Math 1410–Assignment 5

Due Friday (October 21, 2005) before the lecture in the class

1. Evaluate each of the following determinants:

1 3	0	-1	1	6	1	
	1	1	5	3	1	
5 -4	1,	1	1 5 0	0	1	•
$\begin{vmatrix} 5 & -4 & 1 \\ -1 & 2 & 1 \end{vmatrix}$	1	1	-1	3	1	

2. Evaluate the following determinant using the cofactor expansion along the first row. Also, compute the determinant using the cofactor expansion down the second column.

1	2	3	
4	5	-6	
-7	8	1	

3. Find the inverse of each of the following matrices using the cofactor method:

[1 1 5]	1	-2	0	0	
1 - 1 - 3	5	1	0	0	
$\left[\begin{array}{rrrr} 1 & -1 & 5 \\ 1 & 1 & 1 \\ 3 & -4 & 2 \end{array}\right],$	0	0	2	_7	•
	0	0	3	0 0 -7 0	

4. Find all values of *a*, *b*, *c* and *d* for which the following matrix is singular (a square matrix *A* is called singular if |A| = 0):

2a	-1	1	1	
b	2	1	1	
0	0	с	d	•
0	0	1	-4	

5. Prove or disprove each of the following statements:

(a) |A + B| = |A| + |B|, for all (square) matrices A and B.

- (b) |2A| = 8|A|, for all 3 by 3 matrices *A*.
- (c) $|(AB)^{-1}| = \frac{1}{|A||B|}$, for all nonsingular (square) matrices A and B.
- Use the Cramer's rule to solve the following system of linear equations for any values of *a* ≠ 0 and *b* ≠ 2:

$$x + ay + bz = 10
 x + ay + 2z = 2
 2x + ay + 3z = 5$$