

(b) Let
$$S = span\{(1, 1, 1, 1), (1, 1, -1, 1), (1, -1, 1, 1)\}$$
. (7) Using part (a), determine if the vector $(-2, 4, 0, -2)$ is in S .

(c) (3) Is it true that
$$S = \mathbb{R}^4$$
? Explain

2. (a) (b) Verify that the three vectors
$$\underline{\mathbf{u}} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), \ \underline{\mathbf{v}} = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \underline{\mathbf{w}} = (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$$
 form an orthonormal basis for \mathbb{R}^3 .

(b) (4) Is it possible to find a vector which is not in the span of the vectors
$$\underline{\mathbf{u}}$$
, $\underline{\mathbf{v}}$ and $\underline{\mathbf{w}}$?

3. Let

$$A = \left[\begin{array}{ccc} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{array} \right].$$

- (a) (4) show that (1,1,1) is an eigenvector of A and find the corresponding eigenvalue.
- (b) (4) show that (1,-1,0) is an eigenvector of A and find the corresponding eigenvalue.
- (c) (6) Find all the eigenvalues of A.

(d) (10) Find a basis for each of the eigenspaces of the matrix A.

4. (5,5,5) Which of the following subsets is a subspace of \mathbb{R}^3 ? You need to justify your claim.

(a)
$$\{(x, y, z): x + 3y - z = 5\}$$

(b)
$$\{(x, y, z): x + 3y - z = 0\}$$

(c)
$$\{(x, y, z) : xyz = 0\}$$

- 5. Given $S = \{(-1, 0, 1), (-2, 0, 1)\}.$
 - (a) (4) Describe the vectors in the span of S.
 - (b) (7) Determine whether the vector $\underline{\mathbf{v}} = (1, 0, 4)$ is in the span of S and if the vector is in the span, write it as a linear combination of elements of S

6. Let
$$A = \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 3 & 3 & 1 \end{bmatrix}$$
.

(a) (5) Find the dimension of the row space of A.

(b) (8) Find a basis and the dimension of the solution set of the equation $A\underline{\mathbf{x}} = 0$.