Math 1410–Assignment 8

Due Friday Nov. 25, 2005 before the lecture in the class

1. Let $A = \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 & 1 \\ -1 & 2 & 0 & 0 & 2 \end{bmatrix}$. Find the dimension of:

- (a) the row space of A,
- (b) the solution set of the equation $A\underline{x} = 0$ (note that \underline{x} is a column vector).
- 2. Let $\underline{v} = (-2, 5, 2, 4)$ and $\underline{u} = (1, 1, 0, -1)$.
 - (a) Find the projection of \underline{v} on $\underline{u} = (1, 1, 0, -1)$ and call it \underline{w} .
 - (b) Find the vector $\underline{x} = \underline{v} \underline{w}$.
 - (c) Find $\underline{u} \circ \underline{x}$.
- 3. (a) Show that the two vectors $\underline{u} = (1,1,1)$ and $\underline{v} = (1,-2,1)$ are orthogonal.
 - (b) Let $\underline{w} = (1,0,1)$. Find $\text{proj}_{\underline{w}}$ and $\text{proj}_{\underline{v}}\underline{w}$.
 - (c) Verify that $\underline{w} = \text{proj}_{\underline{u}}\underline{w} + \text{proj}_{\underline{v}}\underline{w}$.
- 4. (a) Verify that the set of vectors

$$S = \{(1,1,1,1), (1,-1,1,-1), (1,-1,-1,1), (1,1,-1,-1)\}$$

forms an orthogonal basis for \mathbb{R}^4 .

- (b) Use part (a) to express the vector (1,2,3,4) as a linear combination of the vectors in *S*.
- 5. Let $\underline{a} = (-3,2,1)$, $\underline{b} = (1,1,1)$, and $\underline{c} = (9,-4,7)$ be vectors in \mathbb{R}^3 .
 - (a) Show that vector \underline{a} is orthogonal to the vector \underline{b} .
 - (b) Let $\underline{u} = \text{proj}_{\underline{a}\underline{c}}$ and $\underline{v} = \text{proj}_{\underline{b}\underline{c}}$. Find the vector $\underline{w} = \underline{c} \underline{u} \underline{v}$.
 - (c) Show that vector \underline{w} is orthogonal to both vectors \underline{a} and \underline{b} .