
Assignment 3: Experimental Verification of Asymptotic

Running Time

Maximum Points: 100
Due date: November 22, 2010 at 9:59 p.m.
Two persons may work together and submit one solution.
This assignment is comprised of two parts.

1 Part 1: Running Time Experiments

In this part you will experiment with insertion sort, bubble sort, and quick sort algorithms on
different types of input. You will be provided with the C++ code implementing the sorting
algorithms and a C++ timer class to record the running time of sorting algorithms. You are
required to write an appropriate main program and to undertake necessary modification of the
supplied code and perform the following experiments.

1. [Bubble Sort and Insertion Sort.] Modify the code to record the number of compar-
isons and the number of assignments in each of the algorithms. Now run Bubble sort and
Insertion sort algorithms on the following input data and record in a table, in each case,
the time needed and the number of comparison and the number of assignments executed
by the sorting algorithms.

(a) Randomly generated input of size 10000, 20000, 50000, 100000 elements.

(b) Almost sorted input (90% and 80% of the elements are already in their correct
location in the sorted order).

(c) Reversely sorted input.

2. [Quick Sort.] Modify the code to record

(a) the number of comparisons and the number of assignments

(b) the running time

in Quick Sort where the pivot is (a) the leftmost element, (b) the median of the first,
middle, and the last element (c) randomly selected element on the following input data.

(a) Randomly generated input of size 100000, 200000, 500000, 1000000 elements.

(b) Almost sorted input (90% and 80% of the elements are already in their correct
location in the sorted order).

(c) Reversely sorted input.

1



Answer the following questions.

1. [35] For each sorting algorithm determine the worst-case input (input that requires the
longest time or executes the largest number of fundamental operations) and explain why
this particular input constitutes the worst-case input.

2. [35] This question concerns comparing the actual running time for a sorting algorithm
with its Big-oh running time estimate. Although this comparison can be done rigorously
using a mathematical technique called least squares (which is beyond the scope of this
course) we will take a much simpler approach here. Suppose we have an algorithm with
asymptotic complexity of O(n2). We record the actual CPU time of the algorithms for
k different input sizes say n1, n2, . . . , nk. To even out some computer specific anomalies
in recording running time, for each input size we run the algorithm 20 times and record
the average of these 20 CPU times. Next, we divide the average running time with
the corresponding input size. For example, if the CPU running time of the algorithm
averaged over 20 readings is l seconds for input size nj then we record the value cj =

l
n2

j

.

Then we will have k values c1, c2, . . . , ck for the input sizes n1, n2, . . . , nk. Plotting these
values along y-axis against the input sizes along x-axis and connecting the points on the
graph paper we would get a curve. If our Big-Oh analysis was “tight” (i.e. we haven’t
overestimated the running time), then this curve would roughly be a straight line parallel
to the x-axis.

Use O(n2) for bubble and insertion sort, and O(n log
2
n for quick sort and find these

cis. Use only randomly generated input data for this question. In your answer, mention
the computer system (the CPU name and its processor speed, the operating system, the
compiler etc.) that you have used. Explain the shape of the curve that you got for each
of bubble, insertion, and quick sort algorithms.

Submit the following.

1. The main program and the sorting routines (modified).

2. The running time graphs and tables together with your answers to the questions.

2 Implementation of Recursive Functions

1. (a) [20] Reimplement the Insertion Sort as a recursive function. Now run both version
of insertion sort function on different input data as in Part I. Compare the running
time and explain any differences in running time.

(b) [10] Write a recursive function that finds the smallest element in a vector of integers.

Submit the code for the functions and a main program that tests the functions for different
input sizes.

2


