Throughout this assignment, let A, B, C and D be any sets.

- 1. a) $C \cap B = \{x \mid x \in C \text{ and } x \in B\}.$
 - b) $D \cup C = \{ x \mid x \in D \text{ or } x \in C \}.$
 - c) C = D iff $(\forall x)$ ($x \in C \Leftrightarrow x \in D$).
 - d) $D \subseteq A$ iff $(\forall x)$ ($x \in D \Rightarrow x \in A$).
 - e) $\overline{C} = \{x \mid x \notin C\}.$
 - f) $D C = \{x \mid x \in D \text{ and } x \notin C\}.$
 - g) $C \times B = \{(x,y) \mid x \in C \text{ and } y \in D\}.$
 - h) $\bigcup_{i \in I} C_i = \{x \mid x \in C_i \text{ for some } i \in I\}.$
 - i) $\bigcap_{i \in I} D_i = \{x \mid x \in D_i \text{ for all } i \in I\}.$
 - j) P(A) (The power set of A) = $\{B \mid B \subseteq A\}$.
 - k) S is a partition of A S is a partition of A if it satisfies :
 - 1. $\forall X \in S, X \neq \emptyset$
 - 2. $\forall X, Y \in S$, either X = Y or $X \cap Y = \emptyset$
 - 3. $\bigcup_{X \in S} X = A$
- 2. a) State one of De Morgan's laws for logic:
 - $\sim (P \land Q)$ is equivalent to $\sim P \lor \sim Q$.
 - b) State one of De Morgan's laws for sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
 - c) State one of the Distributive Laws for logic:
 - $P \wedge (Q \vee R)$ is equivalent to $(P \wedge Q) \vee (P \wedge R)$.
 - d) State the tautology for the negation of an implication:
 - $\sim (P \Rightarrow Q)$ is equivalent to $P \land \sim Q$.
- 3. For each i in the natural numbers, let $A_i = \{i, 2i, 3i\}$, and

 $B_i = \{-i, -i+1, -i+2, \dots, 0\}$. Find the following sets:

- a) $A_1 = \{1, 2, 3\}, A_2 = \{2, 4, 6\} \text{ and } A_3 = \{3, 6, 9\}.$
- b) $B_1 = \{-1, 0\}, B_2 = \{-2, -1, 0\} \text{ and } B_3 = \{-3, -2, -1, 0\}.$
- c) $\bigcup_{i=1}^{3} A_i = \{1, 2, 3, 4, 6, 9\}.$
- d) $\bigcup_{i=1}^{\infty} A_i = \mathbf{N}$. e) $\bigcap_{i=1}^{\infty} A_i = \{\} = \emptyset$.
- $f) A_1 \cap B_1 = \emptyset.$
- g) $\bigcup_{i=1}^{4} B_i = \{-4, -3, -2, -1, 0\}.$
- h) $\bigcup_{i=1}^{\infty} B_i = \{\dots, -2, -1, 0\}.$
- i) $\bigcap_{i=1}^{\infty} B_i = \{-1, 0\}.$
- 4. Page 29 Question 1.17

Let $U = \{1, 3, ..., 15\}$ be the universal set, $A = \{1, 5, 9, 13\}$, and $B = \{3, 9, 15\}$. Determine the following:

- a) $A \cup B = \{1, 3, 5, 9, 13, 15\}$ b) $A \cap B = \{9\}$
- c) $A B = \{1, 5, 13\}$

- d) $B A = \{3, 15\}$
- e) $\overline{A} = \{3, 7, 11, 15\}$ f) $A \cap \overline{B} = \{1, 5, 13\}$

Page 30 Question 1.26

For a real number r, define $A_r = \{r^2\}$, B_r as the closed interval [r-1, r+1], and C_r as the interval (r, ∞) . For $S = \{1, 2, 4\}$, determine:

a)
$$\bigcup_{\alpha \in S} A_{\alpha} = A_1 \cup A_2 \cup A_4 = \{1\} \cup \{4\} \cup \{16\} = \{1, 4, 16\}$$
 and $\bigcap_{\alpha \in S} A_{\alpha} = A_1 \cap A_2 \cap A_4 = \{1\} \cap \{4\} \cap \{16\} = \emptyset$

b)
$$\bigcup_{\alpha \in S} B_{\alpha} = B_1 \cup B_2 \cup B_4 = [0, 2] \cup [1, 3] \cup [3, 5] = [0, 5]$$
 and $\bigcap_{\alpha \in S} B_{\alpha} = B_1 \cap B_2 \cap B_4 = [0, 2] \cap [1, 3] \cap [3, 5] = \emptyset$

c)
$$\bigcup_{\alpha \in S} C_{\alpha} = C_1 \cup C_2 \cup C_4 = (1, \infty) \cup (2, \infty) \cup (4, \infty) = (1, \infty)$$
 and $\bigcap_{\alpha \in S} C_{\alpha} = C_1 \cap C_2 \cap C_4 = (1, \infty) \cap (2, \infty) \cap (4, \infty) = (4, \infty)$

Question 1.29

Let $A = \{a, b, ..., z\}$ be the set consisting of the letters of the alphabet. For $\alpha \in A$, let A_{α} consist of α and the two letters that follow it, where $A_y = \{y, z, a\}$ and $A_z = \{z, a, b\}$. Find a set $S \subseteq A$ of smallest cardinality such that $\bigcup_{\alpha \in S} A_{\alpha} = A$. Explain why your set S has the required properties.

Solution: Since there are 26 letters in the alphabet, |A| = 26.

Now since $|A_{\alpha}| = 3$, |S| must be at least 9. So let $S = \{a, d, g, j, m, p, s, v, y\}$.

Then
$$\bigcup_{\alpha \in S} A_{\alpha} = A_{a} \cup A_{d} \cup A_{g} \cup A_{j} \cup A_{m} \cup A_{p} \cup A_{s} \cup A_{v} \cup A_{y}$$

$$= \{a, b, c\} \cup \{d, e, f\} \cup \{g, h, i\} \cup \{j, k, l\} \cup \{m, n, o\} \cup \{p, q, r\} \cup \{s, t, u\} \cup \{v, w, x\} \cup \{y, z, a\}$$

$$= A$$

Question 1.32 Which of the following are partitions of $A = \{a, b, c, d, e, f, g\}$?

- a) $S_1 = \{\{a, c, e, g\}, \{b, f\}, \{d\}\}$ is a partition
- b) $S_2 = \{\{a, b, c, d\}, \{e, f\}\}$ is not a partition since $g \notin \bigcup S_2$.
- c) $S_3 = \{\{A\}\}$ is a partition
- d) $S_4 = \{\{a\}, \emptyset, \{b, c, d\}, \{e, f, g\}\}$ is not a partition since $\emptyset \in S_4$
- e) $S_5 = \{\{a, c, d\}, \{b, g\}, \{e\}, \{b, f\}\}\}$ is not a partition since $\{b, g\} \cap \{b, f\} \neq \emptyset$

Question 1.34 Let $A = \{1, 2, 3, 4, 5, 6\}.$

Give an example of a partition S of A such that |S| = 3. eg $S = \{\{1, 2, 3\}, \{4\}, \{5, 6\}\}$

Page 31

Question 1.36 Give an example of three sets A, S_1 , and S_2 such that S_1 is a partition of A, S_2 is a partition of S_1 and $|S_2| < |S_1| < |A|$.

eg
$$A = \{1, 2, 3, 4\}$$
 $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$ and $S_2 = \{\{\{1\}, \{2\}\}, \{\{3, 4\}\}\}\}$

```
Question 1.38 Give an example of a partition of N into three subsets.
```

There are many possibilities. Here are a couple.

eg
$$S = \{\{1, 2, 3\}, \{4, 5, 6, 7\}, \{n : n \ge 8\}\}$$

eg $S = \{\{n : n \equiv 0 \pmod{3}\}, \{n : n \equiv 1 \pmod{3}\}, \{n : n \equiv 2 \pmod{3}\}\}$.

Question 1.41 Let
$$A = \{x, y, z\}$$
 and $B = \{x, y\}$. Determine $A \times B$. $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}$

Question 1.42 Let
$$A = \{1, \{1\}, \{\{1\}\}\}$$
. Determine $A \times A$. $A \times A = \{ (1,1), (1,\{1\}), (1,\{\{1\}\}), (\{1\},1), (\{1\},\{1\}), (\{1\},\{1\}\}), (\{\{1\}\},1), (\{\{1\}\},\{1\}), (\{\{1\}\},\{1\}\}) \}$

Question 1.43 Let
$$A = \{a, b\}$$
. Determine $A \times \mathbf{P}(A)$. $\mathbf{P}(A) = \{\emptyset, \{a\}, \{b\}, A\}$ $A \times \mathbf{P}(A) = \{(a, \emptyset), (a, \{a\}), (a, \{b\}), (a, A), (b, \emptyset), (b, \{a\}), (b, \{b\}), (b, A)\}$

Question 1.44 Let
$$A = \{\emptyset, \{\emptyset\}\}$$
. Determine $A \times \mathbf{P}(A)$. $\mathbf{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, A\}$ $A \times \mathbf{P}(A) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\emptyset, \{\{\emptyset\}\}), (\emptyset, A), (\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, A)\}$

5. Page 103 Question 4.27 Let
$$A$$
 and B be sets.
Prove that $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$.

PROOF: This is a set equality proof, for-all-iff.

```
Let x \in U.
```

$$x \in A \cup B$$

$$\Leftrightarrow x \in A \text{ or } x \in B$$

$$\Leftrightarrow (x \in A \text{ and } (x \in B \text{ or } x \notin B)) \text{ or } (x \in B \text{ and } (x \in A \text{ or } x \notin A))$$

since $P \land TRUE \Leftrightarrow P$.

$$\Leftrightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \notin B) \text{ or }$$

$$(x \in B \text{ and } x \in A) \text{ or } (x \in B \text{ and } x \notin A)$$
 by distributive law

$$\Leftrightarrow x \in A \cap B \text{ or } x \in A - B \text{ or } x \in A \cap B \text{ or } x \in B - A$$

$$\Leftrightarrow x \in A - B \text{ or } x \in B - A \text{ or } x \in A \cap B$$
 by idempotence, commutative and associative

$$\Leftrightarrow x \in \Big((A - B) \cup (B - A) \cup (A \cap B) \Big).$$

Question 4.29 Let A and B be sets. Prove that $A \cap B = A$ if and only if $A \subseteq B$.

PROOF: This is an iff set proof; we break it into two parts

Part I: Prove that if $A \cap B = A$ then $A \subseteq B$.

PROOF: This is an If-Then set proof.

 $A \cap B = A$ SAVE this for later use.

GOAL: $A \subseteq B$. Subset proof

Let $x \in U$.

 $x \in A \implies x \in A \cap B$ by the assumption

 $\Rightarrow x \in A \text{ and } x \in B$

 $\Rightarrow x \in B$ by removing clauses

Part II. Prove that if $A \subseteq B$ then $A \cap B = A$.

PROOF: This is an If-Then set proof.

ASSUME: $A \subseteq B$, so for all x, if $x \in A$ then $x \in B$. SAVE this for later use.

GOAL: $A \cap B = A$. Set equality proof (two subset proofs)

Part A: Show $A \cap B \subseteq A$

Let $x \in U$.

 $x \in A \cap B$

 $\Rightarrow x \in A \text{ and } x \in B$

 $\Rightarrow x \in A$ by removing clauses

Part B: Show $A \subseteq A \cap B$

Let $x \in U$. $x \in A$ $\Rightarrow x \in A \text{ and } x \in A$ by idempotence $\Rightarrow x \in A \text{ and } x \in B$ by assumption

Question 4.31 Prove that if A and B are sets such that $A \cup B \neq \emptyset$, then $A \neq \emptyset$ or $B \neq \emptyset$.

PROOF: This is an If-Then set proof. I will show a direct proof and a contrapositive proof.

Direct

ASSUME: $A \cup B \neq \emptyset$ GOAL: $A \neq \emptyset$ or $B \neq \emptyset$

Let $x \in U$.

Since $A \cup B \neq \emptyset$, there is an element in it. $x \in A \cup B \Rightarrow x \in A$ or $x \in B$ So there is an element in A or in BSo either A is not empty or B is not. So $A \neq \emptyset$ or $B \neq \emptyset$. Contrapositive

ASSUME: $A = \emptyset$ and $B = \emptyset$

GOAL: $A \cup B = \emptyset$

Since $A = \emptyset$ and $B = \emptyset$; $A \cup B = \emptyset \cup \emptyset = \emptyset$.

Question 4.32 Let $A = \{n \in \mathbb{Z} : n \equiv 1 \pmod{2}\}$ and $B = \{n \in \mathbb{Z} : n \equiv 3 \pmod{4}\}$. Prove $B \subseteq A$.

PROOF: Subset proof

Let $n, k \in \mathbf{Z}$.

 $n \in B \Rightarrow 4 | (n-3) \Rightarrow n = 4k+3 \Rightarrow n = 4k+2+1 \Rightarrow n = 2(k+1)+1 \Rightarrow n \in A$ since $k+1 \in \mathbf{Z}$.

Question 4.34 Prove that $A \cap B = B \cap A$ for every two sets A and B.

PROOF: Set equality proof

Let $x \in U$.

 $x \in A \cap B \iff x \in A \text{ and } x \in B \iff x \in B \text{ and } x \in A \iff x \in B \cap A.$

Question 4.35

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for every three sets A, B and C.

PROOF: Set equality proof

Let $x \in U$.

 $x \in A \cap (B \cup C) \quad \Leftrightarrow x \in A \text{ and } x \in (B \cup C)$ $\Leftrightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)$ $\Leftrightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \text{ by distributive law}$ $\Leftrightarrow x \in (A \cap B) \text{ or } x \in (A \cap C)$ $\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$

Question 4.38 Let A, B and C be sets. Prove that $(A-B) \cup (A-C) = A - (B \cap C)$.

PROOF: Set equality proof using previous results

$$(A-B)\cup (A-C) \ = \ (A\cap \overline{B})\cup (A\cap \overline{C}) \ = \ A\cap (\overline{B}\cup \overline{C}) \ = \ A\cap (\overline{B}\cap C) \ = \ A-(B\cap C).$$

Question 4.39 Let A, B and C be sets. Prove that $\overline{\overline{A} \cup (\overline{B} \cap C)} = (A \cap B) \cup (A - C)$.

PROOF: Set equality proof using previous results

$$\overline{\overline{A} \cup (\overline{B} \cap C)} = \overline{\overline{A}} \cap (\overline{\overline{B}} \cap C)
= A \cap (\overline{\overline{B}} \cup \overline{C})
= A \cap (B \cup \overline{C})
= (A \cap B) \cup (A \cap \overline{C})
= (A \cap B) \cup (A - C).$$

Question 4.40 Let A and B be sets.

Prove that
$$A \times B = \emptyset$$
 if and only if $A = \emptyset$ or $B = \emptyset$.

PROOF: If and only if set proof so break into two parts.

PART I:

Prove if
$$A \times B = \emptyset$$
 then $A = \emptyset$ or $B = \emptyset$

Proof by contradiction

ASSUME:
$$A \times B = \emptyset$$
 and

$$A \neq \emptyset$$
 and $B \neq \emptyset$

Let $x, y \in U$

$$A \neq \emptyset \Rightarrow \exists x \in A \text{ and }$$

$$B \neq \emptyset \Rightarrow \exists y \in B$$

Therefore
$$(x, y) \in A \times B$$

This is a contradiction since $A \times B = \emptyset$

Therefore if $A \times B = \emptyset$ then

$$A = \emptyset \text{ or } B = \emptyset.$$

PART II:

Prove if
$$A = \emptyset$$
 or $B = \emptyset$ then $A \times B = \emptyset$.

ASSUME: $A = \emptyset$ or $B = \emptyset$

GOAL: $A \times B = \emptyset$.

WLOG pick $A = \emptyset$

So
$$A \times B = \emptyset \times B = \emptyset$$
.

Question 4.43 Let A, B and C be nonempty sets. Prove that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$.

PROOF: If and only if set proof so break into two parts.

PART I:

Prove if $A \times C \subseteq B \times C$, then $A \subseteq B$.

ASSUME: $A \times C \subseteq B \times C$

GOAL: $A \subseteq B$.

Let $x, y \in U$ Note $\exists y \in C$ since $C \neq \emptyset$ $x \in A \Rightarrow (x, y) \in A \times C$ for some $y \in C$

 $\Rightarrow (x,y) \in B \times C$ by assumption

 $\Rightarrow x \in B \text{ and } y \in C.$

 $\Rightarrow x \in B$ by removing clauses

PART II:

Prove if $A \subseteq B$, then $A \times C \subseteq B \times C$.

ASSUME: $A \subseteq B$

GOAL: $A \times C \subseteq B \times C$.

Let $(x, y) \in U$

 $(x,y) \in A \times C \Rightarrow x \in A \text{ and } y \in C$

 $\Rightarrow x \in B$ and $y \in C$

by assumption

 $\Rightarrow (x,y) \in B \times C$.

Question 4.46 Let A, B, C and D be sets.

Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

PROOF: Set equality proof

Let $(x, y) \in U$

 $(x,y) \in (A \times B) \cap (C \times D)$

 $\Leftrightarrow (x,y) \in A \times B \text{ and } (x,y) \in C \times D$

 $\Leftrightarrow x \in A \text{ and } y \in B \text{ and } x \in C \text{ and } y \in D$

 $\Leftrightarrow x \in A \text{ and } x \in C \text{ and } y \in B \text{ and } y \in D \text{ by commutativity and associativity}$

 $\Leftrightarrow x \in (A \cap C) \text{ and } y \in (B \cap D)$

 \Leftrightarrow $(x,y) \in (A \cap C) \times (B \cap D).$

Page 124

Question 5.19 Let
$$S=\{p+q\sqrt{2}: p,q\in \boldsymbol{Q}\}$$
 and $T=\{r+s\sqrt{3}: r,s\in \boldsymbol{Q}\}$. Prove that $S\cap T=\boldsymbol{Q}$.

PROOF: Set equality proof (two subset proofs)

PART I:

Prove $S \cap T \subseteq \mathbf{Q}$ by contradiction

 $\begin{array}{ll} \text{ASSUME:} S \cap T \not\subseteq \mathbf{\textit{Q}} \\ \text{That is } \exists x \in S \cap T \text{ and } x \not\in \mathbf{\textit{Q}} \end{array}$

 $\begin{array}{l} x\in S\cap T\\ \Rightarrow x\in S \text{ and } x\in T\\ \Rightarrow x=p+q\sqrt{2} \text{ and } x=r+s\sqrt{3}\\ \text{If } q=0 \text{ or } s=0 \text{ then } x\in \textbf{\textit{Q}}\\ \text{ which is a contradiction}\\ \text{If } q\neq 0 \text{ and } s\neq 0 \text{ then } p+q\sqrt{2}=r+s\sqrt{3}\\ \text{And } p-r=s\sqrt{3}-q\sqrt{2}\\ \text{Squaring both sides gives}\\ (p-r)^2=3s^2+2q^2-2sq\sqrt{6}\\ \text{Rearranging we get } \sqrt{6}=\frac{(p-r)^2-3s^2-2q^2}{-2sq}\\ \text{ contradiction since } \sqrt{6} \text{ is irrational}\\ \text{Therefore } S\cap T\subseteq \textbf{\textit{Q}}. \end{array}$

PART II:

Prove $\mathbf{Q} \subseteq S \cap T$

Let $x \in \mathbf{Q}$

Now $x = x + (0)(\sqrt{2})$ so $x \in S$ And $x = x + (0)(\sqrt{3})$ so $x \in T$

So $x \in S$ and $x \in T$

Therefore $x \in S \cap T$

6. Prove that $(A - B) \cup (B - A) \subseteq \overline{A \cap B}$.

PROOF: This is a Subset Proof, so Direct proof of for-all-if-then.

Let $x \in U$. $x \in (A - B) \cup (B - A)$ $\Rightarrow x \in A - B \text{ or } x \in B - A$ \Rightarrow $(x \in A \text{ and } x \notin B)$ or $(x \in B \text{ and } x \notin A)$ \Rightarrow $(x \in A \text{ and } x \notin B) \text{ or } x \in B) \text{ and } (x \in A \text{ and } x \notin B) \text{ or } x \notin A)$ by distributive law \Rightarrow $(x \in A \text{ or } x \in B) \text{ and } (x \notin B \text{ or } x \in B)$ and $(x \in A \text{ or } x \notin A)$ and $(x \notin B \text{ or } x \notin A)$ by distributive law $(x \in A \text{ or } x \in B)$ and (TRUE) and (TRUE) and $(x \notin B \text{ or } x \notin A)$ \Rightarrow $(x \in A \text{ or } x \in B) \text{ and } (x \notin B \text{ or } x \notin A) \text{ since } P \land \text{TRUE} \Rightarrow P$ $\Rightarrow x \notin B \text{ or } x \notin A$ by removing clauses $\Rightarrow x \notin A \text{ or } x \notin B$ by commutativity $\Rightarrow \sim (x \in A \text{ and } x \in B)$ by DeMorgan's $\Rightarrow \sim (x \in A \cap B)$ $\Rightarrow x \notin A \cap B$ $\Rightarrow x \in \overline{A \cap B}.$

7. Prove that $\emptyset - A = \emptyset$.

PROOF: Use a contradiction proof.

ASSUME: $\emptyset - A \neq \emptyset$. Since $\emptyset - A \neq \emptyset$ there is an element in $\emptyset - A$ $x \in \emptyset - A \Rightarrow x \in \emptyset$ and $x \notin A$ But this is a contradiction since \emptyset does not contain any elements. Therefore $\emptyset - A = \emptyset$.

8. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

PROOF: This is a set equality proof, for-all-iff.

Let $x \in U$. $x \in A \cup (B \cap C) \Leftrightarrow x \in A \text{ OR } (x \in B \text{ and } x \in C)$ $\Leftrightarrow (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$ by distributive law $\Leftrightarrow x \in A \cup B \text{ and } x \in A \cup C$ $\Leftrightarrow x \in (A \cup B) \cap (A \cup C).$

9. Prove that (A - C) - (B - C) = (A - B) - C.

PROOF: This is a set equality proof, for-all-iff.

Let $x \in U$.

$$x \in (A - C) - (B - C)$$

- \Leftrightarrow $(x \in A \text{ and } x \notin C) \text{ and } \sim (x \in B \text{ and } x \notin C).$
- \Leftrightarrow $(x \in A \text{ and } x \notin C) \text{ and } (x \notin B \text{ or } x \in C)$ by De Morgan's law
- \Leftrightarrow $(x \in A \text{ and } x \notin C \text{ and } x \notin B)$ or $(x \in A \text{ and } x \notin C \text{ and } x \in C)$, by distributive law.
- \Leftrightarrow $x \in A$ and $x \notin C$ and $x \notin B$, by $P \vee \text{FALSE}$ equivalent to P.
- \Leftrightarrow $x \in A$ and $x \notin B$ and $x \notin C$, by commutativity
- \Leftrightarrow $(x \in A B)$ and $x \notin C$
- \Leftrightarrow $x \in (A B) C$.
- 10. Prove that $(A \cap B) (A C) = A \cap (B \cap C)$.

PROOF: This is a set equality proof, for-all-iff.

Let $x \in U$.

$$x \in (A \cap B) - (A - C)$$

- \Leftrightarrow $(x \in A \text{ and } x \in B) \text{ and } \sim (x \in A \text{ and } x \notin C)$
- \Leftrightarrow $(x \in A \text{ and } x \in B)$ and $(x \notin A \text{ or } x \in C)$ by De Morgan's law
- \Leftrightarrow $(x \in A \text{ and } x \in B \text{ and } x \notin A)$ or $(x \in A \text{ and } x \in B \text{ and } x \in C)$ by distributive law.
- $\Leftrightarrow x \in A \text{ and } x \in B \text{ and } x \in C \text{ since FALSE } \vee P \text{ is equivalent to } P.$
- $\Leftrightarrow x \in A \text{ and } (x \in B \text{ and } x \in C)$
- $\Leftrightarrow x \in A \cap (B \cap C).$
- 11. Prove that if $A \subseteq B$ and $C \subseteq D$ then $A D \subseteq B C$.

PROOF: This is a If-Then set proof

ASSUME: $A \subseteq B$, i.e., for all x, if $x \in A$ then $x \in B$. and $C \subseteq D$, i.e., for all x, if $x \in C$ then $x \in D$.

Keep these assumptions to use later.

GOAL: show that $A - D \subseteq B - C$. This is a subset proof; for-all-if-then

Let $x \in U$.

$$x \in A - D \Rightarrow x \in A \text{ and } x \notin D$$

 $\Rightarrow x \in B \text{ and } x \notin C$

by 1st assumption and contrapositive of 2nd assumption.

$$\Rightarrow x \in B - C.$$

```
12. Prove that if A \subseteq B then B - (B - A) = A
```

PROOF: This is a If-Then set proof.

ASSUME: $A \subseteq B$, so $\forall x$, if $x \in A$ then $x \in B$. SAVE this for later use!

GOAL: B - (B - A) = A.

This is a set equality proof, for-all-iff. Break into two parts

Part I:
$$B - (B - A) \subseteq A$$
.
Let $x \in U$.
 $x \in B - (B - A)$
 $\Rightarrow x \in B \text{ and } x \notin (B - A)$
 $\Rightarrow x \in B \text{ and } \sim (x \in B - A)$
 $\Rightarrow x \in B \text{ and } \sim (x \in B \text{ and } x \notin A)$
 $\Rightarrow x \in B \text{ and } (x \notin B \text{ or } x \in A) \text{ by De Morgan's}$
 $\Rightarrow (x \in B \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \in A) \text{ by Distributive}$
 $\Rightarrow (x \in B \text{ and } x \in A), \text{ using FALSE } \vee P \text{ equivalent to } P$
 $\Rightarrow x \in A \text{ using removing clauses.}$

Part II.
$$A \subseteq B - (B - A)$$
.
Let $x \in U$.
 $x \in A$
 $\Rightarrow (x \in A \text{ and } x \in A)$, using Idempotence
 $\Rightarrow (x \in B \text{ and } x \in A)$, by the assumption
 $\Rightarrow (x \in B \text{ and } x \notin B) \text{ or } (x \in B \text{ and } x \in A) \text{ using FALSE } \lor P \Leftrightarrow P$
 $\Rightarrow x \in B \text{ and } (x \notin B \text{ or } x \in A) \text{ by Distributive}$
 $\Rightarrow x \in B \text{ and } \sim (x \in B \text{ and } x \notin A) \text{ by De Morgan's}$
 $\Rightarrow x \in B \text{ and } \sim (x \in B - A)$
 $\Rightarrow x \in B \text{ and } x \notin (B - A)$
 $\Rightarrow x \in B \text{ on } x \notin A = A$

13. Prove that $A \cup B \subseteq B$ iff $A \subseteq A \cap B$.

PROOF: This is an iff set proof; we break it into two parts

Part I: Prove that if $A \cup B \subseteq B$ then $A \subseteq A \cap B$.

PROOF: This is an If-Then set proof.

ASSUME: $A \cup B \subseteq B$, so for all x, if $x \in A \cup B$ then $x \in B$. SAVE this for later use.

GOAL: $A \subseteq A \cap B$.

Let $x \in U$.

 $x \in A \implies x \in A \text{ and } x \in A \text{ by idempotence}$

 $\Rightarrow x \in A \text{ and } (x \in A \text{ or } x \in B), \text{ by adding clauses}$

 $\Rightarrow x \in A \text{ and } x \in A \cup B$

 $\Rightarrow x \in A \text{ and } x \in B$, by the assumption

 $\Rightarrow x \in A \cap B$.

Part II. Prove that if $A \subseteq A \cap B$ then $A \cup B \subseteq B$.

PROOF: This is an If-Then set proof.

ASSUME: $A \subseteq A \cap B$, so for all x, if $x \in A$ then $x \in A \cap B$. SAVE this for later use.

GOAL: $A \cup B \subseteq B$.

Let $x \in U$.

 $x \in A \cup B \Rightarrow x \in A \text{ or } x \in B$

 $\Rightarrow x \in A \cap B \text{ or } x \in B$, by assumption

 \Rightarrow $(x \in A \text{ and } x \in B) \text{ or } x \in B$

 $\Rightarrow x \in B \text{ or } x \in B, \text{ by removing clauses}$

 $\Rightarrow x \in B$.

14. Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

PROOF: This is a subset proof, for-all-if-then.

NOTE typical elements are ordered pairs!

Let $(x,y) \in U$. $(x,y) \in (A \times B) \cup (C \times D)$ $\Rightarrow (x,y) \in A \times B \text{ or } (x,y) \in C \times D$ $\Rightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in C \text{ and } y \in D)$ $\Rightarrow (x \in A \text{ or } x \in C) \text{ and } (y \in B \text{ or } x \in C) \text{ and } (x \in A \text{ or } x \in C) \text{ and } (y \in B \text{ or } y \in D) \text{ by distributive law, twice}$ $\Rightarrow (x \in A \text{ or } x \in C) \text{ and } (y \in B \text{ or } y \in D), \text{ by removing clauses}$ $\Rightarrow x \in A \cup C \text{ and } y \in B \cup D$ $\Rightarrow (x,y) \in (A \cup C) \times (B \cup D).$

15. Prove that if $A \subseteq B$ and $C \subseteq D$ then $A \times (B - D) \subseteq B \times (B - C)$.

PROOF: This is an if-then set proof.

ASSUME: $A \subseteq B$, so $\forall x$, if $x \in A$ then $x \in B$;

and $C \subseteq D$, so $\forall x$, if $x \in C$ then $x \in D$.

SAVE this for later use!

GOAL: $A \times (B - D) \subseteq B \times (B - C)$.

This is a subset proof, for-all-if-then statement. Typical elements are ordered pairs.

Let $(x,y) \in U$. $(x,y) \in A \times (B-D)$ $\Rightarrow x \in A \text{ and } y \in B-D$ $\Rightarrow x \in A \text{ and } (y \in B \text{ and } y \notin D)$ $\Rightarrow x \in B \text{ and } (y \in B \text{ and } y \notin D) \text{ by assumption } x \in A \Rightarrow x \in B$ $\Rightarrow x \in B \text{ and } (y \in B \text{ and } y \notin C)$ by CONTRAPOSITIVE of the assumption $x \in C \Rightarrow x \in D$ $\Rightarrow x \in B \text{ and } y \in B-C$ $\Rightarrow (x,y) \in B \times (B-C)$. 16. Let A_i be a family of sets indexed by set I. Prove that $B - (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (B \cap \overline{A_i})$.

PROOF: This is a set equality, so a for-all-iff.

Let $x \in U$. $x \in B - (\bigcup_{i \in I} A_i)$ and $\sim (x \in \bigcup_{i \in I} A_i)$ $x \in B$ $x \in B$ and $\sim (\exists i \in I) (x \in A_i)$ $x \in B$ and $(\forall i \in I) \sim (x \in A_i)$ \Leftrightarrow $x \in B$ and $(\forall i \in I) \ (x \notin A_i)$ $x \in B$ and $(\forall i \in I) (x \in \overline{A_i})$ $(\forall i \in I) \ (x \in B \text{ and } x \in \overline{A_i})$ $\Leftrightarrow (\forall i \in I) (x \in B \cap A_i)$ $\Leftrightarrow x \in \bigcap_{i \in I} (B \cap \overline{A_i}).$

17. Prove that $B \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (B \cup A_i)$.

PROOF: This is a set equality, so a for-all-iff.

Let $x \in U$. $x \in B \cup (\bigcap_{i \in I} A_i)$ $\Leftrightarrow x \in B \text{ or } (x \in \bigcap_{i \in I} A_i)$ $\Leftrightarrow x \in B \text{ or } (\forall i \in I) (x \in A_i)$ $\Leftrightarrow (\forall i \in I) (x \in B \text{ or } x \in A_i)$ $\Leftrightarrow x \in \bigcap_{i \in I} (B \cup A_i)$.

18. Let A_i and B_i be two families of sets, with indices $i \in I$. Prove that $(\bigcup_{i \in I} B_i) \cup (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B_i \cup A_i)$.

PROOF: This is a set equality, so a for-all-iff.

Let $x \in U$. $x \in (\bigcup_{i \in I} B_i) \cup (\bigcup_{i \in I} A_i)$ $\Leftrightarrow (x \in \bigcup_{i \in I} B_i) \text{ or } (x \in \bigcup_{i \in I} A_i)$ $\Leftrightarrow (\exists i \in I)(x \in B_i) \text{ or } (\exists i \in I)(x \in A_i)$ $\Leftrightarrow (\exists i \in I)(x \in B_i \text{ or } x \in A_i)$ $\Leftrightarrow (\exists i \in I)(x \in B_i \cup A_i)$ $\Leftrightarrow x \in \bigcup_{i \in I} (B_i \cup A_i)$.

- 19. Let C be any set.
- a) Prove that if $C \subseteq A$ then $C \subseteq A \cup B$.

PROOF:

a) This is an if then set proof.

ASSUME: that $C \subseteq A$; this means $(\forall x)(x \in C \Rightarrow x \in A)$. Save for later!

GOAL: show $C \subseteq A \cup B$.

This is a subset proof, for-all-if-then proof.

Let $x \in U$.

$$\begin{array}{ll} x \in C \Rightarrow x \in A, & \text{by the assumption} \\ \Rightarrow x \in A \quad \text{or} \quad x \in B, \quad \text{by adding clauses.} \\ \Rightarrow x \in A \cup B. \end{array}$$

b) Prove that $P(A) \subseteq P(A \cup B)$.

PROOF:

This is a subset proof. But note that typical elements here are SETS!

Let $C \in U$.

$$\begin{array}{ccc} C \in \boldsymbol{P}(A) & \Rightarrow & C \subseteq A \\ & \Rightarrow & C \subseteq A \cup B, & \text{by part a}) \\ & \Rightarrow & C \in \boldsymbol{P}(A \cup B). \end{array}$$

20. a) Prove that if $A \subseteq B$ and $S \subseteq A \cap C$, then $S \subseteq B \cap C$.

PROOF:

This is an if then set proof.

ASSUME: that $A \subseteq B$ and $S \subseteq A \cap C$; this means $(\forall x)(x \in A \Rightarrow x \in B)$, and $(\forall x)(x \in S \Rightarrow x \in A \cap C)$.

GOAL: show $S \subseteq B \cap C$.

This is a subset proof, a for-all-if-then.

Let $x \in U$.

$$\begin{array}{ll} x \in S & \Rightarrow x \in A \cap C, & \text{by assumption that } S \subseteq A \cap C, \\ & \Rightarrow x \in A \text{ and } x \in C, \\ & \Rightarrow x \in B \text{ and } x \in C, & \text{by assumption } A \subseteq B \\ & \Rightarrow x \in B \text{ or } x \in C & \text{by tautology } P \wedge Q \Rightarrow P \vee Q \\ & \Rightarrow x \in B \cup C. \end{array}$$

b) Prove that if $A \subseteq B$ then $\mathbf{P}(A \cap C) \subseteq \mathbf{P}(B \cap C)$.

PROOF:

This is an if-then set proof.

ASSUME: that $A \subseteq B$, save this for later.

GOAL: Show that $P(A \cap C) \subseteq P(B \cup C)$.

Note: typical elements here are SETS!

Let $S \in U$.

$$S \in \mathbf{P}(A \cap C) \Rightarrow S \subseteq A \cap C$$

 $\Rightarrow S \subseteq B \cup C$, by assumption $A \subseteq B$ and part a)
 $\Rightarrow S \in \mathbf{P}(B \cup C)$.