+x) = 1), these expressions are equal.

25. dy
dx = − 2x+y

2y+x

27. (a) y = 0

(b) y = −1.859(x− 0.1) + 0.281

29. (a) y = 4

(b) y = 0.93(x− 2) + 4√108

31. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

33. d2y
dx2 =

(2y+1)(−12x2)+4x3
(
2−4x3
2y+1

)
(2y+1)2

35. d2y
dx2 = cos x cos y+sin2 x tan y

cos2 y

37. y′ = (1+ x)1/x
( 1
x(x+1) − ln(1+x)

x2
)

Tangent line: y = (1− 2 ln 2)(x− 1) + 2

39. y′ = xx
x+1

(
ln x+ 1− 1

x+1
)

Tangent line: y = (1/4)(x− 1) + 1/2

41. y′ = x+1
x+2

( 1
x+1 − 1

x+2
)

Tangent line: y = 1/9(x− 1) + 2/3

Section 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
invertible).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = cos(sin−1 x) 1√
1−x2

= 1.

27. (a) f(x) =
√
1− x2, so f ′(x) = −x√

1−x2

(b) f ′(x) = cos(cos−1 x)( 1√
1−x2

= −x√
1−x2

29. y = −4(x−
√
3/4) + π/6

31. dy
dx =

y(y−2x)
x(x−2y)

33. 3x2 + 1

Chapter 3
Section 3.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; the function isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the function isn’t defined here. E: none F: rel.
min G: rel. max

9. f ′(0) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

13. f ′(2) is not defined f ′(6) = 0

15. f ′(0) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)

23. min: (π,−eπ)

max: (π/4,
√

2eπ/4

2 )

25. min: (1, 0)
max: (e, 1/e)

27. dy
dx =

y(y−2x)
x(x−2y)

29. 3x2 + 1

Section 3.2

1. Answers will vary.

3. Any c in [−1, 1] is valid.

5. c = −1/2

7. Rolle’s Thm. does not apply.

9. Rolle’s Thm. does not apply.

11. c = 0

13. c = 3/
√
2

15. The Mean Value Theorem does not apply.

17. c = ± sec−1(2/
√
π)

19. c = 5−7
√

7
6

21. Max value of 19 at x = −2 and x = 5; min value of 6.75 at
x = 1.5.

23. They are the odd, integer valued multiples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

Section 3.3

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.
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5. False; for instance, y = x3 is always increasing though it has a
critical point at x = 0.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

17. domain=(−∞,∞)

c.p. at c = 1
6 (−1±

√
7);

decreasing on ( 16 (−1−
√
7), 1

6 (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

√
7)) ∪ ( 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on entire domain, (−∞,−2) ∪ (−2, 4) ∪ (4,∞)

23. domain=(−∞,∞)

c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on (−3π/4,−π/4) ∪ (π/4, 3π/4);
increasing on (−π,−3π/4) ∪ (−π/4, π/4) ∪ (3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

25. c = 1/2

Section 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Possible points of inflection: none; concave up on (−∞,∞)

17. Possible points of inflection: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

19. Possible points of inflection: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) ∪ (0,∞)

21. Possible points of inflection: x = 1; concave up on (−∞,∞)

23. Possible points of inflection: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflection: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflection: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. max: x = 0

39. max: x = π/4; min: x = −3π/4

41. min: x = 1/
√
e

43. f ′ has no maximal or minimal value.

45. f ′ has a minimal value at x = 0

47. Possible points of inflection: x = −2/3, 0; f ′ has a relative min
at: x = 0 ; relative max at: x = −2/3

49. f ′ has no relative extrema

51. f ′ has a relative max at x = −1/
√
3; relative min at x = 1/

√
3

53. f ′ has a relative min at x = 3π/4; relative max at x = −π/4

55. f ′ has a relative min at x = 1/
√
e3 = e−3/2

Section 3.5

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts and draw the
appropriate line.

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. Critical point: x = 0 Points of inflection: ±b/
√
3

29. Critical points: x = nπ/2−b
a , where n is an odd integer Points of

inflection: (nπ − b)/a, where n is an integer.

31. dy
dx = −x/y, so the function is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is positive when y < 0 and is
negative when y > 0. Hence the function is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter 4
Section 4.1

1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 = 1.5707963,
x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458,
x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −5.156, x = −0.369 and x = 0.525

11. roots are: x = −1.013, x = 0.988, and x = 1.393
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13. x = ±0.824,

15. x = ±0.743

17. The approximations alternate between x = 1 and x = 2.

Section 4.2

1. T

3. (a) 5/(2π) ≈ 0.796cm/s
(b) 1/(4π) ≈ 0.0796 cm/s
(c) 1/(40π) ≈ 0.00796 cm/s

5. 63.14mph

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s
(b) 0.0725 rad/s
(c) In the limit, rate goes to 0.0733 rad/s

9. (a) 0.04 ft/s
(b) 0.458 ft/s
(c) 3.35 ft/s
(d) Not defined; as the distance approaches 24, the rates

approaches∞.

11. (a) 50.92 ft/min
(b) 0.509 ft/min
(c) 0.141 ft/min

As the tank holds about 523.6ft3, it will take about 52.36 minutes.

13. (a) The rope is 80ft long.
(b) 1.71 ft/sec
(c) 1.84 ft/sec
(d) About 34 feet.

15. The cone is rising at a rate of 0.003ft/s.

Section 4.3

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equation has only 1
critical value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should be
2r = 7.67cm. No, this is not the size of the standard can.

11. The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giving a

minimum cost of $374,899.96.

15. The dog should run about 19 feet along the shore before starting
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

Section 4.4

1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 2 and dx = 0.05. Thus
dy = .2; knowing 22 = 4, we have 2.052 ≈ 4.2.

9. Use y = x3; dy = 3x2 · dx with x = 5 and dx = 0.1. Thus
dy = 7.5; knowing 53 = 125, we have 5.13 ≈ 132.5.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 16 and dx = 0.5. Thus

dy = .0625; knowing
√
16 = 4, we have

√
16.5 ≈ 4.0625.

13. Use y = 3√x; dy = 1/(3 3√x2) · dx with x = 64 and dx = −1.
Thus dy = −1/48 ≈ 0.0208; we could use
−1/48 ≈ −1/50 = −0.02; knowing 3√64 = 4, we have
3√63 ≈ 3.98.

15. Use y = sin x; dy = cos x · dx with x = π and dx ≈ −0.14. Thus
dy = 0.14; knowing sin π = 0, we have sin 3 ≈ 0.14.

17. dy = (2x+ 3)dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x)dx

31. dV = ±0.157

33. ±15π/8 ≈ ±5.89in2

35. (a) 297.8 feet
(b) ±62.3 ft
(c) ±20.9%

37. (a) 298.9 feet
(b) ±8.67 ft
(c) ±2.9%

39. 1%

Section 4.5

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

2 − 1
6 x

3

7. p5(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivative of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivative of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.
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27. The nth derivative of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is: when n even, 0; when n is odd, (−1)(n−1)/2

n! xn.

33. The nth term is (−1)nxn.

35. 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4

37. 1+ 2x− 2x2 + 4x3 − 10x4

Chapter 5
Section 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx

Section 5.2

1. Answers will vary.

3. 0

5. (a) 3
(b) 4
(c) 3
(d) 0
(e) −4
(f) 9

7. (a) 4
(b) 2
(c) 4
(d) 2

(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) −59
(b) −48
(c) −27
(d) −33

13. (a) 4
(b) 4
(c) −4
(d) −2

15. (a) 2ft/s
(b) 2ft
(c) 1.5ft

17. (a) 64ft/s
(b) 64ft
(c) t = 2
(d) t = 2+

√
7 ≈ 4.65 seconds

19. 2

21. 16

23. 24

25. −7

27. 1/4x4 − 2/3x3 + 7/2x2 − 9x+ C

29. 3/4t4/3 − 1/t+ 2t/ ln 2+ C

Section 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. 1+ 1/2+ 1/3+ 1/4+ 1/5 = 137/60

11. 1/2+ 1/6+ 1/12+ 1/20 = 4/5

13. Answers may vary;
∑5

i=1 3i

15. Answers may vary;
∑4

i=1
i

i+1

17. 5 · 10 = 50

19. 1045

21. −8525

23. 5050

25. 155

27. 24

29. 19

31. π/3+ π/(2
√
3) ≈ 1.954

33. 0.388584

35. (a) Exact expressions will vary; (1+n)2

4n2 .
(b) 121/400, 10201/40000, 1002001/4000000
(c) 1/4

37. (a) 8.
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(b) 8, 8, 8

(c) 8

39. (a) Exact expressions will vary; 100− 200/n.

(b) 80, 98, 499/5

(c) 100

41. F(x) = 5 tan x+ 4

43. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

45. G(t) = sin t− cos t− 78

Section 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. Explanations will vary. A sketch will help.

31. c = 2/
√
3

33. c = ln(e− 1) ≈ 0.54

35. 2/π

37. 2

39. 16

41. −300ft

43. 30ft

45. −1ft

47. −64ft/s

49. 2ft/s

51. 27/2

53. 9/2

55. F′(x) = (3x2 + 1) 1
x3+x

57. F′(x) = 2x(x2 + 2)− (x+ 2)

Section 5.5

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − 1
6 sin(3− 6x) + C

19. 1
2 ln | sec(2x) + tan(2x)|+ C

21. sin(x2)
2 + C

23. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

25. 1
3 e

3x−1 + C

27. 1
2 e

(x−1)2 + C

29. ln
(
ex + 1

)
+ C

31. 27x
ln 27 + C

33. 1
2 ln2(x) + C

35. 3
2 (ln x)

2 + C

37. x2
2 + 3x+ ln |x|+ C

39. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

41. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

43.
√
7 tan−1

(
x√
7

)
+ C

45. 14 sin−1
(

x√
5

)
+ C

47. 5
4 sec−1(|x|/4) + C

49.
tan−1

(
x−1√

7

)
√

7
+ C

51. 3 sin−1 ( x−4
5

)
+ C

53. − 1
3(x3+3)

+ C

55. −
√
1− x2 + C

57. − 2
3 cos

3
2 (x) + C

59. ln |x− 5|+ C

61. 3x2
2 + ln

∣∣x2 + 3x+ 5
∣∣− 5x+ C

63. 3 ln
∣∣3x2 + 9x+ 7

∣∣+ C

65. 1
18 tan−1

(
x2
9

)
+ C

67. sec−1(|2x|) + C

69. 3
2 ln

∣∣x2 − 2x+ 10
∣∣+ 1

3 tan−1 ( x−1
3

)
+ C

71. 15
2 ln

∣∣x2 − 10x+ 32
∣∣+ x+

41 tan−1
(

x−5√
7

)
√

7
+ C

73. x2
2 + 3 ln

∣∣x2 + 4x+ 9
∣∣− 4x+

24 tan−1
(

x+2√
5

)
√

5
+ C

75. tan−1(sin(x)) + C

77. 3
√
x2 − 2x− 6+ C

79. − ln 2

81. 2/3

83. (1− e)/2

85. π/2

Section 5.6

1. T

3. Answers will vary.

5. 4π + π2 ≈ 22.436
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7. π

9. 1/2
11. 1/ ln 4
13. 4.5
15. 2− π/2
17. 1/6
19. All enclosed regions have the same area, with regions being the

reflection of adjacent regions. One region is formed on
[π/4, 5π/4], with area 2

√
2.

21. On regions such as [π/6, 5π/6], the area is 3
√
3/2. On regions

such as [−π/2, π/6], the area is 3
√
3/4.

23. 5/3

25. 9/4

27. 4/3

29. 5

31. 133/20
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Index

absolute maximum, 111
absolute minimum, 111
acceleration, 67
antiderivative, 179
asymptote

horizontal, 36
vertical, 34

average value of function, 216

Bisection Method, 47

Chain Rule, 88
notation, 92

concave down, 130
concave up, 130
concavity, 130

inflection point, 130
test for, 130

Constant Multiple Rule
of derivatives, 74
of integration, 182

continuous function, 42
properties, 45

critical number, 113
critical point, 113
curve sketching, 137

decreasing function, 123
finding intervals, 124

definite integral, 189
and substitution, 231
properties, 190

derivative
acceleration, 67
as a function, 57
at a point, 53
basic rules, 71
Chain Rule, 88, 92
Constant Multiple Rule, 74
Constant Rule, 71
differential, 162
exponential functions, 92
First Deriv. Test, 126
Generalized Power Rule, 89
higher order, 75

interpretation, 76
implicit, 96
interpretation, 65
inverse function, 105
inverse trig., 107
logarithmic differentiation, 101
Mean Value Theorem, 119

motion, 67
normal line, 55
notation, 57, 75
Power Rule, 71, 83, 100
Product Rule, 78
Quotient Rule, 80
second, 75
Second Deriv. Test, 133
Sum/Difference Rule, 74
tangent line, 53
third, 75
trigonometric functions, 81
velocity, 67

differentiable, 53
differential, 162

notation, 162
discontinuity, 45
discontinuity

essential, 46
infinite, 46
jump, 46
removable, 46

displacement, 212

extrema
absolute, 111
and First Deriv. Test, 126
and Second Deriv. Test, 133
finding, 114
relative, 112

Extreme Value Theorem, 111
extreme values, 111

First Derivative Test, 126
floor function, 42
Fundamental Theorem of Calculus, 210, 211

and Chain Rule, 213

Generalized Power Rule, 89

implicit differentiation, 96
increasing function, 123

finding intervals, 124
indefinite integral, 179
indeterminate form, 1, 35
inflection point, 131
initial value problem, 183
integration

area, 189
area between curves, 214, 236
average value, 216
by substitution, 221

A.13



definite, 189
and substitution, 231
properties, 190
Riemann Sums, 207

displacement, 212
Fun. Thm. of Calc., 210, 211
indefinite, 179
Mean Value Theorem, 215
notation, 180, 189, 211
of trig. functions, 226
Power Rule, 183
Sum/Difference Rule, 182

Intermediate Value Theorem, 46

Left Hand Rule, 196, 200
limit

at infinity, 36
definition, 6, 9
difference quotient, 5
does not exist, 4, 27
indeterminate form, 1, 35
informal definition, 6
left handed, 26
of infinity, 32
one sided, 26
properties, 16
pseudo-definition, 2
right handed, 26
Squeeze Theorem, 19

linearization, 161
logarithmic differentiation, 101

Maclaurin Polynomial, see Taylor Polynomial
definition, 169

maximum
absolute, 111
and First Deriv. Test, 126
and Second Deriv. Test, 133
relative/local, 112

Mean Value Theorem
of differentiation, 119
of integration, 215

Midpoint Rule, 196, 200
minimum

absolute, 111
and First Deriv. Test, 126, 133
relative/local, 112

Newton’s Method, 146
normal line, 55

optimization, 156

partition, 201
size of, 201

point of inflection, 131
Power Rule

differentiation, 71, 78, 83, 100
integration, 183

Quotient Rule, 80

related rates, 150
Riemann Sum, 196, 199, 202

and definite integral, 207
Right Hand Rule, 196, 200
Rolle’s Theorem, 119

Second Derivative Test, 133
sign diagram, 124
signed area, 189
Squeeze Theorem, 19
Sum/Difference Rule

of derivatives, 74
of integration, 182

summation
notation, 197
properties, 198

tangent line, 53
Taylor Polynomial

definition, 169
Taylor’s Theorem, 172

Taylor’s Theorem, 172
total signed area, 189

velocity, 66



Differentiation Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx

(
sin−1 x

)
=

1
√
1− x2

20.
d
dx

(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx

(
csc−1 x

)
=

−1
x
√
x2 − 1

22.
d
dx

(
sec−1 x

)
=

1
x
√
x2 − 1

23.
d
dx

(
tan−1 x

)
=

1
1+ x2

24.
d
dx

(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx

(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx

(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx

(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx

(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx

(
tanh−1 x

)
=

1
1− x2

36.
d
dx

(
coth−1 x

)
=

1
1− x2

Integration Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin

(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin

(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
x
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√

x2 − a2
∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√

x2 + a2
∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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Definitions of the Trigonometric Functions

Unit Circle Definition

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Definition

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Identities

Pythagorean Identities
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunction Identities
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Identities
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Rational Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Additional Formulas

Summation Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolution:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)

n!
(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
continuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ratio Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be positive
Also diverges if

lim
n→∞

an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be positive
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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