
Page 1 Rex Forsyth CS2720 – Practical Software Development

CS2720 Practical Software Development

Subversion Tutorial Spring 2011

Instructor: Rex Forsyth

Office: C-558

E-mail: forsyth@cs.uleth.ca

Tel: 329-2496

Tutorial Web Page: http://www.cs.uleth.ca/˜ forsyth/cs2720/lab/lab.html



Page 2 Rex Forsyth CS2720 – Practical Software Development

Version Control

A typical client/server system consists of a repository on the server where data is

maintained.

• clients may read data from the server or write data to the server.

• the server remembers every change made to data in the repository

• typically reads will only see the latest version

• possible to view earlier versions

• possible to find historical information

– who made the last change

– what changes were made on a specified date

– what differences are there between versions



Page 3 Rex Forsyth CS2720 – Practical Software Development

File Sharing

We want to be able to share data without stepping on each others toes.

egConsider a file X that has an A in it

1. Joe edits X and changes the A to a B

2. Jill edits X and changes the A to a C

3. Joe saves X

4. Jill saves X

What is in the file?



Page 4 Rex Forsyth CS2720 – Practical Software Development

Possible Solutions

1. Lock–Modify–Unlock

• Joe locks the data and proceeds to edit it.

• When finished he saves the data and then unlocks it.

• While he is working on it, no one else can access it.

Problems

• someone forgets to unlock the data

• waste of time and resources since different people may be working on

different parts of the data.

• false sense of security

Joe locks A and modifies it

Jill locks B and modifies it

A depends on B



Page 5 Rex Forsyth CS2720 – Practical Software Development

2. Copy–Modify–Merge

• Joe checks out a copy of the data and begins editing.

• Jill checks out a copy of the data and begins editing.

• Jill saves her changes and writes to the repository

• Joe saves his changes and attempts to write to the repository

• The server informs Joe that his copy is out of date

• Joe updates from the repository and tries to merge his changes

• If merge can not be done automatically, Joe and Jill get together and, with

the help of the server, resolve conflicts.

• The merged version is written to the repository.

The Lock–Modify–Unlock model is still required to be available. Why?



Page 6 Rex Forsyth CS2720 – Practical Software Development

Subversion implements the Copy–Modify–Merge model and makes locking avail-

able.

We have a Subversion server

Its name ishttps://svnhost

Each group will have their own repository on the server. Onlygroup members

will be able to read data from the server and write data to the server.

All subversion commands are preceded bysvn



Page 7 Rex Forsyth CS2720 – Practical Software Development

To get the current data from the server, use thecheckoutcommand

• Syntax

svn checkout serverName/repositoryName/pathname [worki ngCopy]

• whatever is inpathname will be copied intoworkingCopy

• If workingCopy is omitted, data will be copied intopathname

• Easiest method – change to the desired working copy directory and use . as

the workingCopy nameeg

svn checkout https://svnhost/rexs/example1 .

• If there is nothing in the repository then, of course, there is nopathname, so

to start, just use

svn checkout https://svnhost/rexs .

• The working copy contains all the data in thepathname as well as a special

.svndirectory which is used by the server.



Page 8 Rex Forsyth CS2720 – Practical Software Development

To place an existing project into the repository, use theimport command.

• Any time you are writing data to the repository, you must include a message

indicating what is being written.

• This is done by using the-m option followed by the desired message in

quotations.

• If you forget to include the-m option, the server will pop open your prefered

editor. You then type in the message. When you save and exit the editor, the

contents will become the message.

• Suppose you have an existing project in the directoryXXXX which you

want to place into the repository. Use the following command:

svn import XXXX https://svnhost/rexs/projName -m "my mess age"

• If you leave offprojName then all files inXXXX will just be placed in the

top level of the repository.



Page 9 Rex Forsyth CS2720 – Practical Software Development

Once a member of the group has imported the project into the repository, then

other group members can check it out. In fact, in order to get an subversion
working copy, even the one who imported it, must check it out.

If you enter the commandls -al in this working copy directory, you will see

the extra directory.svn

This directory holds extra info that subversion needs to keep track of changes

made by you and others. It represents a snapshot of the repository at the time

you checked out this working copy.

You may now make changes to the files in your working copy. Since subversion

has the.svndirectory, it will know which files you have changed and also if files

in the repository have changed.

Changes you make in your working copy will not change the repository.



Page 10 Rex Forsyth CS2720 – Practical Software Development

To submit the changes you have made in your working copy, to the repository,

use thecommit command.

• Since this is an operation that is writing data to the repository, you must use

the-m option and include a message.

svn commit filename -m "message"

• If your changes do not conflict with any new changes in the repository, then

they are written to the repository and the.svn is updated.

• Now if someone else checks out the data from the repository, they will get

your committed changes.

• If no filename is given, egsvn commit -m "message" , then all changes in

the current directory will be committed

• Each time anyone does a commit, the version number changes for those files

which have been modified.



Page 11 Rex Forsyth CS2720 – Practical Software Development

To get the latest version of changes in the repository into your working copy, use
theupdatecommand. eg

svn update [pathname]

For each updated item, a line will start with a character reporting the action taken. These

characters have the following meaning:

• A – Added

• D – Deleted

• U – Updated

• C – Conflict

• G – Merged

Starting from scratch:

1. svn checkout https://svnhost/repositoryName .

2. create directories and files

3. mark these for addition

4. svn commit -m "some informative message"



Page 12 Rex Forsyth CS2720 – Practical Software Development

Subversion uses information in the.svn directory to determine the current state

of any file. Each file in a working copy, is in one of 4 possible states:

1. unchanged and current

• the file matches the data in the.svn directory and the file in the.svn
directory matches that in the repository.

• committing this file will do nothing

• an update will not affect this file

2. locally changed but current

• the file does not match the data in the.svn directory but the data in the

.svndirectory does match that in the repository.

• committing this file will publish the changed file to the repository

• an update will not affect this file



Page 13 Rex Forsyth CS2720 – Practical Software Development

3. unchanged but out of date

• the file matches the data in the.svndirectory but the data in the

.svndirectory does match that in the repository.

• committing this file will do nothing

• an update will copy the file from the repository into your working copy.

4. locally changed and out of date

• the file does not match the data in the.svndirectory and the data in the

.svndirectory does not match that in the repository.

• committing this file will fail with anout of date error

• an update will attempt to merge the file in the repository withyour file

– if merging can not be done automatically, the file is put in aconflict
state and the users have to resolve the conflict.



Page 14 Rex Forsyth CS2720 – Practical Software Development

To determine the status of files in your working copy, use thestatuscommand.
eg

svn status [pathname]

• With no options, the status command only reports local changes, ie differ-
ences between your files and those in the.svndirectory

• -u – reports out of date items, ie those items that are different in the reposi-
tory and the.svndirectory

• -v – reports full revision history on every item

• symbols have the following meanings:

– ? – not under version control

– A – marked for addition

– C – in conflict

– D – marked for deletion

– M – file has local modifications

– * – file is out of date



Page 15 Rex Forsyth CS2720 – Practical Software Development

Note: commit andupdatecommands are independent of each other.

You may commit without getting others changes.

You may get others changes without committing your own.

You may delete your working copy at any time. Userm -rf to avoid confirming

every file and directory.

To obtain aclean copy, without all the.svndirectories, use theexport command.

eg

svn export https://svnhost/repositoryName .



Page 16 Rex Forsyth CS2720 – Practical Software Development

More svn commands

• help [command]

• add – mark a file to be added

• delete – mark a file to be removed

• copy – copy a file and mark to be added

• move – copy file to new name and mark it for addition; mark original for removal

• mkdir – make a directory and mark it to be added

• diff – report the difference between two revisions

• revert – undo (most) local changes

• resolved filename – indicate resolution of conflicts by removing conficting files.

• list – list files in the repository

• log – display the subversion log file

• cleanup – recursively clean up the working copy, removing locks, resuming unfin-

ished operations, etc.



Page 17 Rex Forsyth CS2720 – Practical Software Development

Many of these commands have alternate versions egls instead oflist

Many commands allow access directly to the repository by specifying a URL
instead of a local pathname. Remember that if writing to the repository, you

MUST use the-m option.

For a list of all the commands and alternates, typesvn help



Page 18 Rex Forsyth CS2720 – Practical Software Development

Typical subversion working cycle

1. updateyour working copy, thus obtaining all other committed changes

2. Make your changes

3. Examine status of files using thestatuscommand

4. Undo changes if required

5. Publish your changes using thecommit command

6. If files are out of date, them try to merge using theupdatecommand

7. If files are in conflict

(a) Get together with other group members and decide how to resolve con-

flicts

(b) Make the changes

(c) Indicate resolution using theresolvedcommand

(d) commit the resolved changes


