
Page 1 Rex Forsyth CS2720 – Practical Software Development

CS2720 Practical Software Development

Valgrind Tutorial Spring 2011

Instructor: Rex Forsyth

Office: C-558

E-mail: forsyth@cs.uleth.ca

Tel: 329-2496

Tutorial Web Page: http://www.cs.uleth.ca/˜ forsyth/cs2720/lab/lab.html



Page 2 Rex Forsyth CS2720 – Practical Software Development

Memory Errors

• segmentation fault

• bus error

• abort

• memory leaks

• unintialized variables

• illegal frees, mismatched frees

It would be nice to have a tool that would check for these errors and help identify

the problem.

There is such a tool :valgrind

This is a suite of memory checking and profiling tools, but primarily used for its

memory checking ability



Page 3 Rex Forsyth CS2720 – Practical Software Development

How does it work?

• creates a virtual machine and simulates your program

• slows execution time down by a factor of 100 or more

• BUT it checks!!

• code must be compiled so that the virtual machine can be constructed and

errors can be identified (where and what)



Page 4 Rex Forsyth CS2720 – Practical Software Development

To use valgrind :

• compile your program with the-g option

• type

valgrind --tool=memcheck progname [args]

• The default tool is memcheck so the more usual way to start is just

valgrind progname [args]

• your program will execute under valgrinds control

• valgrind will report any errors

• if you need more information, valgrind usually tells you what options to

include to obtain this information.



Page 5 Rex Forsyth CS2720 – Practical Software Development

valgrind has an extensive memory checker and will check for several things:

• illegal reads and writes

– out of bounds array access on the heap

– accessingdeleted memory

If a segmentation fault would happen, it still happens but valgrind provides
a message first.

• using uninitialized variables

– on the stack

– on the heap

• Illegal frees

– trying to free from the stack

– already freed

• mismatched frees

– newwith delete []

– new [] with delete



Page 6 Rex Forsyth CS2720 – Practical Software Development

• system calls with invalid data :write, exit

• overlapping source and destination blocks

• leak checking

1. still reachable

– pointer to the block but not freed when program exited

2. definitely lost

– direct – no pointer

– indirect – pointed at by a pointer from leaked memory

3. possibly lost

– pointer to the middle of a block


