Page 1 Rex Forsyth CS2720 — Practical Software Developmen

CS2720 Practical Software Development

Valgrind Tutorial Spring 2011

Instructor: Rex Forsyth
Office: C-558
E-mail: forsyth@cs.uleth.ca
Tel: 329-2496
Tutorial Web Page: http://www.cs.uleth.ca/" forsyth/¢2@/lab/lab.html




Page 2 Rex Forsyth CS2720 — Practical Software Developmen

Memory Errors
segmentation fault
bus error
abort
memory leaks
unintialized variables
llegal frees, mismatched frees

It would be nice to have a tool that would check for these sramrd help identify
the problem.

There is such a toolvalgrind

This is a suite of memory checking and profiling tools, bubarily used for its
memory checking ability




Page 3 Rex Forsyth CS2720 — Practical Software Developmen

How does it work?

e creates a virtual machine and simulates your program

e slows execution time down by a factor of 100 or more

e BUT it checks!!

e code must be compiled so that the virtual machine can be rcmtastl and
errors can be identified (where and what)




Page 4 Rex Forsyth CS2720 — Practical Software Developmen

To use valgrind :
e compile your program with theg option
o type
val grind --tool =nentheck prognane [args]

The default tool is memcheck so the more usual way to stausis |

val grind prognane [args]

your program will execute under valgrinds control
valgrind will report any errors

If you need more information, valgrind usually tells you wlmgtions to
Include to obtain this information.




Page 5 Rex Forsyth CS2720 — Practical Software Developmen

valgrind has an extensive memory checker and will checkdgermal things:

e illegal reads and writes
— out of bounds array access on the heap
— accessingleleted memory
If a segmentation fault would happen, it still happens bigmnad provides
a message first.
e using uninitialized variables
— on the stack
— on the heap

e lllegal frees
— trying to free from the stack
— already freed

e Mmismatched frees
— newwith delete []
— new [] with delete




Page 6 Rex Forsyth CS2720 — Practical Software Developmen

e system calls with invalid datawrite, exit
e overlapping source and destination blocks

e leak checking

1. still reachable
— pointer to the block but not freed when program exited

2. definitely lost
— direct — no pointer
— Indirect — pointed at by a pointer from leaked memory

3. possibly lost
— pointer to the middle of a block




