SOLUTIONS

- 1. Let $f : A \to B$ be a function. Write definitions for the following in logical form, with negations worked through.
 - (a) f is one-to-one iff $\forall x, y \in A$, if f(x) = f(y) then x = y.
 - (b) f is onto B iff $\forall w \in B, \exists x \in A \text{ such that } f(x) = w$.
 - (c) f is not one-to-one iff $\exists x, y \in A$ such that f(x) = f(y) but $x \neq y$.
 - (d) f is not onto B iff $\exists w \in B$ such that $\forall x \in A, f(x) \neq w$.
- 2. For each of the following, give an example of sets A, B and C and functions $f: A \to B$ and $g: B \to C$ which satisfy the given conditions. NOTE: you do not need to give formulas on Z or R; it is much easier to draw pictures of small sets and indicate your functions on the pictures.
 - (a) f is one-to-one but not onto, and g is onto but not one-to-one. Example: Let $A = \{a, b\}$, $B = \{p, q, r\}$ and $C = \{x, y\}$, with $f = \{(a, p), (b, q)\}$ and $g = \{(p, x), (q, y), (r, y)\}$.
 - (b) g is onto C, but $g \circ f$ is not onto C. Example: Let $A = \{a\}, B = \{p,q\}$ and $C = \{x,y\}$, with $f = \{(a,p)\}$ and $g = \{(p,x), (q,y)\}$.
 - (c) f is not onto B, but $g \circ f$ is onto C. Example: Let $A = \{a, b\}, B = \{p, q, r\}$ and $C = \{x, y\}$, with $f = \{(a, p), (b, q)\}$ and $g = \{(p, x), (q, y), (r, y)\}$.
 - (d) f is one-to-one, but $g \circ f$ is not one-to-one. Example: Let $A = \{a, b\}, B = \{p, q, r\}$ and $C = \{x\}$, with $f = \{(a, p), (b, q)\}$ and $g = \{(p, x), (q, x), (r, x)\}$.
- 3. (a) Prove that the function $f : \mathbf{R} \to \mathbf{R}$ by f(x) = 5x + 11 is one-to-one. Proof: Let $a, b \in \mathbf{R}$. Then

$$f(a) = f(b) \Rightarrow 5a + 11 = 5b + 11$$

$$\Rightarrow 5a = 5b$$

$$\Rightarrow a = b.$$

Therefore f is one-to-one.

(b) Prove that the function $f : \mathbf{R} \to \mathbf{R}$ by $f(x) = -x^4 + 12$ is not one-to-one. Proof: Note that f(1) = 11 and f(-1) = 11 but $1 \neq -1$. Therefore f is not one-to-one. (Any example using a number and its negative will work here.)

- (c) Prove that the function $f : \mathbf{R} \to \mathbf{R}$ given by f(x) = 63x 51 maps onto its codomain \mathbf{R} . Given any $y \in \mathbf{R}$, can we find an $x \in \mathbf{R}$ such that f(x) = y? (on scrap paper) We need to have f(x) = 63x - 51 = y, so $x = \frac{y+51}{63}$. Pick $x = \frac{y+51}{63}$. Note that $x \in \mathbf{R}$. So $f(x) = f\left(\frac{y+51}{63}\right) = 63\left(\frac{y+51}{63}\right) - 51 = y + 51 - 51 = y$. Therefore f maps onto its codomain \mathbf{R} .
- (d) Prove that the function $f : \mathbb{Z} \to \mathbb{Z}$ given by f(x) = 63x 51 does not map onto its codomain. Given any $y \in \mathbb{Z}$, can we find an $x \in \mathbb{Z}$ such that f(x) = y? Note that $x = \frac{y+51}{63}$ will not work since it is not necessarily an integer. COUNTEREXAMPLE: Pick y = 1. The only x that will generate 1, is $\frac{52}{63}$ which is not an integer. So we can not get to 1. Therefore f is not onto \mathbb{Z} . (Any y that can not be generated from an integer will work here).
- 4. Let $f : \mathbf{R} \to \mathbf{R}$ by $f(x) = 2x^2 + 1$ and $g : \mathbf{R} \to \mathbf{R}$ by g(x) = 3x 10. Find $g \circ f$ and $f \circ g$.

$$\begin{array}{rcl} f \circ g(x) &=& f(g(x)) = f(3x - 10) &=& 2(3x - 10)^2 + 1. \\ g \circ f(x) &=& g(f(x)) = g(2x^2 + 1) &=& 3(2x^2 + 1) - 10. \end{array}$$

- 5. Prove whether each of the following functions is one-to-one or not and whether it is onto its codomain or not.
 - (a) $f : \mathbf{R} \to \mathbf{R}$ by $f(x) = 12x^3 + 5$. • ONE-TO-ONE: Let $a, b \in \mathbf{R}$. Then

$$f(a) = f(b) \Rightarrow 12a^3 + 5 = 12b^3 + 5$$

$$\Rightarrow 12a^3 = 12b^3$$

$$\Rightarrow a^3 = b^3$$

$$\Rightarrow a = b.$$

Therefore f is one-to-one.

• ONTO: Given any $y \in \mathbf{R}$, can we find an $x \in \mathbf{R}$ such that f(x) = y? (on scrap paper) We need to have $f(x) = 12x^3 + 5 = y$, so $x = \sqrt[3]{\frac{y-5}{12}}$.

Pick
$$x = \sqrt[3]{\frac{y-5}{12}}$$
. Note that $x \in \mathbf{R}$.
So $f(x) = f\left(\sqrt[3]{\frac{y-5}{12}}\right) = 12\left(\sqrt[3]{\frac{y-5}{12}}\right)^3 + 5 = 12\left(\frac{y-5}{12}\right) + 5 = y$.
Therefore f maps onto \mathbf{R} .

- (b) $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ by f(x, y) = 2y 3x.
 - ONE-TO-ONE: COUNTEREXAMPLE: lots of different pairs give the same output, for instance f(0, 1) = 2 = f(2, 4). Therefore f is NOT one-to-one.
 - ONTO: Given any number $w \in \mathbf{R}$, can we find an input pair $(x, y) \in \mathbf{R} \times \mathbf{R}$ such that f(x, y) = w? (on scrap paper) In order to satisfy this, we would need 2y - 3x = w. There are lots of ways to find such a pair. For instance, given w, take x = 0, and y = w/2, so use the pair (0, w/2). Pick (x, y) = (0, w/2). Note that $(0, w/2) \in \mathbf{R} \times \mathbf{R}$. f(x, y) = f(0, w/2) = 2(w/2) - 3(0) = w. Therefore f maps onto \mathbf{R} .
- (c) $f: \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$ by f(x) = (-4x, x+4).
 - ONE-TO-ONE: Let $a, b \in \mathbb{Z}$. Then

$$f(a) = f(b) \Rightarrow (-4a, a + 4) = (-4b, b + 4)$$

$$\Rightarrow -4a = -4b \text{ and } a + 4 = b + 4$$

$$\Rightarrow a = b \text{ and } a = b$$

$$\Rightarrow a = b$$

Therefore f is one-to-one.

- ONTO: COUNTEREXAMPLE: Note that in all images of this function, the first coordinates are multiples of 4; so it won't be possible to produce pairs such as (x, y) where x is not divisible by 4 eg (3, 4). Therefore this function does not map onto $\mathbf{Z} \times \mathbf{Z}$.
- (d) $f: \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$ by $f(x) = (2x^2, x)$.
 - ONE-TO-ONE: Let $a, b \in \mathbb{Z}$. Then

$$f(a) = f(b) \Rightarrow (2a^2, a) = (2b^2, b)$$

$$\Rightarrow 2a^2 = 2b^2 \text{ and } a = b$$

$$\Rightarrow a = b$$

Therefore f is one-to-one.

• ONTO: COUNTEREXAMPLE: Note that in all images of this function the first coordinates are even; so it won't be possible to produce pairs such as (x, y) where x is odd, eg (3, 6). Therefore this function does not map onto $\mathbf{Z} \times \mathbf{Z}$.

- (e) $f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ by f(a, b) = 3ab.
 - ONE-TO-ONE: COUNTEREXAMPLE: Note that f(1,4) = 12 and f(2,2) = 12 but $(1,4) \neq (2,2)$. Therefore this function is not one-to-one.
 - ONTO: COUNTEREXAMPLE: Note that all images of this function are multiples of 3; so it won't be possible to produce 1 or 2. Therefore this function does not map onto Z.
- (f) $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ by f(x, y) = 3y + 2.
 - ONE-TO-ONE: COUNTEREXAMPLE: It is easy to find distinct pairs that give the same output. For instance f(2,0) = 2 and f(5,0) = 2 but $(2,0) \neq (5,0)$. Therefore f is not one-to-one.
 - ONTO: Given any number w ∈ R, can we find a pair (x, y) ∈ R × R such that f(x, y) = w?
 (on scrap paper) We need 3y + 2 = w. Solving for y in terms of w, we get y = ^{w-2}/₃. Note there is no restriction on x, so we can use any real number for x!
 Let (x, y) = (0, ^{w-2}/₃). This pair is in R × R.

Let $(x, y) = (0, \frac{w-2}{3})$. This pair is in $\mathbf{R} \times \mathbf{R}$. Now $f(x, y) = f(0, \frac{w-2}{3}) = 3(\frac{w-2}{3}) + 2 = (w-2) + 2 = w$. Therefore f is onto \mathbf{R} .

(g)
$$f: \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$$
 by $f(x) = (x+4, x-1)$.

• ONE-TO-ONE: Let $a, b \in \mathbb{Z}$. Then

$$f(a) = f(b) \Rightarrow (a+4, a-1) = (b+4, b-1)$$

$$\Rightarrow a+4 = b+4 \text{ and } a-1 = b-1$$

$$\Rightarrow a = b \text{ and } a = b$$

$$\Rightarrow a = b.$$

Therefore f is one-to-one.

• ONTO: COUNTEREXAMPLE : There is no way to get to (3,3) since that would require that x + 4 = 3 and x - 1 = 3 which would mean that x = -1 and x = 4 at the same time which is impossible. Therefore f does not map onto $\mathbf{Z} \times \mathbf{Z}$.

(h) $f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$ by f(x, y) = (-y, x - y).

• ONE-TO-ONE: Let $a, b, c, d \in \mathbb{Z}$. Then

$$f(a,b) = f(c,d) \Rightarrow (-b,a-b) = (-d,c-d)$$

$$\Rightarrow -b = -d \text{ and } a-b = c-d$$

$$\Rightarrow b = d \text{ and } a-b = c-d$$

$$\Rightarrow b = d \text{ and } a-b = c-b$$

$$\Rightarrow b = d \text{ and } a = c$$

$$\Rightarrow a = c \text{ and } b = d$$

$$\Rightarrow (a,b) = (c,d).$$

Therefore f is one-to-one.

- ONTO: Given any pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$, can we find a pair $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that f(x, y) = (a, b)? (on scrap paper) We need (a, b) = (-y, x-y). So a = -y and b = x-y. So use y = -a and x = b + y = b - a. Let (x, y) = (b - a, -a). Note that $(b - a, -a) \in \mathbb{Z} \times \mathbb{Z}$ Now f(x, y) = f(b - a, -a) = (-(-a), (b - a) - (-a)) = (a, b). Therefore f is onto $\mathbb{Z} \times \mathbb{Z}$.
- 6. Let $f : A \to B$ and $g : B \to C$. Prove that if f is one-to-one and g is one-to-one, then $g \circ f$ is one-to-one.

PROOF:

ASSUME: f is one-to-one, i.e., $(\forall a, b \in A)$ $f(a) = f(b) \Rightarrow a = b$, and g is one-to-one, i.e., $(\forall p, q \in B)$ $g(p) = g(q) \Rightarrow p = q$. Save for later. Show that $g \circ f$ is one-to-one. Let $a, b \in A$.

$$(g \circ f)(a) = (g \circ f)(b) \Rightarrow g(f(a)) = g(f(b))$$

 $\Rightarrow f(a) = f(b), \text{ since } g \text{ is one-to-one}$
 $\Rightarrow a = b, \text{ since } f \text{ is one-to-one}$

Therefore $g \circ f$ is one-to-one.

7. Let $f : A \to B$ and $g : B \to C$. Prove that if $g \circ f$ is one-to-one then f must be one-to-one.

PROOF:

ASSUME: $g \circ f$ is one-to-one, i.e., $(\forall a, b \in A)$ $g \circ f(a) = g \circ f(b) \Rightarrow a = b$. Show that f is one-to-one. Let $a, b \in A$.

$$\begin{aligned} f(a) &= f(b) \Rightarrow \quad g(f(a)) = g(f(b)), & \text{ since } g \text{ is a function} \\ \Rightarrow \quad g \circ f(a) = g \circ f(b), & \text{ by definition of } g \circ f \\ \Rightarrow \quad a = b, & \text{ since } g \circ f \text{ is one-to-one.} \end{aligned}$$

Therefore f is one-to-one.

8. Let $f : A \to B$ and $g : B \to C$. Prove that if f is onto B and g is onto C, then $g \circ f$ is onto C.

PROOF:

ASSUME: f is onto B i.e., $(\forall b \in B) (\exists x \in A) f(x) = b]$, and g is onto C, i.e., $(\forall w \in C) (\exists p \in B) g(p) = w)$. Show that $g \circ f$ is onto C. Let $w \in C$. Can we find an element $a \in A$ such that $g \circ f(a) = w$? Since $w \in C$ and g maps onto C, $\exists p \in B$ such that g(p) = w. Now we have $p \in B$, and since f maps onto $B, \exists a \in A$ such that f(a) = p. So we have an element $a \in A$. Now $g \circ f(a) = g(f(a)) = g(p) = w$. Therefore $g \circ f$ is onto C

9. Let $f : A \to B$ and $g : B \to C$. Prove that if $g \circ f$ is onto C then g must be onto C.

a) PROOF: ASSUME: $g \circ f$ is onto B i.e., $(\forall w \in C) \ (\exists x \in A)[(g \circ f)(x) = w]$. Show that g is onto C. Let $w \in C$. Can we find an element $b \in B$ such that g(b) = w? Since $w \in C$ and $g \circ f$ maps onto C, there exists an element $a \in A$ such that $(g \circ f)(a) = w$. Since $a \in A$ and f is a function, $\exists b \in B$ such that f(a) = b. So use this element, $b. \ b \in B$ and g(b) = g(f(a)) = w. So g is onto C.

- 10. Let f: A → B. Define a new function g: A × C → B × C, by the rule that g(a, c) = (f(a), c), for any pair (a, c) ∈ A × C. Prove that if f is onto B, then g maps onto B × C. ASSUME: that f maps onto B. Save for later. GOAL: that g maps onto B × C. Given any pair (w, c) ∈ B × C, can we find an (a, b) ∈ A × C so that g(a, b) = (w, c)? Let (w, c) ∈ B × C. Since f is onto B, ∃a ∈ A such that f(a) = w. Also c ∈ C. So use this pair, (a, c). This pair is in A × C. Now g(a, c) = (f(a), c) = (w, c). Therefore q is onto B × C.
- 11. From the text. Pages 214-216.
 - 9.14 A function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = n 3. Determine whether f is
 - (a) injective : Let $a, b \in \mathbb{Z}$. Then $f(a) = f(b) \Rightarrow a - 3 = b - 3 \Rightarrow a = b$. Therefore f is injective.
 - (b) surjective : Given any $w \in \mathbb{Z}$, can we find $x \in \mathbb{Z}$ such that f(x) = w? Pick x = w + 3. Then $x \in \mathbb{Z}$ and f(x) = f(w + 3) = (w + 3) - 3 = w. Therefore f is surjective.
 - 9.17 Determine whether the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2 + 4x + 9$ is
 - (a) one-to-one. f is not one-to-one since f(-4) = 9 = f(0) but $-4 \neq 0$.
 - (b) onto \mathbf{R} . f is not onto \mathbf{R} since the discriminant is negative, so there are no real roots and therefore there is no x such that f(x) = 0. ALTERNATE: completing the square we get $x^2 + 4x + 9 = (x+2)^2 + 5$ so f(x) is always greater than or equal to 5.
 - 9.18 Is there a function $f : \mathbf{R} \to \mathbf{R}$ that is onto \mathbf{R} but not one-to-one? Explain your answer.

There are many such functions. Any continuous function with a **bump** will do.

- eg $f(x) = x^3 - x^2$. So f is not one-to-one since f(0) = 0 = f(1) but f is onto **R**.

- eg Define
$$f(x) = \begin{cases} x & x < 0 \\ -x & 0 \le x \le 1 \\ x - 2 & x > 1 \end{cases}$$

Then f is not one-to-one since f(0) = 0 = f(2) but f is onto **R**.

- 9.19 Give an example of a function $f : \mathbf{N} \to \mathbf{N}$ that is
 - (a) one-to-one and onto N. Define f(n) = n
 - (b) one-to-one but not onto N. Define f(n) = n + 2. Then f is not onto N since there is no $n \in N$ such that f(n) = 1.
 - (c) onto \boldsymbol{N} but not one-to-one. Define $f(n) = \begin{cases} 2 & n = 1 \\ 1 & n = 2 \\ n 2 & n > 2 \end{cases}$.

Then f is not one-to-one since f(1) = 2 = f(4).

- (d) neither one-to-one not onto N. Define f(n) = 5. Then f is not one-to-one since f(1) = 5 = f(2) and f is not onto N since we can never get any value other than 5.
- 9.20 Prove that the function $f : \mathbf{R} \to \mathbf{R}$ defined by f(x) = 7x 2 is bijective.
 - injective : Let $a, b \in \mathbf{R}$. Then $f(a) = f(b) \Rightarrow 7a - 2 = 7b - 2 \Rightarrow a = b$. Therefore f is injective.
 - surjective : Given any $w \in \mathbf{R}$, can we find $x \in \mathbf{R}$ such that f(x) = w? Pick $x = \frac{w+2}{7}$. Then $x \in \mathbf{R}$ and $f(x) = f(\frac{w+2}{7}) = 7(\frac{w+2}{7}) - 2 = w$. Therefore f is surjective.

Therefore f is a bijection.

9.25 Let A be a nonempty set and let f : A → A be a function. Prove that if f ∘ f = i_A, then f is bijective. ASSUME: f ∘ f = i_A. SHOW that f is bijective.

- injective : Let $a, b \in A$. Then

$$f(a) = f(b) \Rightarrow f(f(a)) = f(f(b)) \text{ since } f \text{ is a function}$$

$$\Rightarrow (f \circ f)(a) = (f \circ f)(b)$$

$$\Rightarrow i_A(a) = i_A(b) \text{ since } f \circ f = i_A$$

$$\Rightarrow a = b$$

Therefore f is injective.

- surjective : Given any $p \in A$, can we find $x \in A$ such that f(x) = p? Since $p \in A$, and f is a function, $\exists w \in A$ such that f(p) = w. Pick x = w. Then $x \in A$ and $f(x) = f(w) = f(f(p)) = (f \circ f)(p) = i_A(p) = p$. Therefore f is surjective.

Therefore f is a bijection.

• 9.26 Let $A = \{1, 2, 3, 4\}, B = \{a, b, c\}, \text{ and } C = \{w, x, y, z\}.$ Consider the functions $f : A \to B$ and $g : B \to C$, where $f = \{(1, b), (2, c), (3, c), (4, a)\}$ and $g = \{(a, x), (b, y), (c, x)\}.$ Determine $g \circ f.$ $g \circ f = \{(1, y), (2, x), (3, x), (4, x)\}$

- 9.27 Two functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ are defined by $f(x) = 3x^2 + 1$ and g(x) = 5x 3 for all $x \in \mathbf{R}$. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$. $(g \circ f)(1) = g(f(1)) = g(4) = 17$ and $(f \circ g)(1) = f(g(1)) = f(2) = 13$
- 9.30 Let A and B be nonempty sets. Prove that if $f : A \to B$, then $f \circ i_A = f$ and $i_B \circ f = f$. $Dom(f \circ i_A) = Dom(i_A) = A = Dom(f)$. $(f \circ i_A)(x) = f(i_A(x)) = f(x)$ $Dom(i_B \circ f) = Dom(f)$. $(i_B \circ f)(x) = i_B(f(x)) = f(x)$
- 9.33 Show that the function $f : \mathbf{R} \to \mathbf{R}$ defined by f(x) = 4x 3 is bijective and determine $f^{-1}(x)$ for $x \in \mathbf{R}$.
 - injective : Let $a, b \in \mathbf{R}$.
 - Then $f(a) = f(b) \Rightarrow 4a 3 = 4b 3 \Rightarrow a = b$. So f is injective.
 - surjective : Given any $w \in \mathbf{R}$, can we find $x \in \mathbf{R}$ such that f(x) = w? Pick $x = \frac{w+3}{4}$. Then $x \in \mathbf{R}$ and $f(x) = f(\frac{w+3}{4}) = 4(\frac{w+3}{4}) - 3 = w$. Therefore f is surjective.

Therefore f is a bijection and $f^{-1}(x) = \frac{x+3}{4}$

- 9.35 Let the functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 2x + 3 and g(x) = -3x + 5.
 - (a) Show that f is one-to-one and onto \boldsymbol{R} .
 - injective : Let $a, b \in \mathbf{R}$. Then $f(a) = f(b) \Rightarrow 2a + 3 = 2b + 3 \Rightarrow a = b$. So f is injective. - surjective : Given any $w \in \mathbf{R}$, can we find $x \in \mathbf{R}$ st f(x) = w? Pick $x = \frac{w-3}{2}$. Then $x \in \mathbf{R}$ and $f(x) = f(\frac{w-3}{2}) = 2(\frac{w-3}{2}) + 3 = w$. Therefore f is surjective.
 - (b) Show that g is one-to-one and onto \mathbf{R} .
 - injective : Let $a, b \in \mathbf{R}$. Then $g(a) = g(b) \Rightarrow -3a + 5 = -3b + 5 \Rightarrow a = b$. So g is injective. - surjective : Given any $w \in \mathbf{R}$, can we find $x \in \mathbf{R}$ st g(x) = w? Pick $x = \frac{w-5}{-3}$. Then $x \in \mathbf{R}$; $g(x) = g(\frac{w-5}{-3}) = -3(\frac{w-5}{-3}) + 5 = w$. Therefore g is surjective.
 - (c) Determine the composition $g \circ f$. $g \circ f = g(f(x)) = g(2x+3) = -3(2x+3) + 5 = -6x - 4.$
 - (d) Determine the inverse functions f^{-1} and g^{-1} . $f^{-1}(x) = \frac{x-3}{2}$ and $g^{-1}(x) = \frac{x-5}{-3}$.
 - (e) Determine the inverse function $(g \circ f)^{-1}$ and the composition $f^{-1} \circ g^{-1}$. $(g \circ f)^{-1} = \frac{x+4}{-6}$

$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(\frac{x-5}{-3}) = \frac{\frac{x-3}{-3}-3}{2} = \frac{(x-5)+9}{-6} = \frac{x+4}{-6}$$

Note that $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})$