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PÙ�¥���
This a custom textbook that covers the entire curriculum for the courseMath

2580 (Calculus IV) at the University of Lethbridge at minimal cost to the student.
It is also anOpen Education Resource. As a student, you are free to keep asmany
copies as you want, for as long as you want. You can print it, in whole or in part,
or share it with a friend. As an instructor, I am free tomodify the content as I see
fit, whether this means editing to fit our curriculum, or simply correcting typos.

Most of this textbook is adapted from the APEX Calculus textbook project,
which originated in the Department of Applied Mathematics at the Virginia Mil-
itary Institute. (See apexcalculus.com.) On the following page you’ll find the
original preface from their text, which explains their project inmore detail. They
haveproduced calculus textbook that is free in two regards: it’s free to download
from their website, and the authors have made all the files needed to produce
the textbook freely available, allowing others (such as myself) to edit the text to
suit the needs of various courses (such as Math 2580).

What’s even better is that the textbook is of remarkably high production
quality: unlike many free texts, it is polished and professionally produced, with
graphics on almost every page, and a large collection of exercises (with selected
answers!).

I hope that you find this textbook useful. If you find any errors, or if you have
any suggestions as to how the material could be better arranged or presented,
please let me know. (The great thing about an open source textbook is that it
can be edited at any time!) In particular, if you find a particular topic that you
think needs further explanation, or more examples, or more exercises, please
let us know. My hope is that this text will be improved every time it is used for
this course.

I have supplemented the original APEX material with additional content to
ensure coverage of the full Math 2580 curriculum. Section 14.8 covers the gen-
eral change of variables formula for multiple integrals. Section 13.11 includes
content on Lagrange multipliers. There is also some extracurricular content, in-
cluding a proof of Stoke’s Theorem (Section 15.8), and a discussion on how to
define the derivative as a linear transformation in Section 13.10. These are op-
tional topics, but they may be of interest to some students and instructors.

Sean Fitzpatrick
Department of Mathematics and Computer Science

University of Lethbridge
May, 2018

http://www.apexcalculus.com
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PÙ�¥��� ãÊ APEX C�½�ç½çÝ
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay better understand what you will find beyond this
page.

This text is Part I of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector–valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.apexcalculus.com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High–level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower–level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

vi

http://apexcalculus.com
http://amazon.com


Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.



APEX – Affordable Print and Electronic teXts

APEX is a consortium of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military Institute, through a generous
Jackson–Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com for more information.

• More useful numbering of Examples, Theorems, etc. “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integrationwith Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com


Figure 13.1.1: Plotting the point P =
(2, 1, 3) in space.
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In Calculus III, you were exposed to the three-dimensional Cartesian coordinate
system, and vector valued functions. We begin Calculus IV, which studies func-
tions of several variables, by briefly repeating a topic you already saw in Cal-
culus III: surfaces in three-dimensional space. Much of multivariable calculus
takes place against the backdrop of such surfaces, so it will be worth our while
to review this material before moving on to functions of several variables.

13.1 Surfaces in Three-Dimensional Space
Up to this point in this text we have consideredmathematics in a 2–dimensional
world. We have plotted graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y-axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 13.1.1 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the x-y plane is drawn in its standard way, with
the z-axis down to the left. The perspective is that the paper represents the x-y
plane and the positive z axis is coming up, off the page. This method is preferred
by many engineers. Because it can be hard to tell where a single point lies in
relation to all the axes, dashed lines have been added to let one see how far
along each axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 13.1.2. The same


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Figure 13.1.2: Plotting the point P =
(2, 1, 3) in space with a perspective used
in this text.

Figure 13.1.3: Plotting points P and Q in
Example 13.1.1.

Chapter 13 Functions of Several Variables

point P is drawn, again with dashed lines. This point of view is preferred by
most mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y, and
z are positive is called the first octant. We do not name the other seven octants
in this text.

Measuring Distances

It is of critical importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 13.1.1 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ∥PQ∥. The above distance formula
allows us to compute the length of this segment.

Example 13.1.1 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

SÊ½çã®ÊÄ The points P and Q are plotted in Figure 13.1.3; no special
consideration need be made to draw the line segment connecting these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analytically. Applying Definition 13.1.1, we have

∥PQ∥ =
√

(2− 1)2 + (1− 4)2 + (1− (−1))2 =
√
14 ≈ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidis-
tant from a given point. Definition 13.1.1 allows us to write an equation of the
sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

∥PC∥ =
√

(x− a)2 + (y− b)2 + (z− c)2 = r.
Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 13.1.1 Standard Equation of a Sphere in Space

The standard equation of the sphere with radius r, centred at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.640





Figure 13.1.5: The plane x = 2.

Figure 13.1.6: Sketching the boundaries
of a region in Example 13.1.3.

13.1 Surfaces in Three-Dimensional Space

Example 13.1.2 Equation of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
tion in standard form. This requires us to complete the square (three times).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2
(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centred at (−1, 2, 3) and has a radius of 4.

The equation of a sphere is an example of an implicit function defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situations where surfaces are defined where one or two of these
variables are absent.

Introduction to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 13.1.4),
the coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y
plane is characterized as the set of all points in space where the z-value is 0.
This, in fact, gives us an equation that describes this plane: z = 0. Likewise, the
x-z plane is all points where the y-value is 0, characterized by y = 0.

the x-y plane the y-z plane the x-z plane

Figure 13.1.4: The coordinate planes.

The equation x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 13.1.5.

Example 13.1.3 Regions defined by planes
Sketch the region defined by the inequalities−1 ≤ y ≤ 2.

SÊ½çã®ÊÄ The region is all points between the planes y = −1 and y =
2. These planes are sketched in Figure 13.1.6, which are parallel to the x-z plane.
Thus the region extends infinitely in the x and z directions, and is bounded by
planes in the y direction. 641








(a)

(b)

Figure 13.1.8: Sketching x2 + y2 = 1.
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Cylinders

The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation x2 + y2 = 1 in space. In the plane, this equation describes a circle of
radius 1, centred at the origin. In space, the z coordinate is not specified, mean-
ing it can take on any value. In Figure 13.1.8 (a), we show part of the graph of
the equation x2 + y2 = 1 by sketching 3 circles: the bottom one has a constant
z-value of −1.5, the middle one has a z-value of 0 and the top circle has a z-
value of 1. By plotting all possible z-values, we get the surface shown in Figure
13.1.8(b). This surface looks like a “tube,” or a “cylinder”; mathematicians call
this surface a cylinder for an entirely different reason.

Definition 13.1.2 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definition, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 13.1.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definition.

Example 13.1.4 Graphing cylinders
Graph the following cylinders.

1. z = y2 2. x = sin z

SÊ½çã®ÊÄ

1. We can view the equation z = y2 as a parabola in the y-z plane, as il-
lustrated in Figure 13.1.7(a). As x does not appear in the equation, the
rulings are lines through this parabola parallel to the x-axis, shown in (b).
These rulings give an idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure 13.1.7: Sketching the cylinder defined by z = y2.
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(a)

(b)

Figure 13.1.10: Introducing surfaces of
revolution.

(a)

(b)

Figure 13.1.11: Revolving y = sin z about
the z-axis in Example 13.1.5.

13.1 Surfaces in Three-Dimensional Space

2. We can view the equation x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 13.1.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equation x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure 13.1.9: Sketching the cylinder defined by x = sin z.

Surfaces of Revolution

One of the applications of integration we learned previously was to find the
volume of solids of revolution – solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

sections of this surface parallel to the y-z plane are circles, as shown in Figure
13.1.10(a). Each circle has equation of the form y2 + z2 = r2 for some radius r.
The radius is a function of x; in fact, it is r(x) =

√
x. Thus the equation of the

surface shown in Figure 13.1.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equations of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 13.1.2 Surfaces of Revolution, Part 1

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equation of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equation of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Example 13.1.5 Finding equation of a surface of revolution
Let y = sin z on [0, π]. Find the equation of the surface of revolution formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 13.1.2, we find the surface has equation x2+
y2 = sin2 z. The curve is sketched in Figure 13.1.11(a) and the surface is drawn
in Figure 13.1.11(b).

Note how the surface (and hence the resulting equation) is the same if we
began with the curve x = sin z, which is also drawn in Figure 13.1.11(a).
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(a)

(b)

Figure 13.1.12: Revolving z = sin x about
the z-axis in Example 13.1.6.
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This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 7.3.4 of Section 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
tion of y is not trivial, as simply writing x = sin−1 y only gives part of the region
we desire.

What we desire is a way of writing the surface of revolution formed by ro-
tating y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotating f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points satisfy the equation r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equation of the surface.

Key Idea 13.1.3 Surfaces of Revolution, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equation z = f

(√
x2 + y2

)
.

Example 13.1.6 Finding equation of surface of revolution
Find the equation of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 13.1.3, the surface has equation z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 13.1.12.
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Figure 13.1.13: The elliptic paraboloid
z = x2/4+ y2.

13.1 Surfaces in Three-Dimensional Space

Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definition may
look intimidating, but we will show how to analyze these surfaces in an illumi-
nating way.

Definition 13.1.3 Quadric Surface

A quadric surface is the graph of the general second–degree equation in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; wewill not consider rotations. There are six basic quadric sur-
faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y2, shown in Figure 13.1.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross sections parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the x-z plane. For instance, letting
y = 0 gives the equation z = x2/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.
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Elliptic Paraboloid, z =
x2

a2
+

y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equation of the elliptic paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direction of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an elliptic paraboloid that opens along the x-axis.

Multiplying the right hand side by (−1) defines an elliptic paraboloid that “opens” in the opposite
direction.

Elliptic Cone, z2 =
x2

a2
+

y2

b2

Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equation as z2 − x2/a2 − y2/b2 = 0. The one variable with a positive
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid, x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 13.1.1.

Hyperboloid of One Sheet, x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negative coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets, z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a positive coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power.648








(a)

(b)

Figure 13.1.14: Sketching an elliptic
paraboloid.

(a)

(b)

Figure 13.1.15: Sketching an ellipsoid.

13.1 Surfaces in Three-Dimensional Space

Example 13.1.7 Sketching quadric surfaces
Sketch the quadric surface defined by the given equation.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

We first identify the quadric by pattern–matchingwith the equations given
previously. Only two surfaces have equations where one variable is raised
to the first power, the elliptic paraboloid and the hyperbolic paraboloid.
In the latter case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 13.1.14(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 13.1.15(a). Filling in the surface gives Figure 13.1.15(b).

3. z = y2 − x2:

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric sections. Consider the traces in the y − z and x − z
planes:

x = 0: The trace is z = y2, a parabola opening up in the y− z plane.

y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.

Sketching these two parabolas gives a sketch like that in Figure 13.1.16(a),
and filling in the surface gives a sketch like (b).
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(a)

(b)

Figure 13.1.16: Sketching a hyperbolic
paraboloid.

Figure 13.1.17: A possible equation of
this quadric surface is found in Example
13.1.8.
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Example 13.1.8 Identifying quadric surfaces
Consider the quadric surface shown in Figure 13.1.17. Which of the following
equations best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equation will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate option (a), as the constant in that equation is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a positive coefficient, eliminating (c).

The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where c > b. This eliminates (b), leaving us with (d). We
should verify that the equation given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equation describes a hyperboloid of two

sheets that opens in the x-direction and is wider in the z-direction than in the
y. Now note the coefficient of the x-term. Rewriting 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This section has introduced points in space and shown how equations can
describe surfaces. Thenext sections explore vectors, an importantmathematical
object that we’ll use to explore curves in space.
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Exercises 13.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equation x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equation y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe the region in space defined by
the inequalities.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17. x2

4
+

y2

9
= 1

18. y = 1
x

In Exercises 19 – 22, give the equation of the surface of revo-
lution described.

19. Revolve z = 1
1+ y2

about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equations best fits the graph.

23.

(a) x = y2 + z2

9
(b) x = y2 + z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 + y2

3
+

z2

2
= 1 (b) x2 + y2

9
+

z2

4
= 1
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26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.

27. z− y2 + x2 = 0

28. z2 = x2 + y2

4

29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31. x2

9
− y2 + z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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.....

x2

9
+

y2

4
= 1

.

−5

.

5

. −5.

5

.

x

.

y

Figure 13.2.1: Illustrating the domain of
f(x, y) in Example 13.2.2.

13.2 Introduction to Multivariable Functions

13.2 Introduction to Multivariable Functions

Definition 13.2.1 Function of Two Variables

LetD be a subset ofR2. A function f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

Example 13.2.1 Understanding a function of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definition f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1
f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R.

Example 13.2.2 Understanding a function of two variables

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equation describes an ellipse and its interior as shown in Figure 13.2.1.
We can represent the domain D graphically with the figure; in set notation, we
can write D = {(x, y)| x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ 0. Since the x and y terms are squared, then subtracted,
inside the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1].
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(a)

(b)

Figure 13.2.2: Graphing a function of two
variables.

Figure 13.2.3: A topographical map dis-
plays elevation by drawing contour lines,
along with the elevation is constant.
Sample taken from the public do-
main USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.
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Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by plotting points, but this has limitations.
Consider Figure 13.2.2(a) where 25 points have been plotted of

f(x, y) =
1

x2 + y2 + 1
.

More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 13.2.2b which does a far better job of illustrating
the behaviour of f.

While technology is readily available to help us graph functions of two vari-
ables, there is still a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behaviour of a function. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of representing a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 13.2.3, represent the surface
of Earth by indicating points with the same elevation with contour lines. The
elevations marked are equally spaced; in this example, each thin line indicates
an elevation change in 50 ft increments and each thick line indicates a change
of 200 ft. When lines are drawn close together, elevation changes rapidly (as
one does not have to travel far to rise 50 ft). When lines are far apart, such as
near “Aspen Campground,” elevation changesmore gradually as one has to walk
farther to rise 50 ft.

Given a function z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing.
Examples will help one understand this concept.

Example 13.2.3 Drawing Level Curves

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centred at (0, 0) with horizontal major axis of length 6 and minor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.
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13.2 Introduction to Multivariable Functions

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =
√

1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 13.2.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 13.2.4(b), the curves are drawn on a graph of f in space. Note how
the elevations are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly.

Example 13.2.4 Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by setting f(x, y) = c for an arbitrary c and seeing
if algebraic manipulation of the equation reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
completing the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centred at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, ±0.4 and ±0.6 are sketched in Figure

13.2.5(a). To help illustrate “elevation,” we use thicker lines for c values near 0,
and dashed lines indicate where c < 0.

There is one special level curve, when c = 0. The level curve in this situation
is x+ y = 0, the line y = −x.
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In Figure 13.2.5(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation of the
level curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevation change, though the level curve does.

Functions of Three Variables

We extend our study of multivariable functions to functions of three vari-
ables. (One can make a function of as many variables as one likes; we limit our
study to three variables.)

Definition 13.2.2 Function of Three Variables

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definition closely resembles that of Definition 13.2.1.

Example 13.2.5 Understanding a function of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the
domain and range of f.

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y.

Level Surfaces

It is very difficult to produce a meaningful graph of a function of three vari-
ables. A function of one variable is a curve drawn in 2 dimensions; a function of
two variables is a surface drawn in 3 dimensions; a function of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 13.2.6 Finding level surfaces
If a point source S is radiating energy, the intensity I at a given point P in space
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c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 13.2.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 13.2.6.

13.2 Introduction to Multivariable Functions

is inversely proportional to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.
Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centred at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathematically. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centred

at the origin.
Figure 13.2.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a little more than before.

Note how each time the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.
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Exercises 13.2
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” functions that require more than one input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a function does not
change.

5. The analogue of a level curve for functions of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
In Exercises 7 – 14, give the domain and range of the multi-
variable function.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) = 1
x+ 2y

11. f(x, y) = 1
x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) = 1√
x2 + y2 − 9

In Exercises 15 – 22, describe in words and sketch the level
curves for the function and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) = 1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) = 2x− 2y
x2 + y2 + 1

; c = −1, 0, 1

20. f(x, y) = y− x3 − 1
x

; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

In Exercises 23 – 26, give the domain and range of the func-
tions of three variables.

23. f(x, y, z) = x
x+ 2y− 4z

24. f(x, y, z) = 1
1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

In Exercises 27 – 30, describe the level surfaces of the given
functions of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) = x2 + y2

z

30. f(x, y, z) = z
x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 13.3.1: Illustrating open and
closed sets in the x-y plane.

13.3 Limits and Continuity of Multivariable Functions

13.3 Limits andContinuity ofMultivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definitions for open and closed sets in the x-y plane.

Definition 13.3.1 Open Disk, Boundary and Interior Points,
Open and Closed Sets, Bounded Sets

An open disk B in R2 centred at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of
S if all open disks centred at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centred at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tred at the origin with radiusM, contains S. A set that is not bounded is
unbounded.

Figure 13.3.1 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centred there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centred there that lies entirely within the set.

The set depicted in Figure 13.3.1(a) is a closed set as it contains all of its
boundary points. The set in (b) is open, for all of its points are interior points
(or, equivalently, it does not contain any of its boundary points). The set in (c)
is neither open nor closed as it contains some of its boundary points.

Example 13.3.1 Determining open/closed, bounded/unbounded
Determine if the domain of the function f(x, y) =

√
1− x2/9− y2/4 is open,

closed, or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this function was found in Example 13.2.2 to
be D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1.

Since the region includes the boundary (indicated by the use of “≤”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centred at the origin, contains D.
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Figure 13.3.2: Sketching the domain of
the function in Example 13.3.2.

Note: While our first limit definition was
defined over an open interval, we now
define limits over a set S in the plane
(where S does not have to be open). As
planar sets can be far more complicated
than intervals, our definition adds the re-
striction “. . . where every open disk cen-
tred at P contains points in S other than
P.” In this text, all sets we’ll consider will
satisfy this condition andwewon’t bother
to check; it is included in the definition for
completeness.

Figure 13.3.3: Illustrating the definition
of a limit. The open disk in the x-y plane
has radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.

Chapter 13 Functions of Several Variables

Example 13.3.2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 13.3.2. Note how we can draw an open
disk around any point in the domain that lies entirely inside the domain, and
also note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–definition of the limit of a function of one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definition holds for functions of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definition is given below.

Definition 13.3.2 Limit of a Function of Two Variables

Let S be a set containing P = (x0, y0) where every open disk centred at
P contains points in S other than P, let f be a function of two variables
defined on S, except possibly at P, and let L be a real number. The limit
of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y) in
S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centred at (x0, y0)
with radius δ, then |f(x, y)− L| < ε.

The concept behind Definition 13.3.2 is sketched in Figure 13.3.3. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centred at (x0, y0) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.
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Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 13.3.1 Basic Limit Properties of Functions of Two
Variables

Let b, x0, y0, L and K be real numbers, let n be a positive integer, and let
f and g be functions with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Identity lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar Multiples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quotients: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 1.3.2 and 1.3.3 of Section 1.3, al-
lows us to evaluate many limits.

Example 13.3.3 Evaluating a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy
x2 + y2

SÊ½çã®ÊÄ

1. The aforementioned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
=

π

1
+ cos π

= π − 1.

2. We attempt to evaluate the limit by substituting 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.
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When dealing with functions of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direction, the left or the right.

In the plane, there are infinitely many directions from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the left and right hand limits

of single variable functions not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 13.3.4 Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

SÊ½çã®ÊÄ

1. Evaluating lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluating the resulting limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiting values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.
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By applying L’Hospital’s Rule, we can show this limit is 0 exceptwhenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hospital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “−2/0” ⇒ the limit does not exist.

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.

Example 13.3.5 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply Definition 13.3.2. Let ε > 0 be given. We
want to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)−0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.
Let
√
(x− 0)2 + (y− 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2

x2 + y2
− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0.
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Figure 13.3.4: A graph of f(x, y) in Exam-
ple 13.3.6.

Chapter 13 Functions of Several Variables

Continuity

Definition 1.6.1 defines what it means for a function of one variable to be
continuous. In brief, it meant that the graph of the function did not have breaks,
holes, jumps, etc. We define continuity for functions of two variables in a similar
way as we did for functions of one variable.

Definition 13.3.3 Continuous

Let a function f(x, y) be defined on a set S containing the point (x0, y0).

1. f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is continuous on S if f is continuous at all points in S. If f is contin-
uous at all points in R2, we say that f is continuous everywhere.

Example 13.3.6 Continuity of a function of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f continuous at (0, 0)? Is f continuous

everywhere?

SÊ½çã®ÊÄ To determine if f is continuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definition of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Substituting 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is continuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 1.3.5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 13.3.1 of this section states that we can combine these two
limits as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is continuous at

(0, 0).
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A similar analysis shows that f is continuous at all points in R2. As long as
x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is continuous everywhere. A graph
of f is given in Figure 13.3.4. Notice how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 1.6.1, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 13.3.2 Properties of Continuous Functions

Let f and g be continuous on a set S, let c be a real number, and let n be
a positive integer. The following functions are continuous on S.

1. Sums/Differences: f± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g (as longs as g ̸= 0 on S)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd,

then true for all values of f on S.)

7. Compositions: Adjust the definitions of f and g to: Let f be
continuous on S, where the range of f on S is
J, and let g be a single variable function that is
continuous on J. Then g ◦ f, i.e., g(f(x, y)), is
continuous on S.

Example 13.3.7 Establishing continuity of a function
Let f(x, y) = sin(x2 cos y). Show f is continuous everywhere.

SÊ½çã®ÊÄ Wewill apply both Theorems 1.6.1 and 13.3.2. Let f1(x, y) =
x2. Since y is not actually used in the function, and polynomials are continuous
(by Theorem 1.6.1), we conclude f1 is continuous everywhere. A similar state-
ment can be made about f2(x, y) = cos y. Part 3 of Theorem 13.3.2 states that
f3 = f1 · f2 is continuous everywhere, and Part 7 of the theorem states the
composition of sine with f3 is continuous: that is, sin(f3) = sin(x2 cos y) is con-
tinuous everywhere.
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Functions of Three Variables

The definitions and theorems given in this section can be extended in a natu-
ral way to definitions and theorems about functions of three (ormore) variables.
We cover the key concepts here; some terms from Definitions 13.3.1 and 13.3.3
are not redefined but their analogous meanings should be clear to the reader.

Definition 13.3.4 Open Balls, Limit, Continuous

1. An open ball in R3 centred at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let D be an open set inR3 containing (x0, y0, z0)where every open ball
centred at (x0, y0, z0) contains points ofD other than (x0, y0, z0), and let
f(x, y, z) be a function of three variables defined on D, except possibly
at (x0, y0, z0). The limit of f(x, y, z) as (x, y, z) approaches (x0, y0, z0) is
L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all (x, y, z)
in D, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball centred at
(x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). f is continuous
at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0); if f is continuous

at all points in D, we say f is continuous on D.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 13.3.2 also applies to function of three or more
variables, allowing us to say that the function

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is continuous everywhere.
When considering single variable functions, we studied limits, then continu-

ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivarible context.
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Exercises 13.3
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior points of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
In Exercises 7 – 10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.
(c) State whether S is bounded or unbounded.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}

8. S =
{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

In Exercises 11 – 14:
(a) Find the domain D of the given function.
(b) State whether D is an open or closed set.
(c) State whether D is bounded or unbounded.

11. f(x, y) =
√

9− x2 − y2

12. f(x, y) =
√

y− x2

13. f(x, y) = 1√
y− x2

14. f(x, y) = x2 − y2

x2 + y2

In Exercises 15 – 20, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.
(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.
(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.
(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.
(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.
(b) Along the path y = x− π/2.
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(a)

(b)

Figure 13.4.1: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate notations for fx(x, y) include:

∂

∂x
f(x, y), ∂f

∂x
,

∂z
∂x

, and zx,

with similar notations for fy(x, y). For
ease of notation, fx(x, y) is often abbre-
viated fx.

Chapter 13 Functions of Several Variables

13.4 Partial Derivatives
Let y be a function of x. We have studied in great detail the derivative of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This section begins our investigation into these rates
of change.

Consider the function z = f(x, y) = x2 + 2y2, as graphed in Figure 13.4.1(a).
By fixing y = 2, we focus our attention to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a function of just one variable. We
can take the derivative of zwith respect to x along this curve and find equations
of tangent lines, etc.

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit–based definition first, then show how to compute these partial derivatives
without directly taking limits.

Definition 13.4.1 Partial Derivative

Let z = f(x, y) be a continuous function on an open set S in R2.

1. The partial derivative of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The partial derivative of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

Example 13.4.1 Computing partial derivatives with the limit definition
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definition.

SÊ½çã®ÊÄ Using Definition 13.4.1, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2.
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13.4 Partial Derivatives

Example 13.4.1 found a partial derivative using the formal, limit–based def-
inition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treating y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treating y as a

constant. More examples will help make this clear.

Example 13.4.2 Finding partial derivatives
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, treating it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.
To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine function.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1+
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex
2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.
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(a)

(b)

Figure 13.4.2: Illustrating the meaning of
partial derivatives.

Chapter 13 Functions of Several Variables

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivative means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar to measuring zx: you are moving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

The following example helps us visualize this more.

Example 13.4.3 Evaluating partial derivatives
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by computing fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 13.4.2(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 13.4.2(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direction than in the y-direction.
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Note: The terms in Definition 13.4.2
all depend on limits, so each definition
comes with the caveat “where the limit
exists.”

13.4 Partial Derivatives

Second Partial Derivatives

Let z = f(x, y). We have learned to find the partial derivatives fx(x, y) and
fy(x, y), which are each functions of x and y. Thereforewe can take partial deriva-
tives of them, each with respect to x and y. We define these “second partials”
along with the notation, give examples, then discuss their meaning.

Definition 13.4.2 Second Partial Derivative, Mixed Partial
Derivative

Let z = f(x, y) be continuous on an open set S.

1. The second partial derivative of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second partial derivative of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definitions hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second partial derivatives fxy and fyx aremixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” portion means “take the derivative of y twice,” while
“dx2” means “with respect to x both times.” When we only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to.

Example 13.4.4 Second partial derivatives
For each of the following, find all six first and second partial derivatives. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend time de-
riving the second partial derivatives.

1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
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fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following partial derivatives get rather long, weomit the extra
notation and just give the results. In several cases, multiple applications
of the Product and Chain Rules will be necessary, followed by some basic
combination of like terms.
fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
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(a)

(b)

Figure 13.4.3: Understanding the second
partial derivatives in Example 13.4.5.

13.4 Partial Derivatives

Notice how in each of the three functions in Example 13.4.4, fxy = fyx. Due
to the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 13.4.1 Clairaut’s Theorem

Let f be defined such that fxy and fyx are continuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second Partial Derivatives

Now that we know how to find second partials, we investigatewhat they tell
us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of f is “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f ′′(x) < 0, then the derivative is getting smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivative is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivatives with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direction. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direction. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed partials fxy and fyx. The mixed partial fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east getting steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 13.4.5 Understanding second partial derivatives
Let z = x2 − y2 + xy. Evaluate the 6 first and second partial derivatives at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

673





Chapter 13 Functions of Several Variables

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direction of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direction
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of changewill be−3/2. These tangents lines are graphed in Figure 13.4.3(a)
and (b), respectively, where the tangent lines are drawn in a solid line.

Now consider only Figure 13.4.3(a). Three directed tangent lines are drawn
(two are dashed), each in the direction of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negative, getting closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be positive.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
13.4.3(b) where again three directed tangent lines are drawn, this time each
in the direction of y with slopes determined by fy. As x increases, the slopes
become less steep (closer to 0). Since these are negative slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now
interpret fxx and fyy. In Figure 13.4.3(a), we see a curve drawn where x is held
constant at x = −1/2: only y varies. This curve is clearly concave down, corre-
sponding to the fact that fyy < 0. In part (b) of the figure, we see a similar curve
where y is constant and only x varies. This curve is concave up, corresponding
to the fact that fxx > 0.

Partial Derivatives and Functions of Three Variables

The concepts underlying partial derivatives can be easily extend to more
than two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables if
needed.

Definition 13.4.3 Partial Derivatives with Three Variables

Let w = f(x, y, z) be a continuous function on an open set S in R3.
The partial derivative of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definitions hold for fy(x, y, z) and fz(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
derivatives of f with respect to z then y, for instance, just as before.

Example 13.4.6 Partial derivatives of functions of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
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13.4 Partial Derivatives

fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)

Higher Order Partial Derivatives

We can continue taking partial derivatives of partial derivatives of partial
derivatives of …; we do not have to stop with second partial derivatives. These
higher order partial derivatives do not have a tidy graphical interpretation; nev-
ertheless they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.

Example 13.4.7 Higher order partial derivatives

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)
fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)
fyxx = 4y− y sin(xy)−

(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fxxy = fxyx = fyxx.
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Chapter 13 Functions of Several Variables

This can be useful at times. Had we known this, the second part of Example
13.4.7 would have been much simpler to compute. Instead of computing fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.

A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x, y), the partial derivatives fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respectively. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direction given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This
is This is the topic of Section 13.7. First, we need to define what it means for a
function of two variables to be differentiable.accomplished using the directional
derivative, which unfortunately must be left as a topic for another course.
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Exercises 13.4
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a function z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed partial fraction fxy, which is computed first, fx
or fy?

4. In themixed partial fraction ∂2f
∂x∂y

, which is computed first,
fx or fy?

Problems
In Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

In Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) = x
y

12. f(x, y) = 4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) = 1
x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) = ln x
4y

26. f(x, y) = 5ex sin y+ 9

In Exercises 27 – 30, form a function z = f(x, y) such that fx
and fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

In Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) = 3x
7y2z

34. f(x, y, z) = ln(xyz)

677



Chapter 13 Functions of Several Variables

13.5 Differentiability and the Total Differential

We studied differentials in Section 4.4, where Definition 4.4.1 states that if y =
f(x) and f is differentiable, then dy = f ′(x)dx. One important use of this differ-
ential is in Integration by Substitution. Another important application is approx-
imation. Let∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the
change in y resulting from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between ∆y and dy goes to 0. Another
way of stating this: as dx goes to 0, the error in approximating∆y with dy goes
to 0.

We extend this idea to functions of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respectively. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-directions,
respectively, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indication of whether or not this
approximation is any good. First we give a name to dz.

Definition 13.5.1 Total Differential

Let z = f(x, y) be continuous on an open set S. Let dx and dy represent
changes in x and y, respectively. Where the partial derivatives fx and fy
exist, the total differential of z is

dz = fx(x, y)dx+ fy(x, y)dy.

Example 13.5.1 Finding the total differential
Let z = x4e3y. Find dz.

SÊ½çã®ÊÄ We compute the partial derivatives: fx = 4x3e3y and fy =
3x4e3y. Following Definition 13.5.1, we have

dz = 4x3e3ydx+ 3x4e3ydy.

We can approximate ∆z with dz, but as with all approximations, there is
error involved. A good approximation is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be functions of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

If the approximation of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximation of∆z by dz is even better if, as dx and dy go to
0, so do Ex and Ey. This leads us to our definition of differentiability.
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13.5 Differentiability and the Total Differential

Definition 13.5.2 Multivariable Differentiability

Let z = f(x, y) be defined on an open set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dzbe the total differential of z at (x0, y0),
let∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey be functions of
dx and dy such that

∆z = dz+ Exdx+ Eydy.

1. f is differentiable at (x0, y0) if, given ε > 0, there is a δ > 0 such
that if ∥⟨dx, dy⟩∥ < δ, then ∥⟨Ex, Ey⟩∥ < ε. That is, as dx and dy
go to 0, so do Ex and Ey.

2. f is differentiable on S if f is differentiable at every point in S. If f is
differentiable on R2, we say that f is differentiable everywhere.

Example 13.5.2 Showing a function is differentiable
Show f(x, y) = xy+ 3y2 is differentiable using Definition 13.5.2.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

It is straightforward to compute fx = y and fy = x+6y. Consider oncemore∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)
= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)
is differentiable for all pairs (x, y) in R2, or, equivalently, that f is differentiable
everywhere.

Our intuitive understanding of differentiability of functions y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuitive understand-
ing of functions z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differentiable functions are continuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of functions are differentiable or not.

Theorem 13.5.1 Continuity and Differentiability of Multivariable
Functions

Let z = f(x, y) be defined on an open set S containing (x0, y0). If f is
differentiable at (x0, y0), then f is continuous at (x0, y0).
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Theorem 13.5.2 Differentiability of Multivariable Functions

Let z = f(x, y) be defined on an open set S containing (x0, y0). If fx and
fy are both continuous on S, then f is differentiable on S.

The theorems assure us that essentially all functions thatwe see in the course
of our studies here are differentiable (and hence continuous) on their natural
domains. There is a difference between Definition 13.5.2 and Theorem 13.5.2,
though: it is possible for a function f to be differentiable yet fx and/or fy is not
continuous. Such strange behaviour of functions is a source of delight for many
mathematicians.

When fx and fy exist at a point but are not continuous at that point, we need
to use other methods to determine whether or not f is differentiable at that
point.

For instance, consider the function

f(x, y) =
{ xy

x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)

We can find fx(0, 0) and fy(0, 0) using Definition 13.4.1:

fx(0, 0) = lim
h→0

f(0+ h, 0)− f(0, 0)
h

= lim
h→0

0
h2

= 0;

fy(0, 0) = lim
h→0

f(0, 0+ h)− f(0, 0)
h

= lim
h→0

0
h2

= 0.

Both fx and fy exist at (0, 0), but they are not continuous at (0, 0), as

fx(x, y) =
y(y2 − x2)
(x2 + y2)2

and fy(x, y) =
x(x2 − y2)
(x2 + y2)2

are not continuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not continuous. Therefore it is possible, by
Theorem 13.5.2, for f to not be differentiable.

Indeed, it is not. One can show that f is not continuous at (0, 0) (see Exam-
ple 13.3.4), and by Theorem 13.5.1, this means f is not differentiable at (0, 0).
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13.5 Differentiability and the Total Differential

Approximating with the Total Differential

By the definition, when f is differentiable dz is a good approximation for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

Example 13.5.3 Approximating with the total differential
Let z =

√
x sin y. Approximate f(4.1, 0.8).

SÊ½çã®ÊÄ Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approximate
f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =

√
4 sin(π/4) =

2
(√

2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the best approximation we

could reasonably come up with. The total differential gives us a way of adjusting
this initial approximation to hopefully get a more accurate answer.

We let∆z = f(4.1, 0.8)−f(4, π/4). The total differential dz is approximately
equal to∆z, so

f(4.1, 0.8)− f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+ f(4, π/4). (13.1)

To find dz, we need fx and fy.

fx(x, y) =
sin y
2
√
x

⇒ fx(4, π/4) =
sin π/4
2
√
4

=

√
2/2
4

=
√
2/8.

fy(x, y) =
√
x cos y ⇒ fy(4, π/4) =

√
4
√
2
2

=
√
2.

Approximating 4.1 with 4 gives dx = 0.1; approximating 0.8 with π/4 gives
dy ≈ 0.015. Thus

dz(4, π/4) = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2
8

(0.1) +
√
2(0.015)

≈ 0.039.

Returning to Equation (13.1), we have

f(4.1, 0.8) ≈ 0.039+ 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8)with a calculator; the
actual value, accurate to 5 places after the decimal, is 1.45254. Obviously our
approximation is quite good.

The point of the previous example was not to develop an approximation
method for known functions. After all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximation works, and to reinforce the following concept:

“New position = old position+ amount of change,” so
“New position≈ old position + approximate amount of change.”
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In the previous example, we could easily compute f(4, π/4) and could ap-
proximate the amount of z-change when computing f(4.1, 0.8), letting us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and fy at a particular point without actually knowing the function f. The total
differential gives a good method of approximating f at nearby points.

Example 13.5.4 Approximating an unknown function
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).

SÊ½çã®ÊÄ The total differential approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148.

Error/Sensitivity Analysis

The total differential gives an approximation of the change in z given small
changes in x and y. We can use this to approximate error propagation; that is,
if the input is a little off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example 13.5.5 Sensitivity analysis
A cylindrical steel storage tank is to be built that is 10 ft tall and 4 ft across
in diameter. It is known that the steel will expand/contract with temperature
changes; is the overall volume of the tank more sensitive to changes in the di-
ameter or in the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a function of two variables, r and h. We can compute
partial derivatives of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

The total differential is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr + 4πdh. Note that the coefficient of dr is 40π ≈ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be multiplied by 125.7, whereas a small change in height will be multiplied
by 12.57. Thus the volume of the tank is more sensitive to changes in radius
than in height.

The previous example showed that the volume of a particular tankwasmore
sensitive to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1 ft and radius of
5 ft would be more sensitive to changes in height than in radius.

One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differential.
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Differentiability of Functions of Three Variables
The definition of differentiability for functions of three variables is very simi-

lar to that of functions of two variables. We again start with the total differential.

Definition 13.5.3 Total Differential

Let w = f(x, y, z) be continuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respectively. Where the partial derivatives
fx, fy and fz exist, the total differential of w is

dz = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differential can be a good approximation of the change in w when w =
f(x, y, z) is differentiable.

Definition 13.5.4 Multivariable Differentiability

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0)
where fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the
total differential of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 +
dz)− f(x0, y0, z0), and let Ex, Ey and Ez be functions of dx, dy and dz such
that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. f is differentiable at (x0, y0, z0) if, given ε > 0, there is a δ > 0
such that if ∥⟨dx, dy, dz⟩∥ < δ, then ∥⟨Ex, Ey, Ez⟩∥ < ε.

2. f is differentiable on B if f is differentiable at every point in B. If f
is differentiable onR3, we say that f is differentiable everywhere.

Just as before, this definition gives a rigorous statement aboutwhat it means
to be differentiable that is not very intuitive. We follow it with a theorem similar
to Theorem 13.5.2.

Theorem13.5.3 Continuity andDifferentiability of Functions of Three
Variables

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0).

1. If f is differentiable at (x0, y0, z0), then f is continuous at (x0, y0, z0).

2. If fx, fy and fz are continuous on B, then f is differentiable on B.

This set of definition and theorem extends to functions of any number of
variables. The theorem again gives us a simple way of verifying that most func-
tions that we encounter are differentiable on their natural domains.

This section has given us a formal definition of what it means for a functions
to be “differentiable,” along with a theorem that gives a more accessible un-
derstanding. The following sections return to notions prompted by our study of
partial derivatives that make use of the fact that most functions we encounter
are differentiable.
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Exercises 13.5
Terms and Concepts
1. T/F: If f(x, y) is differentiable on S, the f is continuous on S.

2. T/F: If fx and fy are continuous on S, then f is differentiable
on S.

3. T/F: If z = f(x, y) is differentiable, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
In Exercises 5 – 8, find the total differential dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y

8. z = xex+y

In Exercises 9 – 12, a function z = f(x, y) is given. Give the
indicated approximation using the total differential.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.

10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing
f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing
f(2, 3) = −6.

12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing
f(5, 4) = 0.

Exercises 13 – 16 ask a variety of questions dealing with ap-
proximating error and sensitivity analysis.

13. A cylindrical storage tank is to be 2ft tall with a radius of 1ft.
Is the volume of the tank more sensitive to changes in the
radius or the height?

14. Projectile Motion: The x-value of an object moving un-
der the principles of projectile motion is x(θ, v0, t) =
(v0 cos θ)t. A particular projectile is fired with an initial ve-
locity of v0 = 250ft/s and an angle of elevation of θ = 60◦.
It travels a distance of 375ft in 3 seconds.

Is the projectile more sensitive to errors in initial speed or
angle of elevation?

15. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensitive to er-
rors in the measurement of x or in θ?

ℓ =?

θ

x

16. It is “common sense” that it is far better to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape times the number
n of times it was used. For instance, using a 3’ tape 10
times gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 times. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each time a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(I.e., dℓ = 1/16′′ ≈ 0.005ft). Using differentials, show
why common sense proves correct in that it is better to use
a long tape to measure long distances.

In Exercises 17 – 18, find the total differential dw.

17. w = x2yz3

18. w = ex sin y ln z

In Exercises 19 – 22, use the information provided and the
total differential to make the given approximation.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0, fz(3, 3, 3) =
−2. Approximate f(3.1, 3.1, 3.1).
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Figure 13.6.1: Understanding the applica-
tion of the Multivariable Chain Rule.

13.6 The Multivariable Chain Rule

13.6 The Multivariable Chain Rule

Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
tion likely changes. What factors determine howquickly your elevation rises and
falls? After some thought, generally one recognizes that one’s velocity (speed
and direction) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by amultivariable func-
tion z = f(x, y); one can represent the path of the off-road vehicle, as seen from
above, with a vector–valued function r⃗(t) = ⟨x(t), y(t)⟩; the velocity of the ve-
hicle is thus r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

Consider Figure 13.6.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the x-y plane. Restricting f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The
derivative df

dt gives the instantaneous rate of change of f with respect to t. If we
consider an object travelling along this path, df

dt =
dz
dt gives the rate at which the

object rises/falls (i.e., “the rate of elevation change” of the vehicle.) Concep-
tually, the Multivariable Chain Rule combines terrain and velocity information
properly to compute this rate of elevation change.

Abstractly, let z be a function of x and y; that is, z = f(x, y) for some function
f, and let x and y each be functions of t. By choosing a t-value, x- and y-values
are determined, which in turn determine z: this defines z as a function of t. The
Multivariable Chain Rule gives a method of computing dz

dt .

Theorem 13.6.1 Multivariable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differentiable
functions. Then z = f(x, y) = f

(
g(t), h(t)

)
is a function of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

= ⟨ fx, fy⟩ · ⟨x′, y′⟩.

The Chain Rule of Section 2.5 states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g ′(x). If

t = g(x), we can express the Chain Rule as

df
dx

=
df
dt

dt
dx

;

recall that the derivative notation is deliberately chosen to reflect their fraction–
like properties. A similar effect is seen in Theorem 13.6.1. In the second line of
equations, one can think of the dx and ∂x as “sort of” cancelling out, and likewise
with dy and ∂y.

Notice, too, the third line of equations in Theorem 13.6.1. The vector ⟨ fx, fy⟩
contains information about the surface (terrain); the vector ⟨x′, y′⟩ can represent
velocity. In the context measuring the rate of elevation change of the off-road
vehicle, theMultivariable Chain Rule states it can be found through a product of
terrain and velocity information.

We now practice applying the Multivariable Chain Rule.

685




Chapter 13 Functions of Several Variables

Example 13.6.1 Using the Multivariable Chain Rule
Let z = x2y+ x, where x = sin t and y = e5t. Find

dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem 13.6.1, we find

fx(x, y) = 2xy+ 1, fy(x, y) = x2,
dx
dt

= cos t,
dy
dt

= 5e5t.

Applying the theorem, we have

dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

This may look odd, as it seems that dz
dt is a function of x, y and t. Since x and y

are functions of t, dz
dt is really just a function of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t.

The previous example can make us wonder: if we substituted for x and y at
the end to show that dz

dt is really just a function of t, why not substitute before
differentiating, showing clearly that z is a function of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivative, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but often in “the real world” we know rate–of–change information
(i.e., information about derivatives) without explicitly knowing the underlying
functions. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoretic use, giving us insight
into the behaviour of certain constructions (as we’ll see in the next section).

We demonstrate this in the next example.

Example 13.6.2 Applying the Multivarible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at time t = t0 it is known that :

∂z
∂x

= 5,
∂z
∂y

= −2,
dx
dt

= 3 and
dy
dt

= 7.

Find dz
dt at time t0.

SÊ½çã®ÊÄ The Multivariable Chain Rule states that

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= 5(3) + (−2)(7)
= 1.
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Figure 13.6.2: Plotting the path of a par-
ticle on a surface in Example 13.6.3.

13.6 The Multivariable Chain Rule

By knowing certain rates–of–change information about the surface and about
the path of the particle in the x-y plane, we can determine how quickly the ob-
ject is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 13.6.3 Applying the Multivariable Chain Rule
Consider the surface z = x2 + y2 − xy, a paraboloid, on which a particle moves
with x and y coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0,
and find where the particle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straightforward to compute

fx(x, y) = 2x− y, fy(x, y) = 2y− x,
dx
dt

= − sin t,
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the particle is moving down, as shown in Figure 13.6.2.

To find where z-value is maximized/minimized on the particle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t
0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First Derivative Test to find that on [0, 2π], z has reaches its
absolute minimum at t = π/4 and 5π/4; it reaches its absolute maximum at
t = 3π/4 and 7π/4, as shown in Figure 13.6.2.

We can extend the Chain Rule to include the situation where z is a function
of more than one variable, and each of these variables is also a function of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
functions of two variables, say s and t.
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Theorem 13.6.2 Multivariable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differentiable functions. Then z is a function of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm) be a differentiable function of m vari-
ables, where each of the xi is a differentiable function of the vari-
ables t1, t2, . . . , tn. Then z is a function of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Example 13.6.4 Using the Multivarible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

SÊ½çã®ÊÄ Following Theorem13.6.2, we compute the following partial
derivatives:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus
∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so
∂z
∂s

= 100 and
∂z
∂t

= −46.

Example 13.6.5 Using the Multivarible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

SÊ½çã®ÊÄ Following Theorem13.6.2, we compute the following partial
derivatives:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus
∂w
∂t

= π(2π) + π2 = 3π2.
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13.6 The Multivariable Chain Rule

Implicit Differentiation

We studied finding dy
dx when y is given as an implicit function of x in detail

in Section 2.6. We find here that the Multivariable Chain Rule gives a simpler
method of finding dy

dx .
For instance, consider the implicit function x2y−xy3 = 3.We learned to use

the following steps to find dy
dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx

− y3 − 3xy2
dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (13.2)

Instead of using this method, consider z = x2y − xy3. The implicit function
above describes the level curve z = 3. Considering x and y as functions of x, the
Multivariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (13.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
Equation (13.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our solution for dy
dx in Equation (13.2) is just the partial derivative

of z with respect to x, divided by the partial derivative of z with respect to y, all
multiplied by (−1).

We state the above as a theorem.

Theorem 13.6.3 Implicit Differentiation

Let f be a differentiable function of x and y, where f(x, y) = c defines y
as an implicit function of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

We practice using Theorem 13.6.3 by applying it to a problem from Section
2.6.
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Chapter 13 Functions of Several Variables

Example 13.6.6 Implicit Differentiation
Given the implicitly defined function sin(x2y2)+y3 = x+y, find y ′. Note: this is
the same problem as given in Example 2.6.4 of Section 2.6, where the solution
took about a full page to find.

SÊ½çã®ÊÄ Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
function above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem
13.6.3. We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2)− 1,

so
dy
dx

= −2xy2 cos(x2y2)− 1
2x2y cos(x2y2)− 1

,

which matches our solution from Example 2.6.4.

In Section 13.4we learned howpartial derivatives give certain instantaneous
rate of change information about a function z = f(x, y). In that section, wemea-
sured the rate of change of f by holding one variable constant and letting the
other vary (such as, holding y constant and letting x vary gives fx). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direction that is not parallel to a coordinate
axis? Can we still measure instantaneous rates of change? Yes; we find out
how in the next section. In doing so, we’ll see how the Multivariable Chain Rule
informs our understanding of these directional derivatives.
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Exercises 13.6
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The Multivariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can substi-
tute and write z as an explicit function of t.
T/F: Using the Multivariable Chain Rule to find dz

dt is some-
times easier than first substituting and then taking the
derivative.

5. T/F: TheMultivariable Chain Rule is only useful when all the
related functions are known explicitly.

6. The Multivariable Chain Rule allows us to compute implicit
derivatives easily by just computing two deriva-
tives.

Problems
In Exercises 7 – 12, functions z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the Multivariable Chain Rule to compute dz
dt

.

(b) Evaluate dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1

8. z = x2 − y2, x = t, y = t2 − 1; t = 1

9. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3; t = π/4

10. z = x
y2 + 1

, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4

12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13 – 18, functions z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = 0. Note:
these are the same surfaces/curves as found in Exercises 7 –
12.

13. z = 3x+ 4y, x = t2, y = 2t

14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z = x
y2 + 1

, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19 – 22, functions z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the Multivariable Chain Rule to compute ∂z
∂s

and
∂z
∂t

.

(b) Evaluate ∂z
∂s

and ∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+ π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23 – 26, find dy
dx

using Implicit Differentiation and
Theorem 13.6.3.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25. x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1

In Exercises 27 – 30, find dz
dt

, or ∂z
∂s

and ∂z
∂t

, using the supplied
information.

27. ∂z
∂x

= 2, ∂z
∂y

= 1, dx
dt

= 4, dy
dt

= −5

28. ∂z
∂x

= 1, ∂z
∂y

= −3, dx
dt

= 6, dy
dt

= 2

29. ∂z
∂x

= −4, ∂z
∂y

= 9,

∂x
∂s

= 5, ∂x
∂t

= 7, ∂y
∂s

= −2, ∂y
∂t

= 6

30. ∂z
∂x

= 2, ∂z
∂y

= 1,

∂x
∂s

= −2, ∂x
∂t

= 3, ∂y
∂s

= 2, ∂y
∂t

= −1
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Figure 13.7.1: Understanding the direc-
tional derivative in Example 13.7.1.

Chapter 13 Functions of Several Variables

13.7 Directional Derivatives
Partial derivatives give us an understanding of how a surface changes when we
move in the x and y directions. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Partial derivatives
alone cannot measure this. This section investigates directional derivatives,
which do measure this rate of change.

We begin with a definition.

Definition 13.7.1 Directional Derivatives

Let z = f(x, y) be continuous on an open set S and let u⃗ = ⟨u1, u2⟩ be a
unit vector. For all points (x, y), the directional derivative of f at (x, y) in
the direction of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The partial derivatives fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a particular unit vector u⃗. This may look a bit intimidating but in reality it is
not too difficult to deal with; it often just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 13.7.1 Directional Derivatives

Let z = f(x, y) be differentiable on an open set S containing (x0, y0), and
let u⃗ = ⟨u1, u2⟩ be a unit vector. The directional derivative of f at (x0, y0)
in the direction of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Example 13.7.1 Computing directional derivatives
Let z = 14− x2 − y2 and let P = (1, 2). Find the directional derivative of f, at P,
in the following directions:

1. toward the point Q = (3, 4),

2. in the direction of ⟨2,−1⟩, and

3. toward the origin.

SÊ½çã®ÊÄ The surface is plotted in Figure 13.7.1, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
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Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathematics (or
more often, engineering and physics) the
expression∇f is pronounced “del f.”

13.7 Directional Derivatives

in this direction is u⃗1 =
⟨
1/

√
2, 1/

√
2
⟩
. Thus the directional derivative of

f at (1, 2) in the direction of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direction of u⃗1 (which points toward the point Q) is
about−4.24. Moving in this direction moves one steeply downward.

2. We seek the directional derivative in the direction of ⟨2,−1⟩. The unit
vector in this direction is u⃗2 =

⟨
2/

√
5,−1/

√
5
⟩
. Thus the directional

derivative of f at (1, 2) in the direction of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

Starting on the surface of f at (1, 2) andmoving in the direction of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direction towalk that does not
change the elevation. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these directions of “no elevation change” is important.

3. At P = (1, 2), the direction towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direction is u⃗3 =

⟨
−1/

√
5,−2/

√
5
⟩
.

The directional derivative of f at P in the direction of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
initial slope of about 4.47.

As we study directional derivatives, it will help to make an important con-
nection between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direction and
the partial derivatives fx and fy. We start with a definition and follow this with a
Key Idea.

Definition 13.7.2 Gradient

Let z = f(x, y) be differentiable on an open set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

To simplify notation, we often express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute directional derivatives in terms of a dot product.

Key Idea 13.7.1 The Gradient and Directional Derivatives

The directional derivative of z = f(x, y) in the direction of u⃗ is

Du⃗ f = ∇f · u⃗.

693
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The properties of the dot product previously studied allow us to investigate
the properties of the directional derivative. Given that the directional derivative
gives the instantaneous rate of change of z when moving in the direction of u⃗,
three questions naturally arise:

1. In what direction(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direction(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direction(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = ∥ ∇f ∥ ∥ u⃗ ∥ cos θ = ∥ ∇f ∥ cos θ, (13.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, ∥ u⃗ ∥ =
1.) This equation allows us to answer the three questions stated previously.

1. Equation 13.4 is maximized when cos θ = 1, i.e., when the gradient and u⃗
have the same direction. We conclude the gradient points in the direction
of greatest z change.

2. Equation 13.4 is minimized when cos θ = −1, i.e., when the gradient
and u⃗ have opposite directions. We conclude the gradient points in the
opposite direction of the least z change.

3. Equation 13.4 is 0 when cos θ = 0, i.e., when the gradient and u⃗ are or-
thogonal to each other. We conclude the gradient is orthogonal to direc-
tions of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direction that leads you steepest uphill. Then the direction that
leads steepest downhill is directly behind you, and side–stepping either left or
right (i.e., moving perpendicularly to the direction you face) does not change
your elevation at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a function do not change. Let a surface z = f(x, y) be given, and let’s
represent one such level curve as a vector–valued function, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t, for

some constant c.
Since f is constant for all t, df

dt = 0. By the Multivariable Chain Rule, we also
know

df
dt

= fx(x, y)x ′(t) + fy(x, y)y ′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x ′(t), y ′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states ∇f · r⃗ ′(t) = 0: the gradient is orthogonal to the
derivative of r⃗, meaning the gradient is orthogonal to the graph of r⃗. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.
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(a)

(b)

Figure 13.7.2: Graphing the surface and
important directions in Example 13.7.2.

Figure 13.7.3: At the top of a paraboloid,
all directional derivatives are 0.

13.7 Directional Derivatives

Theorem 13.7.2 The Gradient and Directional Derivatives

Let z = f(x, y) be differentiable on an open set S with gradient ∇f, let
P = (x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is ∥ ∇f(x0, y0) ∥; the direction
of maximal z increase is∇f(x0, y0).

2. The minimum value of Du⃗ f(x0, y0) is−∥∇f(x0, y0) ∥; the direction
of minimal z increase is−∇f(x0, y0).

3. At P, ∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0, f(x0, y0)

)
.

Example 13.7.2 Finding directions of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the directions of max-
imal/minimal increase, and find a direction where the instantaneous rate of z
change is 0.

SÊ½çã®ÊÄ We begin by finding the gradient. fx = cos x cos y and fy =
− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.

Thus the direction of maximal increase is ⟨1/4,−3/4⟩. In this direction, the
instantaneous rate of z change is ∥⟨1/4,−3/4⟩∥ =

√
10/4 ≈ 0.79.

Figure 13.7.2 shows the surface plotted from two different perspectives. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direction of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ∥∇f ∥⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ∥∇f ∥, hence we can think of it as a vector with
slope of ∥∇f ∥ in the direction of∇f, helping us visualize how “steep” the surface
is in its steepest direction.

The direction ofminimal increase is ⟨−1/4, 3/4⟩; in this direction the instan-
taneous rate of z change is−

√
10/4 ≈ −0.79.

Any direction orthogonal to ∇f is a direction of no z change. We have two
choices: the direction of ⟨3, 1⟩ and the direction of ⟨−3,−1⟩. The unit vector
in the direction of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direction of no z-change, this vector is tangent to the
level curve at P.

Example 13.7.3 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the directional derivative of f in any
direction at P = (1, 1).

SÊ½çã®ÊÄ We find∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 13.7.2, this is the direction of maximal increase.
However, ⟨0, 0⟩ is directionless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 13.7.3 helps us understand what this means. We can see that P lies
at the top of a paraboloid. In all directions, the instantaneous rate of change is
0.
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So what is the direction of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all directional derivatives are 0.

The fact that the gradient of a surface always points in the direction of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 13.7.4 The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued function de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direction; therefore, at any
point on its path, it will be moving in the direction of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x ′(t), y ′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x ′(t) as dx
dt and y ′(t) as dy

dt . Then

c∇f = ⟨x ′(t), y ′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies
−2cx =

dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit relationship between x and y, we can integrate both sides with
respect to t. Recall from our study of differentials that

dx
dt

dt = dx. Thus:∫
1
2x

dx
dt

dt =
∫

1
4y

dy
dt

dt∫
1
2x

dx =
∫

1
4y

dy

1
2
ln|x| = 1

4
ln|y|+ C1

2 ln|x| = ln|y|+ C1
ln|x2| = ln|y|+ C1

Now raise both sides as a power of e:

x2 = eln|y|+C1

x2 = eln|y|eC1 (Note that eC1 is just a constant.)
x2 = yC2

1
C2

x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.

696



(a)

.....

−4

.

−2

.

2

.

4

.

−2

.

2

.

x

.

y

(b)

Figure 13.7.4: A graph of the surface de-
scribed in Example 13.7.4 along with the
path in the x-y planewith the level curves.

13.7 Directional Derivatives

As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1
4

⇒ C =
1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 13.7.4(a). In part (b) of the figure,
the level curves of the surface are plotted in the x-y plane, along with the curve
y = x2/4. Notice how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves.

Functions of Three Variables

The concepts of directional derivatives and the gradient are easily extended
to three (and more) variables. We combine the concepts behind Definitions
13.7.1 and 13.7.2 and Theorem 13.7.1 into one set of definitions.

Definition 13.7.3 Directional Derivatives and Gradientwith Three
Variables

Let w = F(x, y, z) be differentiable on an open ball B and let u⃗ be a unit
vector in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The directional derivative of F in the direction of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properties of the gradient given in Theorem 13.7.2, when f is a
function of two variables, hold for F, a function of three variables.

Theorem 13.7.3 The Gradient and Directional Derivatives with
Three Variables

Let w = F(x, y, z) be differentiable on an open ball B, let∇F be the gra-
dient of F, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F is ∥ ∇F ∥, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direction of maximal increase is
∇F.

2. The minimum value of Du⃗ F is −∥ ∇F ∥, obtained when the angle
between ∇F and u⃗ is π, i.e., the direction of minimal increase is
−∇F.

3. Du⃗ F = 0 when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

Example 13.7.5 Finding directional derivatives with functions of three
variables

If a point source S is radiating energy, the intensity I at a given point P in space
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is inversely proportional to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the directional derivative of I at P in the di-
rection of u⃗, and find the direction of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
partial derivative requires a simple application of the Quotient Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

≈ −0.0078.

The directional derivative tells us that moving in the direction of u⃗ from P re-
sults in a decrease in intensity of about −0.008 units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

The gradient gives the direction of greatest intensity increase. Notice that

∇I(2, 5, 3) =
⟨

−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is pointing in the direction of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intuitive sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The directional derivative allows us to find the instantaneous rate of z change
in any direction at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next section.
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Exercises 13.7
Terms and Concepts
1. What is the difference between a directional derivative and

a partial derivative?

2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direction of increase.

6. It is generally more informative to view the directional
derivative not as the result of a limit, but rather as the result
of a product.

Problems
In Exercises 7 – 12, a function z = f(x, y) is given. Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) = 1
x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

In Exercises 13 – 18, a function z = f(x, y) and a point P are
given. Find the directional derivative of f in the indicated di-
rections. Note: these are the same functions as in Exercises
7 through 12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direction of v⃗ = ⟨3, 4⟩
(b) In the direction toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direction of v⃗ = ⟨1, 1⟩.
(b) In the direction toward the point Q = (0, 0).

15. f(x, y) = 1
x2 + y2 + 1

, P = (1, 1).

(a) In the direction of v⃗ = ⟨1,−1⟩.
(b) In the direction toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direction of v⃗ = ⟨3, 1⟩ .

(b) In the direction toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direction of v⃗ = ⟨−2, 5⟩

(b) In the direction toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direction of v⃗ = ⟨3, 3⟩

(b) In the direction toward the point Q = (1, 2).

In Exercises 19 – 24, a function z = f(x, y) and a point P are
given.

(a) Find the direction of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direction of minimal increase of f at P.

(d) Give a direction u⃗ such that D⃗u f = 0 at P.

Note: these are the same functions and points as in Exercises
13 through 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) = 1

x2 + y2 + 1
, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

In Exercises 25 – 28, a function w = F(x, y, z), a vector v⃗ and
a point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P, where u⃗ is the unit vector in the direction
of v⃗.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) = 2
x2 + y2 + z2

, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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Figure 13.8.1: Showing various lines tan-
gent to a surface.

Chapter 13 Functions of Several Variables

13.8 Tangent Lines, Normal Lines, and Tangent Planes

Derivatives and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with functions of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.

In Figure 13.8.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definition formally defines what it means to be “tangent
to a surface.”

Definition 13.8.1 Directional Tangent Line

Let z = f(x, y) be differentiable on an open set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direction of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direction of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direction of u⃗ at (x0, y0).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direction and the “rise” is fx(x0, y0) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can be made for ℓy. The direction of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direction (where u⃗ is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 13.8.1 leads to the following parametric equations of directional
tangent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Example 13.8.1 Finding directional tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
directions and also in the direction of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The partial derivatives with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equations of the line tangent to f at (π/2, π/2) in the
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(a)

(b)

Figure 13.8.2: A surface and directional
tangent lines in Example 13.8.1.

Figure 13.8.3: Graphing f in Example
13.8.2.

13.8 Tangent Lines, Normal Lines, and Tangent Planes

directions of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 13.8.2(a). To find the equa-
tion of the tangent line in the direction of v⃗, we first find the unit vector in the
direction of v⃗: u⃗ =

⟨
−1/

√
2, 1/

√
2
⟩
. The directional derivative at (π/2, π, 2) in

the direction of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the directional tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direction of v⃗ is shown in Figure 13.8.2(b)
along with ℓ⃗u(t).

Example 13.8.2 Finding directional tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equations of all directional tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need∇f. We begin by computing partial derivatives.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The directional
derivative of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmatter
what direction we choose; the directional derivative is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 13.8.3 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relative maximum at this point, hence its tangent line will have
a slope of 0. The following section investigates the points on surfaces where all
tangent lines have a slope of 0.
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Figure 13.8.4: Graphing a surface with a
normal line from Example 13.8.3.

Chapter 13 Functions of Several Variables

Normal Lines

When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Let z = f(x, y) be a differentiable function of two variables. By Definition
13.8.1, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and
ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these directions
through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point

and orthogonal to these directions would be orthogonal, or normal, to the sur-
face. We can use this direction to create a normal line.

The direction of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
tion is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .
It is often more convenient to refer to the opposite of this direction, namely
⟨fx, fy,−1⟩. This leads to a definition.

Definition 13.8.2 Normal Line

Let z = f(x, y) be differentiable on an open set S containing (x0, y0)
where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direction parallel to n⃗ is the normal line
to f at P.

Thus the parametric equations of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

Example 13.8.3 Finding a normal line
Find the equation of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direction of the normal line, follow-
ing Definition 13.8.2, to be n⃗ = ⟨0,−2,−1⟩. The line with this direction going
through the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 − y2 + 2, along with the found normal line, is graphed
in Figure 13.8.4.
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13.8 Tangent Lines, Normal Lines, and Tangent Planes

The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that #  ‰PQ is parallel to the normal line to f at P.

Example 13.8.4 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface is used in Example 13.8.2, so we know that at
(x, y), the direction of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on
the surfacewill have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c #  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equation, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fractions imply x = y, and so the last fraction can be rewritten as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)
4x3 = 2− x

4x3 + x− 2 = 0.

This last equation is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

∥ #  ‰PQ ∥ =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the
surface.
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Figure 13.8.5: Graphing the surface in Ex-
ample 13.8.5 along with points 4 units
from the surface.

Chapter 13 Functions of Several Variables

Example 13.8.5 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that are 4 units from the surface of f at P. That is, find Q such that ∥ #  ‰PQ ∥ = 4
and #  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding partial derivatives:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direction of n⃗:

u⃗ =
n⃗

∥ n⃗ ∥
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be written as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrization of the line is that letting t = t0 gives a
point on the line that is |t0| units from P. (This is because the direction of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

The surface is graphed along with points P, Q1, Q2 and a portion of the normal
line to f at P.

Tangent Planes

We can use the direction of the normal line to define a plane. With a =
fx(x0, y0), b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩

is orthogonal to f at P. The plane through P with normal vector n⃗ is therefore
tangent to f at P.

Definition 13.8.3 Tangent Plane

Let z = f(x, y) be differentiable on an open set S containing
(x0, y0), where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and
P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.
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Figure 13.8.6: Graphing a surface with
tangent plane from Example 13.8.6.

13.8 Tangent Lines, Normal Lines, and Tangent Planes

Example 13.8.6 Finding tangent planes
Find the equation of the tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Exam-
ple 13.8.3. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the
equation of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2−y2+2 and tangent plane are graphed in Figure 13.8.6.

Example 13.8.7 Using the tangent plane to approximate function values
The point (3,−1, 4) lies on the surface of an unknown differentiable function f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equation of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the partial derivatives at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equation
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (13.5)

Just as tangent lines provide excellent approximations of curves near their point
of intersection, tangent planes provide excellent approximations of surfaces near
their point of intersection. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximation. Compare the right hand expres-
sion for z in Equation (13.5) to the total differential:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). Asmentionedwhen studying the total differential, it is not uncommon
to know partial derivative information about a unknown function, and tangent
planes are used to give accurate approximations of the function.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this section so far give a straightforward method
of finding equations of normal lines and tangent planes for surfaces with explicit
equations of the form z = f(x, y). However, they do not handle implicit equa-
tions well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Definition 13.8.4 Gradient

Let w = F(x, y, z) be differentiable on an open ball B that contains the
point (x0, y0, z0).

1. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .
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Figure 13.8.7: An ellipsoid and its tangent
plane at a point.

Chapter 13 Functions of Several Variables

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0). Then F(x, y, z) =
c is a level surface that contains the point (x0, y0, z0). The following theorem
states that∇F(x0, y0, z0) is orthogonal to this level surface.

Theorem 13.8.1 The Gradient and Level Surfaces

Let w = F(x, y, z) be differentiable on an open ball B containing
(x0, y0, z0) with gradient∇F, where F(x0, y0, z0) = c.

The vector∇F(x0, y0, z0) is orthogonal to the level surface F(x, y, z) = c
at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direction can be used to find tangent planes and normal lines.

Example 13.8.8 Using the gradient to find a tangent plane

Find the equation of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

SÊ½çã®ÊÄ We consider the equation of the ellipsoid as a level surface
of a function F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equation of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 13.8.7.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next section investigates another use of partial derivatives: determining
relative extrema. When dealing with functions of the form y = f(x), we found
relative extrema by finding x where f ′(x) = 0. We can start finding relative
extrema of z = f(x, y) by setting fx and fy to 0, but it turns out that there is more
to consider.
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Exercises 13.8
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differentiable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to ℓx and ℓy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems
In Exercises 5 – 8, a function z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equations of the following
directional tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direction of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

In Exercises 9 – 12, a function z = f(x, y) and a point P are
given. Find the equation of the normal line to f at P. Note:
these are the same functions as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, P = (2, 3).

10. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 13 – 16, a function z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface
f at P. Note: these are the same functions as in Exercises 5 –
8.

13. f(x, y) = 2x2y− 4xy2, P = (2, 3).

14. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 17 – 20, a function z = f(x, y) and a point P are
given. Find the equation of the tangent plane to f at P. Note:
these are the same functions as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, P = (2, 3).

18. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 21 – 24, an implicitly defined function of x, y and
z is given along with a point P that lies on the surface. Use
the gradient∇F to:

(a) find the equation of the normal line to the surface at
P, and

(b) find the equation of the plane tangent to the surface
at P.

21. x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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13.9 Extreme Values

Given a function z = f(x, y), we are often interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost function, we
would likely want to know what (x, y) values minimize the cost. If z represents
the ratio of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definition.

Definition 13.9.1 Relative and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute maxi-
mum at P
If f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an absolute mini-
mum at P.

2. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all points (x, y) that are in both D and S, then f has a relative
maximum at P.
If there is an open disk D containing P such that f(x0, y0) ≤ f(x, y)
for all points (x, y) that are in both D and S, then f has a relative
minimum at P.

3. If f has an absolute maximum or minimum at P, then f has an ab-
solute extrema at P.
If f has a relative maximum or minimum at P, then f has a relative
extrema at P.

If f has a relative or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a relative or absolute maximum at P.
Recalling what we learned in Section 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since directional derivatives are computed
using fx and fy, we are led to the following definition and theorem.

Definition 13.9.2 Critical Point

Let z = f(x, y) be continuous on an open set S. A critical point P =
(x0, y0) of f is a point in S such that, at P,

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Theorem 13.9.1 Critical Points and Relative Extrema

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a relative extrema at P, then P is a critical point of f.
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Figure 13.9.1: The surface in Example
13.9.1 with its absolute minimum indi-
cated.

Figure 13.9.2: The surface in Example
13.9.2 with its absolute maximum indi-
cated.

Figure 13.9.3: The surface in Example
13.9.3 with both critical points marked.

13.9 Extreme Values

Therefore, to find relative extrema, we find the critical points of f and de-
termine which correspond to relative maxima, relative minima, or neither. The
following examples demonstrate this process.

Example 13.9.1 Finding critical points and relative extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the relative extrema of f.

SÊ½çã®ÊÄ We start by computing the partial derivatives of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A critical point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equations:

2x− y− 1 = 0 and − x+ 2y = 0.

This solution to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

The graph in Figure 13.9.1 shows f along with this critical point. It is clear
from the graph that this is a relativeminimum; further consideration of the func-
tion shows that this is actually the absolute minimum.

Example 13.9.2 Finding critical points and relative extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the relative extrema of f.

SÊ½çã®ÊÄ We start by computing the partial derivatives of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 & y ̸= 0, and that fy = 0 when y = 0 & x ̸= 0.
At (0, 0), both fx and fy are not 0, but rather undefined. The point (0, 0) is still a
critical point, though, because the partial derivatives are undefined. This is the
only critical point of f.

The surface of f is graphed in Figure 13.9.2 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f.

In each of the previous two examples, we found a critical point of f and then
determinedwhether or not it was a relative (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a critical point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 13.9.3 Finding critical points and relative extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the relative extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the partial derivatives of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Setting each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.
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We have two critical points: (−1, 2) and (1, 2). To determine if they correspond
to a relative maximum or minimum, we consider the graph of f in Figure 13.9.3.

The critical point (−1, 2) clearly corresponds to a relative maximum. How-
ever, the critical point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesting characteristic.

If one walks parallel to the y-axis towards this critical point, then this point
becomes a relativemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relative minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definition follows.

Definition 13.9.3 Saddle Point

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at P. We
say P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all directions is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 13.9.3 wementioned the need for a test to differentiate be-
tween relative maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second partial derivatives
of f.

Recall that with single variable functions, such as y = f(x), if f ′′(c) > 0,
then if f is concave up at c, and if f ′(c) = 0, then f has a relative minimum at
x = c. (We called this the Second Derivative Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direction you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relative minimum
fxx and fyy < 0 ⇒ relative maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. Functions f exist where fxx and fyy are both
positive but a saddle point still exists. In such a case, while the concavity in the
x-direction is up (i.e., fxx > 0) and the concavity in the y-direction is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-directions.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when continuous (refer back to Theorem 13.4.1), we can rewrite this as D =
fxxfyy − f 2xy. D can be used to test whether the concavity at a point changes
depending on direction. If D > 0, the concavity does not switch (i.e., at that
point, the graph is concave up or down in all directions). If D < 0, the concavity
does switch. If D = 0, our test fails to determine whether concavity switches or
not. We state the use of D in the following theorem.
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Theorem 13.9.2 Second Derivative Test

Let R be an open set on which a function z = f(x, y) and all its first and
second partial derivatives are defined, let P = (x0, y0) be a critical point
of f in R, and let

D = fxx(x0, y0)fyy(x0, y0)− f 2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at P.

2. If D > 0 and fxx(x0, y0) < 0, then f has a relative maximum at P.

3. If D < 0, then f has a saddle point at P.

4. If D = 0, the test is inconclusive.

We first practise using this test with the function in the previous example,
where we visually determined we had a relative maximum and a saddle point.

Example 13.9.4 Using the Second Derivative Test
Let f(x, y) = x3−3x−y2+4y as in Example 13.9.3. Determinewhether the func-
tion has a relative minimum, maximum, or saddle point at each critical point.

SÊ½çã®ÊÄ We determined previously that the critical points of f are
(−1, 2) and (1, 2). To use the Second Derivative Test, we must find the second
partial derivatives of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

tive Test, f has a relative maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second Derivative Test states that f has a

saddle point at (1, 2).
The Second Derivative Test confirmed what we determined visually.

Example 13.9.5 Using the Second Derivative Test
Find the relative extrema of f(x, y) = x2y+ y2 + xy.

SÊ½çã®ÊÄ We start by finding the first and second partial derivatives
of f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.
We find the critical points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Setting fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0
x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.
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Figure 13.9.4: Graphing f from Example
13.9.5 and its relative extrema.
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Figure 13.9.5: Plotting the surface of f
along with the restricted domain S in Ex-
ample 13.9.6.

Chapter 13 Functions of Several Variables

Thus if y = 0, we have either x = 0 or x = −1, giving two critical points: (−1, 0)
and (0, 0).

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0
x2 + 2y+ x = 0, and since x = −1/2, we have

1/4+ 2y− 1/2 = 0
y = 1/8.

Thus if x = −1/2, y = 1/8 giving the critical point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second Derivative Test to each critical

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relative minimum.
Figure 13.9.4 shows a graph of f and the three critical points. Note how this

function does not vary much near the critical points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or relativeminimum (or even
a critical point at all!). This is one reason why the Second Derivative Test is so
important to have.

Constrained Optimization

When optimizing functions of one variable such as y = f(x), we made use of
Theorem 3.1.1, the Extreme Value Theorem, that said that over a closed inter-
val I, a continuous function has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all critical points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to functions of two variables. A
continuous function over a closed set also attains a maximum and minimum
value (see the following theorem). We can find these values by evaluating the
function at the critical values in the set and over the boundary of the set. After
formally stating this extreme value theorem, we give examples.

Theorem 13.9.3 Extreme Value Theorem

Let z = f(x, y) be a continuous function on a closed, bounded set S. Then
f has a maximum and minimum value on S.

Example 13.9.6 Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with vertices (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Figure
13.9.5(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the portion of f enclosed by the
“triangle” on its surface.

We begin by finding the critical points of f. With fx = 2x and fy = −2y, we
find only one critical point, at (0, 0).

We now find the maximum and minimum values that f attains along the
boundary of S, that is, along the edges of the triangle. In Figure 13.9.5(b) we
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Figure 13.9.6: The surface of f along with
important points along the boundary of S
and the interior in Example 13.9.6.

13.9 Extreme Values

see the triangle sketched in the plane with the equations of the lines forming its
edges labelled.

Start with the bottom edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our function reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its critical
points and at the endpoints.

The critical points of f1 are found by setting its derivative equal to 0:

f ′1(x) = 0 ⇒ x = 0.

Evaluating f1 at this critical point, and at the endpoints of [−1, 2] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2
f1(0) = 1 ⇒ f(0,−2) = 1
f1(2) = 5 ⇒ f(2,−2) = 5.

Notice how evaluating f1 at a point is the same as evaluating f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the left edge, along the line y = 3x+ 1, we substitute 3x+ 1 in for y
in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its critical points and the endpoints of the interval. We find the
critical points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8.

Evaluate f2 at its critical point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2
f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 4 ⇒ f(0, 1) = 4.

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The critical points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this critical point and at the endpoints of the interval [0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4
f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the critical point of f, (0, 0). We find f(0, 0) = 5.
Wehave evaluated f at a total of 7 different places, all shown in Figure 13.9.6.

We checked each vertex of the triangle twice, as each showedup as the endpoint
of an interval twice. Of all the z-values found, the maximum is 5.8, found at
(1.2,−0.8); the minimum is 1, found at (0,−2).
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Figure 13.9.7: Graphing the volume of a
box with girth 4w and length ℓ, subject to
a size constraint.

Chapter 13 Functions of Several Variables

This portion of the text is entitled “Constrained Optimization” because we
want to optimize a function (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the function can attain. In
the previous example, we constrained ourselves by considering a function only
within the boundary of a triangle. This was largely arbitrary; the function and
the boundary were chosen just as an example, with no real “meaning” behind
the function or the chosen constraint.

However, solving constrainedoptimization problems is a very important topic
in appliedmathematics. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 13.9.7 Constrained Optimization
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then 2(w+ h) = 4w. The
volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this volume
subject to the constraint 4w+ ℓ ≤ 130, or ℓ ≤ 130− 4w. (Common sense also
indicates that ℓ > 0,w > 0.)

We begin by finding the critical values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this critical point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(wℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on thew-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the critical values of V1, we take the derivative and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12

≈ 21.67.

We found two critical values: when w = 0 and when w = 21.67. We again
ignore the w = 0 solution; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19, 408in3.

The volume function V(w, ℓ) is shown in Figure 13.9.7 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the function. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of optimization. In “the real
world,” we routinely seek to make something better. By expressing the some-
thing as a mathematical function, “making something better” means “optimize
some function.”

The techniques shownhere are only the beginning of an incredibly important
field. Many functions that we seek to optimize are incredibly complex, making
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13.9 Extreme Values

the step of “find the gradient and set it equal to 0⃗ ” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.
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Exercises 13.9
Terms and Concepts
1. T/F: Theorem 13.9.1 states that if f has a critical point at P,

then f has a relative extrema at P.

2. T/F: A point P is a critical point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a critical point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained optimization”
problem.

Problems
In Exercises 5 – 14, find the critical points of the given func-
tion. Use the Second Derivative Test to determine if each crit-
ical point corresponds to a relative maximum, minimum, or
saddle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) = 1
x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) = 1
3
x3 − x+ 1

3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

In Exercises 15 – 18, find the absolute maximum and mini-
mum of the function subject to the given constraint.

15. f(x, y) = x2 + y2 + y + 1, constrained to the triangle with
vertices (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.

716



Note: To simplify notation, we shift fo-
cus slightly and represent points in Rn by
their position vectors, and think of func-
tions of several variables as functions of a
vector variable. For example, we’ll write
f(⃗x) instead of f(x1, x2, . . . , xn).

Note: In general, we say that two real-
valued functions of one variable f and g
agree to first order at a if

lim
x→a

|f(x)− g(x)|
x− a

= 0.

The linearization of f at a is the unique lin-
ear function that agrees with f to first or-
der at a. Going further, we can say that f
and g agree to order k at a if

lim
x→a

|f(x)− g(x)|
(x− a)k

= 0.

For example one could define the degree
n Taylor polynomial of a function f at a to
be the unique polynomial of degree n that
agrees with f to order k at a.

13.10 The Derivative as a Linear Transformation

13.10 The Derivative as a Linear Transformation
Wedefinedwhat itmeans for a real-valued function of two variables to be differ-
entiable in Definition 13.5.2 in Section 13.5. The definition there easily extends
to real-valued functions of three or more variables, but it leaves unanswered a
couple of natural questions:

1. What about vector-valued functions of several variables? (That is, func-
tions f with a domain D ⊆ Rn and range in Rm for somem > 1.)

2. What is the derivative of a function of several variables? After all, we
know how to define f ′(x) and r⃗ ′(t) for real or vector-valued functions of
one variable.

One might be tempted at first to simply mimic the definition of the derivative
from Chapter 2, but we quickly run into trouble, for a reason that is immediately
obvious.

Let a⃗ be a fixed point inRn, and let h⃗ represent a point (h1, h2, . . . , hn). Since
we’re treating h⃗ and a⃗ as vectors, we can add them, and write down the limit

lim
h⃗→0⃗

f(⃗a+ h⃗)− f(⃗a)
∥ h⃗ ∥

.

(Note that division by a vector is nonsense, so we must divide by ∥ h⃗ ∥, not
h⃗.) But of course, we know that this limit does not exist, because it depends
on the direction in which h⃗ approaches 0⃗! Indeed, if h⃗ = h⃗i or h⃗j, we get a
partial derivative, and for any unit vector u⃗, setting h⃗ = hu⃗ gives us a directional
derivative, and we know from Section 13.7 that a directional derivative depends
on u⃗. It seems this approach is doomed to failure. What can we try instead?

The key to generalizing the definition of the derivative given in Definition
2.1.1 in Chapter 2 is remembering the following essential property of the deriva-
tive: the derivative f ′(a) is used to compute the best linear approximation to f
at a. Indeed, the linearization of f at a is the linear function

La(x) = f(a) + f ′(a)(x− a). (13.6)

That this is the best linear approximation of f at a can be understood as follows:
first, note that the graph y = La(x) is simply the equation of the tangent line to
y = f(x) at a. Second, note that the difference between f(x) and La(x) vanishes
faster than the difference x− a as x approaches a:

lim
x→a

f(x)− La(x)
x− a

= lim
x→a

f(x)− (f(a) + f ′(a)(x− a))
x− a

= lim
x→a

(
f(x)− f(a)

x− a
− f ′(a)

x− a
x− a

)
= f ′(a)− f ′(a) = 0.

While the definition of the derivative doesn’t generalize well to several vari-
ables, the notion of linear approximation does. Recall from your first course in
linear algebra that, given anym×nmatrix A, we can define a function T, called a
linear transformation, that takes an n× 1 column vector as input, and produces
anm× 1 column vector as output:

T(⃗x) = A⃗x =

a11 · · · a1n
...

. . .
...

am1 · · · amn



x1
x2
...
xn

 =


y1
y2
...
ym

 = y⃗.
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Note: to avoid confusion between the
meaning of linear function in Calculus,
and linear transformation in Linear Alge-
bra, we will use ℓ to denote the former,
and T to denote the latter. Notice that if
b⃗ = 0⃗ in Definition 13.10.1, then a linear
function is a linear transformation.

Chapter 13 Functions of Several Variables

In the above definition, the product A⃗x is the usual matrix product of them× n
matrix A with the n × 1 matrix x⃗. In this text, we generally do not write our
vectors as columns, so for a vector x⃗ = ⟨x1, . . . , xn⟩ we will use the notation

A · x⃗ = ⟨a11x1 + · · ·+ a1nxn, . . . , am1x1 + · · ·+ amnxn⟩

to represent the same product in our notation. (And yes, the dot in this product
is intended to remind you of the dot product between vectors: recall that the
(i, j)-entry of a matrix product AB is the dot product of the ith row of A with the
jth column of B.) We can now make the following definition.

Definition 13.10.1 Linear function

A function ℓ from Rn to Rm will be called a linear function if ℓ is of the
form

ℓ(⃗x) = M · x⃗+ b⃗

for somem× nmatrixM and vector b⃗ Rm.

If we apply the convention of representing points in terms of their position
vectors to the codomain as well as the domain, we can express such a function
as f = ⟨f1, . . . , fn⟩, where each function fi is a real-valued function of n variables.
We want differentiability of f to mean that f has a linear approximation ℓ that
agrees with f to first order at a. Since f(⃗x) and ℓ(⃗x) are now vectors, saying that ℓ
is a good approximation of f requires that the magnitude ∥ f(⃗x)− ℓ(⃗x) ∥ is small
relative to the size of ∥ x⃗− a⃗ ∥.

Definition 13.10.2 General definition of differentiability

Let D be an open subset ofRn and let f be a function with domain D and
values in Rm. We say that f is differentiable at a point a⃗ ∈ D if there
exists a linear function ℓ : Rn → Rm that agrees with f to first order at
a⃗; that is, if

lim
x⃗→a⃗

∥ f(⃗x)− ℓ(⃗x) ∥
∥ x⃗− a⃗ ∥

= 0.

This definition is going to take a lot of unpacking. First of all, what is this func-
tion ℓ? How do we compute it? Does this definition include Definition 13.5.2
from Section 13.5 as a special case? What about differentiability for vector-
valued functions of one variable, or real-valued functions of one variable?

We will answer the first two questions in due course. The answer to the rest
is, “Yes.” The above definition generalizes all the definitions of differentiability
we’ve encountered so far. As a first step, let us note that for ℓ(⃗x) = M · x⃗+ b⃗, we
must have ℓ(⃗a) = f(⃗a), or the limit above will not exist. ThusM · a⃗+ b⃗ = f(⃗a),
so b⃗ = f(⃗a)−M · a⃗. This tells us that ℓmust have the following form:

ℓ(⃗x) = M · x⃗+ b⃗
= M · x⃗+ (f(⃗a)−M · a⃗)
= f(⃗a) +M · (⃗x− a⃗). (13.7)

This should ring some bells: the form of ℓ is very similar to that of the lineariza-
tion given for a function of one variable in Equation (13.6) above, with thematrix
M playing the role of f ′(a). Perhaps this matrix is the derivative we seek?718



Note: If the point a⃗ ∈ D at which we are
considering the linearization is fixed/clear
in a given problem, we can drop the sub-
script in the notation, and simply write
L(⃗x) instead of L⃗a(⃗x).

Note: Viewing the gradient∇f as a 1× n
matrixM, the productM · x⃗ defined above
is indeed exactly the same as the usual
dot product∇f(⃗a) · x⃗.

13.10 The Derivative as a Linear Transformation

Real-valued functions of several variables

Let f : D ⊆ Rn → R be a given function of n variables (you can assume n =
1, 2 or 3 if you prefer). Let us denote a point (x1, x2, . . . , xn) ∈ Rn using the vec-
tor x⃗ = ⟨x1, x2, . . . , xn⟩, so that f(⃗x) = f(x1, x2, . . . , xn). Let a⃗ = ⟨a1, a2, . . . , an⟩
denote a fixed point (a1, a2, . . . , an) ∈ D.

In Section 13.5, we saw that differentiabilitymeans that the difference∆z =
f(x+dx, y+dy)−f(x, y) can be approximated by the differential dz = fx(x, y) dx+
fy(x, y) dy. Differentiability was defined to mean that the error functions Ex and
Ey, defined by

Ex dx+ Ey dy = ∆z− dz,
go to zero as ⟨dx, dy⟩ goes to zero. Let’s rephrase this so that it works for any
number of variables. Recall that the gradient of f at a⃗ ∈ D is the vector ∇f(⃗a)
defined by

∇f(⃗a) =
⟨

∂f
∂x1

(⃗a),
∂f
∂x2

(⃗a), . . . ,
∂f
∂xn

(⃗a)
⟩
.

Definition 13.10.3 The linearization of a function of several vari-
ables

Let f be continuously differentiable on some open set D ⊆ Rn, and let
a⃗ ∈ D. The linearization of f at a⃗ is the function L⃗a(⃗x) defined by

L⃗a(⃗x) = f(⃗a) +∇f(⃗a) · (⃗x− a⃗).

When n = 1, we get the linearization La(x) = f(a) + f′(a)(x − a), which
is the usual linearization from Calculus I. (You might also notice that La(x) is the
first-degree Taylor polynomial of f about x = a. The same is true of the lineariza-
tion of f for more than one variable, although we will not be considering Taylor
polynomials in several variables.) For n = 2, we get the linear approximation
associated to the total differential:

L(a,b)(x, y) = f(a, b) + ⟨fx(a, b), fy(a, b)⟩ · ⟨x− a, y− b⟩
= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y− b).

Compare this with Equation (13.7) above: it seems that the gradient∇f(⃗a)
is our matrix M in this case: for a real-valued function, m = 1, so we expect
an 1 × n row matrix, and the gradient certainly can be interpreted to fit that
description.

For real-valued functions, Definition 13.10.2 becomes the following:

Definition 13.10.4 Differentiability of real-valued functions

We say that f is differentiable at a⃗ ∈ D if∇f(⃗a) exists, and f(⃗x) and L⃗a(⃗x)
agree to first order at a⃗; that is, if

lim
x⃗→a⃗

|f(⃗x)− L⃗a(⃗x)|
∥⃗x− a⃗∥

= lim
x⃗→a⃗

|f(⃗x)− f(⃗a)−∇f(⃗a) · ⟨⃗x− a⃗⟩|
∥⃗x− a⃗∥

= 0.

What this definition says is that the linearization L⃗a(⃗x) is a good linear ap-
proximation to f at a⃗. In fact, it’s the only (and hence, best) linear approxima-
tion: if a linear approximation exists, it has to be L⃗a(⃗x). If you want to see why
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Note: Recall that ∥⃗x − a⃗∥ =√
(x1 − a1)2 + · · ·+ (xn − an)2 is

the distance from x⃗ to a⃗. In general, we
would say that two functions f(⃗x) and
g(⃗x) “agree up to order k” at a⃗ if

lim
x⃗→a⃗

f(⃗x)− g(⃗x)
∥⃗x− a⃗∥k = 0.

Exercise: Check that, for n = 1, two func-
tions f and g agree up to order k at a if and
only if their degree k Taylor polynomials
are equal. (A similar statement is true in
more than one variable.)

Chapter 13 Functions of Several Variables

this has to be true, recall that since the above limit exists, we have to be able to
evaluate it along any path we like. Suppose we chose the path

r⃗(t) = ⟨h, a2, . . . , an⟩.

Then x⃗− a⃗ = ⟨h, 0, . . . , 0⟩ = h⃗i, and our definition becomes:

lim
h→0

∣∣∣∣ f(a1 + h, a2, . . . , an)− f(a1, a2, . . . , an)
h

− ∂f
∂x1

(a1, a2, . . . , an)
∣∣∣∣ = 0,

which is just another way of stating the definition of the partial derivative with
respect to x1. Of course, approaching along any of the other coordinate direc-
tions will similarly produce the other partial derivatives.

Recall that in one variable, the derivative is often written instead in terms of
h = x− a, so that

f′(a) = lim
h→0

f(a+ h)− f(a)
h

.

In more than one variable, we can define hi = xi − ai, for i = 1, . . . , n, or the
corresponding vector h⃗ = x⃗ − a⃗. The definition of differentiability then can be
written as

lim
h⃗→0

|f(⃗a+ h⃗)− f(⃗a)−∇f(⃗a) · h⃗|
∥h⃗∥

= 0. (13.8)

Note that wewant the difference between f(⃗a+ h⃗) and L⃗a(⃗h) to go to zero faster
than ∥h⃗∥ goes to zero, and that it only makes sense to divide by the length of h⃗,
since division by a vector (or the corresponding point) is not defined.

Let’s return to n = 2 and Definition 13.5.2 from Section 13.5. If we write
h⃗ = ⟨dx, dy⟩, then f(⃗a+ h⃗)− f(⃗a) = ∆z, and∇f(⃗a) · h⃗ = dz, and Equation (13.8)
becomes

lim
h⃗→0⃗

|∆z− dz|
∥ h⃗ ∥

= lim
h⃗→0⃗

|Ex dx+ Ey dz
∥ ⟨dx, dy⟩ ∥

= 0,

which is another way of saying that the error terms Ex, Ey must vanish as dx
and dy approach zero. Success! Definition 13.10.2 is indeed a generalization of
Definition 13.5.2.

Note that we’ve also generalized Definition 2.1.1 for functions of one vari-
able as well: Equation (13.8) becomes

lim
h→0

∣∣∣∣ f(a+ h)− f(a)
h

− f′(a)
∣∣∣∣ = 0,

which is just another way of re-writing the usual definition of the derivative. In
fact, we’ve also generalized Definition 12.2.3 from Chapter 12 for differentia-
bility of vector-valued functions: all we have to do is write our vector-valued
function as a column matrix. For

r⃗(t) =


x1(t)
x2(t)
...

xm(t)

 and r⃗ ′(t) =


x1 ′(t)
x2 ′(t)

...
xm ′(t)

 ,

we have
lim
h→0

∥∥∥∥1h (⃗r(a+ h)− r⃗(a))− r⃗ ′(a)
∥∥∥∥ = 0,

which again reproduces the definition of r⃗ ′(a).
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13.10 The Derivative as a Linear Transformation

One of the results we learn in Calculus I is that differentiability implies con-
tinuity. The situation is no different in general, and with our new definition of
differentiability, an easy proof is possible.

Theorem 13.10.1 Differentiability implies continuity

If f : D ⊆ Rn → R is differentiable at a⃗ ∈ D, then f is continuous at a⃗.

Proof: Suppose that f is differentiable at a⃗. Then we know that

lim
x⃗→a⃗

f(⃗x)− L⃗a(⃗x)
∥⃗x− a⃗∥

= lim
x⃗→a⃗

f(⃗x)− f(⃗a)−∇f(⃗a) · ⟨⃗x− a⃗⟩
∥⃗x− a⃗∥

= 0.

By the definition of continuity, we need to show that lim
x⃗→a⃗

f(⃗x) = f(⃗a). We have
that

f(⃗x) = f(⃗a) + (f(⃗x)− f(⃗a))
= f(⃗a) + (f(⃗x)− f(⃗a)−∇f(⃗a) · (⃗x− a⃗)) +∇f(⃗a) · (⃗x− a⃗)

= f(⃗a) +
(
f(⃗x)− f(⃗a)−∇f(⃗a) · (⃗x− a⃗)

∥⃗x− a⃗∥

)
(∥⃗x− a⃗∥) +∇f(⃗a) · (⃗x− a⃗).

Thus, taking limits of the above as x⃗ → a⃗, we find lim
x⃗→a⃗

f(⃗x) = f(⃗a), since the
first term is a constant (f(⃗a)), the second is the product of two terms that both
go to zero (the first term is zero by the definition of differentiability, and clearly
limx⃗→a⃗∥⃗x − a⃗∥ = 0), and the last term vanishes since it’s linear (and thus con-
tinuous) in x⃗, and so, by direct substitution,

lim
x⃗→a⃗

∇f(⃗a) · (⃗x− a⃗) = ∇f(⃗a) · (⃗a− a⃗) = 0.

Vector-valued functions

Let us now consider Definition 13.10.2 for general functions f : D ⊆ Rn →
Rm. If f is differentiable at a⃗, then we must have

lim
x⃗→a⃗

∥ f(⃗x)− ℓ(⃗x) ∥
∥ x⃗− a⃗ ∥

= 0

for some linear function ℓ(⃗x). We saw in Equation (13.7) above that Tmust have
the form of a linear approximation:

ℓ(⃗x) = L⃗a(⃗x) = f(⃗a) +M · (⃗x− a⃗).

Moreover, we’ll see below that (a) the matrix M is uniquely defined, and (b) M
is deserving of the title of “the” derivative of f.

Let’s compare again to the one variable case: La(x) = f(a) + f′(a)(x − a).
With this in mind, the matrix M, whatever it is, certainly seems to play the role
of the derivative for general functions from Rn to Rm. It remains to determine
the matrixM, and see that there can only be one possibility. To that end, let us
write

M =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

 ,
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Chapter 13 Functions of Several Variables

and consider what happens when we let x⃗ → a⃗ along different paths. If we
consider the path x1 = a1 + t, x2 = a2, . . . , xn = an (that is, varying x1 while
holding the other variables constant) then

x⃗− a⃗ = ⟨a1 + t, a2, . . . , an⟩ − ⟨a1, a2,
..., an⟩ = ⟨t, 0, . . . , 0⟩.

soM · (⃗x− a⃗) gives us t times the first column ofM, since for each row ofM, the
first entry is multiplied by t, and the remaining entries are multiplied by zero.
Thus,

M · (⃗x− a⃗) = ⟨c11, c21, . . . , cm1⟩

along this path. Now we consider the limit as t → 0.

lim
t→0

[
| f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)

t
− ⟨c11, c21, . . . , cm1⟩

∣∣∣∣ = 0.

Since ⟨c11, c21, . . . , cm1⟩ is a constant vector, from differentiability of f, together
with Definition 13.10.2, we get

lim
t→0

f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)
t

= ⟨c11, c21, . . . , cm1⟩.

But this limit on the left is just the partial derivative of fwith respect to x1! If we
write f(⃗x) = ⟨f1(⃗x), f2(⃗x), . . . , fm(⃗x)⟨, then we have

lim
t→0

f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)
t

=

⟨
∂f1
∂x1

(⃗a),
∂f2
∂x1

(⃗a), . . . ,
∂fm
∂x1

(⃗a)
⟩
,

and this gives us the first column ofM! Repeating this for each variable, we see
that the matrix M is exactly the matrix of all the partial derivatives of f. This
matrix is important enough to have a name:

Definition 13.10.5 The Jacobian matrix of a differentiable function

Let D ⊆ Rn be an open subset, and let f : D → Rm be a differentiable
function. At any point a⃗ ∈ D, the Jacobian matrix of f at a⃗, denoted
Df(⃗a), is them× nmatrix defined by

Df(⃗a) =


∂f1
∂x1 · · · ∂f1

∂xn
...

. . .
...

∂fm
∂x1 · · · ∂fm

xn

 .

The linear transformation Tf,⃗a : Rn → Rm defined by Tf,⃗a(⃗x) = Df(⃗a) · x⃗
is defined to be the derivative of f at a⃗.

Notice that if f is differentiable, the Jacobian matrix is the only matrix that
can fit the definition: the fact that the limit must be zero along a path parallel to
one of the coordinate axes forces the matrixM to contain the partial derivatives
of f.

In particular, note that for a function f : Rn → R, we recover the gradient
vector. (Technically, the derivative in this sense is a row vector (some might
say dual vector), not a column vector. Note that multiplying a row vector by a
column vector is the same as taking the dot product of two column vectors.

This definition also accounts for parametric curves, viewed as vector-valued
functions of one variable. If r : R → Rn defines a parametric curve, then the
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13.10 The Derivative as a Linear Transformation

derivative r′(t) =


x′1(t)
x′2(t)
...

x′n(t)

 as introduced in Calculus III is the same as the one

obtained using this definition.

The General Chain Rule

One of the big advantages of representing the derivative of a function of
several variables in terms of its Jacobian matrix is that the Chain Rule becomes
completely transparent. Arguably, the version of the Chain Rule we’re about to
present is even more intuitive than the single-variable version!

Recall that the Chain Rule is all about derivatives of composite functions. In
one variable, given h = f ◦ g, if b = g(a), we have

h′(a) = f′(g(a))g′(a) = f′(b)g′(a).

The derivative of the composition is the product of the derivatives of the func-
tions being composed, as long as we take care to evaluate them at the appro-
priate points.

In Section 13.6 we saw that in several variables, the Chain Rule comes in
various flavours, depending on the number of variables involved in each function
being composed. If we think of derivatives in terms of the Jacobian matrix, then
each of these flavours says exactly the same thing as the original Chain Rule
above!

Theorem 13.10.2 The general Chain Rule (matrix form)

Let f : U ⊆ Rm → Rp and g : V ⊆ Rn → Rm be differentiable functions,
such that the range of g is contained in the domain U of f. Then the
composite function h = f ◦ g is differentiable on V, and for each a⃗ ∈ V,
we have

Dh(⃗a) = D(f ◦ g)(⃗a) = Df(⃗b)Dg(⃗a),

where b⃗ = g(⃗a), and the product on the right is the usual matrix product
of the two Jacobian matrices.

This is a remarkable result. Let’s unpack it in a couple of examples.

Example 13.10.1 Applying the general chain rule
Let f : U ⊆ R3 → R be a differentiable function of three variables, and let
r⃗(t) = ⟨x(t), y(t), z(t)⟩ be a vector-valued function of one variable. Use Theo-
rem 13.10.2 to determine a formula for the derivative of h(t) = f(⃗r(t)).

SÊ½çã®ÊÄ Of course, we know what this derivative should look like
from Section 13.6. The point is to confirm that this is a special case of Theorem
13.10.2. The Jacobian matrix of f is a 1 × 3 matrix and Jacobian matrix of r⃗ is a
3× 1 matrix. They are given, respectively, by

Df(⃗x) =
[
fx(⃗x) fy(⃗x) fz(⃗x)

]
and D⃗r(t) =

x′(t)y′(t)
z′(t)

 .

Theorem 13.10.2 then gives us

h′(t) = Df(⃗r(t))D⃗r(t) = fx( ⃗r(t))x′(t) + fy( ⃗r(t))y′(t) + fz( ⃗r(t))z′(t),
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Chapter 13 Functions of Several Variables

as before. Of course, in this context we usually write Df(⃗x) as∇f(⃗x) and D⃗r(t) as
r⃗ ′(t), and instead of a matrix product, we write a dot product. But this is simply
a shift in notation – the quantities involved are no different than before.

Example 13.10.2 Applying the general chain rule
Let f : U ⊆ R2 → R be a function of 2 variables, and let g : V ⊆ R2 → R2 be
given by

g(u, v) = (x(u, v), y(u, v)).

Given h = f ◦ g, use Theorem 13.10.2 to determine hu and hv.

SÊ½çã®ÊÄ First we compute the Jacobianmatrices for f and g. We have

Df(x, y) =
[
fx(x, y) fy(x, y)

]
and Dg(u, v) =

[
xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

]
.

The Chain Rule then gives

Dh(u, v) =
[
hu(u, v) hv(u, v)

]
= Df(h(u, v))Dh(u, v)

=
[
fx(h(u, v)) fy(h(u, v))

] [xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

]
=
[
fx(h(u, v)xu(u, v) + fy(h(u, v))yu(u, v) fx(h(u, v))xv(u, v) + fy(h(u, v))yv(u, v)

]
Equating coefficients of the first and last matrices, we have, in Leibniz notation,

∂h
∂u

=
∂f
∂x

∂x
∂u

+
∂f
∂y

∂y
∂u

∂h
∂v

=
∂f
∂x

∂x
∂v

+
∂f
∂y

∂y
∂v

.

Again, this reproduces another instance of the Chain Rule from Section 13.6.

With additional experimentation, you will find that every instance of the
Chain Rule you have previously encountered can be interpreted as a special case
of Theorem 13.10.2. Moreover, a slight shift in interpretationmakes this version
of the Chain Rule even more obvious! (There’s another detour coming, but stick
with us.)

Let us digress briefly and discuss the progression ofmathematics fromCalcu-
lus to higher math. If you continue on to upper-level undergraduate mathemat-
ics, you will encounter courses in Analysis and Topology. Analysis deals with the
theoretical underpinnings of Calculus: this is where you see all the careful proofs
of theorems that have been omitted from this text. Topology is a further abstrac-
tion of Analysis. In Topology, one studies continuity (and its consequences) at
its most fundamental, abstract level.

The corresponding successors to Calculus in several variables are known as
differential geometry and differential topology. You probably won’t encounter
these unless you continue on to graduate studies in mathematics. One of the
core philosophies in these two (closely related) subjects is the following:

Functions map points. Derivatives map tangent vectors.

This can be understood in our context. At any point a⃗ in Rn, we can attach
a copy of the vector space Rn, thought of as all the possible tangent vectors to
curves passing through that point.
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13.10 The Derivative as a Linear Transformation

Let r⃗ : (a, b) → Rn be such a curve, and let f : Rn → Rm be a differentiable
function. The composite function s⃗ = f ◦ r⃗ is then a curve in Rm. The point
a⃗ = r⃗(t0) on our first curve in Rn becomes a point

b⃗ = f(⃗a) = f(⃗r(t0)) = s⃗(t0)

on our new curve in Rm. What about tangent vectors?
At the point a⃗, we have the tangent vector v⃗ = r⃗ ′(t0). What is the tangent

vector to s⃗(t) at the point b⃗? On the one hand, by definition, wehave the tangent
vector

w⃗ = s⃗ ′(t0).

On the other hand, the Chain Rule gives us

s⃗ ′(t0) = (f ◦ r⃗) ′(t0) = Df(⃗r(t0))⃗r ′(t0).

But r⃗ ′(t0) = v⃗, so we have
w⃗ = Df(⃗a)⃗⃗ · v⃗.

Multiplying the original tangent vector by the derivative of f gives us the new
tangent vector. Cool!

What’s more, we can view this as a linear transformation. Let V denote the
vector space of all tangent vectors at the point a⃗ in Rn (this is just a copy of Rn)
and letW denote the space of all tangent vectors inRm at the point b⃗. Then we
have the linear transformation T : V → W given by

T(⃗v) = Df(⃗a) · v⃗.

In more advanced Calculus, or Differential Geometry, we view this linear trans-
formation as the derivative of f at a⃗. Now, recall from Linear Algebra that matrix
multiplication corresponds to the composition of the corresponding linear trans-
formations: if S(⃗v) = A⃗v and T(w⃗) = Bw⃗, and the matrices A and B are of the
appropriate sizes, then

S ◦ T(w⃗) = S(T(w⃗)) = A(Bw⃗) = (AB)w⃗.

Suppose we have differentiable functions f : Rn → Rm and g : Rm → Rp. Let
Tf : Rn → Rm be the linear function given by the derivative of f, and let Tg :
Rm → Rp be the linear function given by the derivative of g. The chain rule is
then essentially telling us that the derivative of a composition is the composition
of the derivatives: we have

Tf ◦ Tg(⃗v) = Tf(Tg(⃗v)) = Df(⃗y)(Dg(⃗x)⃗v) = (Df(g(⃗x))Dg(⃗x))⃗v = Tf◦g(⃗v).

In other words, given the composition

Rn
g

  

f◦g
77Rm

f
  
Rp ,

we have the corresponding composition

Rn

Dg(⃗x)
  

D(f◦g)(⃗x)

77Rm

Df(⃗y)
  
Rp .

(But beware of the dual usage ofRn here. In the first composition, we’re thinking
of it as a set of points in the domain of a function. In the second composition,
we’re thinking of it as the set of tangent vectors at a point.)
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Chapter 13 Functions of Several Variables

This turns out to be an extremely powerful way of looking at derivatives and
the Chain Rule. Youmaywant to keep this inmind in later sections, such aswhen
we consider change of variables in multiple integrals at the end of Chapter 14,
and when we define integrals over curves and surfaces in Chapter 15. We won’t
use this language when we get there, but many of the results in those sections
(for example, the formula for surface area of a parametric surface) can be under-
stood according to the two principles we have just seen: functions map points,
while derivatives map tangent vectors, and the derivative of a composition is the
composition of the derivatives.
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13.11 Critical Points and Extrema: Further Topics
Constrained Optimization and Lagrange Multipliers

Let us continue our discussion of constrained optimization begun in Section
13.9. Theorem 13.9.3 tells us that the Extreme Value Theorem extends to func-
tions of two variables; in fact, this is true for a function of any number of vari-
ables: if a real-valued function f is continuous on a closed, bounded subset of
Rn, then it is guaranteed to have an absolute maximum and minimum.

However, as the number of variables increases, the job of finding these ab-
solute extrema becomes more and more complicated. We saw one approach
in Section 13.9: given a continuous function on a closed, bounded region D, we
first consider critical values on the interior of D. We then restrict our function f
to points on the boundary of D, and attempt to reduce the problem to optimiza-
tion in one variable.

Inmany cases, this approach is best accomplishedbyparametrizing the bound-
ary. We learned how to define parametric curves in the plane in Section 9.2.

Example 13.11.1 Constrained optimization by parametrization
Find the absolute maximum and minimum values of f(x, y) = x2 − 8x− 3y2 on
the disc x2 + y2 ≤ 4.

SÊ½çã®ÊÄ First, we check for critical points: We have

∇f(x, y) = ⟨2x− 8,−6y⟩ ,

which vanishes when (x, y) = (4, 0). This critical point is outside our region, so
we do not consider it.

Next, we look for extreme values on the boundary. The boundary of our
region is the circle x2 + y2 = 4, which we can parametrize using x = 2 cos t,
y = 2 sin t, for t ∈ [0, 2π]. For (x, y) on the boundary, we have

f(x, y) = x2 − 8x− 3y2 = 4 cos2 t− 16 cos t− 12 sin2 t = h(t),

a function of one variable, with domain [0, 2π]. We learned how to find the
extreme values of such a function way back in Calculus I: see Section 3.1. We
have h(0) = h(2π) = −12, and

h′(t) = −8 cos t sin t+ 16 sin t− 24 sin t cos t = 16 sin t(1− 2 cos t).

Thus, h′(t) = 0 if sin t = 0 (t = 0, π, 2π) or cos = 1
2 (t = π/3, 5π/3). We have

already checked that h(0) = h(2π) = −12, so we check the remaining points:

h(π) = 4(−1)2 − 16(−1) = 20

h(π/3) = h(5π/3) = 4
(
1
4

)
− 16

(
1
2

)
− 12

(
3
4

)
= −16.

We see that the absolute maximum is when t = π: h(π) = f(−2, 0) = 20,
and the absolute minimum is −16, which occurs when t = π/3 and t = 5π/3,
corresponding to the points (1,

√
3) and (1,−

√
3), respectively.

The above method works well, when it’s straightforward to set up. The ad-
vantage is that it reduces the problem of optimization along the boundary to
an optimization problem in one variable, which is something we mastered long
ago.
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Note: if (x0, y0) is a critical point of a func-
tion g; that is, if ∇g(x0, y0) = 0⃗, and
g(x0, y0) = c, we call the number c a crit-
ical value for g. Any number that is not
a critical value is called a regular value.
Often, if c is a critical value, the level set
defined by g(x, y) = c is not a smooth
curve, or even a curve at all. (For exam-
ple, g(x, y) = x2 + y2 has the critical
point (0, 0), and critical value 0. The set
of (x, y) with x2 + y2 = 0 is not a curve;
it’s a single point.)
Because of this, it’s usually a safe assump-
tion that when a level curve g(x, y) = c is
given, the value c is a regular value.

Chapter 13 Functions of Several Variables

One downside is that it is not always easy to come upwith a parametrization
for a curve. In the above example, the boundary x2 + y2 = 4 is a level curve: it’s
of the form g(x, y) = c. When we’re trying to optimize subject to a constraint of
this form, there is another approach, called themethod of Lagrangemultipliers.
.

Suppose we are trying to maximize a function f(x, y) subject to a constrain
g(x, y) = c. We could follow the approach given above: find a function r⃗ :
[a, b] → R2 that parametrizes the curve g(x, y) = c. As we saw above, the
maximum (or minimum) should occur at some point t0 that is a critical number
of h(t) = f(⃗r(t)); that is, such that

h′(t0) = ∇f(⃗r(t0)) · r⃗ ′(t0) = 0.

This tells us that the gradient ∇f should be orthogonal to the constraint curve
g(x, y) = c at the point (x0, y0) = (x(t0), y(t0)). But we know another gradient
that is orthogonal to this curve: ∇g! Recall from Theorem 13.7.2 that∇g(x, y)
is always orthogonal to the level curve g(x, y) = c at points along the curve.

Let’s sum up: the vectors ∇f(x0, y0) and ∇g(x0, y0) are both orthogonal to
the vector r⃗ ′(t0). We assume that∇f(x0, y0) ̸= 0⃗, since critical points of f have
already been checked. We also assume that c is a regular value of g, meaning
that there are no critical points of g along the curve g(x, y) = c, so∇g(x0, y0) ̸=
0⃗ as well.

But the only way that two non-zero vectors in the plane can both be orthog-
onal to a third vector is if they’re parallel! This means that there must be some
scalar λ such that

∇f(x0, y0) = λ∇g(x0, y0).

We have demonstrated the following:

Theorem 13.11.1 Location of constrained extrema

Let f and g be continuously differentiable functions of two variables, and
suppose c is a regular value for g. If the function f, when constrained to
the level curve g(x, y) = c has a local maximum or minimum value at a
point (x0, y0), then

∇f(x0, y0) = λ∇g(x0, y0)

for some scalar λ.

Note that there are two possibilities: either λ = 0, in which case (x0, y0) is a
critical point of f, or λ ̸= 0, in which case the level curve of f that passes through
(x0, y0)must be tangent to the curve g(x, y) = c at that point. Putting Theorem
13.11.1 to use is a matter of solving a system of equations.
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Figure 13.11.1: The constraint curve and
several level curves in Example 13.11.2

13.11 Critical Points and Extrema: Further Topics

Key Idea 13.11.1 Method of Lagrange Multipliers

To find the maximum and minimum values of a function f of two vari-
ables subject to a constraint g(x, y) = c, we must find the simultaneous
solutions to the following equations, where λ is an unknown constant
(called a Lagrange multiplier):

fx(x, y) = λgx(x, y)
fy(x, y) = λgy(x, y)
g(x, y) = c

Example 13.11.2 Using Lagrange Multipliers
Find the absolute maximum and minimum values of f(x, y) = x2 − 8x− 3y2 on
the disc x2 + y2 ≤ 4.

SÊ½çã®ÊÄ This is the same problem as Example 13.11.1, but this time,
we will attempt to solve it using the method of Lagrange multipliers. Again,
since ∇f(x, y) = ⟨2x− 8,−6y⟩, the only critical point for f is outside the given
disc. It remains to find themaximum andminimum of f subject to the constraint
x2 + y2 = 4, so our constraint function is g(x, y) = x2 + y2. We have

∇f(x, y) = ⟨2x− 8,−6y⟩ = λ ⟨2x, 2y⟩ = λ∇g(x, y).

Together with the constraint, we have three equations:

2x− 8 = 2λx ⇒ (1− λ)x = 4
−6y = 2λy ⇒ y = 0 or λ = −3

x2 + y2 = 4.

Now we encounter the primary difficulty with Lagrange multipliers. While the
idea is simple, the equations it leads to frequently are not. The equations are
rarely linear, so there is no systematic method for solving them: solving a La-
grange multiplier problem requires a certain amount of patience and creativity!

One of the possibilities we see above is y = 0. If y = 0, the constraint
equation requires x = ±2, and in either case we can choose a value for λ (−1
and 3, respectively) that solves the equation (1− λ)x = 4.

We find f(2, 0) = −12, and f(−2, 0) = 20. If y ̸= 0, then we must have
λ = −3. Putting this into the equation (1− λ)x = 4 gives us 4x = 4, or x = 1.
If x = 1, the constraint equation gives us 1+ y2 = 4, so y = ±

√
3.

We find f(1,
√
3) = f(1,−

√
3) = −16. There are no other points that sat-

isfy all three equations, so we compare values to complete the problem: the
maximum is f(−2, 0) = 20, and the minimum is f(1,±

√
3) = −16, as before.

The method of Lagrange multipliers seems rather arcane at first glance, but
it’s actually not hard to understand geometrically why it works.

Consider Figure 13.11.1. The constraint curve x2+y2 = 4 is shown in red. In
solid blue we see the three level curves that were obtained as solutions to the
Lagrange multiplier equations:

• f(x, y) = −12: passing through (2, 0);

• f(x, y) = 20: passing through (−2, 0);

• f(x, y) = −16: this curve is actually a pair of lines,
√
3y = ±(x − 4),

passing through (1,±
√
3), respectively.

729



−2 −1 1 2

−4

−2

2

4

x

y

Figure 13.11.2: The constraint and some
level curves in Example 13.11.3

Chapter 13 Functions of Several Variables

We see that all three curves are tangent to the constraint curve, aswe expect
from the requirement that the gradients∇f and∇g be parallel where the curves
intersect.

Additional level curves f(x, y) = c are plotted as well, with dashed lines. For
values of c with c > 20 (greater than the maximum) or c < −16 (less than the
minimum), the level curve f(x, y) = c does not intersect the constraint curve at
all.

For values of c with−16 < c < 20, the curve f(x, y) = c intersects the con-
straint curve, but the intersection is what’s called transversal: at these points of
intersection, the two curves are not tangent, and the gradients are not parallel.

In Figure 13.11.1, you can imagine that increasing or decreasing the value
of c has the effect of shifting the level curve one way or the other, until it just
touches the circle. Any bigger than the maximum, or smaller than the mini-
mum, and the curves no longer intersect. Of course, saying that the curves “just
touch” amounts to saying that they are tangent at their point of intersection,
just as Theorem 13.11.1 predicts.

Example 13.11.3 Exploring Lagrange multipliers geometrically
Use Lagrange multipliers to locate the extrema of f(x, y) = 2x2 + y2, subject to
the constraint x+ y = 3.

SÊ½çã®ÊÄ Let’s see what happens if we dive right in and apply our
machinery. With g(x, y) = x+ y, we need to have

∇f(x, y) = ⟨4x, 2y⟩ = λ ⟨1, 1⟩ = λ∇g(x, y),

so x + y = 4, from our constraint, and 4x = λ = 2y, giving us y = 3 − x and
y = 2x, so 2x = 3− x, giving x = 1, and y = 2.

We get only one solution: the value f(1, 2) = 6. But is this a maximum or a
minimum? And shouldn’t we get both?

Rather than blindly attacking the equations, perhaps it would do to take a
step back and think about the problem. First, consider the constraint equation:
x + y = 3. This is a line; it certainly is not the boundary of a closed, bounded
reason in the plane. Thus, we haven’t satisfied the conditions of the Extreme
Value Theorem, and have no reason to expect both an absolute maximum and
an absolute minimum.

Now, since the line x+y = 3 extends without bound, it’s clear that there can
be nomaximum value c for which the ellipse 2x2+y2 = c does not intersect the
line. There is, however, a minimum value: when c = 6, the ellipse 2x2 + y2 = 6
has gradient∇f(x, y) = ⟨4, 4⟩, giving us the tangent line

4(x− 1) + 4(y− 2) = 0, or x+ y = 3,

the equation of our constraint. For value of c less than 3, the ellipse 2x2+y2 = c
does not intersect the line x+ y = 3.
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Note: for functions of three or more vari-
ables, it is also possible to consider two
or more constraints. If we wished to op-
timize a function f(x, y, z) subject to con-
straints g(x, y, z) = a and h(x, y, z) = b,
we would have to solve the vector equa-
tion

∇f(x, y, z) = λg(x, y, z) + µh(x, y, z),

along with the two constraint equa-
tions. Problems involving large (or even
arbitrary!) numbers of variables and
constraints are encountered everywhere
from Economics to Quantum Mechanics.

13.11 Critical Points and Extrema: Further Topics

Themethod of Lagrangemultipliers is not restricted to functions of two vari-
ables or to single constraints. We can similarly determine the extrema of a func-
tion f of three variables on a closed bonded subset of R3

Example 13.11.4 Determining constrained extrema for a function of three
variables
Determine the maximum and minimum values of the function f(x, y, z) = x4 +
y4 + z4, subject to the constraint x2 + y2 + z2 = 1.

SÊ½çã®ÊÄ With g(x, y, z) = x2 + y2 + z2, the equation ∇f(x, y, z) =
λ∇g(x, y, z) gives us ⟨

4x3, 4y3, 4z3
⟩
= λ ⟨2x, 2y, 2z⟩ .

Equating first components, we have 2x3 = λx. One possibility is x = 0; the
other is λ = 2x2. Similar results hold for the other two variables, leaving us with
several possibilities to consider:

• We take the solution x = 0, y = 0, and z = 0 from the vector equation
above. But this result cannot satisfy our constraint, so we rule it out.

• We have x = 0 and y = 0, but z ̸= 0. The constraint equation forces
z = ±1. Similarly, we can have x = 0, y = ±1, and z = 0, or x = ±1,
y = 0, and z = 0. This gives us six points, and they all give the same value
for f:

f(±1, 0, 0) = f(0,±1, 0) = f(0, 0,±1) = 1

• One of the three variables is zero. If x = 0, with y and z nonzero, then
we have 2y2 = λ = 2z2, and since x2 + y2 + z2 = 1, we must have
y2 = z2 = 1

2 . This gives us f(x, y, z) = 0+ 1
4 +

1
4 = 1

2 .
There are twelve possibilities here: one variable zero, and the other two
can be± 1√

2 . Each one gives a value of 1
2 for f.

• Finally, we could have all three variables nonzero. In this case the Lagrange
multiplier equations give us

2x2 = 2y2 = 2z2 = λ,

and putting these into the constraint equation gives us x2 = y2 = z2 = 1
3 .

There are eight different points satisfying this requirement, but all of them
give us a value of

f(x, y, z) =
1
9
+

1
9
+

1
9
=

1
3
.

Comparing values, we see that the maximum value for f, when constrained to
unit sphere, is 1, and there are 6 points on the sphere with this value. The min-
imum value is 1

3 , and this occurs at 8 different points.

As the above examples show, Lagrange multiplier problems are often easy
to set up, but hard to solve by hand. So why is the method useful? One reason
is that it can be used to establish useful theoretical results. But more practically,
the method of Lagrange multipliers is useful because it is easy to program into a
computer: we simply provide the function and the constraint(s), and the com-
puter solves the resulting equations. There is no need for the same degree of
problem-solving employed when we first tackled optimization problems in one
variable, back in Calculus I. To emphasize this, we consider one more example:
a reprise of one of the optimization problems from Section 4.3.
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Example 13.11.5 Solving an optimization problemwith Lagrangemultipliers
Find the dimensions of a cylindrical can of volume 206 in3 that minimize the
can’s surface area.

SÊ½çã®ÊÄ This was one of the exercises at the end of Section 4.3. The
surface area of a cylinder of radius r and height h is given by

s(r, h) = 2r2 + 2πrh.

This is the functionwewish tominimize, subject to the volume constraint πr2h =
206. In Section 4.3, our next step would have been to solve the constraint equa-
tion for one of the two variables (likely h ) in terms of the other, so we could
rewrite s(r, h) as a function of one variable and apply the techniques of Section
3.1.

Instead, we introduce the constraint function v(r, h) = πr2h. The Lagrange
multiplier equation∇s = λ∇v gives us

⟨4r+ 2πh, 2πr⟩ = λ
⟨
2πrh, πr2

⟩
.

Equating the second components gives us 2πr = λπr2. Since the constraint
ensures that r ̸= 0, we have λr = 2.

Now, we equate the first components:

4r+ 2πh = λ · 2πr,

but λr = 2, so we have simply 4r + 2πh = 4πh, or πh = 2r. Putting this into
the constraint equation gives us

πr2h = 2r2 = 206,

so r = 3
√
103 ≈ 4.688, and h = 2 3

√
103/π ≈ 2.984. This is, of course, the same

result you would have found if you did this exercise back in Section 4.3.
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13.11 Critical Points and Extrema: Further Topics

Classification of critical points

In Section 13.9, we saw that, just as for functions of a single variable (re-
call Section 3.1 in the Calculus I textbook), local extreme values occur at critical
points. Definition 13.9.2 defined a critical point (a, b) of a function f(x, y) to be
one where the gradient vanishes:

∇f(a, b) = ⟨fx(a, b), fy(a, b)⟩ = ⟨0, 0⟩ .

Given a critical point for a function f of two variables, Theorem 13.9.2, the Sec-
ond Derivative Test, tells us how to determine whether that critical point cor-
responds to a local minimum, local maximum, or saddle point. You might have
been left wondering why the second derivative test looks so different in two
variables. You might also have been left wondering what this test looks like if
we have three or more variables! The appearance of the quantity

D = fxx(a, b)fyy(a, b)− f 2xy(a, b)

seems a bit weird at first, but the idea is actually fairly simple, if you’re willing to
accept Taylor’s Theorem without proof for functions of more than one variable.
We already know that if f(x, y) is C1 (continuously differentiable), then we get
the linear approximation

f(x, y) ≈ f(a, b) +∇f(a, b) · ⟨x− a, y− b⟩

near a point (a, b) in the domain of f. (Multiplying out the dot product above
gives us the differential df defined in Definition 13.5.1.) Taylor’s theorem tells
us that if f is C2 (has continuous second-order derivatives), then we get the
quadratic approximation

f(x, y) ≈ f(a, b)+∇f(a, b)·⟨x−a, y−b⟩+1
2
A(x−a)2+B(x−a)(y−b)+

1
2
C(y−b)2,

where A =
∂2f
∂x2

(a, b), B =
∂2f
∂x∂y

(a, b), and C =
∂2f
∂y2

(a, b). (Compare this to

the single-variable version: f(x) ≈ f(a) + f′(a)(x− a) + 1
2 f

′′(a)(x− a)2.) Now,
if (a, b) is a critical point, then∇f(a, b) = 0⃗, and we get the approximation

f(x, y) ≈ k+
1
2
(
AX2 + 2BXY+ CY2

)
,

where k = f(a, b), X = x−a, Y = y−b. So it’s enough to understand the critical
points of the function

g(x, y) = Ax2 + 2Bxy+ Cy2,

since f locally looks just like g. (We’ve basically just done a shift of the graph,
and stretched by a factor of 2 to get rid of the 1/2.) Now, we can re-write g as
follows, assuming A ̸= 0:

g(x, y) = Ax2 + 2Bxy+ Cy2

= A(x2 + 2
B
A
xy) + Cy2

= A(x+
B
A
y)2 − B2

A
y2 − Cy2

= A(x+
B
A
y)2 +

1
A
(AC− B2)y2.
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Note: Recall from Section 13.10 that
we will use the shorthand f(⃗x) for
the function f(x1, . . . , xn), where
x⃗ = ⟨x1, . . . , xn⟩. We will also write our
vectors using angle bracket notation,
even when we should really write them
as column vectors for the purposes
of matrix multiplication. Finally, as in
Section 13.10, for an n × n matrix A, we
will use the dot product A · x⃗ to account
for this.

Chapter 13 Functions of Several Variables

Now we can see that this is basically just a paraboloid, as long as AC − B2 ̸= 0.
(Otherwise, we end upwith a parabolic cylinder.) If AC−B2 > 0 (note that this is
just the discriminant D!), then both the coefficient for both terms has the same
sign; if A > 0 we get an elliptic paraboloid opening upwards (local minimum),
and if A < 0 we get an elliptic paraboloid opening downwards (local maximum).
If AC − B2 < 0, then the two terms have coefficients with opposite signs, and
that gives us a hyperbolic paraboloid (saddle point).

And what if A = 0?Well, in that case AC− B2 = −B2 ≤ 0, so there are two
cases: if B ̸= 0, the second derivative test tells us to expect a saddle point, and
indeed this is what we get. Either C = 0 as well, and g(x, y) = 2Bxy, which is
just a hyperbolic paraboloid rotated by π/4 (its contour curves are the hyper-
bolas xy = c), or C ̸= 0, in which case you can complete the square in y, and
check that the result is once again a hyperbolic paraboloid (exercise). The other
case is if B = 0, in which case ∆ = 0, so we can’t make any conclusions from
the second derivative test (although we’ll have g(x, y) = Cy2, which is again a
parabolic cylinder).

Hessians and the General Second Derivative Test

We will now explain how to state second derivative test in general, for func-
tions of n variables, where n = 1, 2, 3, . . .. We will also give an outline of the
proof of this result. The proof requires the use of Taylor’s theorem for a func-
tion of several variables, which we will not prove, and a bit of terminology from
linear algebra. Our sketch of the proof follows the exposition given in the text
Vector Calculus, 4th edition, by Marsden and Tromba.
Taylor polynomials

Before getting to the general result, let’s take a brief detour and discuss
Taylor polynomials. One way of thinking about differentiability of a function
f : D ⊆ Rn → R is to think of the linearization L(⃗x) as the degree one Taylor
polynomial

P1(⃗x) = f(⃗a) +∇f(⃗a) · (⃗x− a⃗) = f(⃗a) +
∂f
∂x1

(⃗a)(x1 − a1) + · · ·+ ∂f
∂xn

(xn − an).

The requirement of differentiability is then that the remainder R1(⃗x) = f(⃗x) −
P1(⃗x) goes to zero faster than ∥ x⃗− a⃗ ∥; that is,

lim
x⃗→a⃗

R1(⃗x)
∥ x⃗− a⃗ ∥

= 0.

Using the terminology from Section 13.10, we say that f and P1 “agree to first
order”. From here we can go on and ask for degree k Taylor polynomials Pk(⃗x)
that give an “kth-order approximation” of f near a⃗. In other words, we want a
polynomial

Pk(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn + a11x21 + a12x1x2 + · · ·+ annx2n
+ · · ·+ a1···1xk1 + a1···12xk−1

1 x2 + · · ·+ an···nxkn

in n variables of degree k such that the remainder Rk(⃗x) = f(⃗x)− Pk(⃗x) satisfies
Rk(⃗x) ∼ C∥ x⃗− a⃗ ∥l, with l > k. In terms of limits, this means

lim
x⃗→a⃗

Rk(⃗x)
∥ x⃗− a⃗ ∥k

= 0.

You’ve probably already noticed a problemwith talking about higher-order poly-
nomials in several variables: the notation gets really messy, since there are so
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many more possible terms! For example, even a relatively simple case like a
degree 3 polynomial in 3 variables looks like

P(x, y, z) = a+ bx+ cy+ dz+ ex2 + fxy+ gxz+ hy2 + kyz+ lz2

+mx3 + nx2y+ oxy2 + pxyz+ qx2z+ rxz2 + sy3 + ty2z+ uyz2 + vz3

for constants a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v! Usually we get
around this using “multi-index” notation. We let α = (a1, . . . , an) denote a
n-tuple of non-negative integers, and then we define x⃗α = xa11 xa22 · · · xann , |α| =
a1 + · · ·+ an (so that x⃗α is a monomial of order |α|), and we denote a possible
coefficient of x⃗α by aα. A general kth-order polynomial then looks like

Pk(⃗x) =
k∑

|α|=0

aαxα.

For example, in 3 variables, the termswhere |α| = 3would involveα = (3, 0, 0),
(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3), so in
the abovepolynomialm = a(3,0,0), n = a(2,1,0), etc., with x⃗(3,0,0) = x3, x⃗(2,1,0) =
x2y, and so on. (Note that α = (0, . . . , 0) is the only multi-index with |α| = 0).

With all of that notational unpleasantness out of the way, we can say what
the kth-order Taylor polynomial for f near a⃗ should be: Taylor’s Theorem, gener-
alized to n variables, states that

Pk(⃗x) =
k∑

|α|=0

f(α)(⃗a)
α!

(⃗x− a⃗)α,

where α! = a1!a2! · · · an!, and

f(α)(⃗a) =
(

∂a1

∂xa11
∂a2

∂xan2
· · · ∂

an

∂xn
f
)
(⃗a).

As an exercise, check that putting k = 1 reproduces the linearization P1(⃗x) (note
that if |α| = 1we have to haveα = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), etc.), and that
putting k = 2 gives the quadratic approximation discussed below.

Quadratic functions

Let A = [aij] be an n × n matrix. We say that A is symmetric if AT = A, or
equivalently, if aij = aji for each i, j between 1 and n. To each such A we can
associate a quadratic function q : Rn → R given by

q(⃗x) = x⃗ · (A · x⃗),

or in terms of components,

q(x1, . . . , xn) =
n∑

i,j=1
aijxixj.

We say that A is non-degenerate if detA ̸= 0; this is equivalent to saying that
A is invertible, or that A⃗x = 0⃗ is possible only if x⃗ = 0⃗. (Note however that the
corresponding property does not hold for q: it is possible to have q(⃗x) = 0 for
x⃗ ̸= 0⃗ even if the corresponding matrix A is non-degenerate. For example, the
quadratic function q(x, y) = x2 − y2 has q(1, 1) = 0 and corresponds to the

non-degenerate matrix
[
1 0
0 −1

]
.)
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A quadratic function q is called positive-definite if q(⃗x) ≥ 0 for all x⃗ ∈ Rn,
and q(⃗x) = 0 only for x⃗ = 0⃗. (Note that the quadratic function q(x, y) = x2 − y2
given above is not positive definite; however, q̃(x, y) = x2 + y2 is.) Similarly, q is
negative-definite if q(⃗x) ≤ 0 for all x⃗ ∈ Rn with q(⃗x) = 0 for x⃗ = 0⃗ only.

If q(⃗x) = x⃗ · A⃗x is positive(negative)-definite, we refer to the corresponding
symmetric matrix A as positive(negative)-definite as well. In general it can be
difficult to determine when a given quadratic function (or its corresponding ma-

trix) is positive or negative-definite. In the case of a 2 × 2 matrix A =

[
a b
b c

]
we get

q(x1, x2) = ax21 + 2bx1x2 + cx22

= a
(
x1 +

b
a
x2
)2

+

(
c− b2

a

)
x22,

by completing the square. Since we must have q(x1, 0) > 0 if x1 ̸= 0, we get
a > 0, and since q(0, x2) > 0 for x2 ̸= 0, it follows that ac − b2 = detA > 0.
Similarly q is negative-definite if a < 0 and detA > 0.

For an n×nmatrix, one test is as follows: consider the sequence of j× jma-

trices Aj, for j = 1, . . . , n, given by A1 = [a11], A2 =

[
a11 a12

veca21 a22

]
, . . . ,An =

A. (i.e. we take upper-left square sub-matrices of increasing size.) Then A
is positive-definite if and only if detAj > 0 for each j = 1, . . . n, and A is
negative-definite if the signs of detAj alternate between negative and positive.
(So detA1 = a11 < 0, detA2 > 0, detA3 < 0, . . .).

Another approach, which is more illuminating but requires more advanced
linear algebra, is to use the fact that for any symmetric matrix A there exists a
change of basis such that A becomes a diagonal matrix Ã with respect to that
basis. (i.e. A can be diagonalized.) If the entries ãii of Ã along the main diagonal
(that is, the eigenvalues of A) are all non-zero, then A is non-degenerate. If they
are all positive, then A is positive-definite. If they are all negative, then A is
negative-definite.

We will need the following lemma below, which is a consequence of the
Extreme Value Theorem.

Theorem 13.11.2 Bounding a quadratic function

If q : Rn → R is a positive-definite quadratic function, then there exists
a real numberM > 0 such that

q(⃗x) ≥ M∥⃗x∥2

for any x ∈ Rn.

To see that this is true, consider q(⃗x) on the set B of all x⃗ with ∥⃗x∥ = 1.
The set B is closed and bounded and q is continuous on B, so by the Extreme
Value Theorem, qmust attain a minimum valueM for some a⃗ ∈ B. Now, for any
constant c ∈ R, the fact that q is quadratic implies that q(c⃗x) = c2q(⃗x). For any

non-zero x⃗ ∈ Rn, we know that
x⃗

∥⃗x∥
∈ B, and thus, we have

q(⃗x) = q
(
∥⃗x∥ x⃗

∥⃗x∥

)
= ∥⃗x∥2q

(
x⃗
∥⃗x∥

)
≥ M∥⃗x∥2.
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Finally, if x⃗ = 0⃗ we get q(⃗0) = 0 = M∥0⃗∥2.

The Hessian matrix of a real-valued function

Definition 13.11.1 The Hessian matrix

Let f : Rn → R be a function with continuous second-order partial
derivatives. We define the Hessian matrix of f at a point a⃗ in the domain
of f to be the n× n symmetric matrix

Hess f(⃗a) =
1
2


∂2f
∂x21

(⃗a) ∂2f
∂x1∂x2 (⃗a) · · · ∂2f

∂x1∂xn (⃗a)
∂2f

∂x2∂x1 (⃗a)
∂2f
∂x22

(⃗a) · · · ∂2f
∂x2∂xn (⃗a)

...
...

...
∂2f

∂xn∂x1 (⃗a)
∂2f

∂xn∂x2 (⃗a) · · · ∂2f
∂x2n

(⃗a)

 .

Note that Hess f(⃗a) is symmetric by Clairaut’s theorem (Theorem13.4.1. The
factor of 1/2 is included for conveniencewith respect to Taylor’s theorem. Recall
that for a function of one variable, the second-order Taylor polynomial of f about
x = a is

P2(x) = f(a) + f′(a)(x− a) +
1
2
f′′(a)(x− a)2.

For x⃗ ∈ Rn, let us define the quadratic function hf,⃗a(⃗x) = x⃗ · (Hess f(⃗a) · x⃗)
associated to the Hessian of f at a⃗. Taylor’s theorem for functions of several
variables tells us that if all the third derivatives of f are continuous, then near
a⃗ ∈ Rn we have

f(⃗x) = f(⃗a) +∇f(⃗a) · (⃗x− a⃗) + hf,⃗a(⃗x− a⃗) + R(⃗a, x⃗), (13.9)

where the remainder term R(⃗a, x⃗) satisfies

lim
x⃗→a⃗

R(⃗x, a⃗)
∥⃗x− a⃗∥2

= 0. (13.10)

Finally, let us define a critical point a⃗ for f to be non-degenerate if Hess f(⃗a)
is non-degenerate. Nowwe’re ready to state our result on the second derivative
test:

Theorem 13.11.3 The general second derivative test

Let f : Rn → R be three times continuously differentiable, and suppose
that f has a non-degenerate critical point at a⃗. If Hess f(⃗a) is positive-
definite, then a⃗ is a local minimum for f. Similarly, if Hess f(⃗a) is negative-
definite, then a⃗ is a local maximum for f.

The way to think about this intuitively is the following: the matrix Hess f(⃗a)
is symmetric. We know from Linear Algebra that every symmetric matrix can be
diagonalized. Less obvious (but still true) is thatwe canmake a (linear) change of
variables (u1, . . . , un) = T(x1, . . . , xn) so that the vectors in the direction of the
ui coordinate axes are eigenvectors for Hess f(⃗a). Slightly harder to show (but
also true) is that this change of variables can be chosen so that it is orthogonal.
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Note: we in fact do slightly better than
a local minimum: we get the strict in-
equality f(⃗x) > f(⃗a), and not just f(⃗x) ≥
f(⃗a). Often this fact is expressed by saying
that non-degenerate critical points are
isolated - if f has a critical point at a⃗,
then there is some neighbourhood of a⃗ in
which f has no other critical points. (We
have only established this for local max-
ima and minima, but this fact is true for
non-degenerate critical points in general.)
This observation is the starting point for
an important area of differential topology
known as Morse Theory.

Chapter 13 Functions of Several Variables

That is, we simply have to rotate our coordinate system: lengths and angles are
all preserved.

In this new coordinate system, the Hessian matrix is diagonal:

Hess f(⃗a) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


If each of the eigenvalues λ1, . . . ,λn is positive, the Hessian is positive-definite,
and our critical point is a local minimum. If all the eigenvalues are negative, our
critical point is a local maximum. If some of the eigenvalues are positive and
some are negative, we have a saddle point.

Proving the result is somewhat more technical. Since a⃗ is a critical point for
f, and that Hess f(⃗a) is positive definite. We know that ∇f(⃗a) = 0 at a critical
point, so from (13.9) we get

f(⃗x)− f(⃗a) = hf,⃗a(⃗x− a⃗) + R(⃗a, x⃗).

Theorem 13.11.2, tells us that hf,⃗a(⃗x − a⃗) ≥ M∥⃗x − a⃗∥2 for some M, and by
(13.10), there exists a δ > 0 such that whenever 0 < ∥⃗x − a⃗∥ < δ, we get
|R(⃗a, x⃗)| < M∥⃗x− a⃗∥2. (Take ε = M in the definition of the limit.)

If we carefully put all this together, we can show that

hf,⃗a(⃗x− a⃗) + R(⃗a, x⃗) > 0,

since
hf,⃗a(⃗x− a⃗) ≥ M∥⃗x− a⃗∥2 > |R(⃗a, x⃗)|.

Substituting this into the above equation, we get f(⃗x)− f(⃗a) > 0 for any x⃗ with
0 < ∥⃗x− a⃗∥ < δ, and thus f has a local minimum at a⃗ ∈ Rn. The case of a local
maximum can be handled similarly (or by replacing f with−f).
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14: Mç½ã®Ö½� IÄã�¦Ù�ã®ÊÄ
The previous chapter introduced multivariable functions and we applied con-
cepts of differential calculus to these functions. We learned how we can view a
function of two variables as a surface in space, and learned how partial deriva-
tives convey information about how the surface is changing in any direction.

In this chapterwe apply techniques of integral calculus tomultivariable func-
tions. In Chapter 5 we learned how the definite integral of a single variable func-
tion gave us “area under the curve.” In this chapter we will see that integration
applied to a multivariable function gives us “volume under a surface.” And just
as we learned applications of integration beyond finding areas, we will find ap-
plications of integration in this chapter beyond finding volume.

14.1 Iterated Integrals and Area

In Chapter 13 we found that it was useful to differentiate functions of several
variables with respect to one variable, while treating all the other variables as
constants or coefficients. We can integrate functions of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
∫

fx(x, y) dx

=

∫
2xy dx

= x2y+ C.

Make a careful note about the constant of integration, C. This “constant” is
something with a derivative of 0 with respect to x, so it could be any expres-
sion that contains only constants and functions of y. For instance, if f(x, y) =
x2y+ sin y+ y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a function
of y, we write:

f(x, y) =
∫

fx(x, y) dx = x2y+ C(y).

Using this process we can even evaluate definite integrals.

Example 14.1.1 Integrating functions of more than one variable

Evaluate the integral
∫ 2y

1
2xy dx.

SÊ½çã®ÊÄ We find the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:

∫ 2y

1
2xy dx = x2y

∣∣∣2y
1

= (2y)2y− (1)2y
= 4y3 − y.



Chapter 14 Multiple Integration

We can also integrate with respect to y. In general,∫ h2(y)

h1(y)
fx(x, y) dx = f(x, y)

∣∣∣h2(y)
h1(y)

= f
(
h2(y), y

)
− f
(
h1(y), y

)
,

and ∫ g2(x)

g1(x)
fy(x, y) dy = f(x, y)

∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f
(
x, g1(x)

)
.

Note that when integrating with respect to x, the bounds are functions of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a function of y.
When integrating with respect to y, the bounds are functions of x (of the form
y = g1(x) and y = g2(x)) and the final result is a function of x. Another example
will help us understand this.

Example 14.1.2 Integrating functions of more than one variable
Evaluate

∫ x

1

(
5x3y−3 + 6y2

)
dy.

SÊ½çã®ÊÄ We consider x as staying constant and integratewith respect
to y: ∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5
2
x3x−2 + 2x3

)
−
(
−5
2
x3 + 2

)
=

9
2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a function of x.

In the previous example, we integrated a function with respect to y and
ended up with a function of x. We can integrate this as well. This process is
known as iterated integration, ormultiple integration.

Example 14.1.3 Integrating an integral

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx.

SÊ½çã®ÊÄ We follow a standard “order of operations” and perform the
operations inside parentheses first (which is the integral evaluated in Example
14.1.2.)∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx =
∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9
2
x3 − 5

2
x− 2

)
dx

=

(
9
8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89
8
.

Note how the bounds of xwere x = 1 to x = 2 and the final result was a number.
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Figure 14.1.1: Calculating the area of a
plane region R with an iterated integral.
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Figure 14.1.2: Calculating the area of a
plane region R with an iterated integral.

14.1 Iterated Integrals and Area

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we investigate
these questions, we offer some definitions.

Definition 14.1.1 Iterated Integration

Iterated integration is the process of repeatedly integrating the results
of previous integrations. Integrating one integral is denoted as follows.

Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
functions of x and y, respectively. Then:

1.
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)
f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy, x varies from h1(y) to h2(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = h1(y) and x = h2(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remember
that when setting up and evaluating such iterated integrals, we integrate “from
curve to curve, then from point to point.”

We now begin to investigate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 14.1.1. We learned in Section 7.1 that the area of R is given by∫ b

a

(
g2(x)− g1(x)

)
dx.

We can view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)
1 dy =

∫ g2(x)

g1(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

∫ b

a

(
g2(x)− g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)
dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), as
shown in Figure 14.1.2. Using a process similar to that above, we have

the area of R =

∫ d

c

∫ h2(y)

h1(y)
dx dy.
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Figure 14.1.3: Calculating the area of a
rectangle with an iterated integral in Ex-
ample 14.1.4.

Chapter 14 Multiple Integration

We state this formally in a theorem.

Theorem 14.1.1 Area of a plane region

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are continuous functions on [a, b]. The area
A of R is

A =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are continuous functions on [c, d]. The area
A of R is

A =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

The following examples should help us understand this theorem.

Example 14.1.4 Area of a rectangle
Find the area A of the rectangle with corners (−1, 1) and (3, 3), as shown in
Figure 14.1.3.

SÊ½çã®ÊÄ Multiple integration is obviously overkill in this situation, but
we proceed to establish its use.

The region R is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1
1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1
2 dx = 2x

∣∣∣3
−1

= 8.

We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1
1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1
4 dy = 4y

∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interesting to note
that this method works.

Example 14.1.5 Area of a triangle
Find the area A of the triangle with vertices at (1, 1), (3, 1) and (5, 5), as shown
in Figure 14.1.4.

SÊ½çã®ÊÄ The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y
to x = y+5

2 , while y is bounded by y = 1 to y = 5. (Recall that since x-values
increase from left to right, the leftmost curve, x = y, is the lower bound and the
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Figure 14.1.4: Calculating the area of a tri-
angle with iterated integrals in Example
14.1.5.
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Figure 14.1.5: Calculating the area of a
plane region with iterated integrals in Ex-
ample 14.1.6.

14.1 Iterated Integrals and Area

rightmost curve, x = (y+ 5)/2, is the upper bound.) The area is

A =

∫ 5

1

∫ y+5
2

y
dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1
2
y+

5
2

)
dy

=

(
−1
4
y2 +

5
2
y
) ∣∣∣5

1

= 4.

We can also find the area by integrating with respect to y first. In this situa-
tion, though, we have two functions that act as the lower bound for the region
R, y = 1 and y = 2x − 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1
1 dy dx +

∫ 5

3

∫ x

2x−5
1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2
= 4.

As expected, we get the same answer both ways.
Example 14.1.6 Area of a plane region
Find the area of the region enclosed by y = 2x and y = x2, as shown in Figure
14.1.5.

SÊ½çã®ÊÄ Once again we’ll find the area of the region using both or-
ders of integration.

Using dy dx:∫ 2

0

∫ 2x

x2
1 dy dx =

∫ 2

0
(2x− x2) dx =

(
x2 − 1

3
x3
)∣∣∣2

0
=

4
3
.

Using dx dy:∫ 4

0

∫ √y

y/2
1 dx dy =

∫ 4

0
(
√
y− y/2) dy =

(
2
3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4
3
.

Changing Order of Integration

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integration. We
integrated using both orders of integration to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
gration from a different perspective. Instead of starting with a region and cre-
ating iterated integrals, we will start with an iterated integral and rewrite it in
the other integration order. To do so, we’ll need to understand the region over
which we are integrating.
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Figure 14.1.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 14.1.7.

.....

R

.

x =
y2 /

4

.

x =
(y
+

4)
/2

. 2. 4.

2

.

4

.
x

.

y

Figure 14.1.7: Drawing the region deter-
mined by the bounds of integration in Ex-
ample 14.1.8.

Chapter 14 Multiple Integration

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 14.1.4), and so:

∫ b

a

∫ d

c
1 dy dx =

∫ d

c

∫ b

a
1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integrating over looks
like. From the sketch we can then rewrite the integral with the other order of
integration.

Examples will help us develop this skill.

Example 14.1.7 Changing the order of integration

Rewrite the iterated integral
∫ 6

0

∫ x/3

0
1 dy dxwith the order of integration dx dy.

SÊ½çã®ÊÄ We need to use the bounds of integration to determine the
region we are integrating over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0, y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 14.1.6 shows these curves, indicating that R is
a triangle.

To change the order of integration, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral as∫ 2

0

∫ 6

3y
1 dx dy.

Example 14.1.8 Changing the order of integration

Change the order of integration of
∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy.

SÊ½çã®ÊÄ We sketch the region described by the bounds to help us
change the integration order. x is bounded below and above (i.e., to the left and
right) by x = y2/4 and x = (y+ 4)/2 respectively, and y is bounded between 0
and 4. Graphing the previous curves, we find the region R to be that shown in
Figure 14.1.7.

To change the order of integration, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need two double integrals.
The upper bound for each is y = 2

√
x. Thus we have

∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy =

∫ 2

0

∫ 2
√
x

0
1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4
1 dy dx.
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14.1 Iterated Integrals and Area

This section has introduced a new concept, the iterated integral. We devel-
oped one application for iterated integration: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next section we apply iterated integration to solve problems we cur-
rently do not know how to handle. The “real” goal of this section was not to
learn a new way of computing area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following sections.
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Exercises 14.1
Terms and Concepts

1. When integrating fx(x, y) with respect to x, the constant of
integration C is really which: C(x) or C(y)? What does this
mean?

2. Integrating an integral is called .

3. When evaluating an iterated integral, we integrate from
to , then from to .

4. One understanding of an iterated integral is that∫ b

a

∫ g2(x)

g1(x)
dy dx gives the of a plane region.

Problems
In Exercises 5 – 10, evaluate the integral and subsequent it-
erated integral.

5. (a)
∫ 5

2

(
6x2 + 4xy− 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy− 3y2

)
dy dx

6. (a)
∫ π

0

(
2x cos y+ sin x

)
dx

(b)
∫ π/2

0

∫ π

0

(
2x cos y+ sin x

)
dx dy

7. (a)
∫ x

1

(
x2y− y+ 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y− y+ 2

)
dy dx

8. (a)
∫ y2

y

(
x− y

)
dx

(b)
∫ 1

−1

∫ y2

y

(
x− y

)
dx dy

9. (a)
∫ y

0

(
cos x sin y

)
dx

(b)
∫ π

0

∫ y

0

(
cos x sin y

)
dx dy

10. (a)
∫ x

0

(
1

1+ x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1+ x2

)
dy dx

In Exercises 11 – 16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integration dy dx
and dx dy, that give the area of R. Evaluate one of the iter-
ated integrals to find the area.
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15.
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In Exercises 17 – 22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integration.

17.
∫ 2

−2

∫ 4−x2

0
dy dx

18.
∫ 1

0

∫ 5−5x2

5−5x
dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0
dx dy

20.
∫ 3

−3

∫ √
9−x2

−
√

9−x2
dy dx

21.
∫ 1

0

∫ √y

−√y
dx dy+

∫ 4

1

∫ √y

y−2
dx dy

22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2
dy dx
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(b)

Figure 14.2.1: Developing a method for
finding signed volume under a surface.

Note: Recall that the integration symbol
“
∫
” is an “elongated S,” representing the

word “sum.” We interpreted
∫ b
a f(x) dx as

“take the sum of the areas of rectangles
over the interval [a, b].” The double inte-
gral uses two integration symbols to rep-
resent a “double sum.” When adding up
the volumes of rectangular solids over a
partition of a region R, as done in Figure
14.2.1, one could first add up the volumes
across each row (one type of sum), then
add these totals together (another sum),
as in

n∑
j=1

m∑
i=1

f(xi, yj)∆xi∆yj.

One can rewrite this as
n∑

j=1

(
m∑
i=1

f(xi, yj)∆xi

)
∆yj.

The summation inside the parenthesis
indicates the sum of heights × widths,
which gives an area; multiplying these ar-
eas by the thickness ∆yj gives a volume.
The illustration in Figure 14.2.2 relates to
this understanding.

Chapter 14 Multiple Integration

14.2 Double Integration and Volume

The definite integral of f over [a, b],
∫ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and letting
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the region under the curve with width∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing all the rectangle’s areas gave an approximation of the
definite integral, and Theorem 5.3.2 stated that

∫ b

a
f(x) dx = lim

∥∆x∥→0

∑
f(ci)∆xi,

connecting the area under the curve with sums of the areas of rectangles.

We use a similar approach in this section to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a continuous function defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a positive volume; space above f and
under the x-y planewill have a “negative” volume, similar to the notion of signed
area used before.)

We start by partitioning R into n rectangular subregions as shown in Figure
14.2.1(a). For simplicity’s sake, we let all widths be ∆x and all heights be ∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximation. Arbitrarily number the rectangles 1 through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Figure
14.2.1(b). Note how this rectangular solid only approximates the true volume
under the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a better approximation we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a
volume of f(xi, yi)∆Ai. Let ∥∆A∥ denote the length of the longest diagonal of all
rectangles in the subdivision of R; ∥∆A∥ → 0 means each rectangle’s width and
height are both approaching 0. If f is a continuous function, as ∥∆A∥ shrinks

(and hence n → ∞) the summation
n∑

i=1
f(xi, yi)∆Ai approximates the signed

volume better and better. This leads to a definition.
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Figure 14.2.2: Finding volume under a
surface by sweeping out a cross–sectional
area.

14.2 Double Integration and Volume

Definition 14.2.1 Double Integral, Signed Volume

Let z = f(x, y) be a continuous function defined over a closed, bounded
region R in the x-y plane. The signed volume V under f over R is denoted
by the double integral

V =

∫∫
R
f(x, y) dA.

Alternate notations for the double integral are∫∫
R
f(x, y) dA =

∫∫
R
f(x, y) dx dy =

∫∫
R
f(x, y) dy dx.

The definition above does not state how to find the signed volume, though
the notation offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

Theorem 14.2.1 Double Integrals and Signed Volume

Let z = f(x, y) be a continuous function defined over a closed , bounded
region R in the x-y plane. Then the signed volume V under f over R is

V =

∫∫
R
f(x, y) dA = lim

∥∆A∥→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The partition of the region R is not specified, so any partitioning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very satisfying way of computing volume, though. Our
experience has shown that evaluating the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 7.2.1 in Section 7.2. This stated that if A(x) gives the cross-
sectional area of a solid at x, then

∫ b
a A(x) dx gave the volume of that solid over

[a, b].
Consider Figure 14.2.2, where a surface z = f(x, y) is drawn over a region R.

Fixing a particular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
∫ g2(x)

g1(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integration are functions of x: the bounds depend
on the value of x.

As A(x) is a cross-sectional area function, we can find the signed volume V
under f by integrating it:

V =

∫ b

a
A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedure where we started with y fixed, resulting in an iter-
ated integral with the order of integration dx dy. The following theorem states
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Figure 14.2.3: Finding the signed volume
under a surface in Example 14.2.1.

Chapter 14 Multiple Integration

that both methods give the same result, which is the value of the double inte-
gral. It is such an important theorem it has a name associated with it.

Theorem 14.2.2 Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a continuous function on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are continuous functions on [a, b], then∫∫

R
f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1
and h2 are continuous functions on [c, d], then∫∫

R
f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

Note that once again the bounds of integration follow the “curve to curve,
point to point” pattern discussed in the previous section. In fact, one of the
main points of the previous section is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quantities, not just signed volume under
a surface.

Example 14.2.1 Evaluating a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (3, 1) and (4, 2) pictured in Figure 14.2.3, using Fubini’s
Theorem and both orders of integration.

SÊ½çã®ÊÄ We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.

Using the order dy dx:

∫∫
R

(
xy+ ey

)
dA =

∫ 4

3

∫ 2

1

(
xy+ ey

)
dy dx

=

∫ 4

3

([
1
2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3
2
x+ e2 − e

)
dx

=

(
3
4
x2 +

(
e2 − e

)
x
)∣∣∣∣4

3

=
21
4

+ e2 − e ≈ 9.92.

750




Figure 14.2.4: Finding the signed volume
under the surface in Example 14.2.2.

14.2 Double Integration and Volume

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy+ ey

)
dA =

∫ 2

1

∫ 4

3

(
xy+ ey

)
dx dy

=

∫ 2

1

([
1
2
x2y+ xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7
2
y+ ey

)
dy

=

(
7
4
y2 + ey

)∣∣∣∣2
1

=
21
4

+ e2 − e ≈ 9.92.

Both orders of integration return the same result, as expected.

Example 14.2.2 Evaluating a double integral
Evaluate

∫∫
R

(
3xy− x2 − y2 + 6

)
dA, where R is the triangle bounded by x = 0,

y = 0 and x/2+ y = 1, as shown in Figure 14.2.4.

SÊ½çã®ÊÄ While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not matter which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 ≤
y ≤ 1− x/2, and the bounds on x go from “point to point,” i.e., 0 ≤ x ≤ 2.∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0
(3xy− x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3
2
xy2 − x2y− 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0
dx

=

∫ 2

0

(
11
12

x3 − 11
4
x2 − x+

17
3

)
dx

=

(
11
48

x4 − 11
12

x3 − 1
2
x2 +

17
3
x
)∣∣∣∣2

0

=
17
3

= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 ≤
x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0
(3xy− x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3
2
x2y− 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0
dy

=

∫ 1

0

(
32
3
y3 − 22y2 + 2y+

28
3

)
dy

=

(
8
3
y4 − 22

3
y3 + y2 +

28
3
y
)∣∣∣∣1

0

=
17
3

= 5.6.

We obtained the same result using both orders of integration.
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Figure 14.2.5: R is the union of two
nonoverlapping regions, R1 and R2.

Figure 14.2.6: Finding the signed volume
under a surface in Example 14.2.3.

Chapter 14 Multiple Integration

Note how in these two examples that the bounds of integration depend only
on R; the bounds of integration have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Key Idea 14.2.1 Double Integration Bounds

When evaluating
∫∫

R f(x, y) dA using an iterated integral, the bounds of
integration depend only on R. The surface f does not determine the
bounds of integration.

Before doing another example, we give some properties of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem 14.2.3 Properties of Double Integrals

Let f and g be continuous functions over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R
c f(x, y) dA = c

∫∫
R
f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R
f(x, y) dA±

∫∫
R
g(x, y) dA

3. If f(x, y) ≥ 0 on R, then
∫∫

R
f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫
R
g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1
∪

R2
(see Figure 14.2.5). Then∫∫

R
f(x, y) dA =

∫∫
R1
f(x, y) dA+

∫∫
R2
f(x, y) dA.

Example 14.2.3 Evaluating a double integral
Let f(x, y) = sin x cos y and R be the triangle with vertices (−1, 0), (1, 0) and
(0, 1) (see Figure 14.2.6). Evaluate the double integral

∫∫
R f(x, y) dA.

SÊ½çã®ÊÄ If we attempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We would need to split the triangle into two regions
along the y-axis, then use Theorem 14.2.3, part 5.

Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤ x ≤
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Figure 14.2.7: Finding the volume under
the surface in Example 14.2.4.

14.2 Double Integration and Volume

1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫
R
f(x, y) dA =

∫ 1

0

∫ 1−y

y−1
sin x cos y dx dy

=

∫ 1

0

(
− cos x cos y

)∣∣∣1−y

y−1
dy

=

∫ 1

0
cos y

(
− cos(1− y) + cos(y− 1)

)
dy.

Recall that the cosine function is an even function; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− 1) = cos(1− y). Thus
the integrand simplifies to 0, and we have∫∫

R
f(x, y) dA =

∫ 1

0
0 dy

= 0.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure 14.2.6), giving a final signed volume of 0.

Example 14.2.4 Evaluating a double integral
Evaluate

∫∫
R(4−y) dA, where R is the region bounded by the parabolas y2 = 4x

and x2 = 4y, graphed in Figure 14.2.7.

SÊ½çã®ÊÄ Graphing each curve can help us find their points of inter-
section. Solving analytically, the second equation tells us that y = x2/4. Sub-
stituting this value in for y in the first equation gives us x4/16 = 4x. Solving for
x:

x4

16
= 4x

x4 − 64x = 0
x(x3 − 64) = 0

x = 0, 4.

Thus we’ve found analytically what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 14.2.7.

We now choose an order of integration: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.

Thus we have the following “curve to curve, point to point” bounds: y2/4 ≤
x ≤ 2√y, and 0 ≤ y ≤ 4.∫∫

R
(4− y) dA =

∫ 4

0

∫ 2√y

y2/4
(4− y) dx dy

=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y− y2

4
)(
4− y)

)
dy =

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176
15

= 11.73.

The signed volume under the surface f is about 11.7 cubic units.
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Figure 14.2.8: Determining the region R
determined by the bounds of integration
in Example 14.2.5.

Figure 14.2.9: Showing the surface f de-
fined in Example 14.2.5 over its region R.

Chapter 14 Multiple Integration

In the previous section we practised changing the order of integration of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integrating in one order is really hard, if not impossible,
whereas integrating with the other order is feasible.

Example 14.2.5 Changing the order of integration

Rewrite the iterated integral
∫ 3

0

∫ 3

y
e−x2 dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

SÊ½çã®ÊÄ Once again we make a sketch of the region over which we
are integrating to facilitate changing the order. The bounds on x are from x = y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 14.2.8, enclosing the region R.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integration are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated in-

tegral
∫ 3

0

∫ x

0
e−x2 dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegrating dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

∫
e−x2 dx; we have stated before that this integral cannot be

evaluated in terms of elementary functions. We are stuck.
Changing the order of integrationmakes a big difference here. In the second

iterated integral, we are faced with
∫
e−x2 dy; integrating with respect to y gives

us ye−x2 + C, and the first definite integral evaluates to

∫ x

0
e−x2 dy = xe−x2 .

Thus ∫ 3

0

∫ x

0
e−x2 dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with substitution, giving a final answer of
1
2 (1− e−9) ≈ 0.5. Figure 14.2.9 shows the surface over R.

In short, evaluating one iterated integral is impossible; the other iterated in-
tegral is relatively simple.

Definition 5.4.1 defines the average value of a single–variable function f(x)
on the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.
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Figure 14.2.10: Finding the average value
of f in Example 14.2.6.

Figure 14.2.11: Showing how an iterated
integral used to find area also finds a cer-
tain volume.

14.2 Double Integration and Volume

Definition 14.2.2 The Average Value of f on R

Let z = f(x, y) be a continuous function defined over a closed, bounded
region R in the x-y plane. The average value of f on R is

average value of f on R =

∫∫
R
f(x, y) dA∫∫
R
dA

.

Example 14.2.6 Finding average value of a function over a region R
Find the average value of f(x, y) = 4− y over the region R, which is bounded by
the parabolas y2 = 4x and x2 = 4y. Note: this is the same function and region
as used in Example 14.2.4.

SÊ½çã®ÊÄ In Example 14.2.4 we found∫∫
R
f(x, y) dA =

∫ 4

0

∫ 2√y

y2/4
(4− y) dx dy =

176
15

.

We find the area of R by computing
∫∫

R dA:∫∫
R
dA =

∫ 4

0

∫ 2√y

y2/4
dx dy =

16
3
.

Dividing the volume under the surface by the area gives the average value:

average value of f on R =
176/15
16/3

=
11
5

= 2.2.

While the surface, as shown in Figure 14.2.10, covers z-values from z = 0 to
z = 4, the “average” z-value on R is 2.2.

The previous section introduced the iterated integral in the context of find-
ing the area of plane regions. This section has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
tion. Given a region R in the plane, we computed

∫∫
R 1 dA; again, our under-

standing at the time was that we were finding the area of R. However, we can
now view the function z = 1 as a surface, a flat surface with constant z-value
of 1. The double integral

∫∫
R 1 dA finds the volume, under z = 1, over R, as

shown in Figure 14.2.11. Basic geometry tells us that if the base of a general
right cylinder has area A, its volume is A · h, where h is the height. In our case,
the height is 1. We were “actually” computing the volume of a solid, though we
interpreted the number as an area.

The next section extends our abilities to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integrating over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converting
everything into polar coordinates.
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Exercises 14.2
Terms and Concepts

1. An integral can be interpreted as giving the signed area over
an interval; a double integral can be interpreted as giving
the signed over a region.

2. Explain why the following statement is false: “Fu-

bini’s Theorem states that
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =∫ b

a

∫ g2(y)

g1(y)
f(x, y) dx dy.”

3. Explain why if f(x, y) > 0 over a region R, then∫∫
R f(x, y) dA > 0.

4. If
∫∫

R f(x, y) dA =
∫∫

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems
In Exercises 5 – 10,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integra-
tion.

5.
∫ 2

1

∫ 1

−1

(
x
y
+ 3
)

dx dy

6.
∫ π/2

−π/2

∫ π

0
(sin x cos y) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y+ 2

)
dy dx

8.
∫ 3

1

∫ 3

y

(
x2y− xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√

1−y
(x+ y+ 2) dx dy

10.
∫ 9

0

∫ √y

y/3

(
xy2
)
dx dy

In Exercises 11 – 18:

(a) Sketch the region R given by the problem.

(b) Set up the iterated integrals, in both orders, that eval-
uate the given double integral for the described region
R.

(c) Evaluate one of the iterated integrals to find the signed
volume under the surface z = f(x, y) over the region
R.

11.
∫∫

R
x2y dA, where R is bounded by y =

√
x and y = x2.

12.
∫∫

R
x2y dA, where R is bounded by y = 3

√
x and y = x3.

13.
∫∫

R
x2 − y2 dA, where R is the rectangle with corners

(−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R
yex dA, where R is bounded by x = 0, x = y2 and

y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, where R is bounded by x = 0, y = 0

and 3x+ 2y = 6.

16.
∫∫

R
ey dA, where R is bounded by y = ln x and

y = 1
e− 1

(x− 1).

17.
∫∫

R

(
x3y−x

)
dA, whereR is the half of the circle x2+y2 = 9

in the first and second quadrants.

18.
∫∫

R

(
4 − 3y

)
dA, where R is bounded by y = 0, y = x/e

and y = ln x.

In Exercises 19 – 22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integration.
Change the order of integration and evaluate the new iter-
ated integral.

19.
∫ 4

0

∫ 2

y/2
ex

2
dx dy

20.
∫ √

π/2

0

∫ √
π/2

x
cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y
x2 + y2

dx dy

22.
∫ 1

−1

∫ 2

1

x tan2 y
1+ ln y

dy dx

In Exercises 23 – 26, find the average value of f over the re-
gion R. Notice how these functions and regions are related to
the iterated integrals given in Exercises 5 – 8.

23. f(x, y) = x
y
+ 3; R is the rectangle with opposite corners

(−1, 1) and (1, 2).

24. f(x, y) = sin x cos y; R is bounded by x = 0, x = π,
y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2; R is bounded by the lines y = 0,
y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2; R is bounded by y = x, y = 1 and
x = 3.
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Figure 14.3.1: Approximating a region R
with portions of sectors of circles.

14.3 Double Integration with Polar Coordinates

14.3 Double Integration with Polar Coordinates
We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates – that is,
with equations of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equations of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
∫∫

R f(x, y) dA. We interpret this in-
tegral as follows: over the region R, sum up lots of products of heights (given by
f(xi, yi)) and areas (given by∆Ai). That is, dA represents “a little bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx – the area of a rectangle is simply length×width – a small change in x
times a small change in y. Thus we replace dA in the double integral with dx dy
or dy dx.

Now consider representing a region R with polar coordinates. Consider Fig-
ure 14.3.1(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
portions of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2 r
2θ, we can find the area of the shaded region. The whole sector has area

1
2 r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2 r
2
1∆θ. The area of the

shaded region is the difference of these areas:

∆Ai =
1
2
r22∆θ − 1

2
r21∆θ =

1
2
(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the region R, we usemany such subregions; doing so shrinks

the difference r2− r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respectively. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus, when
dr and dθ are small,

∆Ai ≈ ri dr dθ.
Taking a limit, where the number of subregions goes to infinity and both

r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.

So to evaluate
∫∫

R f(x, y) dA, replace dA with r dr dθ. Convert the function
z = f(x, y) to a functionwith polar coordinateswith the substitutions x = r cos θ,
y = r sin θ. Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this section, so we restate it here as a Key Idea.

Key Idea 14.3.1 Evaluating Double Integrals with Polar Coordinates

Let z = f(x, y) be a continuous function defined over a closed, bounded
region R in the x-y plane, where R is bounded by the polar equations
α ≤ θ ≤ β and g1(θ) ≤ r ≤ g2(θ). Then∫∫

R
f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.
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Figure 14.3.2: Evaluating a double inte-
gral with polar coordinates in Example
14.3.1.
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Figure 14.3.3: Showing the region R and
surface used in Example 14.3.2.

Chapter 14 Multiple Integration

Examples will help us understand this Key Idea.

Example 14.3.1 Evaluating a double integral with polar coordinates
Find the signed volume under the plane z = 4 − x − 2y over the disk bounded
by the circle with equation x2 + y2 = 1.

SÊ½çã®ÊÄ The bounds of the integral are determined solely by the re-
gion R over which we are integrating. In this case, it is a disk with boundary
x2+ y2 = 1. We need to find polar bounds for this region. It may help to review
Section 9.4; bounds for this disk are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
substitutions:

4− x− 2y ⇒ 4− r cos θ − 2r sin θ.

Finally, we replace dA in the double integral with r dr dθ. This gives the final
iterated integral, which we evaluate:

∫∫
R
f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos θ − 2r sin θ

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r− r2(cos θ − 2 sin θ)

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos θ − 2 sin θ)

)∣∣∣∣1
0
dθ

=

∫ 2π

0

(
2− 1

3
(
cos θ − 2 sin θ

))
dθ

=

(
2θ − 1

3
(
sin θ + 2 cos θ

))∣∣∣∣2π
0

= 4π ≈ 12.566.

The surface and region R are shown in Figure 14.3.2.

Example 14.3.2 Evaluating a double integral with polar coordinates
Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the region
bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.

SÊ½çã®ÊÄ At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 14.3.3(a)) has a hole in it, cutting out a
strange portion of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equations, the volume is not very difficult to com-
pute. It is straightforward to show that the circle (x − 1)2 + y2 = 1 has polar
equation r = 2 cos θ, and that the circle (x − 2)2 + y2 = 4 has polar equation
r = 4 cos θ. Each of these circles is traced out on the interval 0 ≤ θ ≤ π. The
bounds on r are 2 cos θ ≤ r ≤ 4 cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

∫∫
R f(x, y) dA:
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Figure 14.3.4: The surface and region R
used in Example 14.3.3.

14.3 Double Integration with Polar Coordinates

∫∫
R
f(x, y) dA =

∫ π

0

∫ 4 cos θ

2 cos θ

(
4−

(
r cos θ − 2

)2 − (r sin θ)2)r dr dθ
=

∫ π

0

∫ 4 cos θ

2 cos θ

(
− r3 + 4r2 cos θ

)
dr dθ

=

∫ π

0

(
−1
4
r4 +

4
3
r3 cos θ

)∣∣∣∣4 cos θ
2 cos θ

dθ

=

∫ π

0

([
−1
4
(256 cos4 θ) +

4
3
(64 cos4 θ)

]
−[

−1
4
(16 cos4 θ) +

4
3
(8 cos4 θ)

])
dθ

=

∫ π

0

44
3

cos4 θ dθ.

To integrate cos4 θ, rewrite it as cos2 θ cos2 θ and employ the power-reducing
formula twice:

cos4 θ = cos2 θ cos2 θ

=
1
2
(
1+ cos(2θ)

)1
2
(
1+ cos(2θ)

)
=

1
4
(
1+ 2 cos(2θ) + cos2(2θ)

)
=

1
4

(
1+ 2 cos(2θ) +

1
2
(
1+ cos(4θ)

))
=

3
8
+

1
2
cos(2θ) +

1
8
cos(4θ).

Picking up from where we left off above, we have

=

∫ π

0

44
3

cos4 θ dθ

=

∫ π

0

44
3

(
3
8
+

1
2
cos(2θ) +

1
8
cos(4θ)

)
dθ

=
44
3

(
3
8
θ +

1
4
sin(2θ) +

1
32

sin(4θ)
)∣∣∣∣π

0

=
11
2
π ≈ 17.279.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates.

Example 14.3.3 Evaluating a double integral with polar coordinates
Find the volume under the surface f(x, y) =

1
x2 + y2 + 1

over the sector of the
circle with radius a centred at the origin in the first quadrant, as shown in Figure
14.3.4.

SÊ½çã®ÊÄ The region R we are integrating over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are 0 ≤ r ≤ a,
0 ≤ θ ≤ π/2. The integrand is rewritten in polar as

1
x2 + y2 + 1

⇒ 1
r2 cos2 θ + r2 sin2 θ + 1

=
1

r2 + 1
.
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Note: Previous work has shown that
there is finite area under 1

x2+1 over the
entire x-axis. However, Example 14.3.3
shows that there is infinite volume under

1
x2+y2+1 over the entire x-y plane.

Chapter 14 Multiple Integration

We find the volume as follows:∫∫
R
f(x, y) dA =

∫ π/2

0

∫ a

0

r
r2 + 1

dr dθ

=

∫ π/2

0

1
2
(
ln|r2 + 1|

)∣∣∣a
0
dθ

=

∫ π/2

0

1
2
ln(a2 + 1) dθ

=

(
1
2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Figure 14.3.4 shows that f shrinks to near 0 very quickly. Regardless, as a grows,
so does the volume, without bound.

Example 14.3.4 Finding the volume of a sphere
Find the volume of a sphere with radius a.

SÊ½çã®ÊÄ The sphere of radius a, centred at the origin, has equation
x2+y2+z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This gives the upper

half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the disk of radius a, centred at the
origin. Polar bounds for this equation are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

All together, the volume of a sphere with radius a is:

2
∫∫

R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos θ)2 − (r sin θ)2r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2 − r2 dr dθ.

We can evaluate this inner integral with substitution. With u = a2 − r2, du =
−2r dr. The new bounds of integration are u(0) = a2 to u(a) = 0. Thus we
have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2
3
u3/2

)∣∣∣∣0
a2
dθ

=

∫ 2π

0

(
2
3
a3
)

dθ

=

(
2
3
a3θ
)∣∣∣∣2π

0

=
4
3
πa3.

Generally, the formula for the volumeof a spherewith radius r is given as 4/3πr3;
we have justified this formula with our calculation.
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Figure 14.3.5: Visualizing the solid used in
Example 14.3.5.

14.3 Double Integration with Polar Coordinates

Example 14.3.5 Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure 14.3.5,
where the base of the solid has boundary, in polar coordinates, r = cos(3θ),
and the top is defined by the plane z = 1 − x + 0.1y. Find the volume of the
solid.

SÊ½çã®ÊÄ From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute
the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integrating over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval [0, π], not
[0, 2π]). This gives us our bounds of integration. The integrand is z = 1−x+0.1y;
converting to polar, we have that the volume V is:

V =

∫∫
R
f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ.

Distributing the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1
2
cos2(3θ)− 1

3
cos3(3θ) cos θ +

0.1
3

cos3(3θ) sin θ
)

dθ.

This integral takes time to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(3θ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

We rewrite 1
2 cos

2(3θ) as 1
4 (1+cos(6θ)). We can also rewrite 1

3 cos
3(3θ) cos θ

as:

1
3
cos3(3θ) cos θ =

1
3
cos2(3θ) cos(3θ) cos θ =

1
3
1+ cos(6θ)

2
(
cos(4θ)+cos(2θ)

)
.

This last expression still needs simplification, but eventually all terms can be
reduced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cubic units
(metres, feet, etc.) Should the artist want to scale the piece uniformly, so that
each rose petal had a length other than 1, she should keep in mind that scaling
by a factor of k scales the volume by a factor of k3.

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two sections show two, among many,
applications of iterated integrals.
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Exercises 14.3
Terms and Concepts

1. When evaluating
∫∫

R f(x, y) dA using polar coordinates,
f(x, y) is replaced with and dA is replaced with

.

2. Why would one be interested in evaluating a double inte-
gral with polar coordinates?

Problems

In Exercises 3 – 10, a function f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

∫∫
R f(x, y) dA

using polar coordinates.

3. f(x, y) = 3x − y + 4; R is the region enclosed by the circle
x2 + y2 = 1.

4. f(x, y) = 4x + 4y; R is the region enclosed by the circle
x2 + y2 = 4.

5. f(x, y) = 8− y; R is the region enclosed by the circles with
polar equations r = cos θ and r = 3 cos θ.

6. f(x, y) = 4; R is the region enclosed by the petal of the rose
curve r = sin(2θ) in the first quadrant.

7. f(x, y) = ln
(
x2 + y2); R is the annulus enclosed by the cir-

cles x2 + y2 = 1 and x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2; R is the region enclosed by the circle
x2 + y2 = 1.

9. f(x, y) = x2 − y2; R is the region enclosed by the circle
x2 + y2 = 36 in the first and fourth quadrants.

10. f(x, y) = (x − y)/(x + y); R is the region enclosed by the
lines y = x, y = 0 and the circle x2 + y2 = 1 in the first
quadrant.

In Exercises 11 – 14, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates
and evaluate the new double integral.

11.
∫ 5

0

∫ √
25−x2

−
√

25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y− x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+5

)
dy dx+∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how
they all connect.

In Exercises 15 – 16, special double integrals are presented
that are especially well suited for evaluation in polar coordi-
nates.

15. Consider
∫∫

R
e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(x2+y2) over the entire x-y plane?

16. The surface of a right circular cone with height h and
base radius a can be described by the equation f(x, y) =

h− h
√

x2
a2

+
y2
a2

, where the tip of the cone lies at (0, 0, h)
and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

1
3
πa2h by evaluating∫∫

R
f(x, y) dA in polar coordinates.
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Figure 14.4.1: Illustrating the concept of
a lamina.

Note: Mass and weight are different
measures. Since they are scalar multi-
ples of each other, it is often easy to
treat them as the same measure. In this
section we effectively treat them as the
same, as our technique for findingmass is
the same as for finding weight. The den-
sity functions used will simply have differ-
ent units.

14.4 Centre of Mass

14.4 Centre of Mass
We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this section as
we apply iterated integrals to compute the mass and centre of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R dA.
That is, summing up the areas of lots of little subregions of R gave us the total
area. Informally, we think of

∫∫
R dA as meaning “sum up lots of little areas over

R.”
To find the signed volume under a surface, we evaluated the double integral∫∫

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is multiplied by f(x, y). We regard f(x, y) as giving a height, and
dA still giving an area: f(x, y) dA gives a volume. Thus, informally,

∫∫
R f(x, y) dA

means “sum up lots of little volumes over R.”
We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
Mathematicians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure 14.4.1(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

∫∫
R dm, where “dm” means “a little mass.” That is, the double integral

states the total mass of the lamina can be found by “summing up lots of little
masses over R.”

To evaluate this double integral, partition R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by multiplying a small amount of area by the density.

If density is variable, with density function δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by multiplying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1
∆mi =

n∑
i=1

δ(xi, yi)∆Ai.

Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integrating δ(x, y) over R gives the mass of the lamina.

Definition 14.4.1 Mass of a Lamina with Variable Density

Let δ(x, y) be a continuous density function of a lamina corresponding to
a closed, bounded plane region R. The massM of the lamina is

massM =

∫∫
R
dm =

∫∫
R
δ(x, y) dA.
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Figure 14.4.2: A region R representing a
lamina in Example 14.4.1.

Figure 14.4.3: Graphing the density func-
tions in Examples 14.4.1 and 14.4.2.
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Example 14.4.1 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of δ = 3
gm/cm2.

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 14.4.2. As the density is constant, it does not matter where
we place the square.

Following Definition 14.4.1, the massM of the lamina is

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3

∫ 1

0

∫ 1

0
dx dy = 3 gm.

This is all very straightforward; note that all we really did was find the area
of the lamina and multiply it by the constant density of 3 gm/cm2.

Example 14.4.2 Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
left hand corner at the origin (see Figure 14.4.2), with variable density δ(x, y) =
(x+ y+ 2) gm/cm2.

SÊ½çã®ÊÄ The variable density δ, in this example, is very uniform, giv-
ing a density of 3 in the centre of the square and changing linearly. A graph of
δ(x, y) can be seen in Figure 14.4.3; notice how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integrating δ(x, y) over R. The order of integration
is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy

=

∫ 1

0

(
1
2
x2 + x(y+ 2)

)∣∣∣∣1
0
dy

=

∫ 1

0

(
5
2
+ y
)

dy

=

(
5
2
y+

1
2
y2
)∣∣∣∣1

0

= 3 gm.

It turns out that since the density of the lamina is so uniformly distributed
“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3. The density functions in Examples 14.4.1 and 14.4.2 are
graphed in Figure 14.4.3, which illustrates this concept.

Example 14.4.3 Finding the weight of a lamina with variable density
Find the weight of the lamina represented by the disk with radius 2ft, centred
at the origin, with density function δ(x, y) = (x2 + y2 + 1) lb/ft2. Compare
this to the weight of the lamina with the same shape and density δ(x, y) =

(2
√

x2 + y2 + 1) lb/ft2.

SÊ½çã®ÊÄ Adirect application ofDefinition 14.4.1 states that theweight
of the lamina is

∫∫
R δ(x, y) dA. Since our lamina is in the shape of a circle, it

makes sense to approach the double integral using polar coordinates.
The density function δ(x, y) = x2 + y2 + 1 becomes δ(r, θ) = (r cos θ)2 +

(r sin θ)2 + 1 = r2 + 1. The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

764




14.4 Centre of Mass

Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ

=

∫ 2π

0

(
1
4
r4 +

1
2
r2
)∣∣∣∣2

0
dθ

=

∫ 2π

0
(6) dθ

= 12π ≈ 37.70 lb.

Now compare this with the density function δ(x, y) = 2
√

x2 + y2 + 1. Con-
verting this to polar coordinates gives δ(r, θ) = 2

√
(r cos θ)2 + (r sin θ)2 + 1 =

2r+ 1. Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(2r+ 1)r dr dθ

=

∫ 2π

0
(
2
3
r3 +

1
2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22
3

)
dθ

=
44
3
π ≈ 46.08 lb.

One would expect different density functions to return different weights, as we
have here. The density functions were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 14.4.4.

(a) (b)

Figure 14.4.4: Graphing the density functions in Example 14.4.3. In (a) is the density
function δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) = 2

√
x2 + y2 + 1.

Notice how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results in less
weight.

Plotting the density functions can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R f(x, y) dA as giving the volume under f over R; we can understand
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∫∫
R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass;

by compressing the “volume” under δ onto the x-y plane, we get “more mass”
in some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the centre of mass, which we discuss next.

Centre of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the centre of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should still be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the centre of mass, or centre
of gravity. It is though all the mass is “centred” there. In fact, if the disk has a
mass of 3 kg, the disk will behave physically as though it were a point-mass of
3 kg located at its centre of mass. For instance, the disk will naturally spin with
an axis through its centre of mass (which is why it is important to “balance” the
tires of your car: if they are “out of balance”, their centre of mass will be outside
of the axle and it will shake terribly).

We find the centre of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+ 0.73+ 0.85
3

≈ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is multiplied by a weight.
In general, given values x1, x2, . . . , xn andweightsw1,w2, . . . ,wn, theweighted

average of the n values is
n∑

i=1
wixi

/
n∑

i=1
wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to centre of mass is given in the following theorem.

Theorem 14.4.1 Centre of Mass of Discrete Linear System

Let point massesm1,m2, . . . ,mn be distributed along the x-axis at loca-
tions x1, x2, . . . , xn, respectively. The centre of mass x of the system is
located at

x =
n∑

i=1
mixi

/
n∑

i=1
mi.
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Figure 14.4.5: Illustrating point masses
along a thin rod and the centre of mass.

14.4 Centre of Mass

Example 14.4.4 Finding the centre of mass of a discrete linear system

1. Point masses of 2 gm are located at x = −1, x = 2 and x = 3 are con-
nected by a thin rod of negligible weight. Find the centre of mass of the
system.

2. Point masses of 10 gm, 2 gm and 1 gm are located at x = −1, x = 2 and
x = 3, respectively, are connected by a thin rod of negligible weight. Find
the centre of mass of the system.

SÊ½çã®ÊÄ

1. Following Theorem 14.4.1, we compute the centre of mass as:

x =
2(−1) + 2(2) + 2(3)

2+ 2+ 2
=

4
3
= 1.3.

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 14.4.5(a).

2. Again following Theorem 14.4.1, we find:

x =
10(−1) + 2(2) + 1(3)

10+ 2+ 1
=

−3
13

≈ −0.23.

Placing a large weight at the left hand side of the systemmoves the centre
of mass left, as shown in Figure 14.4.5(b).

In a discrete system (i.e., mass is located at individual points, not along a
continuum) we find the centre of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
ticular point or line. In the case described by Theorem 14.4.1, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Letting M be the total mass of the
system, we have x = My/M.

We can extend the concept of the centre of mass of discrete points along a
line to the centre of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

Definition 14.4.2 Moments about the x- and y- Axes.

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),
(x2, y2) . . . , (xn, yn), respectively, in the x-y plane.

1. Themoment about the y-axis,My, isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =

n∑
i=1

miyi.

One can think that these definitions are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.
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Chapter 14 Multiple Integration

We now define the centre of mass of discrete points in the plane.

Theorem 14.4.2 Centre of Mass of Discrete Planar System

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),

(x2, y2) . . . , (xn, yn), respectively, in the x-y plane, and letM =

n∑
i=1

mi.

The centre of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example 14.4.5 Finding the centre of mass of a discrete planar system
Let point masses of 1 kg, 2 kg and 5 kg be located at points (2, 0), (1, 1) and
(3, 1), respectively, and are connected by thin rods of negligible weight. Find
the centre of mass of the system.

SÊ½çã®ÊÄ We follow Theorem 14.4.2 and Definition 14.4.2 to find M,
Mx andMy:

M = 1+ 2+ 5 = 8 kg.

Mx =

n∑
i=1

miyi

= 1(0) + 2(1) + 5(1)
= 7.

My =

n∑
i=1

mixi

= 1(2) + 2(1) + 5(3)
= 19.

Thus the centre ofmass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
8
,
7
8

)
= (2.375, 0.875),

illustrated in Figure 14.4.6.

We finally arrive at our true goal of this section: finding the centre ofmass of
a lamina with variable density. While the abovemeasurement of centre of mass
is interesting, it does not directly answermore realistic situationswhereweneed
to find the centre of mass of a contiguous region. However, understanding the
discrete case allows us to approximate the centre of mass of a planar lamina;
using calculus, we can refine the approximation to an exact value.

We begin by representing a planar lamina with a region R in the x-y plane
with density function δ(x, y). Partition R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by multiplying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
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14.4 Centre of Mass

with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1
δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1
yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1
xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to 0 in both the x and
y directions, we arrive at the double integrals given in the following theorem.

Theorem 14.4.3 Centre of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a closed, bounded region R in the
x-y plane with density function δ(x, y).

1. mass: M =

∫∫
R
δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R
yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R
xδ(x, y) dA

4. The centre of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)
.

We start our practice of finding centres of mass by revisiting some of the
lamina used previously in this section when finding mass. Wewill just set up the
integrals needed to computeM,Mx andMy and leave the details of the integra-
tion to the reader.

Example 14.4.6 Finding the centre of mass of a lamina
Find the centre mass of a square lamina, with side length 1, with a density of
δ = 3 gm/cm2. (Note: this is the lamina from Example 14.4.1.)

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 14.4.7 as done previously.

Following Theorem 14.4.3, we findM,Mx andMy:

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3 gm.

Mx =

∫∫
R
3y dA =

∫ 1

0

∫ 1

0
3y dx dy = 3/2 = 1.5.

My =

∫∫
R
3x dA =

∫ 1

0

∫ 1

0
3x dx dy = 3/2 = 1.5.

Thus the centre of mass is (x, y) =
(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) = (0.5, 0.5).
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This is what we should have expected: the centre of mass of a square with con-
stant density is the centre of the square.

Example 14.4.7 Finding the centre of mass of a lamina
Find the centre of mass of a square lamina, represented by the unit square with
lower left hand corner at the origin (see Figure 14.4.7), with variable density
δ(x, y) = (x+ y+ 2) gm/cm2. (Note: this is the lamina from Example 14.4.2.)

SÊ½çã®ÊÄ We follow Theorem 14.4.3, to findM,Mx andMy:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy = 3 gm.

Mx =

∫∫
R
y(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
y(x+ y+ 2) dx dy =

19
12

.

My =

∫∫
R
x(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
x(x+ y+ 2) dx dy =

19
12

.

Thus the centre of mass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
36

,
19
36

)
≈ (0.528, 0.528).

While themass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the centre of mass
from the centre slightly towards the upper right hand corner.

Example 14.4.8 Finding the centre of mass of a lamina
Find the centre of mass of the lamina represented by the circle with radius 2ft,
centred at the origin, with density function δ(x, y) = (x2+ y2+1) lb/ft2. (Note:
this is one of the lamina used in Example 14.4.3.)

SÊ½çã®ÊÄ As done in Example 14.4.3, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(x2+
y2 + 1), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
r2 + 1

)
. We compute

M,Mx andMy:

M =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ = 12π ≈ 37.7 lb.

Mx =

∫ 2π

0

∫ 2

0
(r sin θ)(r2 + 1)r dr dθ = 0.

My =

∫ 2π

0

∫ 2

0
(r cos θ)(r2 + 1)r dr dθ = 0.

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the centre
of mass is (x, y) = (0, 0).

Example 14.4.9 Finding the centre of mass of a lamina
Find the centre of mass of the lamina represented by the region R shown in Fig-
ure 14.4.8, half an annulus with outer radius 6 and inner radius 5, with constant
density 2 lb/ft2.

SÊ½çã®ÊÄ Once again it will be useful to represent R in polar coor-
dinates. Using the description of R and/or the illustration, we see that R is
bounded by 5 ≤ r ≤ 6 and 0 ≤ θ ≤ π. As the lamina is symmetric about770
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the y-axis, we should expectMy = 0. We computeM,Mx andMy:

M =

∫ π

0

∫ 6

5
(2)r dr dθ = 11π lb.

Mx =

∫ π

0

∫ 6

5
(r sin θ)(2)r dr dθ =

364
3

≈ 121.33.

My =

∫ π

0

∫ 6

5
(r cos θ)(2)r dr dθ = 0.

Thus the centre of mass is (x, y) =
(
0, 364

33π
)
≈ (0, 3.51). The centre of mass is

indicated in Figure 14.4.8; note how it lies outside of R!

This section has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more application in the following section: computing sur-
face area.
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Exercises 14.4
Terms and Concepts

1. Why is it easy to use “mass” and “weight” interchangeably,
even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance
from the -axis.

3. We can think of
∫∫

R dm as meaning “sum up lots of
”

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R yδ(x, y) dA instead of
∫∫

R xδ(x, y) dA;
that is, why do we use “y” and not “x”?

6. Describe a situation where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems
In Exercises 7 – 10, point masses are given along a line or in
the plane. Find the center of mass x or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1; m2 = 3 at x = 3; m3 = 5 at x = 10

8. m1 = 2 at x = −3; m2 = 2 at x = −1;
m3 = 3 at x = 0; m4 = 3 at x = 7

9. m1 = 2 at (−2,−2); m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1); m2 = 2 at (−1, 1);
m3 = 2 at (1, 1); m4 = 1 at (1,−1)

In Exercises 11 – 18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density function
δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

12. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

13. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

15. R is the disk centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

16. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

17. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/ft2

18. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/ft2

In Exercises 19 – 26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density function
δ(x, y).
Note: these are the same lamina as in Exercises 11 – 18.

19. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

20. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

21. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

23. R is the disk centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

24. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

25. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/ft2

26. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/ft2

Themoment of inertia I is ameasure of the tendency of a lam-
ina to resist rotating about an axis or continue to rotate about
an axis. Ix is the moment of inertia about the x-axis, Iy is the
moment of inertia about the x-axis, and IO is the moment of
inertia about the origin. These are computed as follows:

• Ix =
∫∫

R
y2 dm

• Iy =
∫∫

R
x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In Exercises 27 – 30, a lamina corresponding to a planar re-
gion R is given with a mass of 16 units. For each, compute Ix,
Iy and IO.

27. R is the 4 × 4 square with corners at (−2,−2) and (2, 2)
with density δ(x, y) = 1.

28. R is the 8×2 rectangle with corners at (−4,−1) and (4, 1)
with density δ(x, y) = 1.

29. R is the 4×2 rectangle with corners at (−2,−1) and (2, 1)
with density δ(x, y) = 2.

30. R is the diskwith radius 2 centered at the originwith density
δ(x, y) = 4/π.
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(a)

(b)

Figure 14.5.1: Developing a method of
computing surface area.

14.5 Surface Area

14.5 Surface Area

In Section 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equations.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure 14.5.1(a). Because of the domed shape of the surface, the surface area
will be greater than that of the area of the region R. We can find this area using
the same basic technique we have used over and over: we’ll make an approxi-
mation, then using limits, we’ll refine the approximation to the exact value.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this portion of the surface. When∆xi
and∆yi are small, the function is approximated well by the tangent plane at any
point (xi, yi) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the function so well that in this figure, it is virtually indis-
tinguishable from the surface itself! Therefore we can approximate the surface
area Si of this region of the surface with the area Ti of the corresponding portion
of the tangent plane.

This portion of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applications of the cross product from Section 11.4 is
that the area of this parallelogram is ∥ u⃗× v⃗ ∥. Once we can determine u⃗ and v⃗,
we can determine the area.

u⃗ is tangent to the surface in the direction of x, therefore, from Section 13.8,
u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. The x-displacement of u⃗ is∆xi, so we know that
u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩. Thus:

surface area Si ≈ area of Ti
= ∥ u⃗× v⃗ ∥
= ∥∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩∥

=
√

1+ fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.

Note that∆xi∆yi = ∆Ai, the area of the i th subregion.

Summing up all n of the approximations to the surface area gives

surface area over R ≈
n∑

i=1

√
1+ fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Once again take a limit as all of the ∆xi and ∆yi shrink to 0; this leads to a
double integral.
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Note: as done before, we think of
“
∫∫

R dS” as meaning “sum up lots of
little surface areas over R.”

The concept of surface area is defined
here, for while we already have a notion
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.

Figure 14.5.2: Finding the area of a trian-
gle in space in Example 14.5.1.
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Definition 14.5.1 Surface Area

Let z = f(x, y) where fx and fy are continuous over a closed, bounded
region R. The surface area S over R is

S =
∫∫

R
dS

=

∫∫
R

√
1+ fx(x, y)2 + fy(x, y)2 dA.

We test this definition by using it to compute surface areas of known sur-
faces. We start with a triangle.

Example 14.5.1 Finding the surface area of a plane over a triangle
Let f(x, y) = 4− x− 2y, and let R be the region in the plane bounded by x = 0,
y = 0 and y = 2−x/2, as shown in Figure 14.5.2. Find the surface area of f over
R.

SÊ½çã®ÊÄ We followDefinition 14.5.1. We start by noting that fx(x, y) =
−1 and fy(x, y) = −2. To define R, we use bounds 0 ≤ y ≤ 2 − x/2 and
0 ≤ x ≤ 4. Therefore

S =
∫∫

R
dS

=

∫ 4

0

∫ 2−x/2

0

√
1+ (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
20. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then ∥ u⃗ − proj v⃗ u⃗ ∥ = 4

√
6/5. Geometry states that the area is

thus
1
2
· 4
√

6/5 ·
√
20 = 4

√
6.

We affirm the validity of our formula.

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

Example 14.5.2 The surface area of a sphere.
Find the surface area of the sphere with radius a centred at the origin, whose
top hemisphere has equation f(x, y) =

√
a2 − x2 − y2.

SÊ½çã®ÊÄ We start by computing partial derivatives and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our function f only defines the top upper hemisphere of the sphere, we dou-774




Note: The inner integral in Equation
(14.1) is an improper integral, as the

integrand of
∫ a

0
r
√

a2
a2 − r2

dr is not de-

fined at r = a. To properly evaluate this
integral, one must use the techniques of
Section 6.8.

The reason this need arises is that
the function f(x, y) =

√
a2 − x2 − y2

fails the requirements of Definition
14.5.1, as fx and fy are not continuous
on the boundary of the circle x2+y2 = a2.

The computation of the surface area is
still valid. The definition makes stronger
requirements than necessary in part to
avoid the use of improper integration, as
when fx and/or fy are not continuous, the
resulting improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.

Figure 14.5.3: Finding the surface area of
a cone in Example 14.5.3.

14.5 Surface Area

ble our surface area result to get the total area:

S = 2
∫∫

R

√
1+ fx(x, y)2 + fy(x, y)2 dA

= 2
∫∫

R

√
1+

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integrating over is bounded by the circle, centred at the
origin, with radius a: x2 + y2 = a2. Because of this region, we are likely to have
greater success with our integration by converting to polar coordinates. Using
the substitutions x = r cos θ, y = r sin θ, dA = r dr dθ and bounds 0 ≤ θ ≤ 2π
and 0 ≤ r ≤ a, we have:

S = 2
∫ 2π

0

∫ a

0

√
1+

r2 cos2 θ + r2 sin2 θ
a2 − r2 cos2 θ − r2 sin2 θ

r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

1+
r2

a2 − r2
dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2

a2 − r2
dr dθ. (14.1)

Apply substitution u = a2 − r2 and integrate the inner integral, giving

= 2
∫ 2π

0
a2 dθ

= 4πa2.

Our work confirms our previous formula.

Example 14.5.3 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

f(x, y) = h− h
a
√

x2 + y2,

shown in Figure 14.5.3. Find the surface area of this cone.

SÊ½çã®ÊÄ We begin by computing partial derivatives.

fx(x, y) = − xh
a
√

x2 + y2
and fy(x, y) = − yh

a
√

x2 + y2
.

Since we are integrating over the disk bounded by x2 + y2 = a2, we again
use polar coordinates. Using the standard substitutions, our integrand becomes√

1+
(
hr cos θ
a
√
r2

)2

+

(
hr sin θ
a
√
r2

)2

.

This may look intimidating at first, but there are lots of simple simplifications to
be done. It amazingly reduces to just√

1+
h2

a2
=

1
a

√
a2 + h2.
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Note: Once again fx and fy are not con-
tinuous on the domain of f, as both are
undefined at (0, 0). (A similar problem
occurred in the previous example.) Once
again the resulting improper integral con-
verges and the computation of the sur-
face area is valid.

Figure 14.5.4: Graphing the surface in Ex-
ample 14.5.4.

Chapter 14 Multiple Integration

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =
∫ 2π

0

∫ a

0
r
1
a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1
2
r2
1
a

√
a2 + h2

)∣∣∣∣a
0
dθ

=

∫ 2π

0

1
2
a
√

a2 + h2 dθ

= πa
√

a2 + h2.

This matches the formula found in the back of this text.

Example 14.5.4 Finding surface area over a region
Find the area of the surface f(x, y) = x2 − 3y+ 3 over the region R bounded by
−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 14.5.4.

SÊ½çã®ÊÄ It is straightforward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1+ (2x)2 + (−3)2 dA =

∫∫
R

√
10+ 4x2 dA.

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This partic-
ular integral can be easily evaluated, though, with judicious choice of our order
of integration.

Integratingwith order dx dy requires us to evaluate
∫ √

10+ 4x2 dx. This can
be done, though it involves Integration By Parts and sinh−1 x. Integrating with
order dy dx has as its first integral

∫ √
10+ 4x2 dy, which is easy to evaluate: it

is simply y
√
10+ 4x2 + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.∫∫
R

√
10+ 4x2 dA =

∫ 4

0

∫ x

−x

√
10+ 4x2 dy dx

=

∫ 4

0

(
y
√

10+ 4x2
)∣∣∣x

−x
dx

=

∫ 4

0

(
2x
√

10+ 4x2
)
dx.

Apply substitution with u = 10+ 4x2:

=

(
1
6
(
10+ 4x2

)3/2)∣∣∣∣4
0

=
1
3
(
37

√
74− 5

√
10
)
≈ 100.825u2.

So while the region R over which we integrate has an area of 16u2, the surface
has a much greater area as its z-values change dramatically over R.

In practice, technology helps greatly in the evaluation of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least time consuming, by hand, and can at the least produce very accurate ap-
proximations with numerical methods. In general, just knowing how to set up
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14.5 Surface Area

the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next section, we learn how to integrate double in-
tegrals – that is, we learn to evaluate triple integrals, along with learning some
uses for this operation.

777



Exercises 14.5
Terms and Concepts

1. “Surface area” is analogous to what previously studied con-
cept?

2. To approximate the area of a small portion of a surface, we
computed the area of its plane.

3. We interpret
∫∫

R
dS as “sum up lots of little

.”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulting integral
is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

6. Let z = f(x, y) and z = g(x, y) = 2f(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises 7 – 10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x, y) = sin x cos y; R is the rectangle with bounds 0 ≤
x ≤ 2π, 0 ≤ y ≤ 2π.

8. f(x, y) =
1

x2 + y2 + 1
; R is bounded by the circle x2 +

y2 = 9.

9. f(x, y) = x2− y2; R is the rectangle with opposite corners
(−1,−1) and (1, 1).

10. f(x, y) = 1
ex2 + 1

; R is the rectangle bounded by

−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.

In Exercises 11 – 19, find the area of the given surface over
the region R.

11. f(x, y) = 3x− 7y+ 2; R is the rectangle with opposite cor-
ners (−1, 0) and (1, 3).

12. f(x, y) = 2x+ 2y+ 2; R is the triangle with corners (0, 0),
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(1, 0) and (0, 1).

13. f(x, y) = x2 + y2 + 10; R is bounded by the circle x2 + y2 =
16.

14. f(x, y) = −2x + 4y2 + 7 over R, the triangle bounded by
y = −x, y = x, 0 ≤ y ≤ 1.

15. f(x, y) = x2 + y over R, the triangle bounded by y = 2x,
y = 0 and x = 2.

16. f(x, y) = 2
3 x

3/2 + 2y3/2 over R, the rectangle with opposite
corners (0, 0) and (1, 1).

17. f(x, y) = 10 − 2
√
x2 + y2 over R, bounded by the circle

x2 + y2 = 25. (This is the cone with height 10 and base
radius 5; be sure to compare your result with the known
formula.)

18. Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x, y) =

√
25− x2 − y2 over R,

bounded by the circle x2 + y2 = 25. (Be sure to compare
your result with the known formula.)

19. Find the surface area of the ellipse formed by restricting the
plane f(x, y) = cx+dy+h to the region R, bounded by the
circle x2 + y2 = 1, where c, d and h are some constants.
Your answer should be given in terms of c and d; why does
the value of h not matter?
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(a)

(b)

Figure 14.6.1: Finding the volume be-
tween the planes given in Example 14.6.1.

Chapter 14 Multiple Integration

14.6 VolumeBetweenSurfaces andTriple Integration
We learned in Section 14.2 how to compute the signed volume V under a surface
z = f(x, y) over a region R: V =

∫∫
R f(x, y) dA. It follows naturally that if f(x, y) ≥

g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

∫∫
R
f(x, y) dA−

∫∫
R
g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Theorem 14.6.1 Volume Between Surfaces

Let f and g be continuous functions on a closed, bounded region R, where
f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g over R
is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Example 14.6.1 Finding volume between surfaces
Find the volume of the space region bounded by the planes z = 3x + y − 4,
z = 8 − 3x − 2y, x = 0 and y = 0. In Figure 14.6.1(a) the planes are drawn; in
(b), only the defined region is given.

SÊ½çã®ÊÄ We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x+ y− 4 = 8− 3x− 2y. Applying a little algebra, we
have:

3x+ y− 4 = 8− 3x− 2y
6x+ 3y = 12
2x+ y = 4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
by x = 0, y = 0, and y = 4 − 2x; we can convert these bounds to integration
bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y− (3x+ y− 4)

)
dA

=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16u3.

The volume between the surfaces is 16 cubic units.

In the preceding example, we found the volume by evaluating the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y− (3x+ y− 4)

)
dy dx.

Note howwe can rewrite the integrand as an integral, much as we did in Section
14.1:

8− 3x− 2y− (3x+ y− 4) =
∫ 8−3x−2y

3x+y−4
dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4
dz
)

dy dx.
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(a)

(b)

Figure 14.6.2: Approximating the volume
of a region D in space.

14.6 Volume Between Surfaces and Triple Integration

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introduction to double integrals was in the context of finding the
area of a plane region, our introduction into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 14.6.2(a), we start with an approximation. Break D into
n rectangular solids; the solids near the boundary of Dmay possibly not include
portions of D and/or include extra space. In Figure 14.6.2(b), we zoom in on a
portion of the boundary of D to show a rectangular solid that contains space not
in D; as this is an approximation of the volume, this is acceptable and this error
will be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z directions,
respectively. By summing up the volumes of all n solids, we get an approximation
of the volume V of D:

V ≈
n∑

i=1
∆Vi =

n∑
i=1

∆xi∆yi∆zi.

Let ∥∆D∥ represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As ∥∆D∥ → 0, the volume of each solid goes to 0, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as ∥∆D∥ → 0 turns our approximation of V into an exact calculation of
V. Before we state this result in a theorem, we use a definition to define some
terms.

Definition 14.6.1 Triple Integrals, Iterated Integration (Part I)

Let D be a closed, bounded region in space. Let a and b be real numbers, let g1(x) and g2(x) be
continuous functions of x, and let f1(x, y) and f2(x, y) be continuous functions of x and y.

1. The volume V of D is denoted by a triple integral,

V =

∫∫∫
D
dV.

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
dz

)
dy dx.

Evaluating the above iterated integral is triple integration.

Our informal understanding of the notation
∫∫∫

D dV is “sum up lots of little
volumes over D,” analogous to our understanding of

∫∫
R dA and

∫∫
R dm.

We now state the major theorem of this section.
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(a)

(b)

Figure 14.6.3: The region D used in Exam-
ple 14.6.2 in (a); in (b), the region found
by collapsing D onto the x-y plane.

Chapter 14 Multiple Integration

Theorem 14.6.2 Triple Integration (Part I)

Let D be a closed, bounded region in space and let∆D be any subdivision of D into n rectangular
solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V of D is

V =

∫∫∫
D
dV = lim

∥∆D∥→0

n∑
i=1

∆Vi = lim
∥∆D∥→0

n∑
i=1

∆xi∆yi∆zi.

2. IfD is defined as the region bounded by the planes x = a and x = b, the cylinders y = g1(x)
and y = g2(x), and the surfaces z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x)
and f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx.

3. V can be determined using iterated integration with other orders of integration (there are 6
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.

We evaluated the area of a plane region R by iterated integration, where the
bounds were “from curve to curve, then from point to point.” Theorem 14.6.2
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the x-y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The combination
of these 6 surfaces enclose, and define, D.

Examples will help us understand triple integration, including integrating
with various orders of integration.

Example 14.6.2 Finding the volumeof a space regionwith triple integration
Find the volume of the space region in the first octant bounded by the plane
z = 2 − y/3 − 2x/3, shown in Figure 14.6.3(a), using the order of integration
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integration.

SÊ½çã®ÊÄ Starting with the order of integration dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 − y/3 − 2x/3;
0 ≤ z ≤ 2− y/3− 2x/3.

To find the bounds on y and x, we “collapse” the region onto the x-y plane,
giving the triangle shown in Figure 14.6.3(b). (We know the equation of the line
y = 6− 2x in two ways. First, by setting z = 0, we have 0 = 2− y/3− 2x/3 ⇒
y = 6 − 2x. Secondly, we know this is going to be a straight line between the
points (3, 0) and (0, 6) in the x-y plane.)

We define that region R, in the integration order of dy dx, with bounds 0 ≤782





Note: Example 14.6.2 uses the term “first
octant.” Recall how the x-, y- and z-axes
divide space into eight octants; the octant
in which x, y and z are all positive is called
the first octant.

(a)

(b)

Figure 14.6.4: The region D in Example
14.6.2 is collapsed onto the y-z plane in
(a); in (b), the region is collapsed onto the
x-z plane.

14.6 Volume Between Surfaces and Triple Integration

y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the region D is:

V =

∫∫∫
D
dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3 y−

2
3 x

0
dz dy dx

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3 y−

2
3 x

0
dz

)
dy dx

=

∫ 3

0

∫ 6−2x

0
z
∣∣∣2− 1

3 y−
2
3 x

0
dy dx

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y− 2

3
x
)

dy dx.

From this step on, we are evaluating a double integral as done many times be-
fore. We skip these steps and give the final volume,

= 6u3.

The order dz dx dy:

Now consider the volumeusing the order of integration dz dx dy. The bounds
on z are the same as before, 0 ≤ z ≤ 2−y/3−2x/3. Collapsing the space region
on the x-y plane as shown in Figure 14.6.3(b), we now describe this triangle with
the order of integration dx dy. This gives bounds 0 ≤ x ≤ 3−y/2 and 0 ≤ y ≤ 6.
Thus the volume is given by the triple integral

V =

∫ 6

0

∫ 3− 1
2 y

0

∫ 2− 1
3 y−

2
3 x

0
dz dx dy.

The order dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direction of increasing x. The first surface we hit as we enter the
region is the y-z plane, defined by x = 0. We come out of the region at the plane
z = 2− y/3−2x/3; solving for x, we have x = 3− y/2−3z/2. Thus the bounds
on x are: 0 ≤ x ≤ 3− y/2− 3z/2.

Nowcollapse the space regiononto the y-zplane, as shown in Figure 14.6.4(a).
(Again, we find the equation of the line z = 2−y/3 by setting x = 0 in the equa-
tion x = 3− y/2− 3z/2.) We need to find bounds on this region with the order
dy dz. The curves that bound y are y = 0 and y = 6− 3z; the points that bound
z are 0 and 2. Thus the triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0
dx dy dz.

The order dx dz dy:
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(a)

(b)

Figure 14.6.5: Finding the projections
of the curve of intersection in Example
14.6.3.

Chapter 14 Multiple Integration

The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure 14.6.4(a) and describe it with the order dz dy: 0 ≤ z ≤ 2 − y/3 and
0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6
⇒

∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0
dx dz dy.

The order dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direction of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2− y/3− 2x/3. Solving for y, this plane has equation y = 6− 2x− 3z. Thus y
has bounds 0 ≤ y ≤ 6− 2x− 3z.

Now collapse the region onto the x-z plane, as shown in Figure 14.6.4(b).
The curves bounding this triangle are z = 0 and z = 2− 2x/3; x is bounded by
the points x = 0 to x = 3. Thus the triple integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3
⇒

∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0
dy dz dx.

The order dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 14.6.4(b) using the order dy dx dz. x is bounded
by x = 0 and x = 3 − 3z/2; z is bounded between z = 0 and z = 2. This leads
to the triple integral:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ x ≤ 3− 3z/2

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 3−3z/2

0

∫ 6−2x−3z

0
dy dx dz.

This problem was long, but hopefully useful, demonstrating how to deter-
mine bounds with every order of integration to describe the region D. In prac-
tice, we only need 1, but being able to do them all gives us flexibility to choose
the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of inte-
gration. Since the surface was a triangular portion of a plane, this collapsing, or
projecting, was simple: the projection of a straight line in space onto a coordi-
nate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example 14.6.3 Finding the projection of a curve in space onto the
coordinate planes

Consider the surfaces z = 3− x2 − y2 and z = 2y, as shown in Figure 14.6.5(a).
The curve of their intersection is shown, along with the projection of this curve
into the coordinate planes, shown dashed. Find the equations of the projections
into the coordinate planes.
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(a)

(b)

Figure 14.6.6: The region D in Example
14.6.4 is shown in (a); in (b), it is collapsed
onto the x-y plane.

14.6 Volume Between Surfaces and Triple Integration

SÊ½çã®ÊÄ The two surfaces are z = 3 − x2 − y2 and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3− x2−y2 =
2y. This is an implicit function of x and y that gives all points (x, y) in the x-y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit function by completing the square:

3− x2 − y2 = 2y ⇒ y2 + 2y+ x2 = 3 ⇒ (y+ 1)2 + x2 = 4.

Thus in the x-y plane the projection of the intersection is a circle with radius 2,
centred at (0,−1).

To project onto the x-z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equation of each surface for y. In this particular case, it works well to actually
solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.

Thus we have (after again completing the square):

3− x2 − z = z2/4 ⇒ (z+ 2)2

16
+

x2

4
= 1,

and ellipse centred at (0,−2) in the x-z plane with a major axis of length 8 and
a minor axis of length 4.

Finally, to project the curve of intersection into the y-z plane, we solve equa-
tion for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our
equation of the projection in the y-z plane.

All three projections are shown in Figure 14.6.5(b).

Example 14.6.4 Finding the volumeof a space regionwith triple integration
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in Figure 14.6.6(a),
with the orders of integration dz dy dx, dy dx dz and dx dz dy.

SÊ½çã®ÊÄ The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = −y. The cylinder x2 + y2 = 1 does not offer any bounds in the z-direction,
as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.

Collapsing the region into the x-y plane, we get part of the disk bounded by
the circle with equation x2 + y2 = 1 as shown in Figure 14.6.6(b). As a function
of x, this half circle has equation y = −

√
1− x2. Thus y is bounded below by

−
√
1− x2 and above by y = 0: −

√
1− x2 ≤ y ≤ 0. The x bounds of the half

circle are−1 ≤ x ≤ 1. All together, the bounds of integration and triple integral
are as follows:

0 ≤ z ≤ −y
−
√
1− x2 ≤ y ≤ 0
−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx.
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(a)

(b)

Figure 14.6.7: The region D in Example
14.6.4 is shown collapsed onto the x-z
plane in (a); in (b), it is collapsed onto the
y-z plane.
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We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1
2
(
1− x2

)
dx

=

(
1
2

(
x− 1

3
x3
))∣∣∣∣1

−1

=
2
3
units3.

With the order dy dx dz:

The region is bounded “below” in the y-direction by the surface x2 + y2 =
1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus the y bounds are

−
√
1− x2 ≤ y ≤ −z.
Collapsing the region onto the x-z plane gives the region shown in Figure

14.6.7(a); this half disk is bounded by z = 0 and x2+ z2 = 1. (We find this curve
by solving each surface for y2, then setting them equal to each other. We have
y2 = 1− x2 and y = −z ⇒ y2 = z2. Thus x2 + z2 = 1.) It is bounded below by
x = −

√
1− z2 and above by x =

√
1− z2, where z is bounded by 0 ≤ z ≤ 1.

All together, we have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1
⇒

∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√

1− y2 and above by
√

1− y2.
We then collapse the region onto the y-z plane and get the triangle shown in
Figure 14.6.7(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z
is bounded by 0 ≤ z ≤ −y and y is bounded by−1 ≤ y ≤ 0. This gives:

−
√

1− y2 ≤ x ≤
√

1− y2
0 ≤ z ≤ −y
−1 ≤ y ≤ 0

⇒
∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2
dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a positive number; we are computing volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.
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(a)

(b)

Figure 14.6.8: The region D in Example
14.6.5 is shown in (a); in (b), it is collapsed
onto the x-y plane.

14.6 Volume Between Surfaces and Triple Integration

Theorem 14.6.3 Properties of Triple Integrals

Let D be a closed, bounded region in space, and let D1 and D2 be non-
overlapping regions such that D = D1

∪
D2.

1.
∫∫∫

D
dV ≥ 0

2.
∫∫∫

D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV.

We use this latter property in the next example.

Example 14.6.5 Finding the volumeof a space regionwith triple integration
Find the volume of the space region D bounded by the coordinate planes, z =
1− x/2 and z = 1− y/4, as shown in Figure 14.6.8(a). Set up the triple integrals
that find the volume of D in all 6 orders of integration.

SÊ½çã®ÊÄ Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integration are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direction. So we start
by noting that we have

0 ≤ z ≤ 1− 1
2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the x-y axis, as shown in Figure 14.6.8(b).
The boundary of D, the line from (0, 0, 1) to (2, 4, 0), is shown in part (b) of the
figure as a dashed line; it has equation y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0, 0, 1) to (2, 4, 0) onto the x-y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4:
thus 1− x/2 = 1− y/4 ⇒ y = 2x.)

We use the second property of Theorem 14.6.3 to state that∫∫∫
D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV,

where D1 and D2 are the space regions above the plane regions R1 and R2, re-
spectively. Thus we can say∫∫∫

D
dV =

∫∫
R1

(∫ 1−x/2

0
dz

)
dA+

∫∫
R2

(∫ 1−y/4

0
dz

)
dA.

All that is left is to determine bounds of R1 and R2, depending on whether we
are integrating with order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:

0 ≤ z ≤ 1− x/2
0 ≤ y ≤ 2x
0 ≤ x ≤ 2

0 ≤ z ≤ 1− y/4
2x ≤ y ≤ 4
0 ≤ x ≤ 2∫∫∫

D
dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0
dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0
dz dy dx
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(a)

(b)

Figure 14.6.9: The region D in Example
14.6.5 is shown collapsed onto the x-z
plane in (a); in (b), it is collapsed onto the
y-z plane.
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dz dx dy:

0 ≤ z ≤ 1− x/2
y/2 ≤ x ≤ 2
0 ≤ y ≤ 4

0 ≤ z ≤ 1− y/4
0 ≤ x ≤ y/2
0 ≤ y ≤ 4∫∫∫

D
dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0
dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0
dz dx dy

The remaining four orders of integration do not require a sum of triple in-
tegrals. In Figure 14.6.9 we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integration here, again
leaving it to the reader to confirm these results.

dy dx dz:

0 ≤ y ≤ 4− 4z
0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 2−2z

0

∫ 4−4z

0
dy dx dz

dy dz dx:

0 ≤ y ≤ 4− 4z
0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2
⇒
∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0
dy dx dz

dx dy dz:

0 ≤ x ≤ 2− 2z
0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 4−4z

0

∫ 2−2z

0
dx dy dz

dx dz dy:

0 ≤ x ≤ 2− 2z
0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4
⇒
∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0
dx dz dy

We give one more example of finding the volume of a space region.

Example 14.6.6 Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = 2x2+2 and z = 6−2x2−y2. These surfaces are plotted in Figure 14.6.10(a)
and (b), respectively; the region D is shown in part (c) of the figure.

SÊ½çã®ÊÄ The main point of this example is this: integrating with re-
spect to z first is rather straightforward; integrating with respect to x first is not.

The order dz dy dx:
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(a)

(b)

(c)

Figure 14.6.10: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).

14.6 Volume Between Surfaces and Triple Integration

The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6− 2x2 − y2. Collapsing D onto
the x-y plane gives the ellipse shown in Figure 14.6.10(c). The equation of this
ellipse is found by setting the two surfaces equal to each other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√

4− 4x2 ≤ y ≤
√

4− 4x2 and − 1 ≤ x ≤ 1.

Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2
dz dy dx .

The order dy dz dx:

Integrating with respect to y is not too difficult. Since the surface z = 2x2+2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6− 2x2 − y2 does; solving for y, we get the bounds

−
√

6− 2x2 − z ≤ y ≤
√

6− 2x2 − z.

Collapsing D onto the x-z axes gives the region shown in Figure 14.6.11(a); the
lower curve is from the cylinder, with equation z = 2x2 + 2. The upper curve is
from the paraboloid; with y = 0, the curve is z = 6− 2x2. Thus bounds on z are
2x2 + 2 ≤ z ≤ 6− 2x2; the bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for region D1 and the paraboloid creates bounds

−
√

3− y2/2− z2/2 ≤ x ≤
√

3− y2/2− z2/2

for region D2.
Collapsing D onto the y-z axes gives the regions shown in Figure 14.6.11(b).

We find the equation of the curve z = 4 − y2/2 by noting that the equation of
the ellipse seen in Figure 14.6.10(c) has equation

x2 + y2/4 = 1 ⇒ x =
√

1− y2/4.

Substitute this expression for x in either surface equation, z = 6 − 2x2 − y2 or
z = 2x2 + 2. In both cases, we find

z = 4− 1
2
y2.
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(a)

(b)

Figure 14.6.11: The region D in Exam-
ple 14.6.6 is collapsed onto the x-z plane
in (a); in (b), it is collapsed onto the y-z
plane.

Chapter 14 Multiple Integration

Region R1, corresponding to D1, has bounds

2 ≤ z ≤ 4− y2/2, −2 ≤ y ≤ 2

and region R2, corresponding to D2, has bounds

4− y2/2 ≤ z ≤ 6− y2, −2 ≤ y ≤ 2.

Thus the volume of D is given by:

∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1
dx dz dy +

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2
dx dz dy.

If all one wanted to do in Example 14.6.6 was find the volume of the re-
gion D, one would have likely stopped at the first integration setup (with order
dz dy dx) and computed the volume from there. However, we included the other
two methods 1) to show that it could be done, “messy” or not, and 2) because
sometimes we “have” to use a less desirable order of integration in order to ac-
tually integrate.

Triple Integration and Functions of Three Variables

There are uses for triple integration beyond merely finding volume, just as
there are uses for integration beyond “area under the curve.” These uses start
with understanding how to integrate functions of three variables, which is effec-
tively no different than integrating functions of two variables. This leads us to a
definition, followed by an example.

Definition 14.6.2 Iterated Integration, (Part II)

Let D be a closed, bounded region in space, over which g1(x), g2(x),
f1(x, y), f2(x, y) and h(x, y, z) are all continuous, and let a and b be real
numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx is evaluated as∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z)dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
h(x, y, z) dz

)
dy dx.

Example 14.6.7 Evaluating a triple integral of a function of three variables

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx.

SÊ½çã®ÊÄ We evaluate this integral according to Definition 14.6.2.
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∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz
)

dy dx

=

∫ 1

0

∫ x

x2

((
xyz+ xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y+ 4x3 + 14x2y+ 12xy2

)
dy dx.

We continue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281
336

≈ 0.836.

We now know how to evaluate a triple integral of a function of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integration and double inte-
gration.

Let h(x, y, z) be a continuous function of three variables, defined over some
space region D. We can partition D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
function value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object, for then h× volume = mass.

We can sum up all n products over D. Again letting ∥∆D∥ represent the
length of the longest diagonal of the n rectangular solids in the partition, we can
take the limit of the sums of products as ∥∆D∥ → 0. That is, we can find

S = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretations depending on the function h, in
the case where h describes density, S is the total mass of the object described
by the region D.

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteration, followed by the application of triple
integrals to find the centres of mass of solid objects.
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Definition 14.6.3 Triple Integral

Let w = h(x, y, z) be a continuous function over a closed, bounded re-
gion D in space, and let∆D be any partition of D into n rectangular solids
with volume∆Vi. The triple integral of h over D is∫∫∫

D
h(x, y, z) dV = lim

∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for continuous
functions h and gives us a method of evaluating the limit.

Theorem 14.6.4 Triple Integration (Part II)

Let w = h(x, y, z) be a continuous function over a closed, bounded re-
gion D in space, and let∆D be any partition of D into n rectangular solids
with volume Vi.

1. The limit lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx.

Note: In the marginal note on page 748, we showed how the summation of
rectangles over a region R in the plane could be viewed as a double sum, leading
to the double integral. Likewise, we can view the sum

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi

as a triple sum,
p∑

k=1

n∑
j=1

m∑
i=1

h(xi, yj, zk)∆xi∆yj∆zk,

which we evaluate as
p∑

k=1

(
n∑

j=1

(
m∑
i=1

h(xi, yj, zk)∆xi

)
∆yj

)
∆zk.

Here we fix a k value, which establishes the z-height of the rectangular solids on
one “level” of all the rectangular solids in the space region D. The inner double
summation adds up all the volumes of the rectangular solids on this level, while
the outer summation adds up the volumes of each level.

This triple summation understanding leads to the
∫∫∫

D notation of the triple
integral, as well as the method of evaluation shown in Theorem 14.6.4.

We now apply triple integration to find the centres of mass of solid objects.

792



Figure 14.6.12: Finding the center ofmass
of this solid in Example 14.6.8.

14.6 Volume Between Surfaces and Triple Integration

Mass and Center of Mass

One may wish to review Section 14.4 for a reminder of the relevant terms
and concepts.

Definition 14.6.4 Mass, Center of Mass of Solids

Let a solid be represented by a closed, bounded region D in space with
variable density function δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D
dm =

∫∫∫
D
δ(x, y, z) dV.

2. Themoment about the y-z plane isMyz =

∫∫∫
D
xδ(x, y, z) dV.

3. Themoment about the x-z plane isMxz =

∫∫∫
D
yδ(x, y, z) dV.

4. Themoment about the x-y plane isMxy =

∫∫∫
D
zδ(x, y, z) dV.

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 14.6.8 Finding the center of mass of a solid
Find the mass and center of mass of the solid represented by the space region
bounded by the coordinate planes and z = 2 − y/3 − 2x/3, shown in Figure
14.6.12, with constant density δ(x, y, z) = 3gm/cm3. (Note: this space region
was used in Example 14.6.2.)

SÊ½çã®ÊÄ We apply Definition 14.6.4. In Example 14.6.2, we found
bounds for the order of integration dz dy dx to be 0 ≤ z ≤ 2 − y/3 − 2x/3,
0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D
δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3
∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0
dz dy dx

= 3(6) = 18gm.

The evaluation of the triple integral is done in Example 14.6.2, so we skipped
those steps above. Note how the mass of an object with constant density is
simply “density×volume.”
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Figure 14.6.13: Finding the center ofmass
of this solid in Example 14.6.9.

Chapter 14 Multiple Integration

We now find the moments about the planes.

Mxy =

∫∫∫
D
3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

3
2
(
2− y/3− 2x/3

)2 dy dx
=

∫ 3

0
−4
9
(
x− 3

)3 dx
= 9.

We omit the steps of integrating to find the other moments.

Myz =

∫∫∫
D
3x dV

=
27
2
.

Mxz =

∫∫∫
D
3y dV

= 27.

The center of mass is

(
x, y, z

)
=

(
27/2
18

,
27
18

,
9
18

)
=
(
0.75, 1.5, 0.5

)
.

Example 14.6.9 Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown in Figure 14.6.13,
with density function δ(x, y, z) = 10 + x2 + 5y − 5z. (Note: this space region
was used in Example 14.6.4.)

SÊ½çã®ÊÄ As we start, consider the density function. It is symmetric
about the y-z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z directions, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
particularly hard, they do require a number of steps. We emphasize here the
importance of knowing how to set up the proper integrals; in complex situations
we can appeal to technology for a good approximation, if not the exact answer.
We use the order of integration dz dy dx, using the bounds found in Example
14.6.4. (As these are the same for all four triple integrals, we explicitly show the
bounds only forM.)794



14.6 Volume Between Surfaces and Triple Integration

M =

∫∫∫
D

(
10+ x2 + 5y− 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10+ x2 + 5y− 5z

)
dV

=
64
5

− 15π
16

≈ 3.855.

Myz =

∫∫∫
D
x
(
10+ x2 + 5y− 5z

)
dV

= 0.

Mxz =

∫∫∫
D
y
(
10+ x2 + 5y− 5z

)
dV

= 2− 61π
48

≈ −1.99.

Mxy =

∫∫∫
D
z
(
10+ x2 + 5y− 5z

)
dV

=
61π
96

− 10
9

≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,

−1.99
3.855

,
0.885
3.855

)
≈
(
0,−0.516, 0.230

)
.

As stated before, there are many uses for triple integration beyond finding
volume. When h(x, y, z) describes a rate of change function over some space

region D, then
∫∫∫

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was computingmass; a density function is simply a “rate ofmass
change per volume” function. Integrating density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quantity; modern technology is very useful in evaluating these
formulas quickly and accurately.

In the next section, we learn about two new coordinate systems (each re-
lated to polar coordinates) that allow us to integrate over closed regions in space
more easily than when using rectangular coordinates.

795



Exercises 14.6
Terms and Concepts
1. The strategy for establishing bounds for triple integrals

is “ to , to and
to .”

2. Give an informal interpretation of what “
∫∫∫

D
dV”

means.

3. Give two uses of triple integration.

4. If an object has a constant density δ and a volume V, what
is its mass?

Problems
In Exercises 5 – 8, two surfaces f1(x, y) and f2(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and (1, 1).

6. f1(x, y) = x2 + y2, f2(x, y) = −x2 − y2;
R is the square with corners (0, 0) and (2, 3).

7. f1(x, y) = sin x cos y, f2(x, y) = cos x sin y+ 2;
R is the triangle with corners (0, 0), (π, 0) and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3, f2(x, y) = 6− x2 − y2;
R is the disk bounded by x2 + y2 = 1.

In Exercises 9 – 16, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all 6 orders of integration, and find
the volume of D by evaluating the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.

Evaluate the triple integral with order dz dy dx.

10. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2.

Evaluate the triple integral with order dx dy dz.

11. D is bounded by the planes x = 0, x = 2, z = −y and by
z = y2/2.

Evaluate the triple integral with the order dy dz dx.

12. D is bounded by the planes z = 0, y = 9, x = 0 and by
z =

√
y2 − 9x2.

Do not evaluate any triple integral.

796







13. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4.

Evaluate the triple integral with the order dx dy dz.

14. D is bounded by the plane z = 2y and by y = 4− x2.

Evaluate the triple integral with the order dz dy dx.

15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.
Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.

Evaluate the triple integral with order dx dy dz.

In Exercises 17 – 20, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos x sin y sin z

)
dz dy dx

18.
∫ 1

0

∫ x

0

∫ x+y

0

(
x+ y+ z

)
dz dy dx

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20.
∫ π2

π

∫ x3

x

∫ y2

−y2

(
z x

2y+ y2x
ex2+y2

)
dz dy dx

In Exercises 21 – 24, find the center ofmass of the solid repre-
sented by the indicated space region Dwith density function
δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10gm/cm3.
(Note: this is the same region as used in Exercise 9.)

22. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2; δ(x, y, z) = 2gm/cm3.
(Note: this is the same region as used in Exercise 10.)

23. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4; δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in Exercise 13.)

24. D is bounded by the plane z = 2y and by y = 4− x2.
δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in Exercise 14.)
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Figure 14.7.1: Illustrating the principles
behind cylindrical coordinates.

Note: Our rectangular to polar conver-
sion formulas used r2 = x2 + y2, allow-
ing for negative r values. Since we now
restrict r ≥ 0, we can use r =

√
x2 + y2.

Figure 14.7.2: Graphing the canonical sur-
faces in cylindrical coordinates from Ex-
ample 14.7.2.

Chapter 14 Multiple Integration

14.7 Triple Integration with Cylindrical and Spherical
Coordinates

Just as polar coordinates gave us a new way of describing curves in the plane,
in this section we will see how cylindrical and spherical coordinates give us new
ways of describing surfaces and regions in space.

Cylindrical Coordinates

In short, cylindrical coordinates can be thought of as a combination of the
polar and rectangular coordinate systems. One can identify a point (x0, y0, z0),
given in rectangular coordinates, with the point (r0, θ0, z0), given in cylindri-
cal coordinates, where the z-value in both systems is the same, and the point
(x0, y0) in the x-y plane is identified with the polar point P(r0, θ0); see Figure
14.7.1. So that each point in space that does not lie on the z-axis is defined
uniquely, we will restrict r ≥ 0 and 0 ≤ θ ≤ 2π.

We use the identity z = z along with the identities found in Key Idea 9.4.1
to convert between the rectangular coordinate (x, y, z) and the cylindrical coor-
dinate (r, θ, z), namely:

From rectangular to cylindrical: r =
√

x2 + y2, tan θ = y/x and z = z;
From cylindrical to rectangular: x = r cos θ y = r sin θ and z = z.

These identities, along with conversions related to spherical coordinates, are
given later in Key Idea 14.7.1.

Example 14.7.1 Converting between rectangular and cylindrical coordinates
Convert the rectangular point (2,−2, 1) to cylindrical coordinates, and convert
the cylindrical point (4, 3π/4, 5) to rectangular.

SÊ½çã®ÊÄ Following the identities given above (and, later in Key Idea
14.7.1), we have r =

√
22 + (−2)2 = 2

√
2. Using tan θ = y/x, we find θ =

tan−1(−2/2) = −π/4. As we restrict θ to being between 0 and 2π, we set
θ = 7π/4. Finally, z = 1, giving the cylindrical point (2

√
2, 7π/4, 1).

In converting the cylindrical point (4, 3π/4, 5) to rectangular, we have x =
4 cos

(
3π/4

)
= −2

√
2, y = 4 sin

(
3π/4

)
= 2

√
2 and z = 5, giving the rectan-

gular point (−2
√
2, 2

√
2, 5).

Setting each of r, θ and z equal to a constant defines a surface in space, as
illustrated in the following example.

Example 14.7.2 Canonical surfaces in cylindrical coordinates
Describe the surfaces r = 1, θ = π/3 and z = 2, given in cylindrical coordinates.

SÊ½çã®ÊÄ The equation r = 1 describes all points in space that are
1 unit away from the z-axis. This surface is a “tube” or “cylinder” of radius 1,
centred on the z-axis, as graphed in Figure 13.1.8 (which describes the cylinder
x2 + y2 = 1 in space).

The equation θ = π/3 describes the plane formed by extending the line
θ = π/3, as given by polar coordinates in the x-y plane, parallel to the z-axis.

The equation z = 2 describes the plane of all points in space that are 2 units
above the x-y plane. This plane is the same as the plane described by z = 2 in
rectangular coordinates.
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Figure 14.7.3: Visualizing the solid used in
Example 14.7.3.

14.7 Triple Integration with Cylindrical and Spherical Coordinates

All three surfaces are graphed in Figure 14.7.2. Note how their intersection
uniquely defines the point P = (1, π/3, 2).

Cylindrical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates.

Theorem 14.6.4 shows how to evaluate
∫∫∫

D h(x, y, z) dV using rectangular
coordinates. In that evaluation, we use dV = dz dy dx (or one of the other five
orders of integration). Recall how, in this order of integration, the bounds on
y are “curve to curve” and the bounds on x are “point to point”: these bounds
describe a region R in the x-y plane. We could describe R using polar coordinates
as done in Section 14.3. In that section, we saw how we used dA = r dr dθ
instead of dA = dy dx.

Considering the above thoughts, we have dV = dz
(
r dr dθ

)
= r dz dr dθ. We

set bounds on z as “surface to surface” as done in the previous section, and then
use “curve to curve” and “point to point” bounds on r and θ, respectively. Finally,
using the identities given above, we change the integrand h(x, y, z) to h(r, θ, z).

This process should sound plausible; the following theorem states it is truly
a way of evaluating a triple integral.

Theorem 14.7.1 Triple Integration in Cylindrical Coordinates

Let w = h(r, θ, z) be a continuous function on a closed, bounded region
D in space, bounded in cylindrical coordinates by α ≤ θ ≤ β, g1(θ) ≤
r ≤ g2(θ) and f1(r, θ) ≤ z ≤ f2(r, θ). Then∫∫∫

D
h(r, θ, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ f2(r,θ)

f1(r,θ)
h(r, θ, z)r dz dr dθ.

Example 14.7.3 Evaluating a triple integral with cylindrical coordinates
Find the mass of the solid represented by the region in space bounded by z = 0,
z =

√
4− x2 − y2 + 3 and the cylinder x2 + y2 = 4 (as shown in Figure 14.7.3),

with density function δ(x, y, z) = x2 + y2 + z + 1, using a triple integral in
cylindrical coordinates. Distances are measured in centimetres and density is
measured in grams/cm3.

SÊ½çã®ÊÄ We begin by describing this region of space with cylindrical
coordinates. The plane z = 0 is left unchanged; with the identity r =

√
x2 + y2,

we convert the hemisphere of radius 2 to the equation z =
√
4− r2; the cylinder

x2 + y2 = 4 is converted to r2 = 4, or, more simply, r = 2. We also convert the
density function: δ(r, θ, z) = r2 + z+ 1.

To describe this solid with the bounds of a triple integral, we bound z with
0 ≤ z ≤

√
4− r2+3; we bound rwith 0 ≤ r ≤ 2; we bound θwith 0 ≤ θ ≤ 2π.

Using Definition 14.6.4 and Theorem 14.7.1, we have the mass of the solid
is

M =

∫∫∫
D
δ(x, y, z) dV =

∫ 2π

0

∫ 2

0

∫ √
4−r2+3

0

(
r2 + z+ 1

)
r dz dr dθ

=

∫ 2π

0

∫ 2

0

(
(r3 + 4r)

√
4− r2 +

5
2
r3 +

19
2
r
)
dr dθ

=
1318π
15

≈ 276.04 gm,

where we leave the details of the remaining double integral to the reader.
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Figure 14.7.4: Visualizing the solid used in
Example 14.7.4.

Chapter 14 Multiple Integration

Example 14.7.4 Finding the center of mass using cylindrical coordinates
Find the center of mass of the solid with constant density whose base can be
described by the polar curve r = cos(3θ) and whose top is defined by the plane
z = 1−x+0.1y, where distances are measured in feet, as seen in Figure 14.7.4.
(The volume of this solid was found in Example 14.3.5.)

SÊ½çã®ÊÄ We convert the equation of the plane to use cylindrical co-
ordinates: z = 1 − r cos θ + 0.1r sin θ. Thus the region is space is bounded by
0 ≤ z ≤ 1 − r cos θ + 0.1r sin θ, 0 ≤ r ≤ cos(3θ), 0 ≤ θ ≤ π (recall that the
rose curve r = cos(3θ) is traced out once on [0, π].

Since density is constant, we set δ = 1 and finding the mass is equivalent to
finding the volume of the solid. We set up the triple integral to compute this but
do not evaluate it; we leave it to the reader to confirm it evaluates to the same
result found in Example 14.3.5.

M =

∫∫∫
D
δ dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
r dz dr dθ ≈ 0.785.

From Definition 14.6.4 we set up the triple integrals to compute the mo-
ments about the three coordinate planes. The computation of each is left to the
reader (using technology is recommended):

Myz =

∫∫∫
D
x dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(r cos θ)r dz dr dθ

= −0.147.

Mxz =

∫∫∫
D
y dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(r sin θ)r dz dr dθ

= 0.015.

Mxy =

∫∫∫
D
z dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos θ+0.1r sin θ

0
(z)r dz dr dθ

= 0.467.

The center ofmass, in rectangular coordinates, is located at (−0.147, 0.015, 0.467),
which lies outside the bounds of the solid.
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Note: The symbol ρ is the Greek letter
“rho.” Traditionally it is used in the spher-
ical coordinate system, while r is used in
the polar and cylindrical coordinate sys-
tems.

Figure 14.7.5: Illustrating the principles
behind spherical coordinates.

Note: The role of θ and φ in spheri-
cal coordinates differs between mathe-
maticians and physicists. When reading
about physics in spherical coordinates, be
careful to note how that particular au-
thor uses these variables and recognize
that these identities will may no longer be
valid.

Figure 14.7.6: Graphing the canonical sur-
faces in spherical coordinates from Exam-
ple 14.7.6.

14.7 Triple Integration with Cylindrical and Spherical Coordinates

Spherical Coordinates
In short, spherical coordinates can be thought of as a “double application”

of the polar coordinate system. In spherical coordinates, a point P is identified
with (ρ, θ,φ), where ρ is the distance from the origin to P, θ is the same angle
as would be used to describe P in the cylindrical coordinate system, and φ is the
angle between the positive z-axis and the ray from the origin to P; see Figure
14.7.5. So that each point in space that does not lie on the z-axis is defined
uniquely, we will restrict ρ ≥ 0, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.

The following Key Idea gives conversions to/from our three spatial coordi-
nate systems.

Key Idea 14.7.1 Converting Between Rectangular, Cylindrical and
Spherical Coordinates

Rectangular and Cylindrical

r2 = x2 + y2, tan θ = y/x, z = z
x = r cos θ, y = r sin θ, z = z

Rectangular and Spherical

ρ =
√

x2 + y2 + z2, tan θ = y/x, cosφ = z/
√

x2 + y2 + z2
x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

Cylindrical and Spherical

ρ =
√
r2 + z2, θ = θ, tanφ = r/z

r = ρ sinφ, θ = θ, z = ρ cosφ

Example 14.7.5 Converting between rectangular and spherical coordinates
Convert the rectangular point (2,−2, 1) to spherical coordinates, and convert
the spherical point (6, π/3, π/2) to rectangular and cylindrical coordinates.

SÊ½çã®ÊÄ This rectangular point is the same as used in Example 14.7.1.
Using Key Idea 14.7.1, we find ρ =

√
22 + (−1)2 + 12 = 3. Using the same

logic as in Example 14.7.1, we find θ = 7π/4. Finally, cosφ = 1/3, giving
φ = cos−1(1/3) ≈ 1.23, or about 70.53◦. Thus the spherical coordinates are
approximately (3, 7π/4, 1.23).

Converting the spherical point (6, π/3, π/2) to rectangular, we have x =
6 sin(π/2) cos(π/3) = 3, y = 6 sin(π/2) sin(π/3) = 3

√
3 and z = 6 cos(π/2) =

0. Thus the rectangular coordinates are (3, 3
√
3, 0).

To convert this spherical point to cylindrical, we have r = 6 sin(π/2) = 6,
θ = π/3 and z = 6 cos(π/2) = 0, giving the cylindrical point (6, π/3, 0).

Example 14.7.6 Canonical surfaces in spherical coordinates
Describe the surfaces ρ = 1, θ = π/3 and φ = π/6, given in spherical coordi-
nates.

SÊ½çã®ÊÄ The equation ρ = 1 describes all points in space that are 1
unit away from the origin: this is the sphere of radius 1, centred at the origin.

The equation θ = π/3 describes the same surface in spherical coordinates
as it does in cylindrical coordinates: beginning with the line θ = π/3 in the x-y
plane as given by polar coordinates, extend the line parallel to the z-axis, forming
a plane.
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Figure 14.7.7: Approximating the volume
of a standard region in space using spher-
ical coordinates.

Note: It is generallymost intuitive to eval-
uate the triple integral in Theorem 14.7.2
by integrating with respect to ρ first; it of-
ten does not matter whether we next in-
tegrate with respect to θ or φ. Different
texts present different standard orders,
some preferring dφ dθ instead of dθ dφ.
As the bounds for these variables are usu-
ally constants in practice, it generally is a
matter of preference.

Chapter 14 Multiple Integration

The equation φ = π/6 describes all points P in space where the ray from
the origin to P makes an angle of π/6 with the positive z-axis. This describes a
cone, with the positive z-axis its axis of symmetry, with point at the origin.

All three surfaces are graphed in Figure 14.7.6. Note how their intersection
uniquely defines the point P = (1, π/3, π/6).

Spherical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates or cylindrical coordinates. The crux of setting
up a triple integral in spherical coordinates is appropriately describing the “small
amount of volume,” dV, used in the integral.

Considering Figure 14.7.7, we canmake a small “spherical wedge” by varying
ρ, θ and φ each a small amount, ∆ρ, ∆θ and ∆φ, respectively. This wedge is
approximately a rectangular solid when the change in each coordinate is small,
giving a volume of about

∆V ≈ ∆ρ × ρ∆φ × ρ sin(φ)∆θ.

Given a region D in space, we can approximate the volume of D with many
such wedges. As the size of each of ∆ρ, ∆θ and ∆φ goes to zero, the number
of wedges increases to infinity and the volume of D is more accurately approxi-
mated, giving

dV = dρ × ρ dφ × ρ sin(φ)dθ = ρ2 sin(φ) dρ dθ dφ.

Again, this development of dV should sound reasonable, and the following
theorem states it is the appropriate manner by which triple integrals are to be
evaluated in spherical coordinates.

Theorem 14.7.2 Triple Integration in Spherical Coordinates

Letw = h(ρ, θ,φ) be a continuous function on a closed, bounded region
D in space, bounded in spherical coordinates by α1 ≤ φ ≤ α2, β1 ≤ θ ≤
β2 and f1(θ,φ) ≤ ρ ≤ f2(θ,φ). Then∫∫∫

D
h(ρ, θ,φ) dV =

∫ α2

α1

∫ β2

β1

∫ f2(θ,φ)

f1(θ,φ)
h(ρ, θ,φ)ρ2 sin(φ) dρ dθ dφ.

Example 14.7.7 Establishing the volume of a sphere
Let D be the region in space bounded by the sphere, centred at the origin, of
radius r. Use a triple integral in spherical coordinates to find the volume V of D.

SÊ½çã®ÊÄ The sphere of radius r, centred at the origin, has equation
ρ = r. To obtain the full sphere, the bounds on θ and φ are 0 ≤ θ ≤ 2π and
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Figure 14.7.8: Graphing the solid, and its
center of mass, from Example 14.7.8.

14.7 Triple Integration with Cylindrical and Spherical Coordinates

0 ≤ φ ≤ π. This leads us to:

V =

∫∫∫
D
dV

=

∫ π

0

∫ 2π

0

∫ r

0

(
ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π

0

∫ 2π

0

(
1
3
ρ3 sin(φ)

∣∣∣r
0

)
dθ dφ

=

∫ π

0

∫ 2π

0

(
1
3
r3 sin(φ)

)
dθ dφ

=

∫ π

0

(
2π
3
r3 sin(φ)

)
dφ

=

(
−2π

3
r3 cos(φ)

)∣∣∣∣π
0

=
4π
3
r3,

the familiar formula for the volume of a sphere. Note how the integration steps
were easy, not using square–roots nor integration steps such as Substitution.

Example 14.7.8 Finding the center of mass using spherical coordinates
Find the center of mass of the solid with constant density enclosed above by
ρ = 4 and below by φ = π/6, as illustrated in Figure 14.7.8.

SÊ½çã®ÊÄ We will set up the four triple integrals needed to find the
center of mass (i.e., to computeM,Myz,Mxz andMxy) and leave it to the reader
to evaluate each integral. Because of symmetry, we expect the x- and y- coordi-
nates of the center of mass to be 0.

While the surfaces describing the solid are given in the statement of the
problem, to describe the full solid D, we use the following bounds: 0 ≤ ρ ≤ 4,
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/6. Since density δ is constant, we assume δ = 1.

The mass of the solid:

M =

∫∫∫
D
dm =

∫∫∫
D
dV

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ2 sin(φ)

)
dρ dθ dφ

=
64
3
(
2−

√
3
)
π ≈ 17.958.

To compute Myz, the integrand is x; using Key Idea 14.7.1, we have x =
ρ sinφ cos θ. This gives:

Myz =

∫∫∫
D
x dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ) cos(θ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 sin2(φ) cos(θ)

)
dρ dθ dφ

= 0,

which we expected as we expect x = 0.
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To compute Mxz, the integrand is y; using Key Idea 14.7.1, we have y =
ρ sinφ sin θ. This gives:

Mxz =

∫∫∫
D
y dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ) sin(θ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 sin2(φ) sin(θ)

)
dρ dθ dφ

= 0,

which we also expected as we expect y = 0.
To compute Mxy, the integrand is z; using Key Idea 14.7.1, we have z =

ρ cosφ. This gives:

Mxy =

∫∫∫
D
z dm

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ))ρ2 sin(φ)

)
dρ dθ dφ

=

∫ π/6

0

∫ 2π

0

∫ 4

0

(
ρ3 cos(φ) sin(φ)

)
dρ dθ dφ

= 16π ≈ 50.266.

Thus the center of mass is (0, 0,Mxy/M) ≈ (0, 0, 2.799), as indicated in Fig-
ure 14.7.8.

This section has provided a brief introduction into two new coordinate sys-
tems useful for identifying points in space. Each can be used to define a variety
of surfaces in space beyond the canonical surfaces graphed as each system was
introduced.

However, the usefulness of these coordinate systems does not lie in the vari-
ety of surfaces that they candescribe nor the regions in space these surfacesmay
enclose. Rather, cylindrical coordinates are mostly used to describe cylinders
and spherical coordinates are mostly used to describe spheres. These shapes
are of special interest in the sciences, especially in physics, and computations
on/inside these shapes is difficult using rectangular coordinates. For instance,
in the study of electricity and magnetism, one often studies the effects of an
electrical current passing through a wire; that wire is essentially a cylinder, de-
scribed well by cylindrical coordinates.

This chapter investigated the natural follow–on to partial derivatives: iter-
ated integration. We learned how to use the bounds of a double integral to
describe a region in the plane using both rectangular and polar coordinates,
then later expanded to use the bounds of a triple integral to describe a region in
space. We used double integrals to find volumes under surfaces, surface area,
and the center ofmass of lamina; we used triple integrals as an alternatemethod
of finding volumes of space regions and also to find the center of mass of a re-
gion in space.

Integration does not stop here. We could continue to iterate our integrals,
next investigating “quadruple integrals” whose bounds describe a region in 4–
dimensional space (which are very hard to visualize). We can also look back to
“regular” integration where we found the area under a curve in the plane. A
natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integration.”804



Exercises 14.7
Terms and Concepts
1. Explain the difference between the roles r, in cylindrical co-

ordinates, and ρ, in spherical coordinates, play in determin-
ing the location of a point.

2. Why are points on the z-axis not determined uniquelywhen
using cylindrical and spherical coordinates?

3. What surfaces are naturally defined using cylindrical coor-
dinates?

4. What surfaces are naturally defined using spherical coordi-
nates?

Problems
In Exercises 5 – 6, points are given in either the rectangular,
cylindrical or spherical coordinate systems. Find the coordi-
nates of the points in the other systems.

5. (a) Points in rectangular coordinates:
(2, 2, 1) and (−

√
3, 1, 0)

(b) Points in cylindrical coordinates:
(2, π/4, 2) and (3, 3π/2,−4)

(c) Points in spherical coordinates:
(2, π/4, π/4) and (1, 0, 0)

6. (a) Points in rectangular coordinates:
(0, 1, 1) and (−1, 0, 1)

(b) Points in cylindrical coordinates:
(0, π, 1) and (2, 4π/3, 0)

(c) Points in spherical coordinates:
(2, π/6, π/2) and (3, π, π)

In Exercises 7 – 8, describe the curve, surface or region in
space determined by the given bounds.

7. Bounds in cylindrical coordinates:

(a) r = 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1
(b) 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ z ≤ 1

Bounds in spherical coordinates:

(c) ρ = 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2
(d) 2 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

8. Bounds in cylindrical coordinates:

(a) 1 ≤ r ≤ 2, θ = π/2, 0 ≤ z ≤ 1
(b) r = 2, 0 ≤ θ ≤ 2π, z = 5

Bounds in spherical coordinates:

(c) 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π, φ = π/4

(d) ρ = 2, 0 ≤ θ ≤ 2π, φ = π/6

In Exercises 9 – 10, standard regions in space, as defined
by cylindrical and spherical coordinates, are shown. Set up
the triple integral that integrates the given function over the
graphed region.

9. Cylindrical coordinates, integrating h(r, θ, z):

10. Cylindrical coordinates, integrating h(ρ, θ,φ):

In Exercises 11 – 16, a triple integral in cylindrical coordinates
is given. Describe the region in space defined by the bounds
of the integral.

11.
∫ π/2

0

∫ 2

0

∫ 2

0
r dz dr dθ

12.
∫ 2π

0

∫ 4

3

∫ 5

0
r dz dr dθ

13.
∫ 2π

0

∫ 1

0

∫ 1−r

0
r dz dr dθ

14.
∫ π

0

∫ 1

0

∫ 2−r

0
r dz dr dθ

15.
∫ π

0

∫ 3

0

∫ √
9−r2

0
r dz dr dθ
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16.
∫ 2π

0

∫ a

0

∫ √
a2−r2+b

0
r dz dr dθ

In Exercises 17 – 22, a triple integral in spherical coordinates
is given. Describe the region in space defined by the bounds
of the integral.

17.
∫ π/2

0

∫ π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ

18.
∫ π

0

∫ π

0

∫ 1.1

1
ρ2 sin(φ) dρ dθ dφ

19.
∫ 2π

0

∫ π/4

0

∫ 2

0
ρ2 sin(φ) dρ dθ dφ

20.
∫ 2π

0

∫ π/4

π/6

∫ 2

0
ρ2 sin(φ) dρ dθ dφ

21.
∫ 2π

0

∫ π/6

0

∫ sec φ

0
ρ2 sin(φ) dρ dθ dφ

22.
∫ 2π

0

∫ π/6

0

∫ a sec φ

0
ρ2 sin(φ) dρ dθ dφ

In Exercises 23 – 26, a solid is described along with its density
function. Find the mass of the solid using cylindrical coordi-
nates.

23. Bounded by the cylinder x2 + y2 = 4 and the planes z = 0
and z = 4 with density function δ(x, y, z) =

√
x2 + y2 + 1.

24. Bounded by the cylinders x2 + y2 = 4 and x2 + y2 = 9, be-
tween the planes z = 0 and z = 10 with density function
δ(x, y, z) = z.

25. Bounded by y ≥ 0, the cylinder x2 + y2 = 1, and between
the planes z = 0 and z = 4 − y with density function
δ(x, y, z) = 1.

26. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density function δ(x, y, z) = 1.

In Exercises 27 – 30, a solid is described along with its density
function. Find the center of mass of the solid using cylindri-
cal coordinates. (Note: these are the same solids and density
functions as found in Exercises 23 through 26.)

27. Bounded by the cylinder x2 + y2 = 4 and the planes z = 0
and z = 4 with density function δ(x, y, z) =

√
x2 + y2+1.

28. Bounded by the cylinders x2 + y2 = 4 and x2 + y2 = 9, be-
tween the planes z = 0 and z = 10 with density function
δ(x, y, z) = z.

29. Bounded by y ≥ 0, the cylinder x2 + y2 = 1, and between
the planes z = 0 and z = 4 − y with density function
δ(x, y, z) = 1.

30. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density function δ(x, y, z) = 1.

In Exercises 31 – 34, a solid is described along with its density
function. Find the mass of the solid using spherical coordi-
nates.

31. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density function δ(x, y, z) = 1.

32. The spherical shell bounded between x2 + y2 + z2 = 16
and x2 + y2 + z2 = 25 with density function δ(x, y, z) =√
x2 + y2 + z2.

33. The conical region bounded above z =
√
x2 + y2 and be-

low the sphere x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

34. The cone bounded above z =
√
x2 + y2 and below the

plane z = 1 with density function δ(x, y, z) = z.

In Exercises 35 – 38, a solid is described along with its density
function. Find the center of mass of the solid using spheri-
cal coordinates. (Note: these are the same solids and density
functions as found in Exercises 31 through 34.)

35. The upper half of the unit ball, bounded between z = 0 and
z =

√
1− x2 − y2, with density function δ(x, y, z) = 1.

36. The spherical shell bounded between x2 + y2 + z2 = 16
and x2 + y2 + z2 = 25 with density function δ(x, y, z) =√
x2 + y2 + z2.

37. The conical region bounded above z =
√
x2 + y2 and be-

low the sphere x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

38. The cone bounded above z =
√
x2 + y2 and below the

plane z = 1 with density function δ(x, y, z) = z.

In Exercises 39 – 42, a region is space is described. Set up the
triple integrals that find the volume of this region using rect-
angular, cylindrical and spherical coordinates, then comment
on which of the three appears easiest to evaluate.

39. The region enclosed by the unit sphere, x2 + y2 + z2 = 1.

40. The spherical shell bounded between x2 + y2 + z2 = 16
and x2 + y2 + z2 = 25 with density function δ(x, y, z) =√
x2 + y2 + z2.

41. The conical region bounded above z =
√
x2 + y2 and be-

low the sphere x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

42. The cone bounded above z =
√
x2 + y2 and below the

plane z = 1 with density function δ(x, y, z) = z.
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Note: Recall Exercise 15 in Section 14.3:
the function f(x, y) = e−x2−y2 is impos-
sible to integrate in rectangular coordi-
nates (at least, by finding antidervatives
in terms of elementary functions), but
switching to polar coordinates results in
an integral that can be evaluated using a
simple substitution.

Note: Wehave reversed the roles of x and
u as they typically appear in Calculus I.
Thismay seem strange in this context, but
it’s in keeping with the way the change
of variables formula in several variables is
usually presented.

For double and triple integrals, it will be
important to understand how both the
function and the region of integration are
transformed. For single integrals, the
Fundamental Theorem of Calculus (The-
orem 5.4.2) lets us gloss over some of the
details we’ll now need to consider. In par-
ticular, we don’t really need to pay any at-
tention to the interval over which we’re
integrate in a single integral, as long as we
can come up with an antiderivative.

14.8 Change of Variables in Multiple Integrals

14.8 Change of Variables in Multiple Integrals
We have seen in Sections 14.3 and 14.7 that switching to a different coordinate
system can be a powerful tool. Integrals that are intractable (or even impossible)
in one coordinate system can become straightforward in another.

Changing from rectangular coordinates to polar, or cylindrical, or spherical
coordinates, are special cases of a general process known as a change of vari-
ables or transformation. A change of variables should be considered in any
situation where we are presented with an integral that is difficult to evaluate in
rectangular coordinates.

Our goals in this section are as follows:

• Understand how a change of variables affects the area element dA in a
double integral, or the volume element dV in a triple integral.

• Derive a general change of variables formula for multiple integrals that
works for any suitable change of coordinates, including the ones we have
already seen in Sections 14.3 and 14.7.

• Develop some basic guiding principles for knowing when a change of vari-
ables should be considered, and how to define the corresponding trans-
formation.

One of the situations that should be covered by our general change of vari-
ables formula is that of substitution for a definite integral in one variable, as en-
countered in Section 5.5, way back in Calculus I. Of course, for a definite integral
in one variable, there is only one type of region of integration: a closed inter-
val [a, b]. For single integrals, our only consideration when making a change of
variables is the function being integrated. Recall that substitution – at least, for
indefinite integrals – is essentially an attempt to reverse the Chain Rule: given∫ b

a
f(T(u))T′(u) du,

we set x = T(u), compute the differential dx = T′(u) du, and set∫ b

a
f(T(u))T ′(u) du =

∫ T(b)

T(a)
f(x) dx. (14.2)

The formula we seek will be a generalization of this result, with one notable
change in perspective: for multiple integrals, it is often the region of integration
that creates most of the difficulty, and not the function being integrated. (In
one variable, one closed interval is transformed into another, and we apply the
Fundamental Theorem of Calculus.) What we will find is that in most cases, we
start on the right hand side of our analogue of Equation (14.2), and move to the
left.

Changing from polar coordinates can be viewed as the process of writing our
rectangular coordinates (x, y) in terms of new variables r and θ:

x(r, θ) = r cos θ
y(r, θ) = r sin θ,

or conversely, as defining new variables r and θ as functions of the old variables
x and y:

r(x, y) =
√

x2 + y2

θ(x, y) = arctan(y/x).
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Note: Polar coordinates are a very com-
mon choice of coordinate system, be-
cause they are well adapted to situa-
tions with circular symmetry, a common
assumption in many physical problems.
They are also natural from a navigational
perspective. However, the polar coordi-
nate transformation is a bit unusual, in
that it violates some of the principles we
will require below for a general transfor-
mation: the transformation is not one-
to-one, for example, and since we often
allow r < 0 (recall Section 9.4), the in-
verse transformation (from polar to rect-
angular) technically isn’t even a function!
However, we’re willing to overlook these
defects due to the ubiquity and useful-
ness of the polar coordinate system.

Chapter 14 Multiple Integration

We can think of the polar coordinate transformation as a change of variables,
where we define new variables in terms of old ones, but we could also think of
it as a function from the plane R2 to itself. That is, we have a mapping

T : D ⊆ R2 → R2

(x, y) = T(r, θ) = (r cos θ, r sin θ),

where D is some subset of R2 (with coordinates labelled by r and θ), and the
codomain is R2 with usual (x, y) coordinates. As we know from Section 14.3,
the polar coordinate transformation T given above transforms a rectangle such
as D = [0, 3] × [0, 2π] into a disk – in this case, the set of points (x, y) with
x2 + y2 ≤ 9, as shown in Figure 14.8.1 below.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

r

θ

T
−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 14.8.1: Transforming a rectangle to a disk using polar coordinates.

It is interesting to pause and consider what happens to the four sides of the
rectangle D in the transformation above. (As we’ll see, this particular transfor-
mation exhibits some behaviour we usually prefer to avoid!). First, the side with
r = 0 is collapsed to a single point: the origin. The side with r = 3 forms the
entire perimeter of the circle. What happens to the sides θ = 0 and θ = 2π?
They both get sent to the line segment from (0, 0) to (3, 0)!

These observations let us imagine transformation as a physical process: first,
the left side of the rectangle is shrunk down to a single point, while the right
side is simultaneously stretched by a factor of 3. (Vertical lines in between are
stretched/shrunk by a factor of r, with 0 ≤ r ≤ 3.) The top of the rectangle is
then bent around until it joins with the bottom.

It is perhaps easier to picture the transformation for a domain of the form
[a, b] × [α, β], with 0 < a < b and 0 ≤ α < β < 2π. The case r ∈ [1, 3],
θ ∈ [π/6, π/3] is pictured in Figure 14.8.2 below.
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Note: The notation f : A → B is
commonly used in mathematics when we
want to indicate that a function f has a
particular domain A and codomain B. We
usually do not see this notation in calcu-
lus, since the domain is always a subset of
Rn for some n, and understood to be the
largest set of values for which the func-
tion is defined.
Note however that the choice of domain
is part of the definition of a function, and
it can significantly affect important prop-
erties of that function, such as being one-
to-one: recall the definition of the inverse
trigonometric functions in Section 2.7.

Note: To avoid clutter throughout this
section, we will use boldface variables as
shorthand for points in Rn. For example,
we will write x instead of (x1, x2, . . . , xn)

14.8 Change of Variables in Multiple Integrals

1 2 3

1

2

r

θ

T

1 2 3

1

2

3

x

y

Figure 14.8.2: Transforming a rectangle to an annular portion using polar coordinates.

Given a region R in the plane and an integral
∫∫

R
f(x, y) dA, we will look for

a domain D ⊆ R2 and a function T : D → R2 of the form

(x, y) = T(u, v) = (h(u, v), k(u, v))

that maps D onto R, which can be used to simplify our integral.
Definition 14.8.4 below specifies the properties we require for a function

T : D ⊆ Rn → Rn to be used to define a change of variables. To explain some
of those properties, we will need the following definitions.

Definition 14.8.1 The image of a point or set

Let D ⊆ Rn be any subset, and let F : D → Rm be a function. For any
point x ∈ D, the image of x under F is the point y = F(x) in the range of
F.
For any subset C ⊆ D, the image of C under F is denoted F(C) and defined
by

F(C) = {F(x) | x ∈ C}.

In other words, y ∈ F(C) if and only if y is the image of x for some x ∈ C.
In particular, we denote the range (or image) of F by F(D).

Definition 14.8.2 One-to-one and onto functions

Let A ⊆ Rn, let B ⊆ Rm, and let T : A → B be a function.

• We say that T is one-to-one if no two points in A have the same
image. That is, for any x1, x2 ∈ A, if x1 ̸= x2, then T(x1) ̸= T(x2).

• We say that T is onto if the range of T is B; that is, if T(A) = B.

A function used for a change of variables is called a transformation. Such
functions need to be one-to-one, except possibly on the boundary of their do-
main, and they need to be continuously differentiable. (See Definition 14.8.4
below.) One of the important properties of a transformation, which we will jus-
tify later in this section (see Theorem 14.8.3, is that the boundary of a closed,
bounded domain is mapped to the boundary of the range. This observation is
key to visualizing the effect of a transformation.
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Note: While it is important to know that
our function is one-to-one, we will usu-
ally not ask you to check this fact. How-
ever, you should make sure you’re aware
of what can go wrong if this property is
not satisfied: see the discussion following
Definition 14.8.4.

1 2 3

1

2

3

4

5 u = 2

v = 1

u = 1

v = 0

x

y

Figure 14.8.3: Plotting the image of the
function T in Example 14.8.1

Chapter 14 Multiple Integration

Example 14.8.1 Describing the effect of a transformation
Let D ⊆ R2 be the rectangle defined by 1 ≤ u ≤ 2 and 0 ≤ v ≤ 1. Determine
the range of the function T : D → R2 defined by

(x, y) = T(u, v) = (uv, u2 + 2v2).

SÊ½çã®ÊÄ The function T is continuously differentiable, since x = 4uv
and y = u2 + v2 both have continuous first-order partial derivatives with re-
spect to u and v. Showing that T is one-to-one is a mess of algebra that we omit
here. From these properties, we can conclude that the boundary of D will be
transformed to the boundary of T(D).

Now, let’s see what happens to the boundary of D. The boundary consists
of four line segments:

1. The segment u = 1, 0 ≤ v ≤ 1.

2. The segment u = 2, 0 ≤ v ≤ 1.

3. The segment 1 ≤ u ≤ 2, v = 0.

4. The segment 1 ≤ u ≤ 2, v = 1.

On the first segment, x = v and y = 1 + v2, with 0 ≤ v ≤ 1. Eliminating the
parameter v gives us portion of the parabola y = 1+ x2 from (0, 1) to (1, 2).

For the second segment we have x = 2v and y = 4+ v2. This is the part of
the parabola y = 4+ 1

4x
2 from (0, 4) to (2, 5).

The third segment has x = 0 and y = u2, for 1 ≤ u ≤ 2. This is the portion
of the y axis from (0, 1) to (0, 4).

Finally, the fourth segment is given by x = u, y = u2+1, for 1 ≤ u ≤ 2. This
is again the parabola y = 1+ x2, but this time 1 ≤ x ≤ 2.

The resulting region is plotted in Figure 14.8.3. Interestingly, two of the four
sides of the rectangle bounding D were mapped to (different portions of) the
same curve.

This example is interesting, in that two of the four sides of our rectangular
domain were mapped to the same curve. Note also that – without explicitly
solving for the inverse function, giving u and v as functions of x and y – we can
see that lines of constant x in the u, v plane are circles, and lines of constant y
are hyperbolas.

One other observation is worthy of note: we mentioned above that we will
be primarily concernedwith finding transformations that can be used to simplify
a double integral. Suppose we were given a double integral over R = T(D),
as pictured in Figure 14.8.3. We probably wouldn’t even consider a change of
variables in this case, unless one was needed for the function being integrated:
the region can be described by the inequalities

1+ x2 ≤ y ≤ 4+
1
4
x2, where 0 ≤ x ≤ 2.

We already learned how to deal with such regions at the beginning of this Chap-
ter, and in any case, it’s unlikely that anyone looking at this region would come
up with the transformation we just considered.

We’re ready to move on, and describe the effect of a change of variables on
an integral. We begin with an observation from single variable calculus. Con-
sider the definition of a definite integral as a limit of Riemann sums. When
we make a change of variables x = T(u) in a single integral, a partition of
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Note: In the discussion givenhere, wewill
stick to two variables for simplicity of pre-
sentation. However, everything we do
for double integrals works equally well for
triple integrals in three variables.

Note: Another common notation for the
Jacobian is

JT(u, v) =
∂(x, y)
∂(u, v)

.

This notation is intended to be reminis-
cent of the Leibniz form of the chain rule
when T is used to define a change of vari-
ables: we have the mnemonic devices

dx

for a change of variables in single, double,
and triple integrals, respectively.

14.8 Change of Variables in Multiple Integrals

[a, b] given by a = u0 < u1 < · · · < un = b is transformed into a parti-
tion x0 = T(u0), x1 = T(u1), . . . , xn = T(un). (As long as T′(u) > 0, we have
x0 < x1 < · · · xn.) The transformation affects the size of the subintervals in the
partition: from Section 4.4, we know that∆xi ≈ T ′(ui)∆xi. Thus, the derivative
tells us how the size of each subinterval changes under the transformation.

This gives us a way of thinking about the geometric effect of a substitution.

In the integral
∫ T(b)

T(a)
f(x) dx, the subintervals in a partition (thought of as the

width of the rectangles in a Riemann sum) are stretched/shrunk horizontally
by a factor given by the derivative T′(u) of the transformation function g(u).

In the integral
∫ b

a
f(T(u))T′(u) du, the derivative T′(u) is part of the integrand,

and therefore our horizontal stretch/shrink becomes a vertical stretch/shrink.
Of course, the area of a rectangle changes by the same amount regardless of
whether the stretch/shrink is horizontal or vertical.

Similarly, when we do a change of variables in two or three variables, we
need a measure of how the size of each subregion in a partition changes under
change of variables. This measure is given by an object known as the Jacobian.

Definition 14.8.3 The Jacobian of a transformation

Let D ⊆ R2 be a subset of the plane, described with coordinates (u, v).
Let T : D ⊆ R2 → R2 be given by

T(u, v) = (f(u, v), g(u, v)),

where f and g are continuously differentiable on D. The Jacobian is the
function JT : D → R defined by

JT(u, v) = det
[
fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

]
.

If we define x = f(u, v) and y = g(u, v), we can write the Jacobian as

JT(u, v) = det
[
xu xv
yu yv

]
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
.

In the case of a transformation T : D ⊆ R3 → R3, with (x, y, z) = T(u, v,w),
the definition of the Jacobian is similar, except that we need to compute the
determinant of a 3 × 3 matrix. If you read Section 13.10 on the definition of
the derivative as a matrix of partial derivatives, you probably recognize the ma-
trix whose determinant gives us the Jacobian: it’s the derivative matrix! One
therefore could write

JT(u, v) = detDT(u, v)

for the Jacobian, and this formula is valid in any dimension. In fact, we can even
use this definition for single integrals: a 1 × 1 matrix is just a number, and the
determinant does nothing to that number, and of course, the derivative of a
function of one variable is the same as always.
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Chapter 14 Multiple Integration

Example 14.8.2 Computing the Jacobian of a transformation
Compute the Jacobian of the transformation (x, y) = T(u, v) given by

x = 7u− 3v y = −4u+ 2v.

SÊ½çã®ÊÄ We apply Definition 14.8.3 directly:

JT(u, v) = det
[
xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

]
= det

[
7 −3
−4 2

]
= 7(2)− (−3)(−4) = 2.

In this case, the Jacobian is a constant function. This is the case whenever x
and y are linear functions of u and v., but not true in general. We’ll look at the
case of linear transformations in more detail after a few more examples.

Example 14.8.3 Computing the Jacobian of a transformation
Compute the Jacobian of the transformation given by

T(u, v) = ( 3
√

x2y, 3
√

xy2).

SÊ½çã®ÊÄ Again, this is a direct application of the definition, but we
should be clever about how we compute our partial derivatives. Our transfor-
mation defines x = 3

√
x2y and y = 3

√
xy2. If we blindly push forward with the

partial derivatives as written, we get a mess. For example, if we get a little too
excited, we might do something like:

xu(u, v) =
∂

∂u
( 3
√

x2y) =
1
3
(x2y)−2/3(2xy),

with similar results for the other four partial derivatives. Instead, let’s first sim-
plify using laws of exponents:

x(u, v) = 3
√

x2y = (x2y)1/3 = x2/3y1/3 and

y(u, v) = 3
√

xy2 = (xy2)1/3 = x1/3y2/3.

Now we only need the power rule to compute our partial derivatives, and we
find

JT(u, v) = det
[
xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

]
= det

[ 2
3x

−1/3y1/3 1
3x

2/3y−2/3

1
3x

−2/3y2/3 2
3x

1/3y−1/3

]
=

(
2
3
x−1/3y1/3

)(
2
3
x1/3y−1/3

)
−
(
1
3
x2/3y−2/3

)(
1
3
x−2/3y2/3

)
=

4
9
− 1

9
=

1
3
.

Interestingly enough, the Jacobian turns out to be constant again, even though
the transformation was far from being linear. Let’s try one more.

Example 14.8.4 Computing the Jacobian of a transformation
Compute the Jacobian of the transformation

x = 4u2 − v2 y = 2u2 + 3v2.
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Note: For all three coordinate systems
we’ve studied, the transformation condi-
tions can fail on the boundary of our do-
main, whichwe’rewilling to accept. What
would not be acceptable is a situation
where the transformation conditions fail
on a region interior to the domain.
For example, the function T(r, θ) =
(r cos θ, r sin θ) would not produce an
acceptable transformation for domains
such as r ∈ [−1, 1], θ ∈ [0, 2π] or r ∈
[0, 2], θ ∈ [0, 3π]. The first traces out
the unit disk twice: once for r < 0, and
once for r > 0. The range of the second
transformation is the disk x2 + y2 ≤ 4,
but the upper half of this disk is produced
twice: once for θ ∈ [0, π], and again for
θ ∈ [2π, 3π].
If we were using these transformations to
help compute a double integral over a cir-
cular region, we’d get the wrong answer!

14.8 Change of Variables in Multiple Integrals

SÊ½çã®ÊÄ Computing the Jacobian in this case is straightforward:

JT(u, v) = det
[
xu(u, v) xv(u, v)
yu(u, v) yv(u, v)

]
= det

[
8u −2v
4u 6v

]
48uv+ 8uv = 56uv.

As hinted at earlier, the Jacobian is important because it appears in the
change of variables formula to come. Its role is analogous to that of the deriva-
tive g′(u) in Equation (14.2). We also need the Jacobian to precisely define the
type of function that can be used for a change of variables.

Definition 14.8.4 Properties of a transformation

LetD and E subsets ofR2, withD ⊆ R2 described in terms of coordinates
u, v, and E ⊆ R2 described in terms of coordinates x, y. We say that a
function T : D → E is a transformation if:

1. T is continuously differentiable.

2. T is one-to-one, and the range of T is E.

3. The Jacobian of T does not vanish: JT(u, v) ̸= 0 for all (u.v) ∈ D.

When D is a closed, bounded subset, we can relax Definition 14.8.4 slightly:
each of the three conditions above must hold on the interior of D, but are al-
lowed to fail on all or part of the boundary. In particular, this is the case for
cylindrical, and spherical coordinates:

• The polar coordinate transformation x = r cos θ, y = r sin θ is only one-
to-one if r > 0 and θ belongs to an interval whose length is less than 2π.
Note that JT(r, θ) vanishes at r = 0.

Of course, we often use a domain such as r ∈ [0, R], θ = [0, 2π] to de-
scribe a disk centred at the origin. The conditions of Definition 14.8.4 fail
at r = 0, and because points with θ = 0 get mapped to the same place as
points with θ = 2π. But these coordinates describe 3 of the 4 sides of the
boundary rectangle for our domain, and we allow such boundary defects.

• The cylindrical coordinate transformation has exactly the same issues as
polar coordinates.

• For spherical coordinates, we take ρ ≥ 0 and again accept the fact that
our transformation is not one-to-one (and the Jacobian is zero) when ρ =
0. Similarly, we generally allow θ ∈ [0, 2π] and φ ∈ [0, π] even though
endpoints of these intervals might get sent to the same point.

Before we move on to the change of variables formula, we consider one
more example that will help clarify the geometry involved in a change of vari-
ables.
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Chapter 14 Multiple Integration

The Jacobian of a Linear Map

Before we continue to the change of variables formula, let us pause to con-
sider an example thatmay be familiar to you from a first course in linear algebra.

We saw in Example 14.8.2 that when x and y are linear functions of u and v,
the Jacobian of the transformation is a constant. What does that constant tell
us about the transformation? Here is an example taken from the book Matrix
Algebra, by Greg Hartman (one of the APEX authors!), which is sometimes used
as part of a textbook for our Math 1410 linear algebra course.
Example 14.8.5 Visualizing a linear function from R2 to R2

Consider the function T : R2 → R2 given by

T(u, v) = (u+ 4v, 2u+ 3v).

Note that T is linear in both variables. In fact, if we set (x, y) = T(u, v) and

represent points by vectors, replacing (x, y) by x⃗ =

[
x
y

]
and (u, v) by u⃗ =

[
u
v

]
,

then we can write this function as the matrix transformation x⃗ = Au⃗, where A is

the 2× 2 matrix
[
1 4
2 3

]
. That is:

[
x
y

]
=

[
1 4
2 3

] [
u
v

]
.

To visualize the effect of T, plot the vectors representing the four corners of the
unit square, before and after they have been multiplied by A, where

A =

[
1 4
2 3

]
.

SÊ½çã®ÊÄ The four corners of the unit square can be represented by
the vectors [

0
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
1

]
.

Multiplying each by A gives the vectors

[
0
0

]
,

[
1
2

]
,

[
5
5

]
,

[
4
3

]
,

respectively.
The unit square and its transformation are graphed in Figure 14.8.4, where

the shaped vertices correspond to each other across the two graphs. Note how
the square got turned into some sort of quadrilateral (it’s actually a parallelo-
gram). A really interesting thing is how the triangular and square vertices seem
tohave changedplaces – it is as though the square, in addition to being stretched
out of shape, was flipped.
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Note: Recall from linear algebra, that if
two vectors a⃗, b⃗ span a parallelogram in
the plane, then the determinant of the
2× 2 matrix containing a⃗ and b⃗ gives the
area (up to sign) of the parallelogram.

Note: Recall the following property
for definite integrals in one variable:∫ b

a
f(x) dx = −

∫ a

b
f(x) dx. The defi-

nite integral is sensitive to the orientation
of the interval over which the integration
is performed. (Left to right or right to
left.) Double and triple integrals do not
have this sensitivity. We’ll see in Section
15.5 how information about orientation is
reintroduced in the context of vector cal-
culus.

14.8 Change of Variables in Multiple Integrals

x

y

−1 1 2 3 4 5

−1

1

2

3

4

5

x

y

−1 1 2 3 4 5

−1

1

2

3

4

5

Figure 14.8.4: Transforming the unit square by matrix multiplication in Example 14.8.5.

How does all this relate to Jacobians and change of variables? First note that
the derivative of any linear function is (perhaps not so surprisingly) the matrix
that defines it: for T(u, v) = (u+ 4v, 2u+ 3v), we have

DT(u, v) =
[
1 4
2 3

]
= A.

The Jacobian of T is then the determinant of this matrix:

JT(u, v) = detA = 1(3)− 4(2) = −5.

Let us make a note of a few key points about this example. First, note that in
this case, the derivative matrix, (and as a result, the Jacobian) is constant. (This
of course is generally true of the derivative for linear functions.)

What happens when we apply the map T to the unit square? The value
JT(u, v) = −5 tells us two things:

• First, the area of the unit square is increased by a factor of 5.

• Second, the transformation T reverses the orientation of the unit square.
This is indicated by the negative value of the determinant. The reversal of
orientation is responsible for the “flipping” of the square noticed above.

The result of performing the transformation T on the unit square is therefore
the following: first, the square is flipped over. Then, the square is stretched out
into a parallelogram whose area is 5 times that of the original square.

Let us make a couple of remarks about the preceding example. First, note
the need for an absolute value around the determinant, to ensure the area com-
puted is positive. This absolute value will be needed in our change of variables
formula as well.

Second, since our transformation was linear, with constant derivative, the
effect on area is the same for any portion of the plane: applying the transfor-
mation T to a closed bounded region D ⊆ R2 of area A will produce a region of
area 5A. For non-linear transformations, the value of the Jacobian (and hence,
the effect on area) will vary from point to point.
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Chapter 14 Multiple Integration

Beforewemove on, let’s do twomore examples, with transformationswe’ve
already encountered. In these examples, we’ll find that the value of the Jaco-
bian is not a constant.

Example 14.8.6 The Jacobians for polar and spherical coordinate transfor-
mations
Compute the Jacobian for

1. The polar coordinate transformation

x = r cos θ y = r sin θ

2. The spherical coordinate transformation

x = r cos θ sinφ y = r sin θ sinφ z = r cosφ.

SÊ½çã®ÊÄ

1. Here we’ve defined x and y in terms of the coordinates r and θ instead of
u and v, but the process is the same:

JT(r, θ) = det
[
xr(r, θ) xθ(r, θ)
yr(r, θ) yθ(r, θ)

]
= det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r.

Interesting. Note that the value of the Jacobian is r, which is precisely the
correction factor needed in the area element for a double integral when
we change from rectangular to polar coordinates. Let’s try the spherical
coordinate transformation to see if this was merely a coincidence.

2. Although we haven’t defined the Jacobian for a change of coordinates in
three variables, the process is exactly the same. We form the derivative
of the transformation, given by the matrix of partial derivatives, and com-
pute its determinant. We find:

JT(r, θ,φ) = det

xρ(ρ, θ,φ) xθ(ρ, θ,φ) xφ(ρ, θ,φ)
yρ(ρ, θ,φ) yθ(ρ, θ,φ) yφ(ρ, θ,φ)
zρ(ρ, θ,φ) zθ(ρ, θ,φ) zφ(ρ, θ,φ)


= det

cos θ sinφ −ρ sin θ sinφ ρ cos θ cosφ
sin θ sinφ ρ cos θ sinφ ρ sin θ cosφ
cosφ 0 −ρ sinφ


= ρ sin θ sinφ

∣∣∣∣sin θ sinφ ρ sin θ cosφ
cosφ −ρ sinφ

∣∣∣∣
+ ρ cos θ sinφ

∣∣∣∣cos θ sinφ ρ cos θ cosφ
cosφ −ρ sinφ

∣∣∣∣
= ρ sin θ sinφ(−ρ sin θ(sin2 φ+ cos2 φ)

+ ρ cos θ sinφ(−ρ cos θ(sin2 φ+ cos2 φ)
= −ρ2 sin2 θ sinφ− ρ2 cos2 θ sinφ
= −ρ2 sin θ.

We computed the above 3×3 determinant using a cofactor expansion along
the second column. Except for the minus sign this is once again exactly the cor-
rection factor for the volume element in spherical coordinates, as given in The-
orem 14.7.2 in Section 14.7. In fact, we can account for the minus sign as simply
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If you need further convincing, notice
that setting u = 0, v = t gives the para-
metric curve T(0, t) = (t, 4t), which is
the same as the line y = 4x: the line
from (0, 0) to (1, 4). Similarly, setting
u = t, v = 0 gives T(t, 0) = (3t, t): the
line y = 1

3 x from (0, 0) to (3, 1). One can
similarly check that T(1, t) and T(t, 1) give
lines forming the other two sides of the
parallelogram.

14.8 Change of Variables in Multiple Integrals

an artifact of how the coordinates (ρ, θ,φ) are ordered in Section 14.7. Had
we chosen the order (ρ,φ, θ), the second and third columns in the determinant
above would be switched, and the minus sign disappears. This is again related
to the question of orientation discussed in the context of linear transformations
above.

It seems thatwe’re onto something. Let’s set aside, for now, questions about
what times of functions can be used to define a change of variables, and state
the general change of variables formula for multiple integrals. Notice how, as
with the derivative g′(u) in Equation (14.2), the Jacobian gives us a measure of
how subregions in the domain are stretched or shrunk.

Theorem 14.8.1 Change of variables formula for double integrals

Let D be a closed, bounded region in the plane, and let T : D ⊆ R2 → R2

be a transformation. If f is a continuous, real-valued function on D, then∫∫
D
f(T(u, v))|JT(u, v)| du dv =

∫∫
T(D)

f(x, y) dx dy.

The formula for triple integrals is analogous: given (x, y, z) = T(u, v,w)
for (u, v,w) in some closed, bounded domain D, then∫∫∫

D
f(T(u, v,w)) du dv dw =

∫∫∫
T(D)

f(x, y, z) dx dy dz.

Let us try a simple example.

Example 14.8.7 Finding the area of a parallelogram
Let R be the region in the x, y plane whose boundary is the parallelogram with
vertices (0, 0), (3, 1), (1, 4), and (4, 5).

1. Determine a rectangular region D and a transformation T : D → R2 such
that R = T(D).

2. Use the transformation T and Theorem 14.8.1 to determine the area of R.

SÊ½çã®ÊÄ

1. For inspiration, we look to Example 14.8.5. Notice how the transformation

defined by the matrix A =

[
1 4
2 3

]
preserves the origin, and sends the

points (1, 0) and (0, 1) to (1, 2) and (4, 3), respectively. In general, the
transformation

T(u, v) = (au+ cv, bu+ dv), with matrix
[
a c
b d

]
will send (1, 0) to (a, b), and (0, 1) to (c, d). This suggests that in our case
we can take D to be the unit square [0, 1]× [0, 1], and set

T(u, v) = (3u+ v, u+ 4v).

We check that T(0, 0) = (0, 0), T(1, 0) = (3, 1), T(0, 1) = (1, 4), and
T(1, 1) = (4, 5). The four corners of the unit square are mapped to the
four corners of the parallelogram. Since linear transformationsmap “lines
to lines”, we have our transformation.
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Figure 14.8.5: The region of integration R
in Example 14.8.8

Note: In this case, understanding the ge-
ometry of the Jacobian gives us the an-
swer without any computation – since
a square of area 1 is transformed to a
square of area 2, we know |JT(u, v)| = 2.

Chapter 14 Multiple Integration

2. To use Theorem 14.8.1, we need to compute the Jacobian of our transfor-
mation. We have

JT(u, v) = det
[
3 1
1 4

]
= 11,

and since R = T(D), the change of variables formula gives us

A =

∫∫
R
1 dx dy =

∫∫
D
11 du dv = 11.

Let’s try another example. Our next example is more complicated, but this
time, we’re given the change of variables.

Example 14.8.8 Evaluating an integral using a given transformation
Use the change of variables x = u+ v, y = u− v to evaluate the integral∫∫

R
xex

2−y2 dA,

where R is the region bounded by the lines:

y = x, y = −x, y = x− 2, and y = 2− x.

SÊ½çã®ÊÄ The region of integration is shown in Figure 14.8.5. We need
to determine a domain for the transformation T(u, v) = (u+ v, u− v) such that
the range of T is R. Let’s put x = u+ v and y = u− v into the equations of our
boundary lines, to see what the corresponding lines in the u, v plane are.

y = x ⇒ u− v = u+ v ⇒ v = 0.
y = −x ⇒ u− v = −(u+ v) ⇒ u = 0.

y = x− 2 ⇒ u− v = u+ v− 2 ⇒ 2v = 2 ⇒ v = 1.
y = 2− x ⇒ u− v = 2− (u+ v) ⇒ 2u = 2 ⇒ u = 1.

These lines are simply the boundary of the unit square in the u, v plane. Thus, if
we take the domain D = [0, 1]× [0, 1] for T, we will have R = T(D), as required.
Now, we apply Theorem 14.8.1. Recall the formula:∫∫

D
f(T(u, v))|JT(u, v)| du dv =

∫∫
T(D)

f(x, y) dx dy.

We have f(x, y) = xex
2−y2 . It follows that

f(T(u, v)) = (u+v)e(u+v)2−(u−v)2 = (u+v)eu
2+2uv+v2−(u2−2uv+v2) = (u+v)e4uv.

We also need to compute the Jacobian. Since the transformation is linear, we
know this will be a constant. We find:

JT(u, v) = det
[
xu xv
yu yv

]
= det

[
1 1
1 −1

]
= −2.

Putting all this into our change of variables formula, we have∫∫
R
xex

2+y2 dx dy =
∫∫

D
(u+ v)e4uv|−2| du dv.
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Note: Some caution is needed when de-
termining the domain D. Note that the
given curves bound two regions: one
above the u axis, and one below. But we
note that y = v, and since y > 0 for the
region R, we must have v > 0 in D.

R

1 2 3 4

1

2

3

4

x

y

(a)

D

1 2 3 4

−4
−3
−2
−1

1
2
3
4

x

y

(b)

Figure 14.8.6: (a) The region of integra-
tionR, and (b) the domainDmapped onto
R by T.

14.8 Change of Variables in Multiple Integrals

This integral can be evaluated by splitting it in two, and choosing the most con-
venient order of integration for each part:∫∫

D
2(u+ v)e4uv du dv = 2

∫ 1

0

∫ 1

0
ue4uv dv du+ 2

∫ 1

0

∫ 1

0
ve4uv du dv.

Now, we find that∫ 1

0

∫ 1

0
ue4uv dv du =

∫ 1

0

(
1
4
e4uv
∣∣∣∣1
0

)
du

=
1
4

∫ 1

0
(e4u − 1) du

=
1
16

(e4 − 1)− 1
4
(1) =

1
16

e4 − 5
16

,

and the second integral differs only in the labelling of the variables, and gives
the same result. Thus, we have∫∫

R
xex

2−y2 dx dy =
1
4
e4 − 5

4
.

Let’s try one more example where we’re given some guidance before tack-
ling a general change of variables problem.

Example 14.8.9 Using a transformation to evaluate an integral
Let R be the region in the first quadrant bounded by the lines y = x and y = 4x,
and the hyperbolas y = 1/x and y = 4/x. Evaluate the integral∫∫

R
xy2 dA

using the change of variables x = u/v, y = v.

SÊ½çã®ÊÄ First, we note that setting y = kx, where k is a constant,
gives us

v = k
u
v

⇒ u =
1
k
v2,

while setting y = k/x gives xy = k, or u = k. The region R is therefore the
image under the transformation T(u, v) = (u/v, v) of the region D bounded by
the curves u = v2 and u = 1

4v
2, and the lines u = 1, u = 4; see Figure 14.8.6

(b).
This is perhaps not the best possible change of variables: the domain D is

not a rectangle. (See Example 14.8.11 below for a change of variables that is
more effective for this type of region.) However, it is a region of the type we
considered in Section 14.2, so we’re better off than we were with the original
region. We have 1 ≤ u ≤ 4, and the equations u = v2, u = 1

4v
2 can be re-

written (noting that v > 0) as v =
√
u and v = 2

√
u.

With f(x, y) = xy2 we have f(T(u, v)) = u
v ·v

2 = uv, and the Jacobian is given
by

JT(u, v) = det
[
1/v −u/v2
0 1

]
=

1
v
.
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Note: Recall that in Section 13.10we gave
the following alternative definition of dif-
ferentiability: f : D ⊂ Rn → Rm is differ-
entiable if

lim
h→0

∥f(a+ h)− f(a)− Df(a)h∥
∥h∥ = 0,

where Df(a) is the matrix of partial
derivatives of f at a, and Df(a)h denotes
matrix multiplication, with h viewed as a
column vector.

Chapter 14 Multiple Integration

Thus, we have ∫∫
R
xy2 dA =

∫∫
D
uv
∣∣∣∣1v
∣∣∣∣ du dv

=

∫ 4

1

∫ 2
√
u

√
u

u dv du

=

∫ 4

1
u3/2 du

=
2
5
(32− 1) =

62
5
.

Our next goal is to tackle the following general problem: given a multiple
integral over a region E, determine a transformation T with domain D such that
T(D) = E, and use it to evaluate the integral. Before attempting a couple of
examples, we take a brief detour to consider some technical details that will
assist us in understanding the problem.

Recall from Definition 14.8.4 that we require transformations to be one-to-
one and onto (see Definition 14.8.2), except possibly on the boundary of their
domain.

One of the reasons that we require these properties is that they guarantee
that T has an inverse. If a transformation T : D → E is one-to-one and onto,
then we can define the inverse mapping T−1 : E → D according to

T−1(x) = u if and only if x = T(u).

Notice that the onto condition guarantees that the domain of T−1 is all of E.
When considering a changes of variables for a multiple integral over a region
E, we would ideally like to have a one-to-one and onto mapping from D to E to
ensure that when we convert to an integral over D, each point in E only gets
“counted once”. For example, consider the mapping T(u, v) = (u2, v) defined
on [−1, 1]× [0, 1]. (That is, x = u2 with−1 ≤ u ≤ 1 and y = v, with 0 ≤ v ≤ 1.)
The image of T is the square [0, 1]× [0, 1], but each point (x, y) corresponds to
two points (±

√
x,√y) in D, so integrating over Dwould be the same as integrat-

ing over E twice!
Next we want to consider differentiability. Recall that a vector-valued func-

tion
r(t) = ⟨x(t), y(t)⟩

is continuous if and only if each of the component functions x(t), y(t) is contin-
uous, and similarly, r(t) is differentiable if and only if each of the component
functions is differentiable, and

r′(t) = ⟨x′(t), y′(t)⟩.

Similarly, a function T : D ⊂ Rn → Rn is continuous if and only if each of its
components is continuous (as a function of several variables), and (for n = 2)
the partial derivatives of T can be viewed as the vector-valued functions

ru(u, v) =
∂T
∂u

(u, v) =
⟨
∂x
∂u

(u, v),
∂y
∂u

(u, v)
⟩
,

rv(u, v) =
∂T
∂v

(u, v) =
⟨
∂x
∂v

(u, v),
∂y
∂v

(u, v)
⟩
,
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Note: The −1 on the right-hand side of
Equation (14.3) denotes a matrix inverse.
A basic result from linear algebra tells us
that a matrix is invertible if and only if
its determinant is non-zero, which is one
reason why we require a nonzero Jaco-
bian in Definition 14.8.4. (Compare this
to the result (f−1)′(x) =

1
f′(f−1(x))

in

one variable.)

14.8 Change of Variables in Multiple Integrals

with similar formulas for n = 3. (For n = 1 we have only the single derivative
T′(u).) If each of the components of each of the partial derivatives is continuous
(that is, if the partial derivative of each of the x variables with respect to each of
the u variables is continuous) we say that T is C1, or continuously differentiable.

If a function T : D ⊂ Rn → E ⊂ Rn is C1, then as with real-valued functions,
being continuously differentiable implies that T is differentiable (in the sense of
the definition from Section 13.10), and therefore continuous. The derivative of
T is then an n×nmatrix. For example, when n = 2, if T(u, v) = (x(u, v), y(u, v),
we get

DT(u, v) =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 .

Notice that, while the gradients ∇x(u, v),∇y(u, v) make up the rows of the
derivative matrix DT(a), the columns of DT(a) are the partial derivative vectors
ru and rv.

Given our function T : D ⊂ Rn → E ⊂ Rn, let us denote by DT the matrix
of partial derivatives, as in the marginal note on this page. Since the dimension
of the domain and range are the same, DT is a square (n × n) matrix, so we
can compute its determinant, and this, of course, is the Jacobian, as defined in
Definition 14.8.3.

Let’s comeback to the change of variables formula. If we let dx denote either
dx, dA, or dV, depending on whether n = 1, 2 or 3, and doing the same for du,
the change of variables formula for a transformation T : D → E can be written
as ∫

E
f(x)dx =

∫
D
f(T(u))|JT(u)|du,

where the integral sign represents a single, double, or triple integral, depend-
ing on the value of n. (So this really is just a generalization of the method of
substitution you learned in Calculus I.) Note that the properties required for T
to be a transformation tell us that every point of E corresponds to a point in D,
and integrating over D is the same as integrating over E, once we account for
the “stretch factor” of the transformation given by the Jacobian JT(u). A rigor-
ous proof of the change of variables formula is very difficult, but we will give
an argument at the end of this section similar to the one we considered for the
polar and spherical coordinate transformations which, although not a complete
proof, is at least a plausible explanation!

The general inverse function theorem, which is not stated in most calculus
textbooks, (probably in part because the statement requires defining the matrix
DT of partial derivatives and explaining what the inverse of a matrix is), states
that if T : D → E is one-to-one and onto, then T−1 exists, and moreover, if T is
C1 and JT(u) ̸= 0 for all u ∈ D, then T−1 is also a C1 function, and

DT−1(x) = (DT(u))−1, (14.3)

where u = T−1(x).
A useful consequence of Equation (14.3) is obtained by taking the determi-

nant of both sides of the above equation (recall that det(A−1) = 1/ det(A) for
any invertible matrix A).
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Chapter 14 Multiple Integration

Theorem 14.8.2 The Jacobian of an inverse transformation

Let T : D → R2 be a one-to-one C1 mapping with image E = T(D). If
JT(u) ̸= 0 for all u ∈ D, then T−1 : E → R2 is a transformation, and the
Jacobian of T−1 is given by

JT−1(x) = 1
JT(T−1(x)) .

This result can come in handy in cases where it’s easy to come up with the
inverse mapping u = T−1(x), but hard to solve for x in terms of u to obtain T.

Our last technical detail is a theorem that can be very useful when trying to
determine the transformation to use for a change of variables: the boundary of
Emust correspond to the boundary ofD. This is useful becausewe usually would
like D to be as simple as possible, ideally a rectangle (or box, if n = 3). Since the
sides of the rectangle are given by setting u or v equal to a constant, we look at
the curves that define the boundary of E. If the boundary of E can be expressed
in terms of level curves for two functions f(x, y) and g(x, y), we can define u =
f(x, y) and v = g(x, y), which allows us to define T−1(x, y) = (f(x, y), g(x, y)).
From there, we can try to compute T from T−1, which is a matter of solving for
x and y in terms of u and v.

Theorem 14.8.3 Transformations preserve the boundary

Let D, E ⊂ Rn be closed, bounded regions. If T : D → E is a transforma-
tion, then the boundary of E is the image under T of the boundary of D;
that is, if T(u) = x is on the boundary of E, then u is on the boundary of
D.

We will prove this result in the case that T is one-to-one, with JT(u) ̸= 0, on
all of D, including the boundary. Note that if this property fails on some portion
on the boundary, this will not affect the integral. For example, if n = 2, the
boundary of D consists of a finite union of continuous curves, so any portion of
the boundary is a continuous curve, andwe know thatwe can neglect the graphs
of finitely many continuous curves when carrying out an integral. We begin by
first proving a simpler result.

Theorem 14.8.4 Transformations are open mappings

If f : A → B is a continuous, one-to-one, and onto mapping from A
to B with continuous inverse f−1 : B → A, then f maps open sets to
open sets. That is, if U ⊂ A is an open subset of A, then the image
f(U) = {f(u) ∈ B|u ∈ U} is an open subset of B.

Proof: Let U ⊂ A be open, and let x ∈ f(U). We need to show that there
exists some δ > 0 such that Nδ(x) = {y ∈ A|∥ x − y ∥ < δ} is a subset of
f(U). (By definition, f(U) is open if each element of f(U) has a δ-neighbourhood
completely contained in f(U).) Since f is one-to-one and onto, there exists a
unique v = f−1(x) ∈ U such that f(v) = x. (We must have v ∈ U since f(v) ∈
f(U).) Since U is open, there exists an ε > 0 such that Nε(v) ⊂ U.
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14.8 Change of Variables in Multiple Integrals

Now, since f−1 is continuous, there exists a δ > 0 such that if y ∈ Nδ(x),
then f−1(y) ∈ Nε(v). But if f−1(y) ∈ Nε ⊂ U, then f(f−1(y)) = y ∈ f(U), by
definition of f(U). Thus, Nδ(x) ⊂ f(U), which is what we needed to show.

Using the above lemma, we can now give a proof of our theorem:
Proof of Theorem 14.8.3: Let T : D → E be the given transformation, which is
one-to-one and onto, and such that JT(u) ̸= 0 for all u ∈ D. Since T is one-to-
one and onto, we can find an inverse function T−1 : E → D. Since T is C1 and
JT(u) ̸= 0 for all u ∈ D, the inverse function theorem tells us that T−1 must
be C1 on E. Since T and T−1 are both C1, they are differentiable and therefore
continuous.

Now, let x ∈ E be a boundary point. We need to show that x is the image of a
boundary point in D. Recall that x is a boundary point if and only if every neigh-
bourhood of x contains both points in E and points not in E. Let u = T−1(x) ∈ D
be the element of D that is mapped to x by T. For the sake of contradiction, sup-
pose that u is not a boundary point of D. Then since u ∈ D it must be an interior
point of D, and therefore, there exists some δ > 0 such that Nδ(u) ⊂ D. (That
is, there is a neighbourhood of u that is completely contained in D.)

However, since T satisfies the conditions of Theorem 14.8.4, we know that
Tmust map open sets to open sets. In particular, since Nδ(u) is an open subset
of D, T(Nδ(u))must be an open subset of E. But since u ∈ Nδ(u), we must have
x = T(u) ∈ T(Nδ(u)), and thus T(Nδ(u)) is an open subset of E that contains x,
which contradicts the fact that x is a boundary point. Thus, it must be the case
that u is a boundary point of D.

Note that since T−1 : E → D is also a transformation with the same proper-
ties as T, the converse to this result is valid as well: if u belongs to the boundary
of D, then T(u) belongs to the boundary of E.

We will see how Theorems 14.8.3 and 14.8.2 are put to use in the following
examples.

Example 14.8.10 Evaluating a double integral with a change of variables

Compute
∫∫

E

(
y2

x4
+

x2

y4

)
dA, where E is the region bounded by y = x2, y =

2x2, x = y2, and x = 4y2.

SÊ½çã®ÊÄ We need to find a region D ⊂ R2 and a transformation T :
D → R2 whose image is E. We use the fact that Tmust map the boundary of D
to the boundary of E as a guideline. In particular, note that since T is C1, it must
map smooth curves to smooth curves by the chain rule. This tells us that the
corners of E must correspond to the corners of D, and in particular, that each
of the four curves that make up the boundary of Emust come from four curves
that make up the boundary of D. Since we would like the integral over D to be
as simple as possible, we try to find a transformation such that D is a rectangle.

Since the sides of a rectangle in the uv-plane are given by either u = constant
or v = constant, we try to express the boundary of E in terms of level curves
u(x, y) = c1, c2 and v(x, y) = d1, d2. Let’s look at the curves y = x2 and y = 2x2.
These both belong to the family of curves y = cx2, or

y
x2

= c, so we set u(x, y) =
y
x2
. The region between these two parabolas is then given by 1 ≤ u ≤ 2, or

u ∈ [1, 2]. Similarly, the other two sides of the boundary of E, given by x = y2

and x = 4y2 both belong to the family of curves x = dy2, or
x
y2

= d. This

suggests that we take v(x, y) =
x
y2
, with 1 ≤ v ≤ 4.
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We have now determined a map S : E → D = [1, 2]× [1, 4] given by

S(x, y) =
(

y
x2
,
x
y2

)
.

This map is one-to-one and onto (check this), clearly C1, and has Jacobian

JS(x, y) =
∂

∂x

( y
x2
) ∂

∂y

(
x
y2

)
− ∂

∂x

(
x
y2

)
∂

∂y

( y
x2
)
=

3
x2y2

,

which is defined and non-zero on all of E. This means that S = T−1 for some
transformation T : D → E. We can now proceed to compute the integral via
change of variables in one of two ways:

1. Directly, by solving for x and y in terms of u and v, which will give us the
transformation T.

From u =
y
x2

we get y = ux2, so x = vy2 = vu2x4. Since x ̸= 0 on E, this

gives us x−3 = u2v, so x = u−2/3v−1/3, and thus y = ux2 = u−1/3v−2/3.
The transformation T is thus T(u, v) = (u−2/3v−1/3, u−1/3v−2/3), and its
Jacobian is given by

JT(u, v) =
∂

∂u
(u−2/3v−1/3)

∂

∂v
(u−1/3v−2/3)− ∂

∂u
(u−1/3v−2/3)

∂

∂v
(u−2/3v−1/3) =

1
3u2v2

.

The integral is therefore∫∫
E

(
x2

y4
+

y2

x4

)
dA =

∫∫
D

(
v2 + u2

) ∣∣∣∣ 1
3u2v2

∣∣∣∣ du dv
=

1
3

∫ 4

1

∫ 2

1

(
1
u2

+
1
v2

)
du dv

=
1
3

∫ 4

1

(
−1
2

− −1
1

+
1
v2

)
dv

=
1
3

(
1
2
(4− 1)− 1

4
+

1
1

)
=

3
4
.

2. Indirectly, using the fact that JT(u, v) =
1

JT−1(x(u, v), y(u, v))
.

From the above, wehave that JT−1(x, y) = 3
x2y2 , so JT(u, v) =

1
3 (x(u, v))

2(y(u, v))2.

From u =
y
x2

and v =
x
y2
, we have uv =

xy
x2y2

=
1
xy

. Thus, x2y2 =
1

u2v2
,

so JT(u, v) =
1

3u2v2
as before. From here we can proceed as in part (a).

Example 14.8.11 Evaluating a double integral with a change of variables
Compute

∫∫
E
xy dA, where E is the region in the first quadrant boundedby y = x,

y = 4x, y = 1/x, and y = 2/x.

SÊ½çã®ÊÄ We need to find a region D ⊂ R2 and a transformation T :
D → R2 whose image is E. This problem is almost identical to the one we solved
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Figure 14.8.8: The region of integration in
Example 14.8.11

14.8 Change of Variables in Multiple Integrals

in Example 14.8.9, where we were given a change of variables whose domain
was still somewhat complicated. This time, we look for a transformation with a
rectangular domain.

Using the principle that T must map the boundary of D to the boundary of
E as above, we set u =

y
x
, so that 1 ≤ u ≤ 4 gives the region between y = x

and y = 4x, and v = xy, so that 1 ≤ v ≤ 2 gives the region between y = 1/x
and y = 2/x. Thus the desired transformation is defined on the rectangle D =
[1, 4]× [1, 2] and has an inverse given by T−1(x, y) = (y/x, xy).

This time we leave the direct method (solving for x and y in terms of u and
v) as an exercise and use the indirect method. The Jacobian of T−1 is given by

JT−1(x, y) = det


∂

∂x

(y
x

) ∂

∂y

(y
x

)
∂

∂x
(xy)

∂

∂y
(xy)

 = det


−y
x2

1
x

y x

 =
−2y
x

.

The Jacobian of T is thus JT(u, v) =
1

J−1
T (x(u, v), y(u, v))

= − x(u, v)
2y(u, v)

= − 1
2u

,

since u = y/x. The integral is thus∫∫
E
xy dA =

∫∫
D
x(u, v)y(u, v)|JT(u, v)| du dv

=

∫ 2

1

∫ 4

1
v
(

1
2u

)
du dv

=

∫ 2

1

v
2
(ln 4− ln 1) dv

=
ln 4
4

(22 − 11) =
3
4
ln 4 =

3
2
ln 2.

Understanding the change of variables formula

We now have some practice working with the change of variables formula,
but why is it valid? In any dimension, the formula has the form∫

T(D)
f(x)dx =

∫
D
f(T(u))|JT(u)|du,

if we let the symbol
∫
stand for a single, double, or triple integral as necessary.

In practice, we use the formula in one of two ways:

• Right-to-left, because it is easier to compute antiderivatives for the func-
tion f(x). This is the case with change of variables for single integrals.

• Left-to-right, because the domain D is a simpler region of integration than
T(D), such as the examples above, as well as the transformations to po-
lar, cylindrical, or spherical coordinates considered earlier. (Of course, we
might also get lucky and find that our function simplifies as well!)

Let’s consider this formula in the intermediate case of a double integral. If the
function f is positive throughout the region E = T(D), we can interpret the in-
tegral on the left as a volume. In terms of Riemann sums, we are adding up
volumes of boxes:

∆Vij = f(xij, yij)∆xi ∆yj.
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Just as f(x) ≈ T′(u)∆u in one variable, the validity of the change of variables
formula rests on the approximation

∆xi ∆yj ≈ |JT(uij, vij)|∆ui ∆vj.

The distortion in area caused by themapping Twhenwemove from the regionD
u, v plane to the region E in the x, y plane is hiddenwithin the dx dy area element
in the integral on the left-hand side. To ensure that both integrals compute the
same volume, the Jacobian is introduced as part of the integrand on the right-
hand side to produce a corresponding change in height:

∆Vij ≈ (f(xij, yij))︸ ︷︷ ︸
height

(|JT(uij, vij)|∆ui ∆vj)︸ ︷︷ ︸
area

= (f(T(uij, vij))|JT(uij, vij)|)︸ ︷︷ ︸
height

(∆ui ∆vj)︸ ︷︷ ︸
area

.

Appropriately interpreted, the only differences between the integrals on either
side are the labelling of the variables, andwhether the Jacobian provides amea-
sure of height, or of area, in the calculation of volume.

In general, transformations produce what are called “curvilinear coordinate
systems”: the original linear coordinate system in the u, v plane, with grid lines
given by u = constant or v = constant is transformed into a “grid of curves” in
the x, y plane. This is the case, for example, with the polar coordinate transfor-
mation:

1 2 3 4 5

π/4

π/2

3π/4

π

5π/4

3π/2

r

θ

T 0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

Figure 14.8.9: Correspondence between rectangular and polar grid lines.

For another example, consider the transformation T given by

T(u, v) = (u1/3v−1/3, u2/3v1/3), T−1(x, y) =
(
xy,

y
x2
)
.

A grid in the u, v plane is transformed to two families of curves: lines u =
m, v = n, where m, n are constants become the curves y = m

x and y = nx2,
respectively. The transformation is pictured in Figure 14.8.10 below:

1 2 3 4 5 6 7

1

2

3

4

5

6

7

u

v

T

1 2

1

2

3

4

Figure 14.8.10: Visualizing a general transformation.
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Note: This also fits with a general philoso-
phy of differential calculus: the derivative
of a function at a point determines the
best linear approximation to that func-
tion near that point. It seems only fitting,
then, that the best linear approximation
to a transformation is a linear transforma-
tion!

Note: Recall that the Chain Rule gives us

d
dt
(x(⃗r(t))) = ∇x(⃗r(t)) · r⃗ ′(t),

with an analogous result for y(⃗r(t)). Ap-
plying this for the curves r⃗1(t) and r⃗2(t)
above allows us to compute the deriva-
tives s⃗1 ′(t) and s⃗2 ′(t).
Note further that we can obtain the same
result by writing i⃗ and j⃗ as column vectors,
and multiplying by the matrix DT(ui, vj) –
this is the sense in which the derivative
acts as a linear transformation on vectors.

Figure 14.8.11: A transformed rectangle
and its parallelogram approximation

14.8 Change of Variables in Multiple Integrals

In Figure 14.8.10 we’ve highlighted one of the rectangles in our grid to see
how it’s transformed. Imagine now that our grid lines aremuch finer, coming not
from the integer values of u and v, but from a partition of a rectangleD in the u, v
plane. Zooming in, we’d see that each rectangle in the partition is transformed
much like the one above.

Indeed, recall the following philosophy from Section 13.10: the transforma-
tion T maps points in the u, v plane to points in the x, y plane. The derivative
matrixDT(u, v) of T at a point (u, v), when viewed as thematrix of a linear trans-
formation, maps (tangent) vectors at the point (u, v) to (tangent) vectors at the
point (x, y) = T(u, v). (This is a consequence of the Chain Rule.)

Consider a general transformation T(u, v) = (x(u, v), y(u, v)) and a uniform
partition of the domain of T. At a point (ui, vj) in our partition, the lines u = ui
and v = vj can be viewed as parametric curves:

r⃗1(t) = ⟨t, vj⟩, for ui ≤ t ≤ ui +∆u, and
r⃗2(t) = ⟨ui, t⟩, for vj ≤ t ≤ vj +∆v.

Tangent vectors to these curves are given by

r⃗1 ′(t) = ⟨1, 0⟩ = i⃗ and r⃗2 ′(t) = ⟨0, 1⟩ = j⃗.

The (i, j)-th rectangle, given by ui ≤ u ≤ ui + ∆u and vj ≤ v ≤ vj + ∆v, has
area∆uDeltav.

Viewed anotherway, this rectangle is a parallelogram spanned by the vectors
∆u⃗i and ∆v⃗j. The area of this parallelogram is given by the determinant of the
matrix whose columns are these vectors. Of course, this produces the same
area:

det
[
∆u 0
0 ∆v

]
= ∆u∆v.

Now, let’s consider the corresponding region in the x, y plane. The curves in
Figure 14.8.10 above can also be realized as parametric curves. In fact, they are
precisely the composition of the curves above with our transformation, if we
view T as a vector-valued function. We have curves

s⃗1(t) = T(⃗r1(t)) = T(t, vj) = ⟨x(t, vj), y(t, vj)⟩
s⃗2(t) = T(⃗r2(t)) = T(ui, t) = ⟨x(ui, t), y(ui, t)⟩

making up two of the four sides of our transformed rectangle. Now, s⃗1(t) and
s⃗2(t) are curves in general, not lines, and the image of our rectangle is no longer
rectangular. But for∆u,∆v small enough, our curves are approximately linear,
and the image of our rectangle is approximately a parallelogram. See Figure
14.8.11.

We can make linear approximations to vector-valued functions in much the
same way as we do for real-valued functions. We have

s⃗1(ui +∆u)− s⃗1(ui) ≈ s⃗1 ′(ui)∆u,

with a similar result for s⃗2. This means that we can approximate the area of our
transformed rectangle using the parallelogram spanned by the vectors

a⃗ = ∆u⃗s1 ′(ui) = ∆u
⟨
∂x
∂u

(ui, vj),
∂y
∂u

(ui, vj)
⟩

b⃗ = ∆u⃗s2 ′(ui) = ∆u
⟨
∂x
∂v

(ui, vj),
∂y
∂v

(ui, vj)
⟩
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The area of our transformed region is therefore approximated by the area of
the parallelogram spanned by the vectors a⃗ and b⃗:

∆A ≈ det
[
xu(ui, vj)∆u xv(ui, vj)∆v
yu(ui, vj)∆u yv(ui, vj)∆v

]
= det

[
xu(ui, vj) xv(ui, vj)

yu(ui, vj)yv(ui, vj)

]
∆u∆v

= JT(ui, vj)∆u∆v.

This is exactly the result we wanted: the area of our transformed rectangle is
approximately the area of the original rectangle, multiplied by the Jacobian. We
can begin to see the change of variables formula by putting this result into the
Riemann sum definition of the double integral:

f(xi, yj)∆x∆y ≈ f(T(ui, vj)) · JT(ui, vj)∆ui∆vj.

This equation should be viewed somewhat skeptically. The area element on the
left is that of a rectangle, not the parallelogram we ended up with above. The
argument given here is far from a complete proof of Theorem 14.8.1, but the
result is true nonetheless. The interested reader is directed to search online, or
seek out the advanced calculus section of their library, should they wish to see
a proof.
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15: V��ãÊÙ AÄ�½ùÝ®Ý
In previous chapters we have explored a relationship between vectors and inte-
gration. Our most tangible result: if v⃗(t) is the vector–valued velocity function
of a moving object, then integrating v⃗(t) from t = a to t = b gives the displace-
ment of that object over that time interval.

This chapter explores completely different relationships between vectors
and integration. These relationships will enable us to compute thework done by
a magnetic field in moving an object along a path and find how much air moves
through an oddly–shaped screen in space, among other things.

Our upcoming work with integration will benefit from a review. We are
not concerned here with techniques of integration, but rather what an integral
“does” and how that relates to the notation we use to describe it.

Integration Review

Recall from Section 14.1 that when R is a region in the x-y plane,
∫∫

R dA
gives the area of the region R. The integral symbols are “elongated esses”mean-
ing “sum” and dA represents “a small amount of area.” Taken together,

∫∫
R dA

means “sum up, over R, small amounts of area.” This sum then gives the total
area of R. We use two integral symbols since R is a two–dimensional region.

Now let z = f(x, y) represent a surface. The double integral
∫∫

R f(x, y) dA
means “sum up, over R, function values (heights) given by f times small amounts
of area.” Since “height × area = volume,” we are summing small amounts of
volume over R, giving the total signed volume under the surface z = f(x, y) and
above the x-y plane.

This notation does not directly inform us how to evaluate the double inte-
grals to find an area or a volume. With additional work, we recognize that a
small amount of area dA can be measured as the area of a small rectangle, with
one side length a small change in x and the other side length a small change in
y. That is, dA = dx dy or dA = dy dx. We could also compute a small amount
of area by thinking in terms of polar coordinates, where dA = r dr dθ. These
understandings lead us to the iterated integrals we used in Chapter 14.

Let us back our review up farther. Note that
∫ 3
1 dx = x

∣∣3
1 = 3 − 1 = 2.

We have simply measured the length of the interval [1, 3]. We could rewrite the
above integral using syntax similar to the double integral syntax above:∫ 3

1
dx =

∫
I
dx, where I = [1, 3].

We interpret “
∫
I dx” as meaning “sum up, over the interval I, small changes

in x.” A change in x is a length along the x-axis, so we are adding up along I small
lengths, giving the total length of I.

We could also write
∫ 3
1 f(x) dx as

∫
I f(x) dx, interpreted as “sum up, over

I, heights given by y = f(x) times small changes in x.” Since “height×length
= area,” we are summing up areas and finding the total signed area between
y = f(x) and the x-axis.

This method of referring to the process of integration can be very powerful.
It is the core of our notion of the Riemann Sum. When faced with a quantity
to compute, if one can think of a way to approximate its value through a sum,
the one is well on their way to constructing an integral (or, double or triple in-
tegral) that computes the desired quantity. We will demonstrate this process
throughout this chapter, starting with the next section.



(a)

(b)

(c)

Figure 15.1.1: Finding area under a curve
in space.

Chapter 15 Vector Analysis

15.1 Introduction to Line Integrals
We first used integration to find “area under a curve.” In this section, we learn
to do this (again), but in a different context.

Consider the surface and curve shown in Figure 15.1.1(a). The surface is
given by f(x, y) = 1− cos(x) sin(y). The dashed curve lies in the x-y plane and is
the familiar y = x2 parabola from−1 ≤ x ≤ 1; we’ll call this curve C. The curve
drawn with a solid line in the graph is the curve in space that lies on our surface
with x and y values that lie on C.

The question we want to answer is this: what is the area that lies below the
curve drawn with the solid line? In other words, what is the area of the region
above C and under the the surface f? This region is shown in Figure 15.1.1(b).

We suspect the answer can be found using an integral, but before trying to
figure out what that integral is, let us first try to approximate its value.

In Figure 15.1.1(c), four rectangles have been drawn over the curve C. The
bottom corners of each rectangle lie on C, and each rectangle has a height given
by the function f(x, y) for some (x, y) pair along C between the rectangle’s bot-
tom corners.

As we know how to find the area of each rectangle, we are able to approx-
imate the area above C and under f. Clearly, our approximation will be an ap-
proximation. The heights of the rectangles do notmatch exactlywith the surface
f, nor does the base of each rectangle follow perfectly the path of C.

In typical calculus fashion, our approximation can be improvedby usingmore
rectangles. The sum of the areas of these rectangles gives an approximate value
of the true area above C and under f. As the area of each rectangle is “height×
width”, we assert that the

area above C ≈
∑

(heights× widths).

When first learning of the integral, and approximating areas with “heights×
widths”, the width was a small change in x: dx. That will not suffice in this con-
text. Rather, each width of a rectangle is actually approximating the arc length
of a small portion of C. In Section 12.5, we used s to represent the arc–length
parameter of a curve. A small amount of arc length will thus be represented by
ds.

The height of each rectangle will be determined in some way by the surface
f. If we parametrize C by s, an s-value corresponds to an (x, y) pair that lies on
the parabola C. Since f is a function of x and y, and x and y are functions of s, we
can say that f is a function of s. Given a value s, we can compute f(s) and find a
height. Thus

area under f and above C ≈
∑

(heights× widths);

area under f and above C = lim
∥∆s∥→0

∑
f(ci)∆si

=

∫
C
f(s) ds. (15.1)

Here we have introduce a new notation, the integral symbol with a subscript
of C. It is reminiscent of our usage of

∫∫
R. Using the train of thought found in the

Integration Review preceding this section, we interpret “
∫
C f(s) ds” as meaning

“sum up, along a curve C, function values f(s)×small arc lengths.” It is under-
stood here that s represents the arc–length parameter.

All this leads us to a definition. The integral found in Equation 15.1 is called
a line integral. We formally define it below, but note that the definition is very
abstract. On one hand, one is apt to say “the definition makes sense,” while on
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Note: Definition 15.1.1 uses the term
scalar field which has not yet been de-
fined. Its meaning is discussed in the
paragraph preceding Definition 15.3.1
when it is compared to a vector field.

15.1 Introduction to Line Integrals

the other, one is equally apt to say “but I don’t know what I’m supposed to do
with this definition.” We’ll address that after the definition, and actually find an
answer to the area problem we posed at the beginning of this section.

Definition 15.1.1 Line Integral Over A Scalar Field

Let C be a smooth curve parametrized by s, the arc–length parameter,
and let f be a continuous function of s. A line integral is an integral of
the form ∫

C
f(s) ds = lim

∥∆s∥→0

n∑
i=1

f(ci)∆si,

where s1 < s2 < . . . < sn is any partition of the s-interval over which
C is defined, ci is any value in the i th subinterval,∆si is the width of the
i th subinterval, and ∥∆s∥ is the length of the longest subinterval in the
partition.

When C is a closed curve, i.e., a curve that ends at the same point at which
it starts, we use ∮

C
f(s) ds instead of

∫
C
f(s) ds.

The definition of the line integral does not specify whether C is a curve in
the plane or space (or hyperspace), as the definition holds regardless. For now,
we’ll assume C lies in the x-y plane.

This definition of the line integral doesn’t really say anything new. If C is a
curve and s is the arc–length parameter of C on a ≤ s ≤ b, then∫

C
f(s) ds =

∫ b

a
f(s) ds.

The real difference with this integral from the standard “
∫ b
a f(x) dx” we used in

the past is that of context. Our previous integrals naturally summed up values
over an interval on the x-axis, whereas now we are summing up values over a
curve. If we can parametrize the curve with the arc–length parameter, we can
evaluate the line integral just as before. Unfortunately, parametrizing a curve in
terms of the arc–length parameter is usually very difficult, so we must develop
a method of evaluating line integrals using a different parametrization.

Given a curve C, find any parametrization of C: x = g(t) and y = h(t),
for continuous functions g and h, where a ≤ t ≤ b. We can represent this
parametrization with a vector–valued function, r⃗(t) = ⟨g(t), h(t)⟩.

In Section 12.5, we defined the arc–length parameter in Equation 12.1 as

s(t) =
∫ t

0
∥ r⃗ ′(u) ∥ du.

By the Fundamental Theorem of Calculus, ds = ∥ r⃗ ′(t) ∥ dt. We can substitute
the right hand side of this equation for ds in the line integral definition.

We can view f as being a function of x and y since it is a function of s. Thus
f(s) = f(x, y) = f

(
g(t), h(t)

)
. This gives us a concrete way to evaluate a line

integral: ∫
C
f(s) ds =

∫ b

a
f
(
g(t), h(t)

)
∥ r⃗ ′(t) ∥ dt.

We restate this as a theorem, along with its three–dimensional analogue,
followed by an example where we finally evaluate an integral and find an area.
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(a)

(b)

Figure 15.1.2: Finding area under a curve
in Example 15.1.1.

Chapter 15 Vector Analysis

Theorem 15.1.1 Evaluating a Line Integral Over A Scalar Field

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t)⟩, a ≤ t ≤ b,
where g and h are continuously differentiable, and let z = f(x, y),
where f is continuous over C. Then∫

C
f(s) ds =

∫ b

a
f
(
g(t), h(t)

)
∥ r⃗ ′(t) ∥ dt.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t), k(t)⟩, a ≤
t ≤ b, where g, h and k are continuously differentiable, and let
w = f(x, y, z), where f is continuous over C. Then∫

C
f(s) ds =

∫ b

a
f
(
g(t), h(t), k(t)

)
∥ r⃗ ′(t) ∥ dt.

To be clear, the first point of Theorem 15.1.1 can be used to find the area un-
der a surface z = f(x, y) and above a curve C. Wewill later give an understanding
of the line integral when C is a curve in space.

Let’s do an example where we actually compute an area.

Example 15.1.1 Evaluating a line integral: areaunder a surfaceover a curve.
Find the area under the surface f(x, y) = cos(x) + sin(y) + 2 over the curve C,
which is the segment of the line y = 2x+ 1 on−1 ≤ x ≤ 1, as shown in Figure
15.1.2.

SÊ½çã®ÊÄ Our first step is to representCwith a vector–valued function.
Since C is a simple line, and we have a explicit relationship between y and x
(namely, that y is 2x+1), we can let x = t, y = 2t+1, andwrite r⃗(t) = ⟨t, 2t+1⟩
for−1 ≤ t ≤ 1.

We find the values of foverC as f(x, y) = f(t, 2t+1) = cos(t)+sin(2t+1)+2.
We also need ∥ r⃗ ′(t) ∥; with r⃗ ′(t) = ⟨1, 2⟩, we have ∥ r⃗ ′(t) ∥ =

√
5. Thus

ds =
√
5 dt.

The area we seek is∫
C
f(s) ds =

∫ 1

−1

(
cos(t) + sin(2t+ 1) + 2

)√
5 dt

=
√
5
(
sin(t)− 1

2
cos(2t+ 1) + 2t

)∣∣∣∣1
−1

≈ 14.418 units2.

Wewill practice setting up and evaluating a line integral in another example,
then find the area described at the beginning of this section.

Example 15.1.2 Evaluating a line integral: areaunder a surfaceover a curve.
Find the area over the unit circle in the x-y plane and under the surface f(x, y) =
x2 − y2 + 3, shown in Figure 15.1.3.

SÊ½çã®ÊÄ The curve C is the unit circle, whichwewill describe with the
parametrization r⃗(t) = ⟨cos t, sin t⟩ for 0 ≤ t ≤ 2π. We find ∥ r⃗ ′(t) ∥ = 1, so
ds = 1dt.

We find the values of f over C as f(x, y) = f(cos t, sin t) = cos2 t− sin2 t+ 3.
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(a)

(b)

Figure 15.1.3: Finding area under a curve
in Example 15.1.2.

Figure 15.1.4: Finding area under a curve
in Example 15.1.4.

15.1 Introduction to Line Integrals

Thus the area we seek is (note the use of the
∮
f(s)ds notation):∮

C
f(s) ds =

∫ 2π

0

(
cos2 t− sin2 t+ 3

)
dt

= 6π.

(Note: we may have approximated this answer from the start. The unit circle
has a circumference of 2π, and we may have guessed that due to the apparent
symmetry of our surface, the average height of the surface is 3.)

We now consider the example that introduced this section.

Example 15.1.3 Evaluating a line integral: areaunder a surfaceover a curve.
Find the area under f(x, y) = 1 − cos(x) sin(y) and over the parabola y = x2,
from−1 ≤ x ≤ 1.

SÊ½çã®ÊÄ Weparametrize our curve C as r⃗(t) = ⟨t, t2⟩ for−1 ≤ t ≤ 1;
we find ∥ r⃗ ′(t) ∥ =

√
1+ 4t2, so ds =

√
1+ 4t2 dt.

Replacing x and y with their respective functions of t, we have f(x, y) =
f(t, t2) = 1− cos(t) sin(t2). Thus the area under f and over C is found to be∫

C
f(s) ds =

∫ 1

−1

(
1− cos(t) sin

(
t2
))√

1+ t2 dt.

This integral is impossible to evaluate using the techniques developed in this
text. We resort to a numerical approximation; accurate to two places after the
decimal, we find the area is

= 2.17.

We give one more example of finding area.

Example 15.1.4 Evaluating a line integral: area under a curve in space.
Find the area above the x-y plane and below the helix parametrized by r⃗(t) =
⟨cos t, 2 sin t, t/π⟩, for 0 ≤ t ≤ 2π, as shown in Figure 15.1.4.

SÊ½çã®ÊÄ Note how this is problem is different than the previous ex-
amples: here, the height is not given by a surface, but by the curve itself.

We use the given vector-valued function r⃗(t) to determine the curve C in the
x-y plane by simply using the first two components of r⃗(t): c⃗(t) = ⟨cos t, 2 sin t⟩.
Thus ds = ∥ c⃗ ′(t) ∥ dt =

√
sin2 t+ 4 cos2 t dt.

The height is not found by evaluating a surface over C, but rather it is given
directly by the third component of r⃗(t): t/π. Thus∮

C
f(s) ds =

∫ 2π

0

t
π

√
sin2 t+ 4 cos2 t dt ≈ 9.69,

where the approximation was obtained using numerical methods.

Note how in each of the previous examples we are effectively finding “area
under a curve”, just as we did when first learning of integration. We have used
the phrase “area over a curve C and under a surface,” but that is because of the
important role C plays in the integral. The figures show how the curve C defines
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Figure 15.1.5: Illustrating properties of
line integrals.
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another curve on the surface z = f(x, y), and we are finding the area under that
curve.

Properties of Line Integrals

Many properties of line integrals can be inferred from general integration
properties. For instance, if k is a scalar, then

∫
C k f(s)ds = k

∫
C f(s)ds.

One property in particular of line integrals is worth noting. If C is a curve
composed of subcurves C1 and C2, where they share only one point in common
(see Figure 15.1.5(a)), then the line integral over C is the sum of the line integrals
over C1 and C2: ∫

C
f(s) ds =

∫
C1
f(s) ds+

∫
C2
f(s) ds.

This property allows us to evaluate line integrals over some curves C that are
not smooth. Note how in Figure 15.1.5(b) the curve is not smooth at D, so by
our definition of the line integralwe cannot evaluate

∫
C f(s)ds. However, one can

evaluate line integrals over C1 and C2 and their sum will be the desired quantity.
A curve C that is composed of two ormore smooth curves is said to be piece-

wise smooth. In this chapter, any statement that is made about smooth curves
also holds for piecewise smooth curves.

We state these properties as a theorem.

Theorem 15.1.2 Properties of Line Integrals Over Scalar Fields

1. LetCbe a smooth curve parametrized by the arc–length parameter
s, let f and g be continuous functions of s, and let k1 and k2 be
scalars. Then∫

C

(
k1f(s) + k2g(s)

)
ds = k1

∫
C
f(s) ds+ k2

∫
C
g(s) ds.

2. Let C be piecewise smooth, composed of smooth components C1
and C2. Then ∫

C
f(s) ds =

∫
C1
f(s) ds+

∫
C2
f(s) ds.

Mass and Center of Mass

We first learned integration as a method to find area under a curve, then
later used integration to compute a variety of other quantities, such as arc length,
volume, force, etc. In this section, we also introduced line integrals as a method
to find area under a curve, and now we explore one more application.

Let a curve C (either in the plane or in space) represent a thin wire with
variable density δ(s). We can approximate the mass of the wire by dividing the
wire (i.e., the curve) into small segments of length∆si and assume the density
is constant across these small segments. Themass of each segment is density of
the segment× its length; by summing up the approximatemass of each segment
we can approximate the total mass:

Total Mass of Wire =
∑

δ(si)∆si.
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Figure 15.1.6: Finding the mass of a thin
wire in Example 15.1.5.

15.1 Introduction to Line Integrals

By taking the limit as the length of the segments approaches 0, we have the
definition of the line integral as seen in Definition 15.1.1. When learning of the
line integral, we let f(s) represent a height; now we let f(s) = δ(s) represent a
density.

We can extend this understanding of computing mass to also compute the
center of mass of a thin wire. (As a reminder, the center of mass can be a useful
piece of information as objects rotate about that center.) We give the relevant
formulas in the next definition, followed by an example. Note the similarities
between this definition and Definition 14.6.4, which gives similar properties of
solids in space.

Definition 15.1.2 Mass, Center of Mass of Thin Wire

Let a thin wire lie along a smooth curve C with continuous density func-
tion δ(s), where s is the arc length parameter.

1. Themass of the thin wire isM =

∫
C
δ(s) ds.

2. Themoment about the y-z plane isMyz =

∫
C
xδ(s) ds.

3. Themoment about the x-z plane isMxz =

∫
C
yδ(s) ds.

4. Themoment about the x-y plane isMxy =

∫
C
zδ(s) ds.

5. The center of mass of the wire is

(x, y, z) =
(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 15.1.5 Evaluating a line integral: calculating mass.
A thin wire follows the path r⃗(t) = ⟨1+ cos t, 1+ sin t, 1+ sin(2t)⟩, 0 ≤ t ≤ 2π.
The density of the wire is determined by its position in space: δ(x, y, z) = y+ z
gm/cm. The wire is shown in Figure 15.1.6, where a light color indicates low
density and a dark color represents high density. Find the mass and center of
mass of the wire.

SÊ½çã®ÊÄ We compute the density of the wire as

δ(x, y, z) = δ
(
1+ cos t, 1+ sin t, 1+ sin(2t)

)
= 2+ sin t+ sin(2t).

We compute ds as

ds = ∥ r⃗ ′(t) ∥ dt =
√

sin2 t+ cos2 t+ 4 cos2(2t) dt =
√

1+ 4 cos2(2t) dt.

Thus the mass is

M =

∮
C
δ(s) ds =

∫ 2π

0

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 21.08gm.
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We compute the moments about the coordinate planes:

Myz =

∮
C
xδ(s) ds =

∫ 2π

0
(1+ cos t)

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 21.08.

Mxz =

∮
C
yδ(s) ds =

∫ 2π

0
(1+ sin t)

(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 26.35

Mxy =

∮
C
zδ(s) ds =

∫ 2π

0

(
1+ sin(2t)

)(
2+ sin t+ sin(2t)

)√
1+ 4 cos2(2t) dt ≈ 25.40

Thus the center of mass of the wire is located at

(x, y, z) =
(
Myz

M
,
Mxz

M
,
Mxy

M

)
≈ (1, 1.25, 1.20),

as indicated by the dot in Figure 15.1.6. Note how in this example, the curve C is
“centred” about the point (1, 1, 1), though the variable density of the wire pulls
the center of mass out along the y and z axes.

We end this section with a callback to the Integration Review that preceded
this section. A line integral looks like:

∫
C f(s) ds. As stated before the definition

of the line integral, this means “sum up, along a curve C, function values f(s)×
small arc lengths.” When f(s) represents a height, we have “height × length =
area.” When f(s) is a density (and we use δ(s) by convention), we have “density
(mass per unit length)× length = mass.”

In the next section, we investigate a new mathematical object, the vector
field. The remaining sections of this chapter are devoted to understanding inte-
gration in the context of vector fields.
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Exercises 15.1
Terms and Concepts
1. Explain how a line integral can be used to find the area un-

der a curve.

2. How does the evaluation of a line integral given as
∫
C f(s) ds

differ from a line integral given as
∮
C f(s) ds?

3. Why aremost line integrals evaluated using Key Idea 15.1.1
instead of “directly” as

∫
C f(s) ds?

4. Sketch a closed, piecewise smooth curve composed of
three subcurves.

Problems
In Exercises 5 – 10, a planar curve C is given along with a
surface f that is defined over C. Evaluate the line integral∫
C
f(s) ds.

5. C is the line segment joining the points (−2,−1) and (1, 2);
the surface is f(x, y) = x2 + y2 + 2.

6. C is the segment of y = 3x + 2 on [1, 2]; the surface is
f(x, y) = 5x+ 2y.

7. C is the circle with radius 2 centered at the point (4, 2); the
surface is f(x, y) = 3x− y.

8. C is the curve given by r⃗(t) = ⟨cos t+ t sin t, sin t− t cos t⟩
on [0, 2π]; the surface is f(x, y) = 5.

9. C is the piecewise curve composed of the line segments
that connect (0, 1) to (1, 1), then connect (1, 1) to (1, 0);
the surface is f(x, y) = x+ y2.

10. C is the piecewise curve composed of the line segment join-
ing the points (0, 0) and (1, 1), along with the quarter–
circle parametrized by ⟨cos t,− sin t+1⟩ on [0, π/2](which

starts at the point (1, 1) and ends at (0, 0); the surface is
f(x, y) = x2 + y2.

In Exercises 11 – 14, a planar curve C is given along with a sur-
face f that is defined over C. Set up the line integral

∫
C
f(s) ds,

then approximate its value using technology.

11. C is the portion of the parabola y = 2x2 + x + 1 on [0, 1];
the surface is f(x, y) = x2 + 2y.

12. C is the portion of the curve y = sin x on [0, π]; the surface
is f(x, y) = x.

13. C is the ellipse given by r⃗(t) = ⟨2 cos t, sin t⟩ on [0, 2π]; the
surface is f(x, y) = 10− x2 − y2.

14. C is the portion of y = x3 on [−1, 1]; the surface is f(x, y) =
2x+ 3y+ 5.

In Exercises 15 – 18, a parametrized curve C in space is given.
Find the area above the x-y plane that is under C.

15. C: r⃗(t) = ⟨5t, t, t2⟩ for 1 ≤ t ≤ 2.

16. C: r⃗(t) = ⟨cos t, sin t, sin(2t) + 1⟩ for 0 ≤ t ≤ 2π.

17. C: r⃗(t) = ⟨3 cos t, 3 sin t, t2⟩ for 0 ≤ t ≤ 2π.

18. C: r⃗(t) = ⟨3t, 4t, t⟩ for 0 ≤ t ≤ 1.

In Exercises 19 – 20, a parametrized curve C is given that rep-
resents a thin wire with density δ. Find the mass and center
of mass of the thin wire.

19. C: r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π; δ(x, y, z) = z.

20. C: r⃗(t) = ⟨t − t2, t2 − t3, t3 − t4⟩ for 0 ≤ t ≤ 1;
δ(x, y, z) = x + 2y + 2z. Use technology to approximate
the value of each integral.
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Figure 15.2.1: Demonstrating methods of
graphing vector fields.

Chapter 15 Vector Analysis

15.2 Vector Fields
We have studied functions of two and three variables, where the input of such
functions is a point (either a point in the plane or in space) and the output is a
number.

We could also create functions where the input is a point (again, either in
the plane or in space), but the output is a vector. For instance, we could create
the following function: F⃗(x, y) = ⟨x + y, x − y⟩, where F⃗(2, 3) = ⟨5,−1⟩. We
are to think of F⃗ assigning the vector ⟨5,−1⟩ to the point (2, 3); in some sense,
the vector ⟨5,−1⟩ lies at the point (2, 3).

Such functions are extremely useful in any context where magnitude and di-
rection are important. For instance, we could create a function F⃗ that represents
the electromagnetic force exerted at a point by a electromagnetic field, or the
velocity of air as it moves across an airfoil.

Because these functions are so important, we need to formally define them.

Definition 15.2.1 Vector Field

1. A vector field in the plane is a function F⃗(x, y) whose domain is a
subset of R2 and whose output is a two–dimensional vector:

F⃗(x, y) = ⟨M(x, y),N(x, y)⟩.

2. A vector field in space is a function F⃗(x, y, z) whose domain is a
subset of R3 and whose output is a three–dimensional vector:

F⃗(x, y, z) = ⟨M(x, y, z),N(x, y, z), P(x, y, z)⟩.

This definition may seem odd at first, as a special type of function is called a
“field.” However, as the function determines a “field of vectors”, we can say the
field is defined by the function, and thus the field is a function.

Visualizing vector fields helps cement this connection. When graphing a vec-
tor field in the plane, the general idea is to draw the vector F⃗(x, y) at the point
(x, y). For instance, using F⃗(x, y) = ⟨x + y, x − y⟩ as before, at (1, 1) we would
draw ⟨2, 0⟩.

In Figure 15.2.1(a), one can see that the vector ⟨2, 0⟩ is drawn starting from
the point (1, 1). A total of 8 vectors are drawn, with the x- and y-values of
−1, 0, 1. In many ways, the resulting graph is a mess; it is hard to tell what
this field “looks like.”

In Figure 15.2.1(b), the same field is redrawn with each vector F⃗(x, y) drawn
centered on the point (x, y). This makes for a better looking image, though the
long vectors can cause confusion: whenone vector intersects another, the image
looks cluttered.

A commonway to address this problem is limit the length of each arrow, and
represent long vectors with thick arrows, as done in Figure 15.2.2(a). Usually
we do not use a graph of a vector field to determine exactly the magnitude of a
particular vector. Rather, we are more concerned with the relative magnitudes
of vectors: which are bigger than others? Thus limiting the length of the vectors
is not problematic.

Drawing arrows with variable thickness is best done with technology; search
thedocumentation of your favorite graphing program for terms like “vector fields”
or “slope fields” to learn how. Technology obviously allows us to plot many vec-
tors in a vector field nicely; in Figure 15.2.2(b), we see the same vector field
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Figure 15.2.2: Demonstrating methods of
graphing vector fields.

Figure 15.2.3: Graphing a vector field in
space.

15.2 Vector Fields

drawn with many vectors, and finally get a clear picture of how this vector field
behaves. (If this vector field represented the velocity of air moving across a flat
surface, we could see that the air tends to move either to the upper–right or
lower–left, and moves very slowly near the origin.)

We can similarly plot vector fields in space, as shown in Figure 15.2.3, though
it is not often done. The plots get very busy very quickly, as there are lots of
arrows drawn in a small amount of space. In Figure 15.2.3 the field F⃗ = ⟨−y, x, z⟩
is graphed. If one could view the graph from above, one could see the arrows
point in a cirlce about the z-axis. One should also note how the arrows far from
the origin are larger than those close to the origin.

It is good practice to try to visualize certain vector fields in one’s head. For
instance, consider a point mass at the origin and the vector field that represents
the gravitational force exerted by the mass at any point in the room. The field
would consist of arrows pointing toward the origin, increasing in size as they
near the origin (as the gravitational pull is strongest near the point mass).

Vector Field Notation and Del Operator

Definition 15.2.1 defines a vector field F⃗ using the notation

F⃗(x, y) = ⟨M(x, y),N(x, y)⟩ and F⃗(x, y, z) = ⟨M(x, y, z),N(x, y, z), P(x, y, z)⟩.

That is, the components of F⃗ are each functions of x and y (and also z in space).
As done in other contexts, wewill drop the “of x, y and z” portions of the notation
and refer to vector fields in the plane and in space as

F⃗ = ⟨M,N⟩ and F⃗ = ⟨M,N, P⟩,

respectively, as this shorthand is quite convenient.
Another item of notation will become useful: the “del operator.” Recall in

Section 13.7 how we used the symbol ∇ (pronounced “del”) to represent the
gradient of a function of two variables. That is, if z = f(x, y), then “del f ” =
∇f = ⟨fx, fy⟩.

We now define∇ to be the “del operator.” It is a vector whose components
are partial derivative operations.

In the plane,∇ =

⟨
∂

∂x
,
∂

∂y

⟩
; in space,∇ =

⟨
∂

∂x
,
∂

∂y
,
∂

∂z

⟩
.

With this definition of ∇, we can better understand the gradient ∇f. As f
returns a scalar, the properties of scalar and vector multiplication gives

∇f =
⟨

∂

∂x
,
∂

∂y

⟩
f =

⟨
∂

∂x
f,

∂

∂y
f
⟩

= ⟨fx, fy⟩.

Now apply the del operator∇ to vector fields. Let F⃗ = ⟨x+ sin y, y2+ z, x2⟩.
We can use vector operations and find the dot product of∇ and F⃗:

∇ · F⃗ =
⟨

∂

∂x
,
∂

∂y
,
∂

∂z

⟩
· ⟨x+ sin y, y2 + z, x2⟩

=
∂

∂x
(x+ sin y) +

∂

∂y
(y2 + z) +

∂

∂z
(x2)

= 1+ 2y.

We can also compute their cross products:

∇× F⃗ =

⟨
∂

∂y
(
x2
)
− ∂

∂z
(
y2 + z

)
,
∂

∂z
(
x+ sin y

)
− ∂

∂x
(
x2
)
,
∂

∂x
(
y2 + z

)
− ∂

∂y
(
x+ sin y

)⟩
= ⟨−1,−2x,− cos y⟩.
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We do not yet know why we would want to compute the above. However,
as we next learn about properties of vector fields, wewill see how these dot and
cross products with the del operator are quite useful.

Divergence and Curl

Two properties of vector fields will prove themselves to be very important:
divergence and curl. Each is a special “derivative” of a vector field; that is, each
measures an instantaneous rate of change of a vector field.

If the vector field represents the velocity of a fluid or gas, then the diver-
gence of the field is a measure of the “compressibility” of the fluid. If the diver-
gence is negative at a point, it means that the fluid is compressing: more fluid is
going into the point than is going out. If the divergence is positive, it means the
fluid is expanding: more fluid is going out at that point than going in. A diver-
gence of zero means the same amount of fluid is going in as is going out. If the
divergence is zero at all points, we say the field is incompressible.

It turns out that the proper measure of divergence is simply∇ · F⃗, as stated
in the following definition.

Definition 15.2.2 Divergence of a Vector Field

The divergence of a vector field F⃗ is

div F⃗ = ∇ · F⃗.

• In the plane, with F⃗ = ⟨M,N⟩, div F⃗ = Mx + Ny.

• In space, with F⃗ = ⟨M,N, P⟩, div F⃗ = Mx + Ny + Pz.

Curl is a measure of the spinning action of the field. Let F⃗ represent the flow
of water over a flat surface. If a small round cork were held in place at a point
in the water, would the water cause the cork to spin? No spin corresponds to
zero curl; counterclockwise spin corresponds to positive curl and clockwise spin
corresponds to negative curl.

In space, things are a bit more complicated. Again let F⃗ represent the flow
of water, and imagine suspending a tennis ball in one location in this flow. The
water may cause the ball to spin along an axis. If so, the curl of the vector field
is a vector (not a scalar, as before), parallel to the axis of rotation, following a
right hand rule: when the thumb of one’s right hand points in the direction of
the curl, the ball will spin in the direction of the curling fingers of the hand.

In space, it turns out the proper measure of curl is ∇ × F⃗, as stated in the
following definition. To find the curl of a planar vector field F⃗ = ⟨M,N⟩, embed
it into space as F⃗ = ⟨M,N, 0⟩ and apply the cross product definition. Since M
andN are functions of just x and y (and not z), all partial derivatives with respect
to z become 0 and the result is simply ⟨0, 0,Nx − My⟩. The third component is
the measure of curl of a planar vector field.
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Figure 15.2.4: The vector fields in parts 1
and 2 of Example 15.2.1.

15.2 Vector Fields

Definition 15.2.3 Curl of a Vector Field

• Let F⃗ = ⟨M,N⟩ be a vector field in the plane. The curl of F⃗ is
curl F⃗ = Nx −My.

• Let F⃗ = ⟨M,N, P⟩ be a vector field in space. The curl of F⃗ is curl F⃗ =
∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩.

We adopt the convention of referring to curl as∇× F⃗, regardless of whether
F⃗ is a vector field in two or three dimensions.

We now practice computing these quantities.

Example 15.2.1 Computing divergence and curl of planar vector fields
For each of the planar vector fields given below, view its graph and try to visually
determine if its divergence and curl are 0. Then compute the divergence and
curl.

1. F⃗ = ⟨y, 0⟩ (see Figure 15.2.4(a))

2. F⃗ = ⟨−y, x⟩ (see Figure 15.2.4(b))

3. F⃗ = ⟨x, y⟩ (see Figure 15.2.5(a))

4. F⃗ = ⟨cos y, sin x⟩ (see Figure 15.2.5(b))

SÊ½çã®ÊÄ

1. The arrow sizes are constant along any horizontal line, so if one were to
draw a small box anywhere on the graph, it would seem that the same
amount of fluid would enter the box as exit. Therefore it seems the diver-
gence is zero; it is, as

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(y) +

∂

∂y
(0) = 0.

At any point on the x-axis, arrows above it move to the right and arrows
below it move to the left, indicating that a cork placed on the axis would
spin clockwise. A cork placed anywhere above the x-axiswould havewater
above it moving to the right faster than the water below it, also creating
a clockwise spin. A clockwise spin also appears to be created at points
below the x-axis. Thus it seems the curl should be negative (and not zero).
Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(0)− ∂

∂y
(y) = −1.

2. It appears that all vectors that lie on a circle of radius r, centred at the
origin, have the same length (and indeed this is true). That implies that
the divergence should be zero: draw any box on the graph, and any fluid
coming in will lie along a circle that takes the same amount of fluid out.
Indeed, the divergence is zero, as

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(−y) +

∂

∂y
(x) = 0.
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Figure 15.2.5: The vector fields in parts 3
and 4 of Example 15.2.1.
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Clearly this field moves objects in a circle, but would it induce a cork to
spin? It appears that yes, it would: place a cork anywhere in the flow, and
the point of the cork closest to the origin would feel less flow than the
point on the cork farthest from the origin, which would induce a counter-
clockwise flow. Indeed, the curl is positive:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(x)− ∂

∂y
(−y) = 1− (−1) = 2.

Since the curl is constant, we conclude the induced spin is the same no
matter where one is in this field.

3. At the origin, there are many arrows pointing out but no arrows pointing
in. We conclude that at the origin, the divergence must be positive (and
not zero). If one were to draw a box anywhere in the field, the edges
farther from the origin would have larger arrows passing through them
than the edges close to the origin, indicating that more is going from a
point than going in. This indicates a positive (and not zero) divergence.
This is correct:

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(x) +

∂

∂y
(y) = 1+ 1 = 2.

One may find this curl to be harder to determine visually than previous
examples. One might note that any arrow that induces a clockwise spin
on a cork will have an equally sized arrow inducing a counterclockwise
spin on the other side, indicating no spin and no curl. This is correct, as

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(y)− ∂

∂y
(x) = 0.

4. One might find this divergence hard to determine visually as large arrows
appear in close proximity to small arrows, each pointing in different direc-
tions. Instead of trying to rationalize a guess, we compute the divergence:

div F⃗ = ∇ · F⃗ = Mx + Ny =
∂

∂x
(cos y) +

∂

∂y
(sin x) = 0.

Perhaps surprisingly, the divergence is 0.
Will all the loops of different directions in the field, one is apt to reason
the curl is variable. Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(sin x)− ∂

∂y
(cos y) = cos x+ sin y.

Depending on the values of x and y, the curl may be positive, negative, or
zero.
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15.2 Vector Fields

Example 15.2.2 Computing divergence and curl of vector fields in space
Compute the divergence and curl of each of the following vector fields.

1. F⃗ = ⟨x2 + y+ z,−x− z, x+ y⟩

2. F⃗ = ⟨exy, sin(x+ z), x2 + y⟩

SÊ½çã®ÊÄ We compute the divergence and curl of each field following the
definitions.

1. div F⃗ = ∇ · F⃗ = Mx + Ny + Pz = 2x+ 0+ 0 = 2x.

curl F⃗ = ∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩
= ⟨1− (−1), 1− 1,−1− (1)⟩ = ⟨2, 0,−2⟩.

For this particular field, no matter the location in space, a spin is induced
with axis parallel to ⟨2, 0,−2⟩.

2. div F⃗ = ∇ · F⃗ = Mx + Ny + Pz = yexy + 0+ 0 = yexy.

curl F⃗ = ∇× F⃗ = ⟨Py − Nz,Mz − Px,Nx −My⟩
= ⟨1− cos(x+ z),−2x, cos(x+ z)− xexy⟩.

Example 15.2.3 Creating a field representing gravitational force
The force of gravity between two objects is inversely proportional to the square
of the distance between the objects. Locate a point mass at the origin. Create a
vector field F⃗ that represents the gravitational pull of the pointmass at any point
(x, y, z). Find the divergence and curl of this field.

SÊ½çã®ÊÄ The point mass pulls toward the origin, so at (x, y, z), the
force will pull in the direction of ⟨−x,−y,−z⟩. To get the proper magnitude, it
will be useful to find the unit vector in this direction. Dividing by its magnitude,
we have

u⃗ =

⟨
−x√

x2 + y2 + z2
,

−y√
x2 + y2 + z2

,
−z√

x2 + y2 + z2

⟩
.

Themagnitude of the force is inversely proportional to the square of the distance
between the two points. Letting k be the constant of proportionality, we have
the magnitude as

k
x2 + y2 + z2

. Multiplying this magnitude by the unit vector
above, we have the desired vector field:

F⃗ =
⟨

−kx
(x2 + y2 + z2)3/2

,
−ky

(x2 + y2 + z2)3/2
,

−kz
(x2 + y2 + z2)3/2

⟩
.

We leave it to the reader to confirm that div F⃗ = 0 and curl F⃗ = 0⃗.
The analogous planar vector field is given in Figure 15.2.6. Note how all ar-

rows point to the origin, and the magnitude gets very small when “far” from the
origin.

A function z = f(x, y) naturally induces a vector field, F⃗ = ∇f = ⟨fx, fy⟩.
Given what we learned of the gradient in Section 13.7, we know that the vec-
tors of F⃗ point in the direction of greatest increase of f. Because of this, f is said
to be the potential function of F⃗. Vector fields that are the gradient of potential
functions will play an important role in the next section.
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f(x, y) and the vector field F⃗ = ∇f in Ex-
ample 15.2.4.
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Example 15.2.4 A vector field that is the gradient of a potential function
Let f(x, y) = 3− x2 − 2y2 and let F⃗ = ∇f. Graph F⃗, and find the divergence and
curl of F⃗.

SÊ½çã®ÊÄ Given f, we find F⃗ = ∇f = ⟨−2x,−4y⟩. A graph of F⃗ is
given in Figure 15.2.7(a). In part (b) of the figure, the vector field is given along
with a graph of the surface itself; one can see how each vector is pointing in the
direction of “steepest uphill”, which, in this case, is not simply just “toward the
origin.”

We leave it to the reader to confirm that div F⃗ = −6 and curl F⃗ = 0.

There are some important concepts visited in this section that will be revis-
ited in subsequent sections and again at the very end of this chapter. One is:
given a vector field F⃗, both div F⃗ and curl F⃗ are measures of rates of change of F⃗.
The divergence measures how much the field spreads (diverges) at a point, and
the curl measures how much the field twists (curls) at a point. Another impor-
tant concept is this: given z = f(x, y), the gradient∇f is also a measure of a rate
of change of f. We will see how the integrals of these rates of change produce
meaningful results.

This section introduces the concept of a vector field. The next section “ap-
plies calculus” to vector fields. A common application is this: let F⃗ be a vector
field representing a force (hence it is called a “force field,” though this name has
a decidedly comic-book feel) and let a particle move along a curve C under the
influence of this force. What work is performed by the field on this particle? The
solution lies in correctly applying the concepts of line integrals in the context of
vector fields.
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Exercises 15.2
Terms and Concepts
1. Give two quantities that can be represented by a vector

field in the plane or in space.

2. In your ownwords, describewhat itmeans for a vector field
to have a negative divergence at a point.

3. In your ownwords, describewhat itmeans for a vector field
to have a negative curl at a point.

4. The divergence of a vector field F⃗ at a particular point is 0.
Does this mean that F⃗ is incompressible? Why/why not?

Problems
In Exercises 5 – 8, sketch the given vector field over the rect-
angle with opposite corners (−2,−2) and (2, 2), sketching
one vector for every point with integer coordinates (i.e., at
(0, 0), (1, 2), etc.).

5. F⃗ = ⟨x, 0⟩

6. F⃗ = ⟨0, x⟩

7. F⃗ = ⟨1,−1⟩

8. F⃗ = ⟨y2, 1⟩

In Exercises 9 – 18, find the divergence and curl of the given
vector field.

9. F⃗ = ⟨x, y2⟩

10. F⃗ = ⟨−y2, x⟩

11. F⃗ = ⟨cos(xy), sin(xy)⟩

12. F⃗ =

⟨
−2x

(x2 + y2)2
,

−2y
(x2 + y2)2

⟩

13. F⃗ = ⟨x+ y, y+ z, x+ z⟩

14. F⃗ =
⟨
x2 + z2, x2 + y2, y2 + z2

⟩
15. F⃗ = ∇f, where f(x, y) = 1

2 x
2 + 1

3y
3.

16. F⃗ = ∇f, where f(x, y) = x2y.

17. F⃗ = ∇f, where f(x, y, z) = x2y+ sin z.

18. F⃗ = ∇f, where f(x, y, z) = 1
x2 + y2 + z2

.
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15.3 Line Integrals over Vector Fields
Suppose a particle moves along a curve C under the influence of an electromag-
netic force described by a vector field F⃗. Since a force is inducing motion, work
is performed. How can we calculate how much work is performed?

Recall thatwhenmoving in a straight line, if F⃗ represents a constant force and
d⃗ represents the direction and length of travel, then work is simply W = F⃗ · d⃗.
However, we generally want to be able to calculate work even if F⃗ is not constant
and C is not a straight line.

As we have practised many times before, we can calculate work by first ap-
proximating, then refining our approximation through a limit that leads to inte-
gration.

Assumeaswedid in Section 15.1 thatC canbeparametrizedby the arc length
parameter s. Over a short piece of the curve with length ds, the curve is ap-
proximately straight and our force is approximately constant. The straight–line
direction of this short length of curve is given by T⃗, the unit tangent vector; let
d⃗ = T⃗ ds, which gives the direction and magnitude of a small section of C. Thus
work over this small section of C is F⃗ · d⃗ = F⃗ · T⃗ ds.

Summing up all the work over these small segments gives an approxima-
tion of the work performed. By taking the limit as ds goes to zero, and hence
the number of segments approaches infinity, we can obtain the exact amount
of work. Following the logic presented at the beginning of this chapter in the
Integration Review, we see that

W =

∫
C
F⃗ · T⃗ ds,

a line integral.
This line integral is beautiful in its simplicity, yet is not so useful in making

actual computations (largely because the arc length parameter is so difficult to
work with). To compute actual work, we need to parametrize C with another
parameter t via a vector–valued function r⃗(t). As stated in Section 15.1, ds =
∥ r⃗ ′(t) ∥ dt, and recall that T⃗ = r⃗ ′(t)/∥ r⃗ ′(t) ∥. Thus

W =

∫
C
F⃗ · T⃗ ds =

∫
C
F⃗ · r⃗ ′(t)

∥ r⃗ ′(t) ∥
∥ r⃗ ′(t) ∥ dt =

∫
C
F⃗ · r⃗ ′(t) dt =

∫
C
F⃗ · d⃗r, (15.2)

where the final integral uses the differential d⃗r for r⃗ ′(t) dt.
These integrals are known as line integrals over vector fields. By contrast,

the line integrals we dealt with in Section 15.1 are sometimes referred to as
line integrals over scalar fields. Just as a vector field is defined by a function
that returns a vector, a scalar field is a function that returns a scalar, such as
z = f(x, y). We waited until now to introduce this terminology so we could
contrast the concept with vector fields.

We formally define this line integral, then give examples and applications.

Definition 15.3.1 Line Integral Over A Vector Field

Let F⃗ be a vector field with continuous components defined on a smooth
curve C, parametrized by r⃗(t), and let T⃗ be the unit tangent vector of r⃗(t).
The line integral over F⃗ along C is∫

C
F⃗ · d⃗r =

∫
C
F⃗ · T⃗ ds.
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15.3 Line Integrals over Vector Fields

In Definition 15.3.1, note how the dot product F⃗ · T⃗ is just a scalar. Therefore,
this new line integral is really just a special kind of line integral found in Section
15.1; letting f(s) = F⃗(s)·T⃗(s), the right–hand side simply becomes

∫
C f(s) ds, and

we can use the techniques of that section to evaluate the integral. We combine
those techniques, along with parts of Equation (15.2), to clearly state how to
evaluate a line integral over a vector field in the following Key Idea.

Key Idea 15.3.1 Evaluating a Line Integral Over A Vector Field

Let F⃗ be a vector field with continuous components defined on a smooth
curve C, parametrized by r⃗(t), a ≤ t ≤ b, where r⃗ is continuously differ-
entiable. Then∫

C
F⃗ · T⃗ ds =

∫
C
F⃗ · d⃗r =

∫ b

a
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt.

An important concept implicit in this Key Idea: we can use any continuously
differentiable parametrization r⃗(t) of C that preserves the orientation of C: there
isn’t a “right” one. In practice, choose one that seems easy to work with.

Notation note: the above Definition and Key Idea implicitly evaluate F⃗ along
the curve C, which is parametrized by r⃗(t). For instance, if F⃗ = ⟨x + y, x − y⟩
and r⃗(t) = ⟨t2, cos t⟩, then evaluating F⃗ along C means substituting the x- and
y-components of r⃗(t) in for x and y, respectively, in F⃗. Therefore, along C, F⃗ =
⟨x+ y, x− y⟩ =

⟨
t2 + cos t, t2 − cos t

⟩
. Since we are substituting the output of

r⃗(t) for the input of F⃗, we write this as F⃗
(⃗
r(t)
)
. This is a slight abuse of notation

as technically the input of F⃗ is to be a point, not a vector, but this shorthand is
useful.

We use an example to practice evaluating line integrals over vector fields.

Example 15.3.1 Evaluating a line integral over a vector field:
computing work

Two particles move from (0, 0) to (1, 1) under the influence of the force field
F⃗ = ⟨x, x + y⟩. One particle follows C1, the line y = x; the other follows C2,
the curve y = x4, as shown in Figure 15.3.1. Force is measured in newtons and
distance is measured in metres. Find the work performed by each particle.

SÊ½çã®ÊÄ To compute work, we need to parametrize each path. We
use r⃗1(t) = ⟨t, t⟩ to parametrize y = x, and let r⃗2(t) = ⟨t, t4⟩ parametrize
y = x4; for each, 0 ≤ t ≤ 1.

Along the straight–line path, F⃗
(⃗
r1(t)

)
= ⟨x, x+ y⟩ = ⟨t, t+ t⟩ = ⟨t, 2t⟩. We

find r⃗ ′1(t) = ⟨1, 2⟩. The integral that computes work is:

∫
C1
F⃗ · d⃗r =

∫ 1

0
⟨t, 2t⟩ · ⟨1, 1⟩ dt

=

∫ 1

0
3t dt

=
3
2
t2
∣∣∣1
0
= 1.5 joules.

Along the curve y = x4, F⃗
(⃗
r2(t)

)
= ⟨x, x+ y⟩ =

⟨
t, t+ t4

⟩
. We find r⃗ ′2(t) =
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⟨
1, 4t3

⟩
. The work performed along this path is∫

C2
F⃗ · d⃗r =

∫ 1

0

⟨
t, t+ t4

⟩
·
⟨
1, 4t3

⟩
dt

=

∫ 1

0

(
t+ 4t4 + 4t7

)
dt

=
(1
2
t2 +

4
5
t5 +

1
2
t8
)∣∣∣1

0
= 1.8 joules.

Notehowdiffering amounts ofwork are performedalong thedifferent paths.
This should not be too surprising: the force is variable, one path is longer than
the other, etc.

Example 15.3.2 Evaluating a line integral over a vector field:
computing work

Two particles move from (−1, 1) to (1, 1) under the influence of a force field
F⃗ = ⟨y, x⟩. One moves along the curve C1, the parabola defined by y = 2x2 − 1.
The other particlemoves along the curveC2, the bottomhalf of the circle defined
by x2 + (y − 1)2 = 1, as shown in Figure 15.3.2. Force is measured in pounds
and distances are measured in feet. Find the work performed by moving each
particle along its path.

SÊ½çã®ÊÄ We start by parametrizing C1: the parametrization r⃗1(t) =⟨
t, 2t2 − 1

⟩
is straightforward, giving r⃗ ′1 = ⟨1, 4t⟩. On C1, F⃗

(⃗
r1(t)

)
= ⟨y, x⟩ =⟨

2t2 − 1, t
⟩
.

Computing the work along C1, we have:∫
C1
F⃗ · d⃗r1 =

∫ 1

−1

⟨
2t2 − 1, t

⟩
· ⟨1, 4t⟩ dt

=

∫ 1

−1

(
2t2 − 1+ 4t2

)
dt = 2 ft-lbs.

For C2, it is probably simplest to parametrize the half circle using sine and
cosine. Recall that r⃗(t) = ⟨cos t, sin t⟩ is a parametrization of the unit circle on
0 ≤ t ≤ 2π; we add 1 to the second component to shift the circle up one unit,
then restrict the domain to π ≤ t ≤ 2π to obtain only the lower half, giving
r⃗2(t) = ⟨cos t, sin t+ 1⟩, π ≤ t ≤ 2π, and hence r⃗ ′2(t) = ⟨− sin t, cos t⟩ and
F⃗
(⃗
r2(t)

)
= ⟨y, x⟩ = ⟨sin t+ 1, cos t⟩.

Computing the work along C2, we have:∫
C2
F⃗ · d⃗r2 =

∫ 2π

π

⟨sin t+ 1, cos t⟩ · ⟨− sin t, cos t⟩ dt

=

∫ 2π

π

(
− sin2 t− sin t+ cos2 t

)
dt = 2 ft-lbs.

Note how the work along C1 and C2 in this example is the same. We’ll address
why later in this section when conservative fields and path independence are
discussed.

Properties of Line Integrals Over Vector Fields

Line integrals over vector fields share the same properties as line integrals
over scalar fields, with one important distinction. The orientation of the curve
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Figure 15.3.3: The vector field and curve
in Example 15.3.3.

15.3 Line Integrals over Vector Fields

C matters with line integrals over vector fields, whereas it did not matter with
line integrals over scalar fields.

It is relatively easy to see why. Let C be the unit circle. The area under a
surface over C is the samewhether we traverse the circle in a clockwise or coun-
terclockwise fashion, hence the line integral over a scalar field on C is the same
irrespective of orientation. On the other hand, if we are computing work done
by a force field, direction of travel definitely matters. Opposite directions create
opposite signswhen computing dot products, so traversing the circle in opposite
directions will create line integrals that differ by a factor of−1.

Theorem 15.3.1 Properties of Line Integrals Over Vector Fields

1. Let F⃗ and G⃗ be vector fields with continuous components defined
on a smooth curve C, parametrized by r⃗(t), and let k1 and k2 be
scalars. Then∫

C

(
k1F⃗+ k2G⃗

)
· d⃗r = k1

∫
C
F⃗ · d⃗r+ k2

∫
C
G⃗ · d⃗r.

2. Let C be piecewise smooth, composed of smooth components C1
and C2. Then ∫

C
F⃗ · d⃗r =

∫
C1
F⃗ · d⃗r+

∫
C2
F⃗ · d⃗r.

3. Let C∗ be the curve C with opposite orientation, parametrized by
r⃗ ∗. Then ∫

C
F⃗ · d⃗r = −

∫
C∗

F⃗ · d⃗r ∗.

We demonstrate using these properties in the following example.

Example 15.3.3 Using properties of line integrals over vector fields
Let F⃗ = ⟨3(y− 1/2), 1⟩ and let C be the path that starts at (0, 0), goes to (1, 1)
along the curve y = x3, then returns to (0, 0) along the line y = x, as shown in
Figure 15.3.3. Evaluate

∮
C F⃗ · d⃗r.

SÊ½çã®ÊÄ As C is piecewise smooth, we break it into two components
C1 and C2, where C1 follows the curve y = x3 and C2 follows the curve y = x.

We parametrize C1 with r⃗1(t) =
⟨
t, t3
⟩
on 0 ≤ t ≤ 1, with r⃗ ′1(t) =

⟨
1, 3t2

⟩
.

We will use F⃗
(⃗
r1(t)

)
=
⟨
3(t3 − 1/2), 1

⟩
.

While we always have unlimited ways in which to parametrize a curve, there
are 2 “direct”methods to choose fromwhen parametrizing C2. The parametriza-
tion r⃗2(t) = ⟨t, t⟩, 0 ≤ t ≤ 1 traces the correct line segment but with the wrong
orientation. Using Property 3 of Theorem 15.3.1, we can use this parametriza-
tion and negate the result.

Another choice is to use the techniques of Section 11.5 to create the line
with the orientation we desire. We wish to start at (1, 1) and travel in the
d⃗ = ⟨−1,−1⟩ direction for one length of d⃗, giving equation ℓ⃗(t) = ⟨1, 1⟩ +
t ⟨−1,−1⟩ = ⟨1− t, 1− t⟩ on 0 ≤ t ≤ 1.

Either choice is fine; we choose r⃗2(t) to practice using line integral proper-
ties. We find r⃗ ′2(t) = ⟨1, 1⟩ and F⃗

(⃗
r2(t)

)
= ⟨3(t− 1/2), 1⟩.

Evaluating the line integral (note howwe subtract the integral over C2 as the
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Figure 15.3.4: The graph of r⃗(t) in Exam-
ple 15.3.4.

R1
R2

R3

Figure 15.3.5: R1 is simply connected; R2
is connected, but not simply connected;
R3 is not connected.

Chapter 15 Vector Analysis

orientation of r⃗2(t) is opposite):∮
C
F⃗ · d⃗r =

∫
C1
F⃗ · d⃗r1 −

∫
C2
F⃗ · d⃗r2

=

∫ 1

0

⟨
3(t3 − 1/2), 1

⟩
·
⟨
1, 3t2

⟩
dt−

∫ 1

0
⟨3(t− 1/2), 1⟩ · ⟨1, 1⟩ dt

=

∫ 1

0

(
3t3 + 3t2 − 3/2

)
dt−

∫ 1

0

(
3t− 1/2

)
dt

=
(
1/4
)
−
(
1
)

= −3/4.

If we interpret this integral as computing work, the negative work implies that
the motion is mostly against the direction of the force, which seems plausible
when we look at Figure 15.3.3.

Example 15.3.4 Evaluating a line integral over a vector field in space
Let F⃗ = ⟨−y, x, 1⟩, and letCbe theportion of the helix givenby r⃗(t) = ⟨cos t, sin t, t/(2π)⟩
on [0, 2π], as shown in Figure 15.3.4. Evaluate

∫
C F⃗ · d⃗r.

SÊ½çã®ÊÄ A parametrization is already given for C, so we just need to
find F⃗

(⃗
r(t)
)
and r⃗ ′(t).

We have F⃗
(⃗
r(t)
)

= ⟨− sin t, cos t, 1⟩ and r⃗ ′(t) = ⟨− sin t, cos t, 1/(2π)⟩.
Thus ∫

C
F⃗ · d⃗r =

∫ 2π

0
⟨− sin t, cos t, 1⟩ · ⟨− sin t, cos t, 1/(2π)⟩ dt

=

∫ 2π

0

(
sin2 t+ cos2 t+

1
2π
)
dt

= 2π + 1 ≈ 7.28.

The Fundamental Theorem of Line Integrals

We are preparing to make important statements about the value of certain
line integrals over special vector fields. Beforewe can do that, we need to define
some terms that describe the domains over which a vector field is defined.

A region in the plane is connected if any two points in the region can be
joined by a piecewise smooth curve that lies entirely in the region. In Figure
15.3.5, sets R1 and R2 are connected; set R3 is not connected, though it is com-
posed of two connected subregions.

A region is simply connected if every simple closed curve that lies entirely
in the region can be continuously deformed (shrunk) to a single point without
leaving the region. (A curve is simple if it does not cross itself.) In Figure 15.3.5,
only set R1 is simply connected. Region R2 is not simply connected as any closed
curve that goes around the “hole” inR2 cannot be continuously shrunk to a single
point. As R3 is not even connected, it cannot be simply connected, though again
it consists of two simply connected subregions.

We have applied these terms to regions of the plane, but they can be ex-
tended intuitively to domains in space (and hyperspace). In Figure 15.3.6(a),
the domain bounded by the sphere (at left) and the domain with a subsphere
removed (at right) are both simply connected. Any simple closed path that lies
entirely within these domains can be continuously deformed into a single point.
In Figure 15.3.6(b), neither domain is simply connected. A left, the ball has a
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(a)

(b)

Figure 15.3.6: The domains in (a) are sim-
ply connected, while the domains in (b)
are not.

15.3 Line Integrals over Vector Fields

hole that extends its length and the pictured closed path cannot be deformed
to a point. At right, two paths are illustrated on the torus that cannot be shrunk
to a point.

We will use the terms connected and simply connected in subsequent defi-
nitions and theorems.

Recall how in Example 15.3.2 particlesmoved fromA = (−1, 1) toB = (1, 1)
along two different paths, wherein the same amount of work was performed
along each path. It turns out that regardless of the choice of path from A to B,
the amount of work performed under the field F⃗ = ⟨y, x⟩ is the same. Since
our expectation is that differing amounts of work are performed along different
paths, we give such special fields a name.

Definition 15.3.2 Conservative Field, Path Independent

Let F⃗ be a vector field defined on an open, connected domain D in the
plane or in space containing points A and B. If the line integral

∫
C F⃗ · d⃗r

has the same value for all choices of paths C starting at A and ending at
B, then

• F⃗ is a conservative field and

• The line integral
∫
C F⃗ · d⃗r is path independent and can be written

as ∫
C
F⃗ · d⃗r =

∫ B

A
F⃗ · d⃗r.

When F⃗ is a conservative field, the line integral from points A to B is some-
times written as

∫ B
A F⃗ · d⃗r to emphasize the independence of its value from the

choice of path; all that matters are the beginning and ending points of the path.
How can we tell if a field is conservative? To show a field F⃗ is conservative

using the definition, we need to show that all line integrals from points A to B
have the same value. It is equivalent to show that all line integrals over closed
paths C are 0. Each of these tasks are generally nontrivial.

There is a simpler method. Consider the surface defined by z = f(x, y) = xy.
We can compute the gradient of this function: ∇f = ⟨fx, fy⟩ = ⟨y, x⟩. Note that
this is the field from Example 15.3.2, which we have claimed is conservative. We
will soon give a theorem that states that a field F⃗ is conservative if, and only if,
it is the gradient of some scalar function f. To show F⃗ is conservative, we need
to determine whether or not F⃗ = ∇f for some function f. (We’ll later see that
there is a yet simpler method). To recognize the special relationship between F⃗
and f in this situation, f is given a name.

Definition 15.3.3 Potential Function

Let f be a differentiable function defined on a domain D in the plane or
in space (i.e., z = f(x, y) or w = f(x, y, z)) and let F⃗ = ∇f, the gradient
of f. Then f is a potential function of F⃗.

We now state the Fundamental Theorem of Line Integrals, which connects
conservative fields and path independence to fields with potential functions.
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Theorem 15.3.2 Fundamental Theorem of Line Integrals

Let F⃗ be a vector field whose components are continuous on a connected
domain D in the plane or in space, let A and B be any points in D, and let
C be any path in D starting at A and ending at B.

1. F⃗ is conservative if and only if there exists a differentiable function
f such that F⃗ = ∇f.

2. If F⃗ is conservative, then∫
C
F⃗ · d⃗r =

∫ B

A
F⃗ · d⃗r = f(B)− f(A).

Once again considering Example 15.3.2, we have A = (−1, 1), B = (1, 1)
and F⃗ = ⟨y, x⟩. In that example, we evaluated two line integrals from A to B and
found the value of each was 2. Note that f(x, y) = xy is a potential function for
F⃗. Following the Fundamental Theorem of Line Integrals, consider f(B)− f(A):

f(B)− f(A) = f(1, 1)− f(−1, 1) = 1− (−1) = 2,

the same value given by the line integrals.
We practice using this theorem again in the next example.

Example 15.3.5 Using the Fundamental Theorem of Line Integrals
Let F⃗ =

⟨
3x2y+ 2x, x3 + 1

⟩
, A = (0, 1) and B = (1, 4). Use the first part of

the Fundamental Theorem of Line Integrals to show that F⃗ is conservative, then
choose any path from A to B and confirm the second part of the theorem.

SÊ½çã®ÊÄ To show F⃗ is conservative, we need to find z = f(x, y) such
that F⃗ = ∇f = ⟨fx, fy⟩. That is, we need to find f such that fx = 3x2y + 2x and
fy = x3 + 1. As all we know about f are its partial derivatives, we recover f by
integration: ∫

∂f
∂x

dx = f(x, y) + C(y).

Note how the constant of integration is more than “just a constant”: it is any-
thing that acts as a constant when taking a derivative with respect to x. Any
function that is a function of y (containing no x’s) acts as a constant when deriv-
ing with respect to x.

Integrating fx in this example gives:∫
∂f
∂x

dx =
∫

(3x2y+ 2x) dx = x3y+ x2 + C(y).

Likewise, integrating fy with respect to y gives:∫
∂f
∂y

dy =
∫

(x3 + 1) dy = x3y+ y+ C(x).

These two results should be equal with appropriate choices of C(x) and C(y):

x3y+ x2 + C(y) = x3y+ y+ C(x) ⇒ C(x) = x2 and C(y) = y.

We find f(x, y) = x3y + x2 + y, a potential function of F⃗. (If F⃗ were not
conservative, no choice of C(x) and C(y) would give equality.)
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15.3 Line Integrals over Vector Fields

By the Fundamental Theorem of Line Integrals, regardless of the path from
A to B, ∫ B

A
F⃗ · d⃗r = f(B)− f(A)

= f(1, 4)− f(0, 1)
= 9− 1 = 8.

To illustrate the validity of the Fundamental Theorem, we pick a path from A to
B. The line between these two points would be simple to construct; we choose
a slightly more complicated path by choosing the parabola y = x2+2x+1. This
leads to the parametrization r⃗(t) =

⟨
t, t2 + 2t+ 1

⟩
, 0 ≤ t ≤ 1, with r⃗ ′(t) =

⟨t, 2t+ 2⟩. Thus∫
C
F⃗ · d⃗r =

∫
C
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt

=

∫ 1

0

⟨
3(t)(t2 + 2t+ 1) + 2t, t3 + 1

⟩
· ⟨t, 2t+ 2⟩ dt

=

∫ 1

0

(
5t4 + 8t3 + 3t2 + 4t+ 2

)
dt

=
(
t5 + 2t4 + t3 + 2t2 + 2t

)∣∣∣1
0

= 8,

which matches our previous result.

The Fundamental Theorem of Line Integrals states that we can determine
whether or not F⃗ is conservative by determiningwhether or not F⃗ has a potential
function. This can be difficult. A simpler method exists if the domain of F⃗ is
simply connected (not just connected as needed in the Fundamental Theoremof
Line Integrals), which is a reasonable requirement. We state this simplermethod
as a theorem.

Theorem 15.3.3 Curl of Conservative Fields

Let F⃗ be a vector field whose components are continuous on a simply
connected domain D in the plane or in space. Then F⃗ is conservative if
and only if curl F⃗ = 0 or 0⃗, respectively.

In Example 15.3.5, we showed that F⃗ = ⟨3x2y+2x, x3+1⟩ is conservative by
finding a potential function for F⃗. Using the above theorem, we can show that F⃗
is conservative much more easily by computing its curl:

curl F⃗ = Nx −My = 3x2 − 3x2 = 0.
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Exercises 15.3
Terms and Concepts
1. T/F: In practice, the evaluation of line integrals over vector

fields involves computing themagnitude of a vector–valued
function.

2. Let F⃗(x, y) be a vector field in the plane and let r⃗(t) be a
two–dimensional vector–valued function. Why is “⃗F

(⃗
r(t)
)
”

an “abuse of notation”?

3. T/F: The orientation of a curve C matters when computing
a line integral over a vector field.

4. T/F: The orientation of a curve C matters when computing
a line integral over a scalar field.

5. Under “reasonable conditions,” if curl F⃗ = 0⃗, what can we
conclude about the vector field F⃗?

6. Let F⃗ be a conservative field and let C be a closed curve.
Why are we able to conclude that

∮
C F⃗ · d⃗r = 0?

Problems
In Exercises 7 – 12, a vector field F⃗ and a curve C are given.
Evaluate

∫
C
F⃗ · d⃗r.

7. F⃗ = ⟨y, y2⟩; C is the line segment from (0, 0) to (3, 1).

8. F⃗ = ⟨x, x+ y⟩; C is the portion of the parabola y = x2 from
(0, 0) to (1, 1).

9. F⃗ = ⟨y, x⟩; C is the top half of the unit circle, beginning at
(1, 0) and ending at (−1, 0).

10. F⃗ = ⟨xy, x⟩; C is the portion of the curve y = x3 on
−1 ≤ x ≤ 1.

11. F⃗ = ⟨z, x2, y⟩; C is the line segment from (1, 2, 3) to
(4, 3, 2).

12. F⃗ = ⟨y + z, x + z, x + y⟩; C is the helix r⃗(t) =
⟨cos t, sin t, t/(2π)⟩ on 0 ≤ t ≤ 2π.

In Exercises 13 – 16, find the work performed by the force
field F⃗moving a particle along the path C.

13. F⃗ = ⟨y, x2⟩ N; C is the segment of the line y = x from (0, 0)
to (1, 1), where distances are measured in metres.

14. F⃗ = ⟨y, x2⟩ N; C is the portion of y =
√
x from (0, 0) to

(1, 1), where distances are measured in meters.

15. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0) to (2, 4, 8)
via r⃗(t) = ⟨t, t2, t3⟩ on 0 ≤ t ≤ 2, where distance are
measured in feet.

16. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0) to (2, 4, 8)
via r⃗(t) = ⟨t, 2t, 4t⟩ on 0 ≤ t ≤ 2, where distance are
measured in feet.

In Exercises 17 – 20, a conservative vector field F⃗ and a curve
C are given.

1. Find a potential function f for F⃗.

2. Compute curl F⃗.

3. Evaluate
∫
C
F⃗ · d⃗r directly, i.e., using Key Idea 15.3.1.

4. Evaluate
∫
C
F⃗ · d⃗r using the Fundamental Theorem of

Line Integrals.

17. F⃗ = ⟨y+ 1, x⟩, C is the line segment from (0, 1) to (1, 0).

18. F⃗ = ⟨2x + y, 2y + x⟩, C is curve parametrized by r⃗(t) =
⟨t2 − t, t3 − t⟩ on 0 ≤ t ≤ 1.

19. F⃗ = ⟨2xyz, x2z, x2y⟩, C is curve parametrized by r⃗(t) =
⟨2t+ 1, 3t− 1, t⟩ on 0 ≤ t ≤ 2.

20. F⃗ = ⟨2x, 2y, 2z⟩, C is curve parametrized by r⃗(t) =
⟨cos t, sin t, sin(2t)⟩ on 0 ≤ t ≤ 2π.

21. Prove part of Theorem 15.3.3: let F⃗ = ⟨M,N, P⟩ be a con-
servative vector field. Show that curl F⃗ = 0.
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Figure 15.4.1: Illustrating the principles of
flow and flux.

1

−1

−1 1
x

y

A

Figure 15.4.2: Determining “counter-
clockwise” is not always simple without a
good definition.

15.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

15.4 Flow, Flux, Green’s Theoremand theDivergence
Theorem

Flow and Flux

Line integrals over vector fields have the natural interpretation of computing
work when F⃗ represents a force field. It is also common to use vector fields to
represent velocities. In these cases, the line integral

∫
C F⃗ · d⃗r is said to represent

flow.

Let the vector field F⃗ = ⟨1, 0⟩ represent the velocity of water as it moves
across a smooth surface, depicted in Figure 15.4.1. A line integral over C will
compute “how much water is moving along the path C.”

In the figure, “all” of the water above C1 is moving along that curve, whereas
“none” of the water above C2 is moving along that curve (the curve and the flow
of water are at right angles to each other). Because C3 has nonzero horizontal
and vertical components, “some” of the water above that curve is moving along
the curve.

When C is a closed curve, we call flow circulation, represented by
∮
C F⃗ · d⃗r.

The “opposite” of flow is flux, a measure of “how much water is moving
across the path C.” If a curve represents a filter in flowing water, flux measures
how much water will pass through the filter. Considering again Figure 15.4.1,
we see that a screen along C1 will not filter any water as no water passes across
that curve. Because of the nature of this field, C2 and C3 each filter the same
amount of water per second.

The terms “flow” and “flux” are used apart from velocity fields, too. Flow is
measured by

∫
C F⃗ · d⃗r, which is the same as

∫
C F⃗ · T⃗ ds by Definition 15.3.1. That

is, flow is a summation of the amount of F⃗ that is tangent to the curve C.

By contrast, flux is a summation of the amount of F⃗ that is orthogonal to the
direction of travel. To capture this orthogonal amount of F⃗, we use

∫
C F⃗ · n⃗ ds

to measure flux, where n⃗ is a unit vector orthogonal to the curve C. (Later, we’ll
measure flux across surfaces, too. For example, in physics it is useful tomeasure
the amount of a magnetic field that passes through a surface.)

How is n⃗determined? We’ll later see that ifC is a closed curve, we’ll want n⃗ to
point to the outside of the curve (measuring howmuch is “going out”). We’ll also
adopt the convention that closed curves should be traversed counterclockwise.

(If C is a complicated closed curve, it can be difficult to determine what
“counterclockwise”means. Consider Figure 15.4.2. Seeing the curve as a whole,
we know which way “counterclockwise” is. If we zoom in on point A, one might
incorrectly choose to traverse the path in the wrong direction. So we offer this
definition: a closed curve is being traversed counterclockwise if the outside is to
the right of the path and the inside is to the left.)

When a curve C is traversed counterclockwise by r⃗(t) = ⟨f(t), g(t)⟩, we ro-
tate T⃗ clockwise 90◦ to obtain n⃗:

T⃗ =
⟨f ′(t), g′(t)⟩
∥ r⃗ ′(t) ∥

⇒ n⃗ =
⟨g′(t),−f ′(t)⟩

∥ r⃗ ′(t) ∥
.
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Letting F⃗ = ⟨M,N⟩, we calculate flux as:∫
C
F⃗ · n⃗ ds =

∫
C
F⃗ · ⟨g

′(t),−f ′(t)⟩
∥ r⃗ ′(t) ∥

∥ r⃗ ′(t) ∥ dt

=

∫
C
⟨M,N⟩ · ⟨g′(t),−f ′(t)⟩ dt

=

∫
C

(
Mg′(t)− N f ′(t)

)
dt

=

∫
C
Mg′(t) dt−

∫
C
N f ′(t) dt.

As the x and y components of r⃗(t) are f(t) and g(t) respectively, the differentials
of x and y are dx = f ′(t)dt and dy = g′(t)dt. We can then write the above
integrals as:

=

∫
C
M dy−

∫
C
N dx.

This is often written as one integral (not incorrectly, though somewhat confus-
ingly, as this one integral has two “d ’s”):

=

∫
C
M dy− N dx.

We summarize the above in the following definition.

Definition 15.4.1 Flow, Flux

Let F⃗ = ⟨M,N⟩ be a vector field with continuous components defined on
a smooth curve C, parametrized by r⃗(t) = ⟨f(t), g(t)⟩, let T⃗ be the unit
tangent vector of r⃗(t), and let n⃗ be the clockwise 90◦degree rotation of
T⃗.

• The flow of F⃗ along C is∫
C
F⃗ · T⃗ ds =

∫
C
F⃗ · d⃗r.

• The flux of F⃗ across C is∫
C
F⃗ · n⃗ ds =

∫
C
M dy− N dx =

∫
C

(
Mg′(t)− N f ′(t)

)
dt.

This definition of flow also holds for curves in space, though it does notmake
sense to measure “flux across a curve” in space.

Measuring flow is essentially the same as finding work performed by a force
as done in the previous examples. Therefore we practice finding only flux in the
following example.

Example 15.4.1 Finding flux across curves in the plane
Curves C1 and C2 each start at (1, 0) and end at (0, 1), where C1 follows the line
y = 1− x and C2 follows the unit circle, as shown in Figure 15.4.3. Find the flux
across both curves for the vector fields F⃗1 = ⟨y,−x+ 1⟩ and F⃗2 = ⟨−x, 2y− x⟩.
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Figure 15.4.3: Illustrating the curves and
vector fields in Example 15.4.1. In (a) the
vector field is F⃗1, and in (b) the vector field
is F⃗2.

15.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

SÊ½çã®ÊÄ We begin by finding parametrizations of C1 and C2. As done
in Example 15.3.3, parametrize C1 by creating the line that starts at (1, 0) and
moves in the ⟨−1, 1⟩ direction: r⃗1(t) = ⟨1, 0⟩ + t ⟨−1, 1⟩ = ⟨1− t, t⟩, for 0 ≤
t ≤ 1. We parametrize C2 with the familiar r⃗2(t) = ⟨cos t, sin t⟩ on 0 ≤ t ≤ π/2.
For reference later, we give each function and its derivative below:

r⃗1(t) = ⟨1− t, t⟩ , r⃗ ′1(t) = ⟨−1, 1⟩ .
r⃗2(t) = ⟨cos t, sin t⟩ , r⃗ ′2(t) = ⟨− sin t, cos t⟩ .

When F⃗ = F⃗1 = ⟨y,−x+ 1⟩ (as shown in Figure 15.4.3(a)), over C1 we have
M = y = t and N = −x + 1 = −(1 − t) + 1 = t. Using Definition 15.4.1, we
compute the flux:

∫
C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ 1

0

(
t(1)− t(−1)

)
dt

=

∫ 1

0
2t dt

= 1.

Over C2, we have M = y = sin t and N = −x + 1 = 1 − cos t. Thus the flux
across C2 is:∫

C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ π/2

0

(
(sin t)(cos t)− (1− cos t)(− sin t)

)
dt

=

∫ π/2

0
sin t dt

= 1.

Notice how the flux was the same across both curves. This won’t hold truewhen
we change the vector field.

When F⃗ = F⃗2 = ⟨−x, 2y− x⟩ (as shown in Figure 15.4.3(b)), over C1 we have
M = −x = t− 1 and N = 2y− x = 2t− (1− t) = 3t− 1. Computing the flux
across C1: ∫

C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ 1

0

(
(t− 1)(1)− (3t− 1)(−1)

)
dt

=

∫ 1

0
(4t− 2) dt

= 0.

Over C2, we haveM = −x = − cos t and N = 2y− x = 2 sin t− cos t. Thus the
flux across C2 is:
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∫
C1
F⃗ · n⃗ ds =

∫
C1

(
Mg′(t)− N f ′(t)

)
dt

=

∫ π/2

0

(
(− cos t)(cos t)− (2 sin t− cos t)(− sin t)

)
dt

=

∫ π/2

0

(
2 sin2 t− sin t cos t− cos2 t

)
dt

= π/4− 1/2 ≈ 0.285.

We analyze the results of this example below.

In Example 15.4.1, we saw that the flux across the two curves was the same
when the vector field was F⃗1 = ⟨y,−x+ 1⟩. This is not a coincidence. We
show why they are equal in Example 15.4.6. In short, the reason is this: the
divergence of F⃗1 is 0, and when div F⃗ = 0, the flux across any two paths with
common beginning and ending points will be the same.

We also saw in the example that the flux across C1 was 0 when the field was
F⃗2 = ⟨−x, 2y− x⟩. Fluxmeasures “howmuch” of the field crosses the path from
left to right (following the conventions established before). Positive flux means
most of the field is crossing from left to right; negative flux means most of the
field is crossing from right to left; zero fluxmeans the same amount crosses from
each side. When we consider Figure 15.4.3(b), it seems plausible that the same
amount of F⃗2 was crossing C1 from left to right as from right to left.

Green’s Theorem

There is an important connection between the circulation around a closed
region R and the curl of the vector field inside of R, as well as a connection be-
tween the flux across the boundary of R and the divergence of the field inside
R. These connections are described by Green’s Theorem and the Divergence
Theorem, respectively. We’ll explore each in turn.

Green’s Theorem states “the counterclockwise circulation around a closed
region R is equal to the sum of the curls over R.”

Theorem 15.4.1 Green’s Theorem

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ where Nx and My are continu-
ous over R. Then ∮

C
F⃗ · d⃗r =

∫∫
R
curl F⃗ dA.

We’ll explore Green’s Theorem through an example.

Example 15.4.2 Confirming Green’s Theorem
Let F⃗ =

⟨
−y, x2 + 1

⟩
and letRbe the regionof the plane boundedby the triangle

with vertices (−1, 0), (1, 0) and (0, 2), shown in Figure 15.4.4. Verify Green’s
Theorem; that is, find the circulation of F⃗ around the boundary of R and show
that is equal to the double integral of curl F⃗ over R.

SÊ½çã®ÊÄ The curve C that bounds R is composed of 3 lines. While we
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need to traverse the boundary of R in a counterclockwise fashion, we may start
anywhere we choose. We arbitrarily choose to start at (−1, 0), move to (1, 0),
etc., with each line parametrized by r⃗1(t), r⃗2(t) and r⃗3(t), respectively.

We leave it to the reader to confirm that the following parametrizations of
the three lines are accurate:

r⃗1(t) = ⟨2t− 1, 0⟩, for 0 ≤ t ≤ 1, with r⃗ ′1(t) = ⟨2, 0⟩,
r⃗2(t) = ⟨1− t, 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′2(t) = ⟨−1, 2⟩, and
r⃗3(t) = ⟨−t, 2− 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′3(t) = ⟨−1,−2⟩.

The circulation around C is found by summing the flow along each of the
sides of the triangle. We again leave it to the reader to confirm the following
computations:∫

C1
F⃗ · d⃗r1 =

∫ 1

0

⟨
0, (2t− 1)2 + 1

⟩
· ⟨2, 0⟩ dt = 0,∫

C2
F⃗ · d⃗r2 =

∫ 1

0

⟨
−2t, (1− t)2 + 1

⟩
· ⟨−1, 2⟩ dt = 11/3, and∫

C3
F⃗ · d⃗r3 =

∫ 1

0

⟨
2t− 2, t2 + 1

⟩
· ⟨−1,−2⟩ dt = −5/3.

The circulation is the sum of the flows: 2.
We confirm Green’s Theorem by computing

∫∫
R curl F⃗ dA. We find curl F⃗ =

2x+1. The region R is bounded by the lines y = 2x+2, y = −2x+2 and y = 0.
Integrating with the order dx dy is most straightforward, leading to∫ 2

0

∫ 1−y/2

y/2−1
(2x+ 1) dx dy =

∫ 2

0
(2− y) dy = 2,

which matches our previous measurement of circulation.

Example 15.4.3 Using Green’s Theorem
Let F⃗ = ⟨sin x, cos y⟩ and letRbe the region enclosedby the curveCparametrized
by r⃗(t) =

⟨
2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)

⟩
on 0 ≤ t ≤ 2π, as shown

in Figure 15.4.5. Find the circulation around C.

SÊ½çã®ÊÄ Computing the circulation directly using the line integral looks
difficult, as the integrand will include terms like “sin

(
2 cos t+ 1

10 cos(10t)
)
.”

Green’s Theorem states that
∮
C F⃗ · d⃗r =

∫∫
R curl F⃗ dA; since curl F⃗ = 0 in this

example, the double integral is simply 0 and hence the circulation is 0.
Since curl F⃗ = 0, we can conclude that the circulation is 0 in two ways. One

method is to employ Green’s Theorem as done above. The second way is to
recognize that F⃗ is a conservative field, hence there is a function z = f(x, y)
wherein F⃗ = ∇f. Let A be any point on the curve C; since C is closed, we can say
that C “begins” and “ends” at A. By the Fundamental Theorem of Line Integrals,∮
C F⃗ d⃗r = f(A)− f(A) = 0.

One can use Green’s Theorem to find the area of an enclosed region by in-
tegrating along its boundary. Let C be a closed curve, enclosing the region R,
parametrized by r⃗(t) = ⟨f(t), g(t)⟩. We know the area of R is computed by
the double integral

∫∫
R dA, where the integrand is 1. By creating a field F⃗where

curl F⃗ = 1, we can employ Green’s Theorem to compute the area of R as
∮
C F⃗ · d⃗r.

One is free to choose any field F⃗ to use as long as curl F⃗ = 1. Common
choices are F⃗ = ⟨0, x⟩, F⃗ = ⟨−y, 0⟩ and F⃗ = ⟨−y/2, x/2⟩. We demonstrate this
below.
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Example 15.4.4 Using Green’s Theorem to find area
Let C be the closed curve parametrized by r⃗(t) =

⟨
t− t3, t2

⟩
on −1 ≤ t ≤ 1,

enclosing the region R, as shown in Figure 15.4.6. Find the area of R.

SÊ½çã®ÊÄ We can choose any field F⃗, as long as curl F⃗ = 1. We choose
F⃗ = ⟨−y, 0⟩. We also confirm (left to the reader) that r⃗(t) traverses the region
R in a counterclockwise fashion. Thus

Area of R =

∫∫
R
dA

=

∮
C
F⃗ · d⃗r

=

∫ 1

−1

⟨
−t2, 0

⟩
·
⟨
1− 3t2, 2t

⟩
dt

=

∫ 1

−1
(−t2)(1− 3t2) dt

=
8
15

.

The Divergence Theorem

Green’s Theoremmakes a connection between the circulation around a closed
region R and the sum of the curls over R. The Divergence Theorem makes a
somewhat “opposite” connection: the total flux across the boundary of R is
equal to the sum of the divergences over R.

Theorem 15.4.2 The Divergence Theorem (in the plane)

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ where Mx and Ny are continu-
ous over R. Then ∮

C
F⃗ · n⃗ ds =

∫∫
R
div F⃗ dA.

Example 15.4.5 Confirming the Divergence Theorem
Let F⃗ = ⟨x− y, x+ y⟩, let C be the circle of radius 2 centred at the origin and
define R to be the interior of that circle, as shown in Figure 15.4.7. Verify the
Divergence Theorem; that is, find the flux across C and show it is equal to the
double integral of div F⃗ over R.

SÊ½çã®ÊÄ We parametrize the circle in the usual way, with r⃗(t) =
⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π. The flux across C is∮

C
F⃗ · n⃗ ds =

∮
C

(
Mg ′(t)− Nf ′(t)

)
dt

=

∫ 2π

0

(
(2 cos t− 2 sin t)(2 cos t)− (2 cos t+ 2 sin t)(−2 sin t)

)
dt

=

∫ 2π

0
4 dt = 8π.
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Figure 15.4.8: As used in Example 15.4.6,
the vector field has a divergence of 0 and
the two paths only intersect at their initial
and terminal points.

15.4 Flow, Flux, Green’s Theorem and the Divergence Theorem

We compute the divergence of F⃗ as div F⃗ = Mx + Ny = 2. Since the divergence
is constant, we can compute the following double integral easily:∫∫

R
div F⃗ dA =

∫∫
R
2 dA = 2

∫∫
R
dA = 2(area of R) = 8π,

which matches our previous result.

Example 15.4.6 Flux when div F⃗ = 0
Let F⃗ be any field where div F⃗ = 0, and let C1 and C2 be any two nonintersecting
paths, except that each begin at point A and end at point B (see Figure 15.4.8).
Show why the flux across C1 and C2 is the same.

SÊ½çã®ÊÄ By referencing Figure 15.4.8, we see we can make a closed
path C that combines C1 with C2, where C2 is traversed with its opposite orienta-
tion. We label the enclosed region R. Since div F⃗ = 0, the Divergence Theorem
states that ∮

C
F⃗ · n⃗ ds =

∫∫
R
div F⃗ dA =

∫∫
R
0 dA = 0.

Using the properties and notation given in Theorem 15.3.1, consider:

0 =

∮
C
F⃗ · n⃗ ds

=

∫
C1
F⃗ · n⃗ ds+

∫
C∗2

F⃗ · n⃗ ds

(where C∗2 is the path C2 traversed with opposite orientation)

=

∫
C1
F⃗ · n⃗ ds−

∫
C2
F⃗ · n⃗ ds.∫

C2
F⃗ · n⃗ ds =

∫
C1
F⃗ · n⃗ ds.

Thus the flux across each path is equal.

In this section, we have investigated flow and flux, quantities that measure
interactions between a vector field and a planar curve. We can also measure
flow along spatial curves, though as mentioned before, it does not make sense
to measure flux across spatial curves.

It does, however, make sense to measure the amount of a vector field that
passes across a surface in space – i.e, the flux across a surface. Wewill study this,
though in the next section we first learn about a more powerful way to describe
surfaces than using functions of the form z = f(x, y).
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Exercises 15.4
Terms and Concepts
1. Let F⃗ be a vector field and let C be a curve. Flow is a mea-

sure of the amount of F⃗ going C; flux is
a measure of the amount of F⃗ going C.

2. What is circulation?

3. Green’s Theorem states, informally, that the circulation
around a closed curve that bounds a region R is equal to
the sum of across R.

4. The Divergence Theorem states, informally, that the out-
ward flux across a closed curve that bounds a region R is
equal to the sum of across R.

5. Let F⃗ be a vector field and let C1 and C2 be any noninter-
secting paths except that each starts at point A and ends at
point B. If = 0, then

∫
C1
F⃗ · T⃗ ds =

∫
C2
F⃗ · T⃗ ds.

6. Let F⃗ be a vector field and let C1 and C2 be any noninter-
secting paths except that each starts at point A and ends at
point B. If = 0, then

∫
C1
F⃗ · n⃗ ds =

∫
C2
F⃗ · n⃗ ds.

Problems
In Exercises 7 – 12, a vector field F⃗ and a curve C are given.
Evaluate

∫
C F⃗ · n⃗ ds, the flux of F⃗ over C.

7. F⃗ = ⟨x + y, x − y⟩; C is the curve with initial and termi-
nal points (3,−2) and (3, 2), respectively, parametrized by
r⃗(t) = ⟨3t2, 2t⟩ on−1 ≤ t ≤ 1.

8. F⃗ = ⟨x + y, x − y⟩; C is the curve with initial and termi-
nal points (3,−2) and (3, 2), respectively, parametrized by
r⃗(t) = ⟨3, t⟩ on−2 ≤ t ≤ 2.

9. F⃗ = ⟨x2, y+ 1⟩; C is line segment from (0, 0) to (2, 4).

10. F⃗ = ⟨x2, y+1⟩; C is the portion of the parabola y = x2 from
(0, 0) to (2, 4).

11. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to (0, 1).

12. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to (1, 1).

In Exercises 13 – 16, a vector field F⃗ and a closed curve C, en-
closing a region R, are given. Verify Green’s Theorem by eval-

uating
∮
C F⃗ · d⃗r and

∫∫
R curl F⃗ dA, showing they are equal.

13. F⃗ = ⟨x − y, x + y⟩; C is the closed curve composed of the
parabola y = x2 on 0 ≤ x ≤ 2 followed by the line segment
from (2, 4) to (0, 0).

14. F⃗ = ⟨−y, x⟩; C is the unit circle.

15. F⃗ = ⟨0, x2⟩; C the triangle with corners at (0, 0), (2, 0) and
(1, 1).

16. F⃗ = ⟨x+ y, 2x⟩; C the curve that starts at (0, 1), follows the
parabola y = (x− 1)2 to (3, 4), then follows a line back to
(0, 1).

In Exercises 17 – 20, a closed curve C enclosing a region R is
given. Find the area of R by computing

∮
C F⃗ · d⃗r for an appro-

priate choice of vector field F⃗.

17. C is the ellipse parametrized by r⃗(t) = ⟨4 cos t, 3 sin t⟩ on
0 ≤ t ≤ 2π.

18. C is the curve parametrized by r⃗(t) = ⟨cos t, sin(2t)⟩ on
−π/2 ≤ t ≤ π/2.

19. C is the curve parametrized by r⃗(t) = ⟨cos t, sin(2t)⟩ on
0 ≤ t ≤ 2.

20. C is the curve parametrized by r⃗(t) = ⟨2 cos t +
1
10 cos(10t), 2 sin t+

1
10 sin(10t)⟩ on 0 ≤ t ≤ 2π.

In Exercises 21 – 24, a vector field F⃗ and a closed curve C, en-
closing a region R, are given. Verify the Divergence Theorem
by evaluating

∮
C F⃗ · n⃗ ds and

∫∫
R div F⃗ dA, showing they are

equal.

21. F⃗ = ⟨x − y, x + y⟩; C is the closed curve composed of the
parabola y = x2 on 0 ≤ x ≤ 2 followed by the line segment
from (2, 4) to (0, 0).

22. F⃗ = ⟨−y, x⟩; C is the unit circle.

23. F⃗ = ⟨0, y2⟩; C the triangle with corners at (0, 0), (2, 0) and
(1, 1).

24. F⃗ = ⟨x2/2, y2/2⟩; C the curve that starts at (0, 1), follows
the parabola y = (x−1)2 to (3, 4), then follows a line back
to (0, 1).
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Note: We use the letter S to denote Sur-
face Area. This section begins a study into
surfaces, and it is natural to label a surface
with the letter “S”. We distinguish a sur-
face from its surface area by using a cal-
ligraphic S to denote a surface: S. When
writing this letter by hand, it may be use-
ful to add serifs to the letter, such as:

Note: A function is one to one on its do-
main if the function never repeats an out-
put value over the domain. In the case
of r⃗(u, v), r⃗ is one to one if r⃗(u1, v1) ̸=
r⃗(u2, v2) for all points (u1, v1) ̸= (u2, v2)
in the domain of r⃗.

Figure 15.5.1: A Möbius band, a non-
orientable surface.

15.5 Parametrized Surfaces and Surface Area

15.5 Parametrized Surfaces and Surface Area

Thus far we have focusedmostly on 2-dimensional vector fields, measuring flow
and flux along/across curves in the plane. Both Green’s Theorem and the Di-
vergence Theorem make connections between planar regions and their bound-
aries. We now move our attention to 3-dimensional vector fields, considering
both curves and surfaces in space.

We are accustomed to describing surfaces as functions of two variables, usu-
ally written as z = f(x, y). For our coming needs, this method of describing
surfaces will prove to be insufficient. Instead, we will parametrize our surfaces,
describing them as the set of terminal points of some vector–valued function
r⃗(u, v) = ⟨f(u, v), g(u, v), h(u, v)⟩. The bulk of this section is spent practising the
skill of describing a surface S using a vector–valued function. Once this skill is
developed, we’ll showhow to find the surface area S of a parametrically–defined
surface S, a skill needed in the remaining sections of this chapter.

Definition 15.5.1 Parametrized Surface

Let r⃗(u, v) = ⟨ f(u, v), g(u, v), h(u, v)⟩ be a vector–valued function that
is continuous and one to one on the interior of its domain R in the
u-v plane. The set of all terminal points of r⃗ (i.e., the range of r⃗ ) is
the surfaceS, and r⃗ alongwith its domain R form a parametrization ofS.

This parametrization is smooth on R if r⃗u and r⃗v are continuous and r⃗u× r⃗v
is never 0⃗ on the interior of R.

Given a point (u0, v0) in the domain of a vector–valued function r⃗, the vec-
tors r⃗u(u0, v0) and r⃗v(u0, v0) are tangent to the surface S at r⃗(u0, v0) (a proof
of this is developed later in this section). The definition of smoothness dictates
that r⃗u × r⃗v ̸= 0⃗; this ensures that neither r⃗u nor r⃗v are 0⃗, nor are they ever par-
allel. Therefore smoothness guarantees that r⃗u and r⃗v determine a plane that is
tangent to S.

A surface S is said to be orientable if a field of normal vectors can be de-
fined on S that vary continuously along S. This definitionmay be hard to under-
stand; it may help to know that orientable surfaces are often called “two sided.”
A sphere is an orientable surface, and one can easily envision an “inside” and
“outside” of the sphere. A paraboloid is orientable, where again one can gener-
ally envision “inside” and “outside” sides (or “top” and “bottom” sides) to this
surface. Just about every surface that one can imagine is orientable, and we’ll
assume all surfaces we deal with in this text are orientable.

It is enlightening to examine a classic non-orientable surface: the Möbius
band, shown in Figure 15.5.1. Vectors normal to the surface are given, starting
at the point indicated in the figure. These normal vectors “vary continuously”
as they move along the surface. Letting each vector indicate the “top” side of
the band, we can easily see near any vector which side is the “top”.

However, if asweprogress along the band, we recognize thatwe are labelling
“both sides” of the band as the top; in fact, there are not two “sides” to this band,
but one. The Möbius band is a non-orientable surface.

We now practice parametrizing surfaces.
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Figure 15.5.2: The surface parametrized
in Example 15.5.1.

Figure 15.5.3: The surface parametrized
in Example 15.5.2.
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Example 15.5.1 Parametrizing a surface over a rectangle
Parametrize the surface z = x2 + 2y2 over the rectangular region R defined by
−3 ≤ x ≤ 3,−1 ≤ y ≤ 1.

SÊ½çã®ÊÄ There is a straightforward way to parametrize a surface of
the form z = f(x, y) over a rectangular domain. We let x = u and y = v, and let
r⃗(u, v) = ⟨u, v, f(u, v)⟩. In this instance, we have r⃗(u, v) = ⟨u, v, u2 + 2v2⟩, for
−3 ≤ u ≤ 3,−1 ≤ v ≤ 1. This surface is graphed in Figure 15.5.2.

Example 15.5.2 Parametrizing a surface over a circular disk
Parametrize the surface z = x2 + 2y2 over the circular region R enclosed by the
circle of radius 2 that is centred at the origin.

SÊ½çã®ÊÄ Wecanparametrize the circular boundary ofRwith the vector–
valued function ⟨2 cos u, 2 sin u⟩, where 0 ≤ u ≤ 2π. We can obtain the inte-
rior of R by scaling this function by a variable amount, i.e., by multiplying by v:
⟨2v cos u, 2v sin u⟩, where 0 ≤ v ≤ 1.

It is important to understand the role of v in the above function. When v = 1,
we get the boundary of R, a circle of radius 2. When v = 0, we simply get the
point (0, 0), the center of R (which can be thought of as a circle with radius of 0).
When v = 1/2, we get the circle of radius 1 that is centred at the origin, which
is the circle halfway between the boundary and the center. As v varies from 0
to 1, we create a series of concentric circles that fill out all of R.

Thus far, wehave determined the x and y components of our parametrization
of the surface: x = 2v cos u and y = 2v sin u. We find the z component simply
by using z = f(x, y) = x2 + 2y2:

z = (2v cos u)2 + 2(2v sin u)2 = 4v2 cos2 u+ 8v2 sin2 u.

Thus r⃗(u, v) = ⟨2v cos u, 2v sin u, 4v2 cos2 u+ 8v2 sin2 u⟩, 0 ≤ u ≤ 2π, 0 ≤ v ≤
1, which is graphed in Figure 15.5.3. The way that this graphic was generated
highlights how the surface was parametrized. When viewing from above, one
can see lines emanating from the origin; they represent different values of u as
u sweeps from an angle of 0 up to 2π. One can also see concentric circles, each
corresponding to a different value of v.

Examples 15.5.1 and15.5.2 demonstrate an important principlewhenparametriz-
ing surfaces given in the form z = f(x, y) over a region R: if one can determine
x and y in terms of u and v, then z follows directly as z = f(x, y).

In the following two examples, we parametrize the same surface over trian-
gular regions. Each will use v as a “scaling factor” as done in Example 15.5.2.

Example 15.5.3 Parametrizing a surface over a triangle
Parametrize the surface z = x2 + 2y2 over the triangular region R enclosed by
the coordinate axes and the line y = 2− 2x/3, as shown in Figure 15.5.4(a).

SÊ½çã®ÊÄ Wemaybegin by letting x = u, 0 ≤ u ≤ 3, and y = 2−2u/3.
This gives only the line on the “upper” side of the triangle. To get all of the region
R, we can once again scale y by a variable factor, v.

Still letting x = u, 0 ≤ u ≤ 3, we let y = v(2 − 2u/3), 0 ≤ v ≤ 1. When
v = 0, all y-values are 0, and we get the portion of the x-axis between x = 0 and
x = 3. When v = 1, we get the upper side of the triangle. When v = 1/2, we
get the line y = 1/2(2 − 2u/3) = 1 − u/3, which is the line “halfway up” the
triangle, shown in the figure with a dashed line.
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Figure 15.5.4: Part (a) shows a graph of
the region R, and part (b) shows the sur-
face over R, as defined in Example 15.5.3.
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Figure 15.5.5: Part (a) shows a graph of
the region R, and part (b) shows the sur-
face over R, as defined in Example 15.5.4.
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Letting z = f(x, y) = x2 + 2y2, we have r⃗(u, v) = ⟨u, v(2 − 2u/3), u2 +
2
(
v(2 − 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1. This surface is graphed in Figure
15.5.4(b). Again, when one looks from above, we can see the scaling effects of
v: the series of lines that run to the point (3, 0) each represent a different value
of v.

Another common way to parametrize the surface is to begin with y = u,
0 ≤ u ≤ 2. Solving the equation of the line y = 2 − 2x/3 for x, we have
x = 3− 3y/2, leading to using x = v(3− 3u/2), 0 ≤ v ≤ 1. With z = x2 + 2y2,
we have r⃗(u, v) = ⟨v(3−3u/2), u,

(
v(3−3u/2)

)2
+2v2⟩, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Example 15.5.4 Parametrizing a surface over a triangle
Parametrize the surface z = x2 + 2y2 over the triangular region R enclosed by
the lines y = 3− 2x/3, y = 1 and x = 0 as shown in Figure 15.5.5(a).

SÊ½çã®ÊÄ While the region R in this example is very similar to the re-
gion R in the previous example, and our method of parametrizing the surface is
fundamentally the same, it will feel as though our answer is much different than
before.

We begin with letting x = u, 0 ≤ u ≤ 3. We may be tempted to let y =
v(3− 2u/3), 0 ≤ v ≤ 1, but this is incorrect. When v = 1, we obtain the upper
line of the triangle as desired. However, when v = 0, the y-value is 0, which
does not lie in the region R.

We will describe the general method of proceeding following this example.
For now, consider y = 1+ v(2− 2u/3), 0 ≤ v ≤ 1. Note that when v = 1, we
have y = 3 − 2u/3, the upper line of the boundary of R. Also, when v = 0, we
have y = 1, which is the lower boundary of R. With z = x2 + 2y2, we determine
r⃗(u, v) = ⟨u, 1+v(2−2u/3), u2+2

(
1+v(2−2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1.
The surface is graphed in Figure 15.5.5(b).

Given a surface of the form z = f(x, y), one canoftendetermine a parametriza-
tion of the surface over a region R in a manner similar to determining bounds
of integration over a region R. Using the techniques of Section 14.1, suppose a
region R can be described by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area of R
can be found using the iterated integral∫ b

a

∫ g2(x)

g1(x)
dy dx.

When parametrizing the surface, we can let x = u, a ≤ u ≤ b, and we
can let y = g1(u) + v

(
g2(u) − g1(u)

)
, 0 ≤ v ≤ 1. The parametrization of

x is straightforward, but look closely at how y is determined. When v = 0,
y = g1(u) = g1(x). When v = 1, y = g2(u) = g2(x).

As a specific example, consider the triangular region R from Example 15.5.4,
shown in Figure 15.5.5(a). Using the techniques of Section 14.1, we can find the
area of R as ∫ 3

0

∫ 3−2x/3

1
dy dx.

Following the above discussion, we can set x = u, where 0 ≤ u ≤ 3, and set
y = 1+v

(
3−2u/3−1

)
= 1+v(2−2u/3), 0 ≤ v ≤ 1, as used in that example.

One can do a similar thing if R is bounded by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y),
but for the sake of simplicity we leave it to the reader to flesh out those details.
The principles outlined above are given in the following Key Idea for reference.
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Figure 15.5.6: The cylinder parametrized
in Example 15.5.5.

Figure 15.5.7: The elliptic cone as de-
scribed in Example 15.5.6.

Figure 15.5.8: The elliptic cone as de-
scribed in Example 15.5.6 with restricted
domain.
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Key Idea 15.5.1 Parametrizing Surfaces

Let a surface S be the graph of a function z = f(x, y), where the domain
of f is a closed, bounded region R in the x-y plane. Let R be bounded by
a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area of R can be found using
the iterated integral

∫ b
a

∫ g2(x)
g1(x) dy dx, and let h(u, v) = g1(u)+ v

(
g2(u)−

g1(u)
)
.

S can be parametrized as

r⃗(u, v) =
⟨
u, h(u, v), f

(
u, h(u, v)

)⟩
, a ≤ u ≤ b, 0 ≤ v ≤ 1.

Example 15.5.5 Parametrizing a cylindrical surface
Find a parametrization of the cylinder x2 + z2/4 = 1, where −1 ≤ y ≤ 2, as
shown in Figure 15.5.6.

SÊ½çã®ÊÄ The equation x2 + z2/4 = 1 can be envisioned to describe
an ellipse in the x-z plane; as the equation lacks a y-term, the equation describes
a cylinder (recall Definition 13.1.2) that extends without bound parallel to the
y-axis. This ellipse has a vertical major axis of length 4, a horizontal minor axis
of length 2, and is centred at the origin. We can parametrize this ellipse using
sines and cosines; our parametrization can begin with

r⃗(u, v) = ⟨cos u, ???, 2 sin u⟩ , 0 ≤ u ≤ 2π,

where we still need to determine the y component.
While the cylinder x2 + z2/4 = 1 is satisfied by any y value, the problem

states that all y values are to be between y = −1 and y = 2. Since the value of
y does not depend at all on the values of x or z, we can use another variable, v,
to describe y. Our final answer is

r⃗(u, v) = ⟨cos u, v, 2 sin u⟩ , 0 ≤ u ≤ 2π, −1 ≤ v ≤ 2.

Example 15.5.6 Parametrizing an elliptic cone
Find a parametrization of the elliptic cone z2 = x2

4 + y2
9 , where −2 ≤ z ≤ 3, as

shown in Figure 15.5.7.

SÊ½çã®ÊÄ One way to parametrize this cone is to recognize that given
a z value, the cross section of the cone at that z value is an ellipse with equation
x2

(2z)2 +
y2

(3z)2 = 1. We can let z = v, for −2 ≤ v ≤ 3 and then parametrize the
above ellipses using sines, cosines and v.

We can parametrize the x component of our surface with x = 2z cos u and
the y component with y = 3z sin u, where 0 ≤ u ≤ 2π. Putting all components
together, we have

r⃗(u, v) = ⟨2v cos u, 3v sin u, v⟩ , 0 ≤ u ≤ 2π, −2 ≤ v ≤ 3.

When v takes on negative values, the radii of the cross–sectional ellipses
become “negative,” which can lead to some surprising results. Consider Figure
15.5.8, where the cone is graphed for 0 ≤ u ≤ π. Because v is negative below
the x-y plane, the radii of the cross–sectional ellipses are negative, and the op-
posite side of the cone is sketched below the x-y plane.
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(a)

(b)

Figure 15.5.9: An ellipsoid in (a), drawn
again in (b) with its domain restricted, as
described in Example 15.5.7.

15.5 Parametrized Surfaces and Surface Area

Example 15.5.7 Parametrizing an ellipsoid
Find a parametrization of the ellipsoid x2

25 + y2 + z2
4 = 1 as shown in Figure

15.5.9(a).

SÊ½çã®ÊÄ Recall Key Idea 11.2.1 from Section 11.2, which states that
all unit vectors in space have the form ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some
angles θ and φ. If we choose our angles appropriately, this allows us to draw
the unit sphere. To get an ellipsoid, we need only scale each component of the
sphere appropriately.

The x-radius of the given ellipsoid is 5, the y-radius is 1 and the z-radius is 2.
Substitutingu for θ and v forφ, wehave r⃗(u, v) = ⟨5 sin u cos v, sin u sin v, 2 cos u⟩,
where we still need to determine the ranges of u and v.

Note how the x and y components of r⃗ have cos v and sin v terms, respec-
tively. This hints at the fact that ellipses are drawn parallel to the x-y plane as v
varies, which implies we should have v range from 0 to 2π.

One may be tempted to let 0 ≤ u ≤ 2π as well, but note how the z compo-
nent is 2 cos u. We only need cos u to take on values between −1 and 1 once,
therefore we can restrict u to 0 ≤ u ≤ π.

The final parametrization is thus

r⃗(u, v) = ⟨5 sin u cos v, sin u sin v, 2 cos u⟩, 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

In Figure 15.5.9(b), the ellipsoid is graphed on π
4 ≤ u ≤ 2π

3 ,
π
4 ≤ v ≤ 3π

2 to
demonstrate how each variable affects the surface.

Parametrization is a powerful way to represent surfaces. One of the advan-
tages of the methods of parametrization described in this section is that the do-
main of r⃗(u, v) is always a rectangle; that is, the bounds on u and v are constants.
This will make some of our future computations easier to evaluate.

Just as we could parametrize curves in more than one way, there will always
be multiple ways to parametrize a surface. Some ways will be more “natural”
than others, but these other ways are not incorrect. Because technology is of-
ten readily available, it is often a good idea to check one’s work by graphing a
parametrization of a surface to check if it indeed representswhat itwas intended
to.

Surface Area

It will become important in the following sections to be able to compute the
surface area of a surface S given a smooth parametrization r⃗(u, v), a ≤ u ≤
b, c ≤ v ≤ d. Following the principles given in the integration review at the
beginning of this chapter, we can say that

Surface Area of S = S =
∫∫

S
dS,

where dS represents a small amount of surface area. That is, to compute total
surface area S, add up lots of small amounts of surface area dS across the entire
surface S. The key to finding surface area is knowing how to compute dS. We
begin by approximating.

In Section 14.5 we used the area of a plane to approximate the surface area
of a small portion of a surface. We will do the same here.

Let R be the region of the u-v plane bounded by a ≤ u ≤ b, c ≤ v ≤ d as
shown in Figure 15.5.10(a). Partition R into rectangles of width ∆u = b−a

n and
height∆v = d−c

n , for some n. Let p = (u0, v0) be the lower left corner of some
rectangle in the partition, and letm and q be neighbouring corners as shown.
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Figure 15.5.10: Illustrating the process
of finding surface area by approximating
with planes.
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The point pmaps to a point P = r⃗(u0, v0) on the surfaceS, and the rectangle
with corners p,m and qmaps to some region (probably not rectangular) on the
surface as shown in Figure 15.5.10(b), whereM = r⃗(m) and Q = r⃗(q). We wish
to approximate the surface area of this mapped region.

Let u⃗ = M − P and v⃗ = Q − P. These two vectors form a parallelogram,
illustrated in Figure 15.5.10(c), whose area approximates the surface area we
seek. In this particular illustration, we can see that parallelogram does not par-
ticularly match well the region we wish to approximate, but that is acceptable;
by increasing the number of partitions of R,∆u and∆v shrink and our approxi-
mations will become better.

From Section 11.4 we know the area of this parallelogram is ∥ u⃗× v⃗ ∥. If
we repeat this approximation process for each rectangle in the partition of R,
we can sum the areas of all the parallelograms to get an approximation of the
surface area S:

Surface area of S = S ≈
n∑

j=1

n∑
i=1

∥ u⃗i,j × v⃗i,j ∥ ,

where u⃗i,j = r⃗(ui +∆u, vj)− r⃗(ui, vj) and v⃗i,j = r⃗(ui, vj +∆v)− r⃗(ui, vj).
From our previous calculus experience, we expect that taking a limit as n →

∞ will result in the exact surface area. However, the current form of the above
double sum makes it difficult to realize what the result of that limit is. The fol-
lowing rewriting of the double summation will be helpful:

n∑
j=1

n∑
i=1

∥ u⃗i,j × v⃗i,j ∥ =

n∑
j=1

n∑
i=1

∥∥ (⃗r(ui +∆u, vj)− r⃗(ui, vj)
)
×
(⃗
r(ui, vj +∆v)− r⃗(ui, vj)

) ∥∥ =

n∑
j=1

n∑
i=1

∥∥∥∥ r⃗(ui +∆u, vj)− r⃗(ui, vj)
∆u

× r⃗(ui, vj +∆v)− r⃗(ui, vj)
∆v

∥∥∥∥∆u∆v.

We now take the limit as n → ∞, forcing∆u and∆v to 0. As∆u → 0,

r⃗(ui +∆u, vj)− r⃗(ui, vj)
∆u

→ r⃗u(ui, vj) and

r⃗(ui, vj +∆v)− r⃗(ui, vj)
∆v

→ r⃗v(ui, vj).

(This limit process also demonstrates that r⃗u(u, v) and r⃗v(u, v) are tangent to the
surface S at r⃗(u, v). We don’t need this fact now, but it will be important in the
next section.)

Thus, in the limit, the double sum leads to a double integral:

lim
n→∞

n∑
j=1

n∑
i=1

∥ u⃗i,j × v⃗i,j ∥ =

∫ d

c

∫ b

a
∥ r⃗u × r⃗v ∥ du dv.
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Theorem 15.5.1 Surface Area of Parametrically Defined Surfaces

Let r⃗(u, v) be a smooth parametrization of a surface S over a closed,
bounded region R of the u-v plane.

• The surface area differential dS is: dS = ∥ r⃗u × r⃗v ∥ dA.

• The surface area S of S is

S =
∫∫

S
dS =

∫∫
R
∥ r⃗u × r⃗v ∥ dA.

Example 15.5.8 Finding the surface area of a parametrized surface
Using the parametrization found in Example 15.5.2, find the surface area of z =
x2 + 2y2 over the circular disk of radius 2, centred at the origin.

SÊ½çã®ÊÄ In Example 15.5.2, we parametrized the surface as r⃗(u, v) =⟨
2v cos u, 2v sin u, 4v2 cos2 u+ 8v2 sin2 u

⟩
, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1. To find

the surface area using Theorem 15.5.1, we need ∥ r⃗u × r⃗v ∥. We find:

r⃗u =
⟨
−2v sin u, 2v cos u, 8v2 cos u sin u

⟩
r⃗v =

⟨
2 cos u, 2 sin v, 8v cos2 u+ 16v sin2 u

⟩
r⃗u × r⃗v =

⟨
16v2 cos u, 32v2 sin u,−4v

⟩
∥ r⃗u × r⃗v ∥ =

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2.

Thus the surface area is

S =
∫∫

S
dS =

∫∫
R
∥ r⃗u × r⃗v ∥ dA

=

∫ 1

0

∫ 2π

0

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2 du dv ≈ 53.59.

There is a lot of tedious work in the above calculations and the final integral is
nontrivial. The use of a computer-algebra system is highly recommended.

In Section 15.1, we recalled the arc length differential ds = ∥ r⃗ ′(t) ∥ dt.
In subsequent sections, we used that differential, but in most applications the
“∥ r⃗ ′(t) ∥” part of the differential cancelled out of the integrand (to our bene-
fit, as integrating the square roots of functions is generally difficult). We will
find a similar thing happens when we use the surface area differential dS in the
following sections. That is, our main goal is not to be able to compute surface
area; rather, surface area is a tool to obtain other quantities that are more im-
portant and useful. In our applications, we will use dS, but most of the time
the “∥ r⃗u × r⃗v ∥” part will cancel out of the integrand, making the subsequent
integration easier to compute.

869



Exercises 15.5
Terms and Concepts

1. In your own words, describe what an orientable surface is.

2. Give an example of a non-orientable surface.

Problems

In Exercises 3 – 4, parametrize the surface defined by the
function z = f(x, y) over each of the given regions R of the
x-y plane.

3. z = 3x2y;

(a) R is the rectangle bounded by −1 ≤ x ≤ 1 and
0 ≤ y ≤ 2.

(b) R is the circle of radius 3, centered at (1, 2).

(c) R is the triangle with vertices (0, 0), (1, 0) and (0, 2).

(d) R is the region bounded by the x-axis and the graph
of y = 1− x2.

4. z = 4x+ 2y2;

(a) R is the rectangle bounded by 1 ≤ x ≤ 4 and
5 ≤ y ≤ 7.

(b) R is the ellipse with major axis of length 8 parallel to
the x-axis, and minor axis of length 6 parallel to the
y-axis, centered at the origin.

(c) R is the triangle with vertices (0, 0), (2, 2) and (0, 4).

(d) R is the annulus bounded between the circles, cen-
tered at the origin, with radius 2 and radius 5.

In Exercises 5 – 8, a surface S in space is described that can-
not be defined in terms of a function z = f(x, y). Give a
parametrization of S.

5. S is the rectangle in spacewith corners at (0, 0, 0), (0, 2, 0),
(0, 2, 1) and (0, 0, 1).

6. S is the triangle in space with corners at (1, 0, 0), (1, 0, 1)
and (0, 0, 1).

7. S is the ellipsoid x2

9
+

y2

4
+

z2

16
= 1.

8. S is the elliptic cone y2 = x2 + z2

16
, for−1 ≤ y ≤ 5.

In Exercises 9 – 16, a domain D in space is given. Parametrize
each of the bounding surfaces of D.

9. D is the domain bounded by the planes z = 1
2 (3−x), x = 1,

y = 0, y = 2 and z = 0.

10. D is the domain bounded by the planes z = 2x + 4y − 4,
x = 2, y = 1 and z = 0.

11. D is the domain bounded by z = 2y, y = 4− x2 and z = 0.

12. D is the domain bounded by y = 1− z2, y = 1− x2, x = 0,
y = 0 and z = 0.
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13. D is the domain bounded by the cylinder x+ y2/9 = 1 and
the planes z = 1 and z = 3.

14. D is the domain bounded by the cone x2 + y2 = (z − 1)2
and the plane z = 0.

15. D is the domain bounded by the cylinder z = 1 − x2 and
the planes y = −1, y = 2 and z = 0.

16. D is the domain bounded by the paraboloid z = 4−x2−4y2
and the plane z = 0.

In Exercises 17 – 20, find the surface area S of the given sur-
face S. (The associated integrals are computable without the
assistance of technology.)

17. S is the plane z = 2x+ 3y over the rectangle−1 ≤ x ≤ 1,
2 ≤ v ≤ 3.

18. S is the plane z = x+ 2y over the triangle with vertices at
(0, 0), (1, 0) and (0, 1).

19. S is the plane z = x+ y over the circular disk, centered at
the origin, with radius 2.

20. S is the plane z = x + y over the annulus bounded by the
circles, centered at the origin, with radius 1 and radius 2.

In Exercises 21 – 24, set up the double integral that finds the
surface area S of the given surface S, then use technology to
approximate its value.

21. S is the paraboloid z = x2 + y2 over the circular disk of
radius 3 centered at the origin.

22. S is the paraboloid z = x2 + y2 over the triangle with ver-
tices at (0, 0), (0, 1) and (1, 1).

23. S is the plane z = 5x − y over the region enclosed by the
parabola y = 1− x2 and the x-axis.

24. S is the hyperbolic paraboloid z = x2 − y2 over the circular
disk of radius 1 centered at the origin.

871







Figure 15.6.1: The surface whose mass is
computed in Example 15.6.1.
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15.6 Surface Integrals
Consider a smooth surface S that represents a thin sheet of metal. How could
we find the mass of this metallic object?

If the density of this object is constant, then we can find mass via “mass=
density× surface area,” and we could compute the surface area using the tech-
niques of the previous section.

What if the density were not constant, but variable, described by a function
δ(x, y, z)? We can describe the mass using our general integration techniques
as

mass =
∫∫

S
dm,

where dm represents “a little bit of mass.” That is, to find the total mass of the
object, sum up lots of little masses over the surface.

How do we find the “little bit of mass” dm? On a small portion of the sur-
face with surface area ∆S, the density is approximately constant, hence dm ≈
δ(x, y, z)∆S. Asweuse limits to shrink the size of∆S to 0, we getdm = δ(x, y, z)dS;
that is, a little bit of mass is equal to a density times a small amount of surface
area. Thus the total mass of the thin sheet is

mass =
∫∫

S
δ(x, y, z) dS. (15.3)

To evaluate the above integral, wewould seek r⃗(u, v), a smooth parametriza-
tion of S over a region R of the u-v plane. The density would become a function
of u and v, and we would integrate

∫∫
R δ(u, v) ∥ r⃗u × r⃗v ∥ dA.

The integral in Equation (15.3) is a specific example of a more general con-
struction defined below.

Definition 15.6.1 Surface Integral

Let G(x, y, z) be a continuous function defined on a surface S. The sur-
face integral of G on S is ∫∫

S
G(x, y, z) dS.

Surface integrals can be used to measure a variety of quantities beyond
mass. If G(x, y, z) measures the static charge density at a point, then the sur-
face integral will compute the total static charge of the sheet. If Gmeasures the
amount of fluid passing through a screen (represented by S) at a point, then the
surface integral gives the total amount of fluid going through the screen.

Example 15.6.1 Finding the mass of a thin sheet
Find the mass of a thin sheet modelled by the plane 2x + y + z = 3 over the
triangular region of the x-y plane bounded by the coordinate axes and the line
y = 2−2x, as shown in Figure 15.6.1, with density function δ(x, y, z) = x2+5y+
z, where all distances are measured in cm and the density is given as gm/cm2.

SÊ½çã®ÊÄ We begin by parametrizing the planar surface S. Using the
techniques of the previous section, we can let x = u and y = v(2− 2u), where
0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Solving for z in the equation of the plane, we have
z = 3 − 2x − y, hence z = 3 − 2u − v(2 − 2u), giving the parametrization
r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩.
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15.6 Surface Integrals

We need dS = ∥ r⃗u × r⃗v ∥ dA, so we need to compute r⃗u, r⃗v and the norm of
their cross product. We leave it to the reader to confirm the following:

r⃗u = ⟨1,−2v, 2v− 2⟩, r⃗v = ⟨0, 2− 2u, 2u− 2⟩,

r⃗u × r⃗v = ⟨4− 4u, 2− 2u, 2− 2u⟩ and ∥ r⃗u × r⃗v ∥ = 2
√
6
√
(u− 1)2.

Weneed to be careful to not “simplify” ∥ r⃗u × r⃗v ∥ = 2
√
6
√

(u− 1)2 as 2
√
6(u−

1); rather, it is 2
√

6|u− 1|. In this example, u is bounded by 0 ≤ u ≤ 1, and on
this interval |u− 1| = 1− u. Thus dS = 2

√
6(1− u)dA.

The density is given as a function of x, y and z, for which we’ll substitute the
corresponding components of r⃗ (with the slight abuse of notation that we used
in previous sections):

δ(x, y, z) = δ
(⃗
r(u, v)

)
= u2 + 5v(2− 2u) + 3− 2u− v(2− 2u)
= u2 − 8uv− 2u+ 8v+ 3.

Thus the mass of the sheet is:

M =

∫∫
S

dm

=

∫∫
R
δ
(⃗
r(u, v)

)
∥ r⃗u × r⃗v ∥ dA

=

∫ 1

0

∫ 1

0

(
u2 − 8uv− 2u+ 8v+ 3

)(
2
√
6(1− u)

)
du dv

=
31√
6
≈ 12.66 gm.

Flux

Let a surfaceS liewithin a vector field F⃗. One is often interested inmeasuring
the flux of F⃗ across S; that is, measuring “how much of the vector field passes
across S.” For instance, if F⃗ represents the velocity field of moving air and S
represents the shape of an air filter, the fluxwillmeasure howmuch air is passing
through the filter per unit time.

As flux measures the amount of F⃗ passing across S, we need to find the
“amount of F⃗ orthogonal to S.” Similar to our measure of flux in the plane, this
is equal to F⃗ · n⃗, where n⃗ is a unit vector normal to S at a point. We now consider
how to find n⃗.

Given a smooth parametrization r⃗(u, v)ofS , thework in the previous section
showing the development of our method of computing surface area also shows
that r⃗u(u, v) and r⃗v(u, v) are tangent to S at r⃗(u, v). Thus r⃗u × r⃗v is orthogonal to
S, and we let

n⃗ =
r⃗u × r⃗v

∥ r⃗u × r⃗v ∥
,

which is a unit vector normal to S at r⃗(u, v).
The measurement of flux across a surface is a surface integral; that is, to

measure total flux we sum the product of F⃗ · n⃗ times a small amount of surface
area: F⃗ · n⃗ dS.
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Figure 15.6.2: The surface and vector
field used in Example 15.6.2.

Chapter 15 Vector Analysis

A nice thing happens with the actual computation of flux: the ∥ r⃗u × r⃗v ∥
terms go away. Consider:

Flux =
∫∫

S
F⃗ · n⃗ dS

=

∫∫
R
F⃗ · r⃗u × r⃗v

∥ r⃗u × r⃗v ∥
∥ r⃗u × r⃗v ∥ dA

=

∫∫
R
F⃗ · (⃗ru × r⃗v) dA.

The above only makes sense if S is orientable; the normal vectors n⃗ must
vary continuously across S. We assume that n⃗ does vary continuously. (If the
parametrization r⃗ of S is smooth, then our above definition of n⃗ will vary con-
tinuously.)

Definition 15.6.2 Flux over a surface

Let F⃗ be a vector field with continuous components defined on an ori-
entable surface S with normal vector n⃗. The flux of F⃗ across S is

Flux =
∫∫

S
F⃗ · n⃗ dS.

If S is parametrized by r⃗(u, v), which is smooth on its domain R, then

Flux =
∫∫

R
F⃗
(⃗
r(u, v)

)
· (⃗ru × r⃗v) dA.

Since S is orientable, we adopt the convention of saying one passes from
the “back” side of S to the “front” side when moving across the surface parallel
to the direction of n⃗. Also, when S is closed, it is natural to speak of the regions
of space “inside” and “outside” S. We also adopt the convention that when S is
a closed surface, n⃗ should point to the outside of S. If n⃗ = r⃗u × r⃗v points inside
S, use n⃗ = r⃗v × r⃗u instead.

When the computation of flux is positive, it means that the field is moving
from the back side of S to the front side; when flux is negative, it means the
field is moving opposite the direction of n⃗, and is moving from the front of S
to the back. When S is not closed, there is not a “right” and “wrong” direction
in which n⃗ should point, but one should be mindful of its direction to make full
sense of the flux computation.

We demonstrate the computation of flux, and its interpretation, in the fol-
lowing examples.

Example 15.6.2 Finding flux across a surface
LetS be the surface given in Example 15.6.1, whereS is parametrizedby r⃗(u, v) =
⟨u, v(2−2u), 3−2u−v(2−2u)⟩ on 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and let F⃗ = ⟨1, x,−y⟩,
as shown in Figure 15.6.2. Find the flux of F⃗ across S.

SÊ½çã®ÊÄ Using our work from the previous example, we have n⃗ =
r⃗u× r⃗v = ⟨4−4u, 2−2u, 2−2u⟩. We also need F⃗

(⃗
r(u, v)

)
= ⟨1, u,−v(2−2u)⟩.
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Figure 15.6.3: The surfaces used in Exam-
ple 15.6.3.

15.6 Surface Integrals

Thus the flux of F⃗ across S is:

Flux =
∫∫

S
F⃗ · n⃗ dS

=

∫∫
R
⟨1, u,−v(2− 2u)⟩ · ⟨4− 4u, 2− 2u, 2− 2u⟩ dA

=

∫ 1

0

∫ 1

0

(
− 4u2v− 2u2 + 8uv− 2u− 4v+ 4

)
du dv

= 5/3.

Tomake full use of this numeric answer, we need to know the direction in which
the field is passing across S. The graph in Figure 15.6.2 helps, but we need a
method that is not dependent on a graph.

Pick a point (u, v) in the interior of R and consider n⃗(u, v). For instance,
choose (1/2, 1/2) and look at n⃗(1/2, 1/2) = ⟨2, 1, 1⟩/

√
6. This vector has pos-

itive x, y and z components. Generally speaking, one has some idea of what the
surface S looks like, as that surface is for some reason important. In our case,
we knowS is a plane with z-intercept of z = 3. Knowing n⃗ and the fluxmeasure-
ment of positive 5/3, we know that the field must be passing from “behind” S,
i.e., the side the origin is on, to the “front” of S.

Example 15.6.3 Flux across surfaces with shared boundaries
Let S1 be the unit disk in the x-y plane, and let S2 be the paraboloid z = 1 −
x2 − y2, for z ≥ 0, as graphed in Figure 15.6.3. Note how these two surfaces
each have the unit circle as a boundary.

Let F⃗1 = ⟨0, 0, 1⟩ and F⃗2 = ⟨0, 0, z⟩. Using normal vectors for each surface
that point “upward,” i.e., with a positive z-component, find the flux of each field
across each surface.

SÊ½çã®ÊÄ We begin by parametrizing each surface.
The boundary of the unit disk in the x-y plane is the unit circle, which can be

described with ⟨cos u, sin u, 0⟩, 0 ≤ u ≤ 2π. To obtain the interior of the circle
as well, we can scale by v, giving

r⃗1(u, v) = ⟨v cos u, v sin u, 0⟩, 0 ≤ u ≤ 2π 0 ≤ v ≤ 1.

As the boundary of S2 is also the unit circle, the x and y components of r⃗2
will be the same as those of r⃗1; we just need a different z component. With
z = 1− x2 − y2, we have

r⃗2(u, v) = ⟨v cos u, v sin u, 1− v2 cos2 u− v2 sin2 u⟩ = ⟨v cos u, v sin u, 1− v2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
We now compute the normal vectors n⃗1 and n⃗2.
For n⃗1: r⃗1u = ⟨−v sin u, v cos u, 0⟩, r⃗1v = ⟨cos u, sin u, 0⟩, so

n⃗1 = r⃗1u × r⃗1v = ⟨0, 0,−v⟩.

As this vector has a negative z-component, we instead use

n⃗1 = r⃗1v × r⃗1u = ⟨0, 0, v⟩.

Similarly, n⃗2: r⃗2u = ⟨−v sin u, v cos u, 0⟩, r⃗2v = ⟨cos u, sin u,−2v⟩, so

n⃗2 = r⃗2u × r⃗2v = ⟨−2v2 cos u,−2v2 sin u,−v⟩.
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Again, this normal vector has a negative z-component so we use

n⃗2 = r⃗2v × r⃗2u = ⟨2v2 cos u, 2v2 sin u, v⟩.

We are now set to compute flux. Over field F⃗1 = ⟨0, 0, 1⟩:

Flux across S1 =

∫∫
S1

F⃗1 · n⃗1 dS

=

∫∫
R
⟨0, 0, 1⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v) du dv

= π.

Flux across S2 =

∫∫
S2

F⃗1 · n⃗2 dS

=

∫∫
R
⟨0, 0, 1⟩ · ⟨2v2 cos u, 2v2 sin u, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v) du dv

= π.

These two results are equal and positive. Each are positive because both
normal vectors are pointing in the positive z-directions, as does F⃗1. As the field
passes through each surface in the direction of their normal vectors, the flux is
measured as positive.

We can also intuitively understand why the results are equal. Consider F⃗1
to represent the flow of air, and let each surface represent a filter. Since F⃗1 is
constant, and moving “straight up,” it makes sense that all air passing through
S1 also passes through S2, and vice–versa.

If we treated the surfaces as creating one piecewise–smooth surface S, we
would find the total flux acrossS by finding the flux across each piece, being sure
that each normal vector pointed to the outside of the closed surface. Above, n⃗1
does not point outside the surface, though n⃗2 does. We would instead want to
use −n⃗1 in our computation. We would then find that the flux across S1 is −π,
and hence the total flux across S is −π + π = 0. (As 0 is a special number, we
should wonder if this answer has special significance. It does, which is briefly
discussed following this example and will be more fully developed in the next
section.)

We now compute the flux across each surface with F⃗2 = ⟨0, 0, z⟩:

Flux across S1 =

∫∫
S1

F⃗2 · n⃗1 dS.

Over S1, F⃗2 = F⃗2
(⃗
r2(u, v)

)
= ⟨0, 0, 0⟩. Therefore,

=

∫∫
R
⟨0, 0, 0⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0
(0) du dv

= 0.
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Flux across S2 =

∫∫
S2

F⃗2 · n⃗2 dS.

Over S2, F⃗2 = F⃗2
(⃗
r2(u, v)

)
= ⟨0, 0, 1− v2⟩. Therefore,

=

∫∫
R
⟨0, 0, 1− v2⟩ · ⟨2v2 cos u, 2v2 sin u, v⟩ dA

=

∫ 1

0

∫ 2π

0
(v3 − v) du dv

= π/2.

This time the measurements of flux differ. Over S1, the field F⃗2 is just 0⃗,
hence there is no flux. Over S2, the flux is again positive as F⃗2 points in the pos-
itive z direction over S2, as does n⃗2.

In the previous example, the surfaces S1 and S2 form a closed surface that
is piecewise smooth. That the measurement of flux across each surface was the
same for some fields (and not for others) is reminiscent of a result from Section
15.4, where we measured flux across curves. The quick answer to why the flux
was the same when considering F⃗1 is that div F⃗1 = 0. In the next section, we’ll
see the second part of the Divergence Theorem which will more fully explain
this occurrence. We will also explore Stokes’ Theorem, the spatial analogue to
Green’s Theorem.
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Exercises 15.6
Terms and Concepts

1. In the plane, flux is ameasurement of howmuch of the vec-
tor field passes across a ; in space, flux is a mea-
surement of how much of the vector field passes across a

.

2. When computing flux, what does it mean when the result
is a negative number?

3. When S is a closed surface, we choose the normal vector
so that it points to the of the surface.

4. If S is a plane, and F⃗ is always parallel to S, then the flux of
F⃗ across S will be .

Problems
In Exercises 5 – 6, a surface S that represents a thin sheet of
material with density δ is given. Find the mass of each thin
sheet.

5. S is the plane f(x, y) = x+ y on−2 ≤ x ≤ 2,−3 ≤ y ≤ 3,
with δ(x, y, z) = z.

6. S is the unit sphere, with δ(x, y, z) = x+ y+ z+ 10.

In Exercises 7 – 14, a surface S and a vector field F⃗ are given.
Compute the flux of F⃗ across S. (If S is not a closed surface,
choose n⃗ so that it has a positive z-component, unless other-
wise indicated.)

7. S is the plane f(x, y) = 3x + y on 0 ≤ x ≤ 1, 1 ≤ y ≤ 4;
F⃗ = ⟨x2,−z, 2y⟩.

8. S is the plane f(x, y) = 8 − x − y over the triangle with
vertices at (0, 0), (1, 0) and (1, 5); F⃗ = ⟨3, 1, 2⟩.

9. S is the paraboloid f(x, y) = x2 + y2 over the unit disk;
F⃗ = ⟨1, 0, 0⟩.

10. S is the unit sphere; F⃗ = ⟨y− z, z− x, x− y⟩.

11. S is the square in space with corners at (0, 0, 0), (1, 0, 0),
(1, 0, 1) and (0, 0, 1) (choose n⃗ such that it has a positive
y-component); F⃗ = ⟨0,−z, y⟩.

12. S is the disk in the y-z plane with radius 1, centered at
(0, 1, 1) (choose n⃗ such that it has a positive x-component);
F⃗ = ⟨y, z, x⟩.

13. S is the closed surface composed of S1, whose boundary is
the ellipse in the x-y plane described by x2

25 + y2
9 = 1 and

S2, part of the elliptical paraboloid f(x, y) = 1 − x2
25 − y2

9
(see graph); F⃗ = ⟨5, 2, 3⟩.

14. S is the closed surface composed of S1, part of the unit
sphere and S2, part of the plane z = 1/2 (see graph);
F⃗ = ⟨x,−y, z⟩.

878





Note: the term “outer unit normal vec-
tor” used in Theorem 15.7.1 means n⃗
points to the outside of S.

Figure 15.7.1: The surfaces used in Exam-
ple 15.7.1.

15.7 The Divergence Theorem and Stokes’ Theorem

15.7 The Divergence Theorem and Stokes’ Theorem
The Divergence Theorem

Theorem 15.4.2 gives the Divergence Theorem in the plane, which states
that the flux of a vector field across a closed curve equals the sum of the diver-
gences over the region enclosed by the curve. Recall that the flux wasmeasured
via a line integral, and the sum of the divergences was measured through a dou-
ble integral.

We now consider the three-dimensional version of the Divergence Theorem.
It states, in words, that the flux across a closed surface equals the sum of the
divergences over the domain enclosed by the surface. Since we are in space
(versus the plane), we measure flux via a surface integral, and the sums of di-
vergences will be measured through a triple integral.

Theorem 15.7.1 The Divergence Theorem (in space)

Let D be a closed domain in space whose boundary is an orientable,
piecewise smooth surface S with outer unit normal vector n⃗, and let F⃗
be a vector field whose components are differentiable on D. Then∫∫

S
F⃗ · n⃗ dS =

∫∫∫
D
div F⃗ dV.

Example 15.7.1 Using the Divergence Theorem in space
Let D be the domain in space bounded by the planes z = 0 and z = 2x, along
with the cylinder x = 1− y2, as graphed in Figure 15.7.1, let S be the boundary
of D, and let F⃗ = ⟨x+ y, y2, 2z⟩.

Verify the Divergence Theorem by finding the total outward flux of F⃗ across
S, and show this is equal to

∫∫∫
D div F⃗ dV.

SÊ½çã®ÊÄ The surface S is piecewise smooth, comprising surfaces S1,
which is part of the plane z = 2x, surface S2, which is part of the cylinder x =
1−y2, and surfaceS3, which is part of the plane z = 0. To find the total outward
flux across S, we need to compute the outward flux across each of these three
surfaces.

We leave it to the reader to confirm that surfaces S1, S2 and S3 can be
parametrized by r⃗1, r⃗2 and r⃗3 respectively as

r⃗1(u, v) =
⟨
v(1− u2), u, 2v(1− u2)

⟩
,

r⃗2(u, v) =
⟨
(1− u2), u, 2v(1− u2)

⟩
,

r⃗3(u, v) =
⟨
v(1− u2), u, 0

⟩
,

where−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for all three functions.
We compute a unit normal vector n⃗ for each as r⃗u×⃗rv

∥ r⃗u×⃗rv ∥ , though recall that
as we are integrating F⃗ · n⃗ dS, we actually only use r⃗u× r⃗v. Finally, in previous flux
computations, it did not matter which direction n⃗ pointed as long as we made
note of its direction. When using the Divergence Theorem, we need n⃗ to point
to the outside of the closed surface, so in practice this means we’ll either use
r⃗u × r⃗v or r⃗v × r⃗u, depending on which points outside of the closed surface S.

We leave it to the reader to confirm the following cross products and inte-
grations are correct.
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For S1, we need to use r⃗1v × r⃗1u = ⟨2(u2 − 1), 0, 1 − u2⟩. (Note the z-
component is nonnegative as u ≤ 1, therefore this vector always points up,
meaning to the outside, of S.) The flux across S1 is:

Flux across S1: =
∫∫

S1

F⃗ · n⃗1 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r1(u, v)

)
·
(⃗
r1v × r⃗1u

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
v(1− u2) + u, u2, 4v(1− u2)

⟩
·
⟨
2(u2 − 1), 0, 1− u2

⟩
du dv

=

∫ 1

0

∫ 1

−1

(
2u4v+ 2u3 − 4u2v− 2u+ 2v

)
du dv

=
16
15

.

For S2, we use r⃗2u× r⃗2v = ⟨2(1−u2), 4u(1−u2), 0⟩. (Note the x-component
is always nonnegative, meaning this vector points outside S.) The flux across S2
is:

Flux across S2: =
∫∫

S2

F⃗ · n⃗2 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r2(u, v)

)
·
(⃗
r2u × r⃗2v

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
1− u2 + u, u2, 4v(1− u2)

⟩
·
⟨
2(1− u2), 4u(1− u2), 0

⟩
du dv

=

∫ 1

0

∫ 1

−1

(
4u5 − 2u4 − 2u3 + 4u2 − 2u− 2

)
du dv

=
32
15

.

For S3, we use r⃗3u × r⃗3v = ⟨0, 0, u2 − 1⟩. (Note the z-component is never
positive, meaning this vector points down, outside of S.) The flux across S3 is:

Flux across S3: =
∫∫

S3

F⃗ · n⃗3 dS

=

∫ 1

0

∫ 1

−1
F⃗
(⃗
r3(u, v)

)
·
(⃗
r3u × r⃗3v

)
du dv

=

∫ 1

0

∫ 1

−1

⟨
v(1− u2) + u, u2, 0

⟩
·
⟨
0, 0, u2 − 1

⟩
du dv

=

∫ 1

0

∫ 1

−1
0 du dv

= 0.

Thus the total outward flux, measured by surface integrals across all three
component surfaces of S, is 16/15 + 32/15 + 0 = 48/15 = 16/5 = 3.2. We
now find the total outward flux by integrating div F⃗ over D.

Following the steps outlined in Section 14.6, we see the bounds of x, y and
z can be set as (thinking “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 2x; 0 ≤ x ≤ 1− y2; −1 ≤ y ≤ 1.
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Figure 15.7.2: The surfaces used in Exam-
ple 15.7.2.

15.7 The Divergence Theorem and Stokes’ Theorem

With div F⃗ = 1+ 2y+ 2 = 2y+ 3, we find the total outward flux of F⃗ over S as:

Flux =
∫∫∫

D
div F⃗ dV =

∫ 1

−1

∫ 1−y2

0

∫ 2x

0

(
2y+ 3

)
dz dx dy = 16/5,

the same result we obtained previously.

In Example 15.7.1 we see that the total outward flux of a vector field across a
closed surface can be found two different ways because of the Divergence The-
orem. One computation took far less work to obtain. In that particular case,
since S was comprised of three separate surfaces, it was far simpler to compute
one triple integral than three surface integrals (each of which required partial
derivatives and a cross product). In practice, if outward flux needs to be mea-
sured, one would choose only one method. We will use both methods in this
section simply to reinforce the truth of the Divergence Theorem.

We practice again in the following example.

Example 15.7.2 Using the Divergence Theorem in space
Let S be the surface formed by the paraboloid z = 1 − x2 − y2, z ≥ 0, and the
unit disk centred at the origin in the x-y plane, graphed in Figure 15.7.2, and let
F⃗ = ⟨0, 0, z⟩. (This surface and vector field were used in Example 15.6.3.)

Verify theDivergence Theorem; find the total outward flux acrossS and eval-
uate the triple integral of div F⃗, showing that these two quantities are equal.

SÊ½çã®ÊÄ We find the flux across S first. As S is piecewise–smooth,
we decompose it into smooth components S1, the disk, and S2, the paraboloid,
and find the flux across each.

In Example 15.6.3, we found the flux across S1 is 0. We also found that the
flux acrossS2 is π/2. (In that example, the normal vector had a positive z compo-
nent hence was an outer normal.) Thus the total outward flux is 0+π/2 = π/2.

We now compute
∫∫∫

D div F⃗ dV. We can describe D as the domain bounded
by (think “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 1− x2 − y2, −
√

1− x2 ≤ y ≤
√

1− x2, −1 ≤ x ≤ 1.

This description of D is not very easy to integrate. With polar, we can do better.
Let R represent the unit disk, which can be described in polar simply as r, where
0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. With x = r cos θ and y = r sin θ, the surface S2
becomes

z = 1− x2 − y2 ⇒ 1− (r cos θ)2 − (r sin θ)2 ⇒ 1− r2.

Thus D can be described as the domain bounded by:

0 ≤ z ≤ 1− r2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

With div F⃗ = 1, we can integrate, recalling that dV = r dz dr dθ:

∫∫∫
D
div F⃗ dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

0
r dz dr dθ =

π

2
,

which matches our flux computation above. 881



Figure 15.7.3: The cube used in Example
15.7.3.
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Example 15.7.3 A “paradox” of the Divergence Theorem and Gauss’s Law
The magnitude of many physical quantities (such as light intensity or electro-
magnetic and gravitational forces) follow an “inverse square law”: the magni-
tude of the quantity at a point is inversely proportional to the square of the
distance to the source of the quantity.

Let a point light source be placed at the origin and let F⃗ be the vector field
which describes the intensity and direction of the emanating light. At a point
(x, y, z), the unit vector describing the direction of the light passing through
that point is ⟨x, y, z⟩/

√
x2 + y2 + z2. As the intensity of light follows the inverse

square law, the magnitude of F⃗ at (x, y, z) is k/(x2 + y2 + z2) for some constant
k. Taken together,

F⃗(x, y, z) =
k

(x2 + y2 + z2)3/2
⟨x, y, z⟩.

Consider the cube, centred at the origin, with sides of length 2a for some
a > 0 (hence corners of the cube lie at (a, a, a), (−a,−a,−a), etc., as shown
in Figure 15.7.3). Find the flux across the six faces of the cube and compare this
to
∫∫

D div F⃗ dV.

SÊ½çã®ÊÄ LetS1 be the “top” face of the cube, which canbeparametrized
by r⃗(u, v) = ⟨u, v, a⟩ for−a ≤ u ≤ a,−a ≤ v ≤ a. We leave it to the reader to
confirm that r⃗u × r⃗v = ⟨0, 0, 1⟩, which points outside of the cube.

The flux across this face is:

Flux =
∫∫

S1

F⃗ · n⃗ dS

=

∫ a

−a

∫ a

−a
F⃗
(⃗
r(u, v)

)
·
(⃗
ru × r⃗v

)
du dv

=

∫ a

−a

∫ a

−a

k a
(u2 + v2 + a2)3/2

du dv.

This double integral is not trivial to compute, requiring multiple trigonometric
substitutions. This example is not meant to stress integration techniques, so we
leave it to the reader to confirm the result is

=
2kπ
3

.

Note how the result is independent of a; no matter the size of the cube, the flux
through the top surface is always 2kπ/3.

An argument of symmetry shows that the flux through each of the six faces
is 2kπ/3, thus the total flux through the faces of the cube is 6× 2kπ/3 = 4kπ.

It takes a bit of algebra, but we can show that div F⃗ = 0. Thus the Divergence
Theorem would seem to imply that the total flux through the faces of the cube
should be

Flux =

∫∫∫
D
div F⃗ dV =

∫∫∫
D
0 dV = 0,

but clearly this does not match the result from above. What went wrong?
Revisit the statement of the Divergence Theorem. One of the conditions is

that the components of F⃗must be differentiable on the domain enclosed by the
surface. In our case, F⃗ is not differentiable at the origin – it is not even defined!
As F⃗does not satisfy the conditions of theDivergence Theorem, it does not apply,
and we cannot expect

∫∫
S F⃗ · n⃗ dA =

∫∫∫
D div F⃗ dV.

Since F⃗ is differentiable everywhere except the origin, the Divergence Theo-
rem does apply over any domain that does not include the origin. Let S2 be any
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surface that encloses the cube used before, and let D̂ be the domain between
the cube and S2; note how D̂ does not include the origin and so the Divergence
Theorem does apply over this domain. The total outward flux over D̂ is thus∫∫

D̂ div F⃗ dV = 0, which means the amount of flux coming out of S2 is the same
as the amount of flux coming out of the cube. The conclusion: the flux across
any surface enclosing the origin will be 4kπ.

This has an important consequence in electrodynamics. Let q be a point
charge at the origin. The electric field generated by this point charge is

E⃗ =
q

4πε0
⟨x, y, z⟩

(x2 + y2 + z2)3/2
,

i.e., it is F⃗ with k = q/(4πε0), where ε0 is a physical constant (the “permittivity
of free space”). Gauss’s Law states that the outward flux of E⃗ across any surface
enclosing the origin is q/ε0.

Our interest in the Divergence Theorem is twofold. First, it’s truth alone is
interesting: to study the behaviour of a vector field across a closed surface, one
can examine properties of that field within the surface. Secondly, it offers an
alternative way of computing flux. When there are multiple methods of com-
puting a desired quantity, one has power to select the easiest computation as
illustrated next.

Example 15.7.4 Using the Divergence Theorem to compute flux
Let S be the cube bounded by the planes x = ±1, y = ±1, z = ±1, and let
F⃗ = ⟨x2y, 2yz, x2z3⟩. Compute the outward flux of F⃗ over S.

SÊ½çã®ÊÄ We compute div F⃗ = 2xy + 2z + 3x2z2. By the Divergence
Theorem, the outward flux is the triple integral over the domain D enclosed by
S:

Outward flux:
∫ 1

−1

∫ 1

−1

∫ 1

−1
(2xy+ 2z+ 3x2z2) dz dy dx =

8
3
.

The direct flux computation requires six surface integrals, one for each face of
the cube. The Divergence Theorem offers a much more simple computation.

Stokes’ Theorem

Just as the spatial Divergence Theorem of this section is an extension of the
planar Divergence Theorem, Stokes’ Theorem is the spatial extension of Green’s
Theorem. Recall that Green’s Theorem states that the circulation of a vector
field around a closed curve in the plane is equal to the sum of the curl of the
field over the region enclosed by the curve. Stokes’ Theorem effectively makes
the same statement: given a closed curve that lies on a surfaceS, the circulation
of a vector field around that curve is the same as the sum of “the curl of the
field” across the enclosed surface. We use quotes around “the curl of the field”
to signify that this statement is not quite correct, as we do not sum curl F⃗, but
curl F⃗ · n⃗, where n⃗ is a unit vector normal to S. That is, we sum the portion of
curl F⃗ that is orthogonal to S at a point.

Green’s Theorem dictated that the curve was to be traversed counterclock-
wise when measuring circulation. Stokes’ Theorem will follow a right hand rule:
when the thumb of one’s right hand points in the direction of n⃗, the path C will
be traversed in the direction of the curling fingers of the hand (this is equivalent
to traversing counterclockwise in the plane).
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Figure 15.7.4: As given in Example 15.7.5,
the surface S is the portion of the plane
bounded by the curve.
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Theorem 15.7.2 Stokes’ Theorem

Let S be a piecewise smooth, orientable surface whose boundary is a
piecewise smooth curve C, let n⃗ be a unit vector normal to S, let C be
traversed with respect to n⃗ according to the right hand rule, and let the
components of F⃗ have continuous first partial derivatives over S. Then∮

C
F⃗ · d⃗r =

∫∫
S
(curl F⃗) · n⃗ dS.

In general, the best approach to evaluating the surface integral in Stokes’
Theorem is to parametrize the surface S with a function r⃗(u, v). We can find a
unit normal vector n⃗ as

n⃗ =
r⃗u × r⃗v

∥ r⃗u × r⃗v ∥
.

Since dS = ∥ r⃗u × r⃗v ∥ dA, the surface integral in practice is evaluated as

∫∫
S
(curl F⃗) · (⃗ru × r⃗v) dA,

where r⃗u × r⃗v may be replaced by r⃗v × r⃗u to properly match the direction of this
vector with the orientation of the parametrization of C.

Example 15.7.5 Verifying Stokes’ Theorem
Considering the planar surface f(x, y) = 7− 2x− 2y, let C be the curve in space
that lies on this surface above the circle of radius 1 and centred at (1, 1) in the x-
y plane, let S be the planar region enclosed by C, as illustrated in Figure 15.7.4,
and let F⃗ = ⟨x + y, 2y, y2⟩. Verify Stoke’s Theorem by showing

∮
C F⃗ · d⃗r =∫∫

S(curl F⃗) · n⃗ dS.

SÊ½çã®ÊÄ Webegin by parametrizing C and then find the circulation. A
unit circle centred at (1, 1) can be parametrized with x = cos t+1, y = sin t+1
on 0 ≤ t ≤ 2π; to put this curve on the surface f, make the z component equal
f(x, y): z = 7− 2(cos t+ 1)− 2(sin t+ 1) = 3− 2 cos t− 2 sin t. All together,
we parametrize C with r⃗(t) = ⟨cos t+ 1, sin t+ 1, 3− 2 cos t− 2 sin t⟩.

The circulation of F⃗ around C is

∮
C
F⃗ · d⃗r =

∫ 2π

0
F⃗
(⃗
r(t)
)
· r⃗ ′(t) dt

=

∫ 2π

0

(
2 sin3 t− 2 cos t sin2 t+ 3 sin2 t− 3 cos t sin t

)
dt

= 3π.

We now parametrize S. (We reuse the letter “r” for our surface as this is our
custom.) Based on the parametrization of C above, we describe S with r⃗(u, v) =
⟨v cos u+ 1, v sin u+ 1, 3− 2v cos u− 2v sin u⟩, where 0 ≤ u ≤ 2π and 0 ≤
v ≤ 1.

We leave it to the reader to confirm that r⃗u × r⃗v = ⟨2v, 2v, v⟩. As 0 ≤ v ≤ 1,
this vector always has a non-negative z-component, which the right–hand rule
requires given the orientation of C used above. We also leave it to the reader to
confirm curl F⃗ = ⟨2y, 0,−1⟩.
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(a)

(b)

Figure 15.7.5: As given in Example 15.7.6,
the surface S is the portion of the plane
bounded by the curve.

15.7 The Divergence Theorem and Stokes’ Theorem

The surface integral of Stokes’ Theorem is thus∫∫
S
(curl F⃗) · n⃗ dS =

∫∫
S
(curl F⃗) · (⃗ru × r⃗v) dA

=

∫ 1

0

∫ 2π

0
⟨2v sin u+ 2, 0,−1⟩ · ⟨2v, 2v, v⟩ du dv

= 3π,

which matches our previous result.

One of the interesting results of Stokes’ Theorem is that if two surfaces S1
and S2 share the same boundary, then

∫∫
S1
(curl F⃗) · n⃗ dS =

∫∫
S2
(curl F⃗) · n⃗ dS.

That is, the value of these two surface integrals is somehow independent of the
interior of the surface. We demonstrate this principle in the next example.

Example 15.7.6 Stokes’ Theorem and surfaces that share a boundary
Let C be the curve given in Example 15.7.5 and note that it lies on the surface
z = 6 − x2 − y2. Let S be the region of this surface bounded by C, and let
F⃗ = ⟨x + y, 2y, y2⟩ as in the previous example. Compute

∫∫
S(curl F⃗) · n⃗ dS to

show it equals the result found in the previous example.

SÊ½çã®ÊÄ We begin by demonstrating that C lies on the surface z =
6−x2−y2. We can parametrize the x and y components of Cwith x = cos t+1,
y = sin t + 1 as before. Lifting these components to the surface f gives the z
component as z = 6−x2−y2 = 6−(cos t+1)2−(sin t+1)2 = 3−2 cos t−2 sin t,
which is the same z component as found in Example 15.7.5. Thus the curve C
lies on the surface z = 6− x2 − y2, as illustrated in Figure 15.7.5.

Since C and F⃗ are the same as in the previous example, we already know that∮
C F⃗ · d⃗r = 3π. We confirm that this is also the value of

∫∫
S(curl F⃗) · n⃗ dS.

We parametrize S with

r⃗(u, v) = ⟨v cos u+ 1, v sin u+ 1, 6− (v cos u+ 1)2 − (v sin u+ 1)2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1, and leave it to the reader to confirm that

r⃗u × r⃗v =
⟨
2v
(
v cos u+ 1

)
, 2v
(
v sin u+ 1

)
, v
⟩
,

which also conforms to the right–hand rule with regard to the orientation of C.
With curl F⃗ = ⟨2y, 0,−1⟩ as before, we have∫∫

S
(curl F⃗) · n⃗ dS =∫ 1

0

∫ 2π

0
⟨2v sin u+ 2, 0,−1⟩ ·

⟨
2v
(
v cos u+ 1

)
, 2v
(
v sin u+ 1

)
, v
⟩
du dv =

3π.

Even though the surfaces used in this example and in Example 15.7.5 are very
different, because they share the same boundary, Stokes’ Theorem guarantees
they have equal “sum of curls” across their respective surfaces.
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A Common Thread of Calculus

We have threefold interest in each of the major theorems of this chapter:
the Fundamental Theorem of Line Integrals, Green’s, Stokes’ and the Divergence
Theorems. First, we find the beauty of their truth interesting. Second, each
provides two methods of computing a desired quantity, sometimes offering a
simpler method of computation.

There is yet one more reason of interest in the major theorems of this chap-
ter. These important theorems also all share an important principle with the
Fundamental Theorem of Calculus, introduced in Chapter 5.

Revisit this fundamental theorem, adopting the notation used heavily in this
chapter. Let I be the interval [a, b] and let y = F(x) be differentiable on I, with
F ′(x) = f(x). The Fundamental Theorem of Calculus states that∫

I
f(x) dx = F(b)− F(a).

That is, the sum of the rates of change of a function F over an interval I can also
be calculated with a certain sum of F itself on the boundary of I (in this case, at
the points x = a and x = b).

Each of the named theorems above can be expressed in similar terms. Con-
sider the Fundamental Theorem of Line Integrals: given a function z = f(x, y),
the gradient∇f is a type of rate of change of f. Given a curve C with initial and
terminal points A and B, respectively, this fundamental theorem states that∫

C
∇f ds = f(B)− f(A),

where again the sumof a rate of change of f along a curve C can also be evaluated
by a certain sum of f at the boundary of C (i.e., the points A and B).

Green’s Theorem is essentially a special case of Stokes’ Theorem, so we con-
sider just Stokes’ Theorem here. Recalling that the curl of a vector field F⃗ is a
measure of a rate of change of F⃗, Stokes’ Theorem states that over a surface S
bounded by a closed curve C,∫∫

S

(
curl F⃗

)
· n⃗ dS =

∮
C
F⃗ · d⃗r,

i.e., the sum of a rate of change of F⃗ can be calculated with a certain sum of F⃗
itself over the boundary of S. In this case, the latter sum is also an infinite sum,
requiring an integral.

Finally, the Divergence Theorems state that the sum of divergences of a vec-
tor field (another measure of a rate of change of F⃗) over a region can also be
computed with a certain sum of F⃗ over the boundary of that region. When the
region is planar, the latter sum of F⃗ is an integral; when the region is spatial, the
latter sum of F⃗ is a double integral.

The common thread among these theorems: the sum of a rate of change of
a function over a region can be computed as another sum of the function itself
on the boundary of the region. While very general, this is a very powerful and
important statement.
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Exercises 15.7
Terms and Concepts

1. What are the differences between the Divergence Theo-
rems of Section 15.4 and this section?

2. What property of a vector field does the Divergence Theo-
rem relate to flux?

3. What property of a vector field does Stokes’ Theorem relate
to circulation?

4. Stokes’ Theorem is the spatial version of what other theo-
rem?

Problems
In Exercises 5 – 8, a closed surface S enclosing a domain D
and a vector field F⃗ are given. Verify the Divergence Theorem
on S; that is, show

∫∫
S F⃗ · n⃗ dS =

∫∫∫
D div F⃗ dV.

5. S is the surface bounding the domain D enclosed by the
plane z = 2− x/2− 2y/3 and the coordinate planes in the
first octant; F⃗ = ⟨x2, y2, x⟩.

6. S is the surface bounding the domain D enclosed by the
cylinder x2 + y2 = 1 and the planes z = −3 and z = 3;
F⃗ = ⟨−x, y, z⟩.

7. S is the surface bounding the domain D enclosed by z =
xy(3− x)(3− y) and the plane z = 0; F⃗ = ⟨3x, 4y, 5z+ 1⟩.

8. S is the surface composed of S1, the paraboloid z = 4 −
x2 − y2 for z ≥ 0, and S2, the disk of radius 2 centered at
the origin; F⃗ = ⟨x, y, z2⟩.

In Exercises 9 – 12, a closed curve C that is the boundary of a
surface S is given along with a vector field F⃗. Verify Stokes’
Theorem on C; that is, show

∮
C F⃗ · d⃗r =

∫∫
S

(
curl F⃗

)
· n⃗ dS.

9. C is the curve parametrized by r⃗(t) = ⟨cos t, sin t, 1⟩ and S
is the portion of z = x2 + y2 enclosed by C; F⃗ = ⟨z,−x, y⟩.

10. C is the curve parametrized by r⃗(t) = ⟨cos t, sin t, e−1⟩
and S is the portion of z = e−x2−y2 enclosed by C; F⃗ =
⟨−y, x, 1⟩.

11. C is the curve that follows the triangle with vertices at
(0, 0, 2), (4, 0, 0) and (0, 3, 0), traversing the the vertices in
that order and returning to (0, 0, 2), and S is the portion of
the plane z = 2−x/2−2y/3 enclosed by C; F⃗ = ⟨y,−z, y⟩.
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12. C is the curvewhose x and y coordinates follow the parabola
y = 1− x2 from x = 1 to x = −1, then follow the line from
(−1, 0) back to (1, 0), where the z coordinates of C are de-
termined by f(x, y) = 2x2 + y2, and S is the portion of
z = 2x2 + y2 enclosed by C; F⃗ = ⟨y2 + z, x, x2 − y⟩.

In Exercises 13 – 16, a closed surface S and a vector field F⃗
are given. Find the outward flux of F⃗ over S either through
direct computation or through the Divergence Theorem.

13. S is the surface formed by the intersections of z = 0 and
z = (x2 − 1)(y2 − 1); F⃗ = ⟨x2 + 1, yz, xz2⟩.

14. S is the surface formed by the intersections of the planes
z = 1

2 (3− x), x = 1, y = 0, y = 2 and z = 0; F⃗ = ⟨x, y2, z⟩.

15. S is the surface formed by the intersections of the planes
z = 2y, y = 4− x2 and z = 0; F⃗ = ⟨xz, 0, xz⟩.

16. S is the surface formed by the intersections of the cylinder
z = 1 − x2 and the planes y = −2, y = 2 and z = 0;
F⃗ = ⟨0, y3, 0⟩.

In Exercises 17 – 20, a closed curve C that is the boundary of
a surface S is given along with a vector field F⃗. Find the cir-
culation of F⃗ around C either through direct computation or
through Stokes’ Theorem.

17. C is the curve whose x- and y-values are determined by the
three sides of a triangle with vertices at (−1, 0), (1, 0) and
(0, 1), traversed in that order, and the z-values are deter-
mined by the function z = xy; F⃗ = ⟨z− y2, x, z⟩.

18. C is the curve whose x- and y-values are given by r⃗(t) =
⟨2 cos t, 2 sin t⟩ and the z-values are determined by the
function z = x2 + y3 − 3y+ 1; F⃗ = ⟨−y, x, z⟩.

19. C is the curve whose x- and y-values are given by r⃗(t) =
⟨cos t, 3 sin t⟩ and the z-values are determined by the func-
tion z = 5− 2x− y; F⃗ = ⟨− 1

3y, 3x,
2
3y− 3x⟩.
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20. C is the curve whose x- and y-values are sides of the square
with vertices at (1, 1), (−1, 1), (−1,−1) and (1,−1), tra-
versed in that order, and the z-values are determined by
the function z = 10− 5x− 2y; F⃗ = ⟨5y2, 2y2, y2⟩.

Exercises 21 – 24 are designed to challenge your understand-
ing and require no computation.

21. LetS be any closed surface enclosing a domain D. Consider
F⃗1 = ⟨x, 0, 0⟩ and F⃗2 = ⟨y, y2, z− 2yz⟩.
These fields are clearly very different. Why is it that the
total outward flux of each field across S is the same?

22. (a) Green’s Theorem can be used to find the area of a re-
gion enclosed by a curve by evaluating a line integral
with the appropriate choice of vector field F⃗. What
condition on F⃗makes this possible?

(b) Likewise, Stokes’ Theorem can be used to find the
surface area of a region enclosed by a curve in space
by evaluating a line integral with the appropriate
choice of vector field F⃗. What condition on F⃗ makes
this possible?

23. The Divergence Theorem establishes equality between a
particular double integral and a particular triple integral.
What types of circumstances would lead one to choose to
evaluate the triple integral over the double integral?

24. Stokes’ Theorem establishes equality between a particular
line integral and a particular double integral. What types
of circumstances would lead one to choose to evaluate the
double integral over the line integral?
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Note: Proving Stokes’ Theorem for a
graph seems less general than our ap-
proach, but this approach is valid, at least
locally, due to the Implicit Function Theo-
rem. Our proof assumes our surface can
be parametrized, which is yet again a sim-
plifying assumption. We justify this in
the grounds that, while not every surface
we have encountered in this textbook is a
graph, every single example we have con-
sidered can be parametrized!

Note: We’ll see below why Φ has to be at
least C2. This wasn’t part of our definition
of “smooth surface” but our proof won’t
work without it. I’m not sure if Stokes’
Theorem holds without this assumption,
or if there even exist any “smooth” sur-
faces that admit C1 parametrizations but
not C2 parametrizations.
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15.8 A proof of Stokes’ Theorem
Wepresent here a proof of Stokes’ Theoremunder somewhatmore general con-
ditions than those presented inmost commercial textbooks. In particular, we do
not assume that our surface is the graph of a function f(x, y). However, we will
still make assumptions in order to simplify the proof that are not necessary for
Stokes’ Theorem to hold. The most general proof of this result is quite technical
and beyond the scope of our course. Let us recall the statement of the theorem:

Theorem 15.8.1 Stokes’ Theorem

Let S be a piecewise smooth, orientable surface whose boundary is a
piecewise smooth curve C, let n⃗ be a unit vector normal to S, let C be
traversed with respect to n⃗ according to the right hand rule, and let the
components of F⃗ have continuous first partial derivatives over S. Then∮

C
F⃗ · d⃗r =

∫∫
S
(curl F⃗) · n⃗ dS.

We will prove this theorem under the following conditions:

1. S can be parametrized by an orientation-preserving C2 function Φ : D ⊂
R2 → R3 such that Φ is one-to-one on all of D (including the boundary).

2. The parameter domain D is a region in R2 to which Green’s Theorem ap-
plies.

The second condition is fairly mild, since most “reasonable” regions (and
certainly most regions we’re likely to choose as a parameter domain) are a finite
union of regions that are both Type I and Type II, as assumed in the proof of
Green’s Theorem. The first condition is rather more restrictive, and still does
not let us deal with closed surfaces such as the sphere, for which the boundary
of D does not correspond to the boundary of S. Note, however, that it may still
be the case that surfaces that do not satisfy these assumptions can be realized
as the union of surfaces that do. For example, the sphere can be thought of as
the union of two hemispheres joined along a common boundary circle. Each
hemisphere can be parameterized in a way that satisfies our assumptions, and
we note that although they share a common boundary circle, this boundary will
receive opposite orientations from the two hemispheres. Thus, if S = H1 ∪ H2
denotes the decomposition of the sphere into upper and lower hemispheres H1
and H2, respectively, with H1 ∩H2 = C, where C is the common boundary circle,
we have positively-oriented boundaries ∂H1 = C and ∂H2 = −C. Thus∫∫

S
(∇× F⃗) · d⃗S =

∫∫
H1

(∇× F⃗) · d⃗S+
∫∫

H2

(∇× F⃗) · d⃗S =
∫
C
F⃗ · d⃗r+

∫
−C

F⃗ · d⃗r = 0,

which we would expect, since S itself has no boundary.
Proof of Stokes’ Theorem: We assume that S = Φ(D), for Φ : D ⊂ R2 → R3,
Φ(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ an orientation-preserving parametrization of
S, such thatΦ is one-to-one andD ⊂ R2 is a region forwhichGreen’s Theorem is
valid. Let γ = ∂D be the positively-oriented boundary of D, and let s⃗ : [a, b] →
R2, s⃗(t) = ⟨u(t), v(t)⟩ be an orientation preserving parametrization of γ. It
follows from the fact that Φ is one-to-one that

r⃗(t) = Φ(⃗s(t)) = ⟨x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))⟩
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15.8 A proof of Stokes’ Theorem

is an orientation-preserving parametrization of C = ∂S. Recall that the tangent
vector fields T⃗u and T⃗v defined by Φ on the surface S can be expressed by

T⃗u(u, v) = DΦ(u, v)̂ı, T⃗v(u, v) = DΦ(u, v)ȷ̂,

whereDΦ(u, v) is the derivative ofΦ at (u, v), given by the 3×2matrix of partial
derivatives

DΦ =



∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


.

It follows from the chain rule that

r⃗ ′(t) = DΦ(⃗s(t))⃗s ′(t) = DΦ(⃗s(t))(u′(t)̂ı+v′(t)ȷ̂) = u′(t)⃗Tu(⃗s(t))+v′(t)⃗Tv(⃗s(t)).

Now, using the fact that x, y, z are functions of u and v, we compute

F⃗ · d⃗r = F1dx+ F2dy+ F3dz

= (F1 ◦ Φ)
(
∂x
∂u

du+
∂x
∂v

dv
)
+ (F2 ◦ Φ)

(
∂y
∂u

du+
∂y
∂v

dv
)
+ (F3 ◦ Φ)

(
∂z
∂u

du+
∂z
∂v

dv
)

=

(
(F1 ◦ Φ)

∂x
∂u

+ (F2 ◦ Φ)
∂y
∂u

+ (F3 ◦ Φ)
∂z
∂u

)
du

+

(
(F1 ◦ Φ)

∂x
∂v

+ (F2 ◦ Φ)
∂y
∂v

+ (F3 ◦ Φ)
∂z
∂v

)
dv

=
(⃗
F(Φ(u, v)) · T⃗u(u, v)

)
du+

(⃗
F(Φ(u, v)) · T⃗v(u, v)

)
dv.

Let us define P = (⃗F ◦ Φ) · T⃗u and Q = (⃗F ◦ Φ) · T⃗v), so that F⃗ · d⃗r = P du+Qdv,
and ∫

C
F⃗ · d⃗r =

∫ b

a
F⃗(⃗r(t)) · r⃗ ′(t)dt

=

∫ b

a

[
(⃗F ◦ Φ)(⃗s(t))

]
· [DΦ(⃗s(t))⃗s ′(t)] dt

=

∫ b

a

[
(⃗F ◦ Φ)(⃗s(t))

]
·
[
u′(t)⃗Tu(⃗s(t)) + v′(t)⃗Tv(⃗s(t))

]
dt

=

∫ b

a

([
(⃗F ◦ Φ) · T⃗u

]
(⃗s(t))u′(t) +

[
(⃗F ◦ Φ) · T⃗v

]
(⃗s(t))v′(t)

)
dt

=

∫ b

a
(P(⃗s(t))u′(t) + Q(⃗s(t)v′(t)) dt

=

∫
γ

Pdu+ Qdv.

Now, since P and Q are C1 (this follows from the fact that both F⃗ and Φ are C1)
and Green’s Theorem is valid for the region D bounded by γ, we have∫

γ

Pdu+ Qdv =
∫∫

D

(
∂Q
∂u

− ∂P
∂v

)
dudv.

The next step, then, is to compute
∂Q
∂u

and
∂P
∂v

. This step gets pretty messy, so

hang on: we have P(u, v) = F⃗(Φ(u, v)) · T⃗u(u, v). Applying the product rule for
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dot products with respect to partial derivatives, we get

∂P
∂v

=
∂

∂v
(⃗
F · T⃗u

)
=

(
∂F⃗
∂v

)
· T⃗u + F⃗ · ∂T⃗u

∂v
.

The first term in the sum on the right-hand side is

∂F⃗
∂v

· T⃗u =
∂F1
∂v

∂x
∂u

+
∂F2
∂v

∂y
∂u

+
∂F3
∂v

∂z
∂u

=

(
∂F1
∂x

∂x
∂v

+
∂F1
∂y

∂y
∂v

+
∂F1
∂z

∂z
∂v

)
∂x
∂u

+

(
∂F2
∂x

∂x
∂v

+
∂F2
∂y

∂y
∂v

+
∂F2
∂z

∂z
∂v

)
∂y
∂u

+

(
∂F3
∂x

∂x
∂v

+
∂F3
∂y

∂y
∂v

+
∂F3
∂z

∂z
∂v

)
∂z
∂u

,

and the second term is

F⃗ · ∂T⃗u
∂v

= F1
∂2x
∂v∂u

+ F2
∂2y
∂v∂u

+ F3
∂2z
∂v∂u

.

Similarly, we have

∂Q
∂u

=
∂

∂u
(⃗
F · T⃗v

)
=

(
∂F⃗
∂u

)
· T⃗v + F⃗ · ∂T⃗v

∂u
.

The second term in this case is

F⃗ · ∂T⃗v
∂u

= F1
∂2x
∂u∂v

+ F2
∂2y
∂u∂v

+ F3
∂2z
∂u∂v

.

We notice that this term will exactly cancel out with the corresponding second
term from

∂P
∂v

when we compute
∂Q
∂v

− ∂P
∂u

by Clairaut’s Theorem, since we

assumed that Φ is C2. The first term on the right-hand side for
∂Q
∂u

is computed

the same as the corresponding term for
∂P
∂v

, giving

∂F⃗
∂u

· T⃗v =
∂F1
∂u

∂x
∂v

+
∂F2
∂u

∂y
∂v

+
∂F3
∂u

∂z
∂v

=

(
∂F1
∂x

∂x
∂u

+
∂F1
∂y

∂y
∂u

+
∂F1
∂z

∂z
∂u

)
∂x
∂v

+

(
∂F2
∂x

∂x
∂u

+
∂F2
∂y

∂y
∂u

+
∂F2
∂z

∂z
∂u

)
∂y
∂v

+

(
∂F3
∂x

∂x
∂u

+
∂F3
∂y

∂y
∂u

+
∂F3
∂z

∂z
∂u

)
∂z
∂v

.
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We can now compute
∂Q
∂v

− ∂P
∂u

, noting that several terms cancel out, giving us

∂Q
∂v

− ∂P
∂u

=

(
∂F1
∂y

− ∂F2
∂x

)
∂x
∂v

∂y
∂u

+

(
∂F1
∂z

− ∂F3
∂x

)
∂x
∂v

∂z
∂u

+

(
∂F2
∂x

− ∂F1
∂y

)
∂y
∂v

∂x
∂u

+

(
∂F2
∂z

− ∂F3
∂y

)
∂y
∂v

∂z
∂u

+

(
∂F3
∂x

− ∂F1
∂z

)
∂z
∂v

∂x
∂u

+

(
∂F3
∂y

− ∂F2
∂z

)
∂z
∂v

∂y
∂u

=

(
∂F3
∂y

− ∂F2
∂z

)(
∂y
∂u

∂z
∂v

− ∂y
∂v

∂z
∂u

)
+

(
∂F1
∂z

− ∂F3
∂x

)(
∂z
∂u

∂x
∂v

− ∂z
∂v

∂x
∂u

)
+

(
∂F2
∂x

− ∂F1
∂y

)(
∂x
∂u

∂y
∂v

− ∂x
∂v

∂y
∂u

)
= G1

∂(y, z)
∂(u, v)

+ G2
∂(z, x)
∂(u, v)

+ G3
∂(x, y)
∂(u, v)

= G · N⃗(u, v),

where G⃗ = ⟨G1,G2,G3⟩ = ∇× F⃗ and N⃗(u, v) = T⃗u(u, v)× T⃗v(u, v). Thus, putting
it all together, we have∫

C
F⃗ · d⃗r =

∫
γ

Pdu+ Qdv

=

∫∫
D

(
∂Q
∂u

− ∂P
∂v

)
dudv

=

∫∫
D

[
(∇× F⃗)(Φ(u, v))

]
· N⃗(u, v)dudv

=

∫∫
S

(
∇× F⃗

)
· d⃗S,

by the definition of the surface integral, which completes our proof of Stokes’
Theorem for the assumptions stated above.

OK, that was epic. While proofs have been omitted from this text, for the
most part, it can occasionally be enlightening to dig into the guts of a result like
Stokes’ Theorem, and try to understand how everything fits together.
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 13
Section 13.1

1. right hand

3. curve (a parabola); surface (a cylinder)

5. a hyperboloid of two sheets

7. ∥ AB ∥ =
√
6; ∥ BC ∥ =

√
17; ∥ AC ∥ =

√
11. Yes, it is a right

triangle as ∥ AB ∥2 + ∥ AC ∥2 = ∥ BC ∥2.

9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.

13. The first octant of space; all points (x, y, z) where each of x, y and
z are non-negative. (Analogous to the first quadrant in the plane.)

15.

17.

19. x2 + z2 = 1
(1+y2)2

21. z = (
√

x2 + y2)2 = x2 + y2

23. (a) x = y2 +
z2

9

25. (b) x2 +
y2

9
+

z2

4
= 1

27.

29.

31.

Section 13.2

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2 + y2 ≤ 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

...

..

−2

.

−1

.

1

.

2

.

−2

.

2

.

x

.

y

17. Level curves are parabolas x = y2 + c.








...

..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 2

.

c = 0

.

c = −2

.

x

.

y

19. When c ̸= 0, the level curves are circles, centered at (1/c,−1/c)
with radius

√
2/c2 − 1. When c = 0, the level curve is the line

y = x.

...
..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 1

.

c = −1

.

c = 0

.

x

.

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2.

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

23. domain: x+ 2y− 4z ̸= 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with radius√
c.

29. The level surfaces are paraboloids of the form z = x2
c + y2

c ; the
larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =
√

x2 + 4y2

the level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2; whereas for z = x2 + 4y2 the level curves are
ellipses of the form x2

c + y2
c/4 = 1, i.e., a =

√
c and b =

√
c/2.

The first set of ellipses are spaced evenly apart, meaning the
function grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the function
grows faster and faster as c increases.
The function z =

√
x2 + 4y2 can be rewritten as z2 = x2 + 4y2,

an elliptic cone; the function z = x2 + 4y2 is a paraboloid, each
matching the description above.

Section 13.3

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}

7. (a) Answers will vary.
interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set

(c) S is bounded

9. (a) Answers will vary.
interior point: none
boundary point: (0,−1)

(b) S is a closed set, consisting only of boundary points

(c) S is bounded

11. (a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.

(c) D is bounded.

13. (a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.

(c) D is unbounded.

15. (a) Along y = 0, the limit is 1.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

17. (a) Along y = mx, the limit is
mx(1−m)

m2x+ 1
= 0 for allm.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

19. (a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ, the
overall limit does not exist.

Section 13.4

1. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being multiplied by a
nonconstant function.

3. fx

5. fx = 2xy− 1, fy = x2 + 2
fx(1, 2) = 3, fy(1, 2) = 3

7. fx = − sin x sin y, fy = cos x cos y
fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4

A.2



9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x

11. fx = 1/y, fy = −x/y2
fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex2+y2 , fy = 2yex2+y2

fxx = 2ex2+y2 + 4x2ex2+y2 , fyy = 2ex2+y2 + 4y2ex2+y2

fxy = 4xyex2+y2 , fyx = 4xyex2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3),
fyy = −225x2y4 cos(5xy3)− 30xy sin(5xy3)
fxy = −75xy5 cos(5xy3)− 15y2 sin(5xy3),
fyx = −75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 − 2

(x2+y2+1)2 , fyy =
8y2

(x2+y2+1)3 − 2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.

29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2

Section 13.5

1. T

3. T

5. dz = (sin y+ 2x)dx+ (x cos y)dy

7. dz = 5dx− 7dy

9. dz = x√
x2+y

dx+ 1
2
√

x2+y
dy, with dx = −0.05 and dy = .1. At

(3, 7), dz = 3/4(−0.05) + 1/8(.1) = −0.025, so
f(2.95, 7.1) ≈ −0.025+ 4 = 3.975.

11. dz = (2xy− y2)dx+ (x2 − 2xy)dy, with dx = 0.04 and
dy = 0.06. At (2, 3), dz = 3(0.04) + (−8)(0.06) = −0.36, so
f(2.04, 3.06) ≈ −0.36− 6 = −6.36.

13. The total differential of volume is dV = 4πdr+ πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensitive to changes in the radius.

15. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx+ x sec2 θdθ.
With θ = 85◦ and x = 30, we have dℓ = 11.43dx+ 3949.38dθ.
The measured length of the wall is much more sensitive to errors

in θ than in x. While it can be difficult to compare sensitivities
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

17. dw = 2xyz3 dx+ x2z3 dy+ 3x2yz2 dz
19. dx = 0.05, dy = −0.1. dz = 9(.05) + (−2)(−0.1) = 0.65. So

f(3.05, 0.9) ≈ 7+ 0.65 = 7.65.
21. dx = 0.5, dy = 0.1, dz = −0.2.

dw = 2(0.5) + (−3)(0.1) + 3.7(−0.2) = −0.04, so
f(2.5, 4.1, 4.8) ≈ −1− 0.04 = −1.04.

Section 13.6

1. Because the parametric equations describe a level curve, z is
constant for all t. Therefore dz

dt = 0.

3. dx
dt , and

∂f
∂y

5. F
7. (a) dz

dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dz
dt = 14.

9. (a) dz
dt = 5(−2 sin t) + 2(cos t) = −10 sin t+ 2 cos t

(b) At t = π/4, dz
dt = −4

√
2.

11. (a)
dz
dt

= 2x(cos t) + 4y(3 cos t).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and dz

dt = 19.
13. t = −4/3; this corresponds to a minimum
15. t = tan−1(1/5) + nπ, where n is an integer
17. We find that

dz
dt

= 38 cos t sin t.

Thus dz
dt = 0 when t = πn or πn+ π/2, where n is any integer.

19. (a) ∂z
∂s = 2xy(1) + x2(2) = 2xy+ 2x2;
∂z
∂t = 2xy(−1) + x2(4) = −2xy+ 4x2

(b) With s = 1, t = 0, x = 1 and y = 2. Thus ∂z
∂s = 6 and

∂z
∂t = 0

21. (a) ∂z
∂s = 2x(cos t) + 2y(sin t) = 2x cos t+ 2y sin t;
∂z
∂t = 2x(−s sin t) + 2y(s cos t) = −2xs sin t+ 2ys cos t

(b) With s = 2, t = π/4, x =
√
2 and y =

√
2. Thus ∂z

∂s = 4
and ∂z

∂t = 0

23. fx = 2x tan y, fy = x2 sec2 y;
dy
dx

= −
2 tan y
x sec2 y

25. fx =
(x+ y2)(2x)− (x2 + y)(1)

(x+ y2)2
,

fy =
(x+ y2)(1)− (x2 + y)(2y)

(x+ y2)2
;

dy
dx

= −
2x(x+ y2)− (x2 + y)
x+ y2 − 2y(x2 + y)

27. dz
dt = 2(4) + 1(−5) = 3.

29. ∂z
∂s = −4(5) + 9(−2) = −38,
∂z
∂t = −4(7) + 9(6) = 26.

Section 13.7

1. A partial derivative is essentially a special case of a directional
derivative; it is the directional derivative in the direction of x or y,
i.e., ⟨1, 0⟩ or ⟨0, 1⟩.

3. u⃗ = ⟨0, 1⟩
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5. maximal, or greatest

7. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
9. ∇f =

⟨
−2x

(x2+y2+1)2 ,
−2y

(x2+y2+1)2

⟩
11. ∇f = ⟨2x− y− 7, 4y− x⟩

13. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
;∇f(2, 1) = ⟨−2, 2⟩. Be

sure to change all directions to unit vectors.

(a) 2/5 (⃗u = ⟨3/5, 4/5⟩)
(b) −2/

√
5 (⃗u =

⟨
−1/

√
5,−2/

√
5
⟩
)

15. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
;∇f(1, 1) = ⟨−2/9,−2/9⟩. Be

sure to change all directions to unit vectors.

(a) 0 (⃗u =
⟨
1/

√
2,−1/

√
2
⟩
)

(b) 2
√
2/9 (⃗u =

⟨
−1/

√
2,−1/

√
2
⟩
)

17. ∇f = ⟨2x− y− 7, 4y− x⟩;∇f(4, 1) = ⟨0, 0⟩.

(a) 0
(b) 0

19. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
(a) ∇f(2, 1) = ⟨−2, 2⟩
(b) ∥ ∇f(2, 1) ∥ = ∥ ⟨−2, 2⟩ ∥ =

√
8

(c) ⟨2,−2⟩
(d)

⟨
1/

√
2, 1/

√
2
⟩

21. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩.
(b) ∥ ∇f(1, 1) ∥ = ∥ ⟨−2/9,−2/9⟩ ∥ = 2

√
2/9

(c) ⟨2/9, 2/9⟩
(d)

⟨
1/

√
2,−1/

√
2
⟩

23. ∇f = ⟨2x− y− 7, 4y− x⟩

(a) ∇f(4, 1) = ⟨0, 0⟩
(b) 0
(c) ⟨0, 0⟩
(d) All directions give a directional derivative of 0.

25. (a) ∇F(x, y, z) =
⟨
6xz3 + 4y, 4x, 9x2z2 − 6z

⟩
(b) 113/

√
3

27. (a) ∇F(x, y, z) =
⟨
2xy2, 2y(x2 − z2),−2y2z

⟩
(b) 0

Section 13.8

1. Answers will vary. The displacement of the vector is one unit in
the x-direction and 3 units in the z-direction, with no change in y.
Thus along a line parallel to v⃗, the change in z is 3 times the
change in x – i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.

3. T

5. (a) ℓx(t) =

 x = 2+ t
y = 3
z = −48− 12t

(b) ℓy(t) =

 x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7. (a) ℓx(t) =

 x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =

 x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =

 x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =

 x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent plane
is the same as the original function, a plane.)

21. ∇F = ⟨x/4, y/2, z/8⟩; at P,∇F =
⟨
1/4,

√
2/2,

√
6/8

⟩
(a) ℓ⃗n(t) =


x = 1+ t/4
y =

√
2+

√
2t/2

z =
√
6+

√
6t/8

(b) 1
4 (x− 1) +

√
2

2 (y−
√
2) +

√
6

8 (z−
√
6) = 0.

23. ∇F =
⟨
y2 − z2, 2xy,−2xz

⟩
; at P,∇F = ⟨0, 4, 4⟩

(a) ℓ⃗n(t) =

 x = 2
y = 1+ 4t
z = −1+ 4t

(b) 4(y− 1) + 4(z+ 1) = 0.

Section 13.9

1. F; it is the “other way around.”

3. T

5. One critical point at (−4, 2); fxx = 1 and D = 4, so this point
corresponds to a relative minimum.

7. One critical point at (6,−3); D = −4, so this point corresponds
to a saddle point.

9. Two critical points: at (0,−1); fxx = 2 and D = −12, so this point
corresponds to a saddle point;
at (0, 1), fxx = 2 and D = 12, so this corresponds to a relative
minimum.

11. There are infinite critical points, whenever x = 0 or y = 0. With
D = −12x2y2, at each critical point D = 0 and the test is
inconclusive. (Some elementary thought shows that each is an
absolute minimum.)

13. One critical point: fx = 0 when x = 3; fy = 0 when y = 0, so one
critical point at (3, 0), which is a relative maximum, where
fxx = y2−16

(16−(x−3)2−y2)3/2 and D = 16
(16−(x−3)2−y2)2 .

Both fx and fy are undefined along the circle (x− 3)2 + y2 = 16;
at any point along this curve, f(x, y) = 0, the absolute minimum
of the function.
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15. The triangle is bound by the lines y = −1, y = 2x+ 1 and
y = −2x+ 1.
Along y = −1, there is a critical point at (0,−1).
Along y = 2x+ 1, there is a critical point at (−3/5,−1/5).
Along y = −2x+ 1, there is a critical point at (3/5,−1/5).
The function f has one critical point, irrespective of the constraint,
at (0,−1/2).
Checking the value of f at these four points, along with the three
vertices of the triangle, we find the absolute maximum is at
(0, 1, 3) and the absolute minimum is at (0,−1/2, 3/4).

17. The region has no “corners” or “vertices,” just a smooth edge.
To find critical points along the circle x2 + y2 = 4, we solve for y2:
y2 = 4− x2. We can go further and state y = ±

√
4− x2.

We can rewrite f as
f(x) = x2 + 2x+ (4− x2) + 2

√
4− x2 = 2x+ 4+ 2

√
4− x2.

(We will return and use−
√
4− x2 later.) Solving f ′(x) = 0, we

get x =
√
2 ⇒ y =

√
2. f ′(x) is also undefined at x = ±2,

where y = 0.
Using y = −

√
4− x2, we rewrite f(x, y) as

f(x) = 2x+ 4− 2
√
4− x2. Solving f ′(x) = 0, we get

x = −
√
2, y = −

√
2. Again, f ′(x) is undefined at x = ±2.

The function z = f(x, y) itself has a critical point at (−1,−1).
Checking the value of f at (−1,−1), (

√
2,
√
2), (−

√
2,−

√
2),

(2, 0) and (−2, 0), we find the absolute maximum is at
(
√
2,
√
2, 4+ 4

√
2) and the absolute minimum is at

(−1,−1,−2).

Chapter 14
Section 14.1

1. C(y), meaning that instead of being just a constant, like the
number 5, it is a function of y, which acts like a constant when
taking derivatives with respect to x.

3. curve to curve, then from point to point

5. (a) 18x2 + 42x− 117
(b) −108

7. (a) x4/2− x2 + 2x− 3/2
(b) 23/15

9. (a) sin2 y
(b) π/2

11.
∫ 4

1

∫ 1

−2
dy dx and

∫ 1

−2

∫ 4

1
dx dy.

area of R = 9u2

13.
∫ 4

2

∫ 7−x

x−1
dy dx. The order dx dy needs two iterated integrals as

x is bounded above by two different functions. This gives:∫ 3

1

∫ y+1

2
dx dy+

∫ 5

3

∫ 7−y

2
dx dy.

area of R = 4u2

15.
∫ 1

0

∫ √
x

x4
dy dx and

∫ 1

0

∫ 4√y

y2
dx dy

area of R = 7/15u2

17.

.....

R

.

y = 4 − x2

. −2. 2.

2

.

4

.
x

.

y

area of R =

∫ 4

0

∫ √
4−y

−
√

4−y
dx dy

19.

.....

R

.

x2/16 + y2/4 = 1

.

2

.

4

.
−2
.

2

.

x

.

y

area of R =

∫ 4

0

∫ √
4−x2/4

−
√

4−x2/4
dy dx

21.

.....

R

.

y = x2

.

y =
x+

2

.
−1
.

1
.

2
.

1

.

2

.

3

.

4

. x.

y

area of R =

∫ 2

−1

∫ x+2

x2
dy dx

Section 14.2

1. volume

3. The double integral gives the signed volume under the surface.
Since the surface is always positive, it is always above the x-y
plane and hence produces only “positive” volume.

5. 6;
∫ 1

−1

∫ 2

1

(
x
y
+ 3

)
dy dx

7. 112/3;
∫ 2

0

∫ 4−2y

0

(
3x2 − y+ 2

)
dx dy

9. 16/5;
∫ 1

−1

∫ 1−x2

0
(x+ y+ 2) dy dx

11. (a)

.....

R

.

y =
√
x

.

y = x2

. 1.

1

. x.

y

(b)
∫ 1

0

∫ √
x

x2
x2y dy dx =

∫ 1

0

∫ √y

y2
x2y dx dy.

(c) 3
56 A.5



13. (a)

.....

R

.

−1

.

1

.

1

. −1.

x

.

y

(b)
∫ 1

−1

∫ 1

−1
x2 − y2 dy dx =

∫ 1

−1

∫ 1

−1
x2 − y2 dx dy.

(c) 0

15. (a)

.....

R

.

3x+
2y =

6

. 1. 2.

1

.

2

.

3

.
x

.

y

(b)

(c)
∫ 2

0

∫ 3−3/2x

0

(
6− 3x− 2y

)
dy dx =∫ 3

0

∫ 2−2/3y

0

(
6− 3x− 2y

)
dx dy.

(d) 6

17. (a)

.....

R

.

−3

.

3

. −3.

3

.

x

.

y

(b)
∫ 3

−3

∫ √
9−x2

0

(
x3y− x

)
dy dx =∫ 3

0

∫ √
9−y2

−
√

9−y2

(
x3y− x

)
dx dy.

(c) 0

19. Integrating ex2 with respect to x is not possible in terms of

elementary functions.
∫ 2

0

∫ 2x

0
ex

2
dy dx = e4 − 1.

21. Integrating
∫ 1

y

2y
x2 + y2

dx gives tan−1(1/y)− π/4; integrating

tan−1(1/y) is hard.∫ 1

0

∫ x

0

2y
x2 + y2

dy dx = ln 2.

23. average value of f = 6/2 = 3

25. average value of f = 112/3
4 = 28/3

Section 14.3

1. f
(
r cos θ, r sin θ

)
, r dr dθ

3.
∫ 2π

0

∫ 1

0

(
3r cos θ − r sin θ + 4

)
r dr dθ = 4π

5.
∫ π

0

∫ 3 cos θ

cos θ

(
8− r sin θ

)
r dr dθ = 16π

7.
∫ 2π

0

∫ 2

1

(
ln(r2)

)
r dr dθ = 2π

(
ln 16− 3/2

)
9.

∫ π/2

−π/2

∫ 6

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ =∫ π/2

−π/2

∫ 6

0

(
r2 cos(2θ)

)
r dr dθ = 0

11.
∫ π/2

−π/2

∫ 5

0

(
r2
)
dr dθ = 125π/3

13.
∫ π/4

0

∫ √
8

0

(
r cos θ + r sin θ

)
r dr dθ = 16

√
2/3

15. (a) This is impossible to integrate with rectangular coordinates
as e−(x2+y2) does not have an antiderivative in terms of
elementary functions.

(b)
∫ 2π

0

∫ a

0
rer

2
dr dθ = π(1− e−a2 ).

(c) lim
a→∞

π(1− e−a2 ) = π. This implies that there is a finite

volume under the surface e−(x2+y2) over the entire x-y
plane.

Section 14.4

1. Because they are scalar multiples of each other.

3. “little masses”

5. Mx measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direction.

7. x = 5.25

9. (x, y) = (0, 3)

11. M = 150gm;

13. M = 2lb

15. M = 16π ≈ 50.27kg

17. M = 54π ≈ 169.65lb

19. M = 150gm;My = 600;Mx = −75; (x, y) = (4,−0.5)

21. M = 2lb;My = 0;Mx = 2/3; (x, y) = (0, 1/3)

23. M = 16π ≈ 50.27kg;My = 4π;Mx = 4π; (x, y) = (1/4, 1/4)

25. M = 54π ≈ 169.65lb;My = 0;Mx = 504; (x, y) = (0, 2.97)

27. Ix = 64/3; Iy = 64/3; IO = 128/3

29. Ix = 16/3; Iy = 64/3; IO = 80/3

Section 14.5

1. arc length

3. surface areas

5. Intuitively, adding h to f only shifts f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
Analytically, fx = gx and fy = gy; therefore, the surface area of
each is computed with identical double integrals.

7. SA =

∫ 2π

0

∫ 2π

0

√
1+ cos2 x cos2 y+ sin2 x sin2 y dx dy
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9. SA =

∫ 1

−1

∫ 1

−1

√
1+ 4x2 + 4y2 dx dy

11. SA =

∫ 3

0

∫ 1

−1

√
1+ 9+ 49 dx dy = 6

√
59 ≈ 46.09

13. This is easier in polar:

SA =

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 cos2 t+ 4r2 sin2 t dr dθ

=

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 dr dθ

=
π

6
(
65

√
65− 1

)
≈ 273.87

15.

SA =

∫ 2

0

∫ 2x

0

√
1+ 1+ 4x2 dy dx

=

∫ 2

0

(
2x
√

2+ 4x2
)
dx

=
26
3
√
2 ≈ 12.26

17. This is easier in polar:

SA =

∫ 2π

0

∫ 5

0
r

√
1+

4r2 cos2 θ + 4r2 sin2 θ
r2 sin2 θ + r2 cos2 θ

dr dθ

=

∫ 2π

0

∫ 5

0
r
√
5 dr dθ

= 25π
√
5 ≈ 175.62

19. Integrating in polar is easiest considering R:

SA =

∫ 2π

0

∫ 1

0
r
√

1+ c2 + d2 dr dθ

=

∫ 2π

0

1
2

(√
1+ c2 + d2

)
dθ

= π
√

1+ c2 + d2.

The value of h does not matter as it only shifts the plane vertically
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

Section 14.6

1. surface to surface, curve to curve and point to point

3. Answers can vary. From this section we used triple integration to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

5. V =
∫ 1
−1

∫ 1
−1

(
8− x2 − y2 − (2x+ y)

)
dx dy = 88/3

7. V =
∫ π
0
∫ x
0
(
cos x sin y+ 2− sin x cos y

)
dy dx = π2 − π ≈ 6.728

9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0
dz dx dy

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0
dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0
dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx = 1.

11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2
dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2
dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√

2z

∫ 2

0
dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx = 4/3.

13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0
dz dx dy

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1
dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1
dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2
dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz = 4/3.

15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dz dx dy

dy dz dx:
∫ 1

0

∫ x

0

∫ 1−x2

0
dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0
dy dz dx

dy dx dz:
∫ 1

0

∫ z

0

∫ 1−z2

0
dy dx dz+

∫ 1

0

∫ 1

z

∫ 1−x2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0
dx dy dz

Answers will vary. Neither order is particularly “hard.” The order
dz dy dx requires integrating a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

17. 8

19. π

21. M = 10,Myz = 15/2,Mxz = 5/2,Mxy = 5;
(x, y, z) = (3/4, 1/4, 1/2)

23. M = 16/5,Myz = 16/3,Mxz = 104/45,Mxy = 32/9;
(x, y, z) = (5/3, 13/18, 10/9) ≈ (1.67, 0.72, 1.11)

Section 14.7

1. In cylindrical, r determines how far from the origin one goes in the
x-y plane before considering the z-component. Equivalently, if on
projects a point in cylindrical coordinates onto the x-y plane, r will
be the distance of this projection from the origin.
In spherical, ρ is the distance from the origin to the point.

3. Cylinders (tubes) centered at the origin, parallel to the z-axis;
planes parallel to the z-axis that intersect the z-axis; planes
parallel to the x-y plane.
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5. (a) Cylindrical: (2
√
2, π/4, 1) and (2, 5π/6, 0)

Spherical: (3, π/4, cos−1(1/3)) and (2, 5π/6, π/2)
(b) Rectangular: (

√
2,
√
2, 2) and (0,−3,−4)

Spherical: (2
√
2, π/4, π/4) and

(5, 3π/2, π − tan−1(3/4))
(c) Rectangular: (1, 1,

√
2) and (0, 0, 1)

Cylindrical: (
√
2, π/4,

√
2) and (0, 0, 1)

7. (a) A cylindrical surface or tube, centered along the z-axis of
radius 1, extending from the x-y plane up to the plane
z = 1 (i.e., the tube has a length of 1).

(b) This is a region of space, being half of a tube with “thick”
walls of inner radius 1 and outer radius 2, centered along
the z-axis with a length of 1, where the half “below” the x-z
plane is removed.

(c) This is upper half of the sphere of radius 3 centered at the
origin (i.e., the upper hemisphere).

(d) This is a region of space, where the ball of radius 2,
centered at the origin, is removed from the ball of radius 3,
centered at the origin.

9.
∫ θ2

θ1

∫ r2

r1

∫ z2

z1
h(r, θ, z)r dz dr dθ

11. The region in space is bounded between the planes z = 0 and
z = 2, inside of the cylinder x2 + y2 = 4, and the planes θ = 0
and θ = π/2: describes a “wedge” of a cylinder of height 2 and
radius 2; the angle of the wedge is π/2, or 90◦.

13. Bounded between the plane z = 1 and the cone
z = 1−

√
x2 + y2: describes an inverted cone, with height of 1,

point at (0, 0, 1) and base radius of 1.
15. Describes a quarter of a ball of radius 3, centered at the origin;

the quarter resides above the x-y plane and above the x-z plane.
17. Describes the portion of the unit ball that resides in the first

octant.
19. Bounded above the cone z =

√
x2 + y2 and below the sphere

x2 + y2 + z2 = 4: describes a shape that is somewhat
“diamond”-like; some think of it as looking like an ice cream cone
(see Figure 14.7.8). It describes a cone, where the side makes an
angle of π/4 with the positive z-axis, topped by the portion of the
ball of radius 2, centered at the origin.

21. The region in space is bounded below by the cone
z =

√
3
√

x2 + y2 and above by the plane z = 1: it describes a
cone, with point at the origin, centered along the positive z-axis,
with height of 1 and base radius of tan(π/6) = 1/

√
3.

23. In cylindrical coordinates, the density is δ(r, θ, z) = r+ 1. Thus
mass is ∫ 2π

0

∫ 2

0

∫ 4

0
(r+ 1)r dz dr dθ = 112π/3.

25. In cylindrical coordinates, the density is δ(r, θ, z) = 1. Thus mass
is ∫ π

0

∫ 1

0

∫ 4−r sin θ

0
r dz dr dθ = 2π − 2/3 ≈ 5.617.

27. In cylindrical coordinates, the density is δ(r, θ, z) = r+ 1. Thus
mass is

M =

∫ 2π

0

∫ 2

0

∫ 4

0
(r+ 1)r dz dr dθ = 112π/3.

We findMyz = 0,Mxz = 0, andMxy = 224π/3, placing the
center of mass at (0, 0, 2).

29. In cylindrical coordinates, the density is δ(r, θ, z) = 1. Thus mass
is ∫ π

0

∫ 1

0

∫ 4−r sin θ

0
r dz dr dθ = 2π − 2/3 ≈ 5.617.

We findMyz = 0,Mxz = 8/3− π/8, andMxy = 65π/16− 8/3,
placing the center of mass at≈ (0, 0.405, 1.80).

31. In spherical coordinates, the density is δ(ρ, θ,φ) = 1. Thus mass
is ∫ π/2

0

∫ 2π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ = 2π/3.

33. In spherical coordinates, the density is δ(ρ, θ,φ) = ρ cosφ. Thus
mass is∫ π/4

0

∫ 2π

0

∫ 1

0

(
ρ cos(φ)

)
ρ2 sin(φ) dρ dθ dφ = π/8.

35. In spherical coordinates, the density is δ(ρ, θ,φ) = 1. Thus mass
is ∫ π/2

0

∫ 2π

0

∫ 1

0
ρ2 sin(φ) dρ dθ dφ = 2π/3.

We findMyz = 0,Mxz = 0, andMxy = π/4, placing the center of
mass at (0, 0, 3/8).

37. In spherical coordinates, the density is δ(ρ, θ,φ) = ρ cosφ. Thus
mass is∫ π/4

0

∫ 2π

0

∫ 1

0

(
ρ cos(φ)

)
ρ2 sin(φ) dρ dθ dφ = π/8.

We findMyz = 0,Mxz = 0, andMxy = (4−
√
2)π/30, placing

the center of mass at (0, 0, 4(4−
√
2)/15).

39. Rectangular:
∫ 1
−1

∫√1−x2

−
√

1−x2

∫√1−x2−y2

−
√

1−x2−y2
dz dy dx

Cylindrical:
∫ 2π
0

∫ 1
0
∫√1−r2

−
√

1−r2
r dz dr dθ

Spherical:
∫ π
0
∫ 2π
0

∫ 1
0 ρ2 sin(φ) dρ dθ dφ

Spherical appears simplest, avoiding the integration of
square-roots and using techniques such as Substitution; all
bounds are constants.

41. In spherical coordinates, the density is δ(ρ, θ,φ) = ρ cosφ. Thus
mass is∫ π/4

0

∫ 2π

0

∫ 1

0

(
ρ cos(φ)

)
ρ2 sin(φ) dρ dθ dφ = π/8.

We findMyz = 0,Mxz = 0, andMxy = (4−
√
2)π/30, placing

the center of mass at (0, 0, 4(4−
√
2)/15).

Chapter 15
Section 15.1

1. When C is a curve in the plane and f is a surface defined over C,
then

∫
C f(s) ds describes the area under the spatial curve that lies

on f, over C.

3. The variable s denotes the arc-length parameter, which is
generally difficult to use. The Key Idea allows one to parametrize
a curve using another, ideally easier-to-use, parameter.

5. 12
√
2

7. 40π

9. Over the first subcurve of C, the line integral has a value of 3/2;
over the second subcurve, the line integral has a value of 4/3. The
total value of the line integral is thus 17/6.

11.
∫ 1
0 (5t

2 +2 t+ 2)
√

(4t+ 1)2 + 1 dt ≈ 17.071

13.
∮ 2π
0

(
10− 4 cos2 t− sin2 t

)√
cos2 t+ 4 sin2 t dt ≈ 74.986

15. 7
√
26/3

17. 8π3

19. M = 8
√
2π2; center of mass is (0,−1/(2π), 8π/3).

A.8



Section 15.2

1. Answers will vary. Appropriate answers include velocities of
moving particles (air, water, etc.); gravitational or
electromagnetic forces.

3. Specific answers will vary, though should relate to the idea that
the vector field is spinning clockwise at that point.

5. Correct answers should look similar to

−2

2

−2 2
x

y

7. Correct answers should look similar to

−2

2

−2 2
x

y

9. div F⃗ = 1+ 2y
curl F⃗ = 0

11. div F⃗ = x cos(xy)− y sin(xy)
curl F⃗ = y cos(xy) + x sin(xy)

13. div F⃗ = 3
curl F⃗ = ⟨−1,−1,−1⟩

15. div F⃗ = 1+ 2y
curl F⃗ = 0

17. div F⃗ = 2y− sin z
curl F⃗ = 0⃗

Section 15.3

1. False. It is true for line integrals over scalar fields, though.

3. True.

5. We can conclude that F⃗ is conservative.

7. 11/6. (One parametrization for C is r⃗(t) = ⟨3t, t⟩ on 0 ≤ t ≤ 1.)

9. 0. (One parametrization for C is r⃗(t) = ⟨cos t, sin t⟩ on
0 ≤ t ≤ π.)

11. 12. (One parametrization for C is r⃗(t) = ⟨1, 2, 3⟩+ t⟨3, 1,−1⟩ on
0 ≤ t ≤ 1.)

13. 5/6 joules. (One parametrization for C is r⃗(t) = ⟨t, t⟩ on
0 ≤ t ≤ 1.)

15. 24 ft-lbs.

17. (a) f(x, y) = xy+ x

(b) curl F⃗ = 0.

(c) 1. (One parametrization for C is r⃗(t) = ⟨t,−1t⟩ on
0 ≤ t ≤ 1.)

(d) 1 (with A = (0, 1) and B = (1, 0), f(B)− f(A) = 1.)
19. (a) f(x, y) = x2yz

(b) curl F⃗ = 0⃗.
(c) 250.
(d) 250 (with A = (1,−1, 0) and B = (5, 5, 2),

f(B)− f(A) = 250.)
21. Since F⃗ is conservative, it is the gradient of some potential

function. That is,∇f = ⟨fx, fy, fz⟩ = F⃗ = ⟨M,N, P⟩. In particular,
M = fx, N = fy and P = fz.
Note that
curl F⃗ = ⟨Py−Nz,Mz−Px,Nx−My⟩ = ⟨fzy−fyz, fxz−fzx, fyx−fxy⟩,
which, by Theorem 13.4.1, is ⟨0, 0, 0⟩.

Section 15.4

1. along, across
3. the curl of F⃗, or curl F⃗
5. curl F⃗
7. 12
9. −2/3

11. 1/2
13. The line integral

∮
C F⃗ · d⃗r, over the parabola, is 38/3; over the line,

it is−10. The total line integral is thus 38/3− 10 = 8/3. The
double integral of curl F⃗ = 2 over R also has value 8/3.

15. Three line integrals need to be computed to compute
∮
C F⃗ · d⃗r. It

does not matter which corner one starts from first, but be sure to
proceed around the triangle in a counterclockwise fashion.
From (0, 0) to (2, 0), the line integral has a value of 0. From (2, 0)
to (1, 1) the integral has a value of 7/3. From (1, 1) to (0, 0) the
line integral has a value of−1/3. Total value is 2.
The double integral of curl F⃗ over R also has value 2.

17. Any choice of F⃗ is appropriate as long as curl F⃗ = 1. When
F⃗ = ⟨−y/2, x/2⟩, the integrand of the line integral is simply 6.
The area of R is 12π.

19. Any choice of F⃗ is appropriate as long as curl F⃗ = 1. The choices of
F⃗ = ⟨−y, 0⟩, ⟨0, x⟩ and ⟨−y/2, x/2⟩ each lead to reasonable
integrands. The area of R is 16/15.

21. The line integral
∮
C F⃗ · n⃗ ds, over the parabola, is−22/3; over the

line, it is 10. The total line integral is thus−22/3+ 10 = 8/3.
The double integral of div F⃗ = 2 over R also has value 8/3.

23. Three line integrals need to be computed to compute
∮
C F⃗ · n⃗ ds.

It does not matter which corner one starts from first, but be sure
to proceed around the triangle in a counterclockwise fashion.
From (0, 0) to (2, 0), the line integral has a value of 0. From (2, 0)
to (1, 1) the integral has a value of 1/3. From (1, 1) to (0, 0) the
line integral has a value of 1/3. Total value is 2/3.
The double integral of div F⃗ over R also has value 2/3.

Section 15.5

1. Answers will vary, though generally should meaningfully include
terms like “two sided”.

3. (a) r⃗(u, v) = ⟨u, v, 3u2v⟩ on−1 ≤ u ≤ 1, 0 ≤ v ≤ 2.
(b) r⃗(u, v) =

⟨3v cos u+ 1, 3v sin u+ 2, 3(3v cos u+ 1)2(3v sin u+ 2)⟩,
on 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(c) r⃗(u, v) = ⟨u, v(2− 2u), 3u2v(2− 2u)⟩ on 0 ≤ u, v ≤ 1.
(d) r⃗(u, v) = ⟨u, v(1− u2), 3u2v(1− u2)⟩ on−1 ≤ u ≤ 1,

0 ≤ v ≤ 1.
5. r⃗(u, v) = ⟨0, u, v⟩ with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.
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7. r⃗(u, v) = ⟨3 sin u cos v, 2 sin u sin v, 4 cos u⟩ with 0 ≤ u ≤ π,
0 ≤ v ≤ 2π.

9. Answers may vary.
For z = 1

2 (3− x): r⃗(u, v) = ⟨u, v, 1
2 (3− u)⟩, with 1 ≤ u ≤ 3 and

0 ≤ v ≤ 2.
For x = 1: r⃗(u, v) = ⟨0, u, v⟩, with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1
For y = 0: r⃗(u, v) = ⟨u, 0, v/2(3− u)⟩, with 1 ≤ u ≤ 3,
0 ≤ v ≤ 1
For y = 2: r⃗(u, v) = ⟨u, 2, v/2(3− u)⟩, with 1 ≤ u ≤ 3,
0 ≤ v ≤ 1
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩, with 1 ≤ u ≤ 3, 0 ≤ v ≤ 2

11. Answers may vary.
For z = 2y : r⃗(u, v) = ⟨u, v(4− u2), 2v(4− u2)⟩ with
−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For y = 4− x2 : r⃗(u, v) = ⟨u, 4− u2, 2v(4− u2)⟩ with
−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v(4− u2), 0⟩ with−2 ≤ u ≤ 2 and
0 ≤ v ≤ 1.

13. Answers may vary.
For x+ y2/9 = 1: r⃗(u, v) = ⟨cos u, 3 sin u, v⟩ with 0 ≤ u ≤ 2π
and 1 ≤ v ≤ 3.
For z = 1: r⃗(u, v) = ⟨v cos u, 3v sin u, 1⟩ with 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1.
For z = 3: r⃗(u, v) = ⟨v cos u, 3v sin u, 3⟩ with 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1.

15. Answers may vary.
For z = 1− x2: r⃗(u, v) = ⟨u, v, 1− u2⟩ with−1 ≤ u ≤ 1 and
−1 ≤ v ≤ 2.
For y = −1: r⃗(u, v) = ⟨u,−1, v(1− u2)⟩ with−1 ≤ u ≤ 1 and
0 ≤ v ≤ 1.
For y = 2: r⃗(u, v) = ⟨u, 2, v(1− u2)⟩ with−1 ≤ u ≤ 1 and
0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩ with−1 ≤ u ≤ 1 and−1 ≤ v ≤ 2.

17. S = 2
√
14.

19. S = 4
√
3π.

21. S =
∫ 3
0
∫ 2π
0

√
v2 + 4v4 du dv = (37

√
37− 1)π/6 ≈ 117.319.

23. S =
∫ 1
0
∫ 1
−1

√
(5u2 − 2uv− 5)2 + u4 + (1− u2)2 du dv ≈

7.084.

Section 15.6

1. curve; surface

3. outside

5. 240
√
3

7. 24

9. 0

11. −1/2

13. 0; the flux over S1 is−45π and the flux over S2 is 45π.

Section 15.7

1. Answers will vary; in Section 15.4, the Divergence Theorem
connects outward flux over a closed curve in the plane to the
divergence of the vector field, whereas in this section the
Divergence Theorem connects outward flux over a closed surface
in space to the divergence of the vector field.

3. Curl.

5. Outward flux across the plane z = 2− x/2− 2y/3 is 14; across
the plane z = 0 the outward flux is−8; across the planes x = 0
and y = 0 the outward flux is 0.
Total outward flux: 14.∫∫

D div F⃗ dV =
∫ 4
0
∫ 3−3x/4
0

∫ 2−x/2−2y/3
0 (2x+ 2y) dz dy dx = 14.

7. Outward flux across the surface z = xy(3− x)(3− y) is 252;
across the plane z = 0 the outward flux is−9.
Total outward flux: 243.∫∫

D div F⃗ dV =
∫ 3
0
∫ 3
0
∫ xy(3−x)(3−y)
0 12 dz dy dx = 243.

9. Circulation on C:
∮
C F⃗ · d⃗r = π∫∫

S
(
curl F⃗

)
· n⃗ dS = π.

11. Circulation on C: The flow along the line from (0, 0, 2) to (4, 0, 0)
is 0; from (4, 0, 0) to (0, 3, 0) it is−6, and from (0, 3, 0) to
(0, 0, 2) it is 6. The total circulation is 0+ (−6) + 6 = 0.∫∫

S
(
curl F⃗

)
· n⃗ dS =

∫∫
S 0 dS = 0.

13. 128/225

15. 8192/105 ≈ 78.019

17. 5/3

19. 23π

21. Each field has a divergence of 1; by the Divergence Theorem, the
total outward flux across S is

∫∫
D 1 dS for each field.

23. Answers will vary. Often the closed surface S is composed of
several smooth surfaces. To measure total outward flux, this may
require evaluating multiple double integrals. Each double integral
requires the parametrization of a surface and the computation of
the cross product of partial derivatives. One triple integral may
require less work, especially as the divergence of a vector field is
generally easy to compute.
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Index

average value of a function, 755

boundary point, 659
bounded set, 659

center of mass, 793
centre of mass, 766, 768, 769
Chain Rule

multivariable, 685, 688
chain rule

as matrix multiplication, 723
change of variables, 807
circulation, 855
closed, 659
closed disk, 659
connected, 850

simply, 850
conservative field, 851–853
constrained optimization, 712
continuous function, 664

properties, 665
contour lines, 654
coordinates

cylindrical, 798
spherical, 801

critical point, 708, 710
critical value

of a function of two variables, 728
curl, 840, 841

of conservative fields, 853
cylinder, 642
cylindrical coordinates, 798

del operator, 839
derivative

Chain Rule, 685, 688
directional, 692, 693, 695, 697
general, 722
implicit, 689
mixed partial, 671
multivariable differentiability, 679, 683
partial, 668, 674

differentiable, 679, 683
general, 718
real-valued function, 719

directional derivative, 692, 693, 695, 697
directrix, 642
distance

between points in space, 640
divergence, 840
Divergence Theorem

in space, 879

in the plane, 860
double integral, 749, 750

in polar, 757
properties, 752

extrema
absolute, 708
relative, 708

Extreme Value Theorem, 712

first octant, 640
flow, 855, 856
flux, 855, 856, 873, 874
Fubini’s Theorem, 750
function

of three variables, 656
of two variables, 653

Fundamental Theorem of Line Integrals, 850, 852

Gauss’s Law, 882
gradient, 693, 695, 697, 705

and level curves, 695
and level surfaces, 706

Green’s Theorem, 858

image
of a point, 809
of a subset, 809

implicit differentiation, 689
incompressible vector field, 840
integration

area, 741, 742
double, 749
iterated, 741
multiple, 741
notation, 741
of multivariable functions, 739
triple, 781, 782, 790, 792
with cylindrical coordinates, 799
with spherical coordinates, 802

interior point, 659
inverse

of a transformation, 820
iterated integration, 741, 749, 750, 781, 782, 790, 792

changing order, 743
properties, 752, 787

Jacobian, 811
Jacobian matrix, 722

Lagrange multipliers, 728
lamina, 763
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level curves, 654, 695
level surface, 656, 706
limit

of multivariable function, 660, 661, 666
properties, 661

line integral
Fundamental Theorem, 850, 852
over scalar field, 831, 832, 846
over vector field, 846
path independent, 851, 852
properties over a scalar field, 834
properties over a vector field, 849

linear function, 718
linearization, 717, 719

Möbius band, 863
mass, 763, 793, 835

center of, 835
centre of, 766

matrix
Jacobian, 722

maximum
absolute, 708
relative/local, 708, 711

minimum
absolute, 708
relative/local, 708, 711

moment, 767, 769, 793
multi-index notation, 735
multiple integration, see iterated integration
multivariable function, 653, 656

continuity, 664–666, 679, 683
differentiability, 679, 680, 683
domain, 653, 656
level curves, 654
level surface, 656
limit, 660, 661, 666
range, 653, 656

normal line, 702

octant
first, 640

one to one, 863
one-to-one, 809
onto, 809
open, 659
open ball, 666
open disk, 659
optimization

constrained, 712
optimization

with Lagrange multipliers, 728
orientable, 863
orientation, 815
orthogonal, 702
outer unit normal vector, 879

parametric equations
of a surface, 863

parametrized surface, 863

partial derivative, 668, 674
high order, 675
meaning, 670
mixed, 671
second derivative, 671
total differential, 678, 683

path independent, 851, 852
piecewise smooth curve, 834
planes

coordinate plane, 641
introduction, 641
tangent, 704

potential function, 843, 851

quadric surface
definition, 645
ellipsoid, 647
elliptic cone, 646
elliptic paraboloid, 646
gallery, 646–648
hyperbolic paraboloid, 648
hyperboloid of one sheet, 647
hyperboloid of two sheets, 648
sphere, 647
trace, 645

regular value, 728
right hand rule

of Cartesian coordinates, 639

saddle point, 710, 711
Second Derivative Test, 711
sensitivity analysis, 682
signed volume, 749, 750
simple curve, 850
simply connected, 850
smooth

surface, 863
smooth curve

piecewise, 834
sphere, 640
spherical coordinates, 801
Stokes’ Theorem, 884, 890
surface, 863

smooth, 863
surface area, 774

of parametrized surface, 867, 869
surface integral, 872
surface of revolution, 643, 644

tangent line
directional, 700

tangent plane, 704
Taylor polynomial

several variables, 735
Taylor’s Theorem

several variables, 735
total differential, 678, 683

sensitivity analysis, 682
trace, 645
transformation, 807, 813



triple integral, 781, 782, 790, 792
properties, 787

unbounded set, 659

vector field, 838
conservative, 851, 852
curl of, 840
divergence of, 840
over vector field, 847
potential function of, 843, 851

volume, 749, 750, 780



Differentiation Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx

(
sin−1 x

)
=

1
√
1− x2

20.
d
dx

(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx

(
csc−1 x

)
=

−1
x
√
x2 − 1

22.
d
dx

(
sec−1 x

)
=

1
x
√
x2 − 1

23.
d
dx

(
tan−1 x

)
=

1
1+ x2

24.
d
dx

(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx

(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx

(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx

(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx

(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx

(
tanh−1 x

)
=

1
1− x2

36.
d
dx

(
coth−1 x

)
=

1
1− x2

Integration Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin

(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin

(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
x
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√

x2 − a2
∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√

x2 + a2
∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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Definitions of the Trigonometric Functions

Unit Circle Definition

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Definition

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Identities

Pythagorean Identities
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunction Identities
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Identities
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Rational Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Additional Formulas

Summation Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolution:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)

n!
(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
continuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ratio Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be positive
Also diverges if

lim
n→∞

an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be positive
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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