
Math 1410–Solutions for Assignment 9
Submitted Friday, December 2, 2005

1. (a) Verify that the three vectorsu =
(

1√
2
, 0,

1√
2

)
, v =

(
1√
3
,

1√
3
,
−1√

3

)
,

w =
(
−1√

6
,

2√
6
,

1√
6

)
form an orthonormal basis forR3.

Solution:

We need to show that each pair of vectors is orthogonal and that each
vector has a length/magnitude/norm of 1. There are two ways of do-
ing this.

Method 1: Verify the orthogonality of each pair of vectors separately
and calculate the length of each vector separately.

u◦v =
(

1√
2

)(
1√
3

)
+0+

(
1√
2

)(
−1√

3

)
= 1√

6
− 1√

6
= 0.

u◦w =
(

1√
2

)(
−1√

6

)
+0+

(
1√
2

)(
1√
6

)
= −1√

12
+ 1√

12
= 0.

v◦w = 1√
3
· −1√

6
+ 1√

3
· 2√

6
+ −1√

3
· 1√

6
= −1√

18
+ 2√

18
− 1√

18
= 0.

||u|| =

√(
1√
2

)2
+ (0)2 +

(
1√
2

)2
=

√
1
2 + 1

2 = 1.

||v|| =

√(
1√
3

)2
+

(
1√
3

)2
+

(
−1√

3

)2
=

√
1
3 + 1

3 + 1
3 = 1.

||w|| =

√(
−1√

6

)2
+

(
2√
6

)2
+

(
1√
6

)2
=

√
1
6 + 4

6 + 1
6 = 1.

Therefore,{u, v, w} is an orthonormal basis forR3.
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Method 2: Form a 3×3 matrixM whose rows are the three vectors
and verify thatMMt = I .

1√
2

0 1√
2

1√
3

1√
3
−1√

3

−1√
6

2√
6

1√
6




1√
2

1√
3
−1√

6

0 1√
3

2√
6

1√
2
−1√

3
1√
6



=


1
2 + 1

2
1√
6
− 1√

6
−1√
12

+ 1√
12

1√
6
− 1√

6
1
3 + 1

3 + 1
3

−1√
18

+ 2√
18
− 1√

18

−1√
12

+ 1√
12

−1√
18

+ 2√
18
− 1√

18
1
6 + 4

6 + 1
6



=

 1 0 0
0 1 0
0 0 1

 .

Thus, {u, v, w} is an orthonormal basis forR3.

(b) Express the vectors(1,−3, 4) and (2, 1, 2) as linear combinations
of the above basis.

Solution:

Let a = (1,−3, 4) and b = (2, 1, 2). Then,

a = (a ◦ u) u + (a ◦ v) v + (a ◦ w) w

=
(

1√
2
+0+ 4√

2

)
u +

(
1√
3
− 3√

3
− 4√

3

)
v +

(
−1√

6
− 6√

6
+ 4√

6

)
w

= 5√
2

u + −6√
3

v + −3√
6

w.
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Similarly,

b = (b ◦ u) u + (b ◦ v) v + (b ◦ w) w

=
(

2√
2
+0+ 2√

2

)
u +

(
2√
3
+ 1√

3
− 2√

3

)
v +

(
−2√

6
+ 2√

6
+ 2√

6

)
w

= 4√
2

u + 1√
3

v + 2√
6

w.

2. (a) Use the Gram-Schmidt process to orthonormalize the vectors

(1, 1, 1, 1), (1, 1, 1,−1), (1, 2, 2, 0).

Solution:

Let v1 = (1, 1, 1, 1), v2 = (1, 1, 1,−1) and v3 = (1, 2, 2, 0),
and let S= {v1, v1, v1}. Then, we defineu1, u2, and u3 by

u1 = v1 = (1, 1, 1, 1),

u2 = v2 − proju1
v2 = v2 −

v2 ◦ u1
u1 ◦ u1

u1

= (1, 1, 1,−1) − 1+1+1−1
1+1+1+1 (1, 1, 1, 1)

= (1, 1, 1,−1) −
(1

2, 1
2, 1

2, 1
2

)
=

(1
2, 1

2, 1
2,−3

2

)
, and

u3 = v3 − proju1
v3 − proju2

v3

= v3 −
v3 ◦ u1
u1 ◦ u1

u1 −
v3 ◦ u2
u2 ◦ u2

u2

= (1, 2, 2, 0) − 5
4 (1, 1, 1, 1) − 5

6

(1
2, 1

2, 1
2,−3

2

)
= (1, 2, 2, 0) −

(5
4, 5

4, 5
4, 5

4

)
−

( 5
12,

5
12,

5
12,−

5
4

)
=

(
−2

3, 1
3, 1

3, 0
)
.
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We have obtained an orthogonal basis{u1, u2, u3}. We now find an
orthonormal basis{w1, w2, w3} by normalizing u1, u2, and u3.

This computation may be simplified by first finding (non-zero) scalar
multiples of u1, u2, and u3 that have integer components and then
normalizing these new vectors. In other words, we can normalize
q

1
= u1 = (1, 1, 1, 1), q

2
= 2u2 = (1, 1, 1,−3), and

q
3

= 3u3 = (−2, 1, 1, 0) to obtain

w1 = 1
||q

1
|| q

1
= 1√

4
(1, 1, 1, 1) =

(1
2, 1

2, 1
2, 1

2

)
,

w2 = 1
||q

2
|| q

2
= 1√

12
(1, 1, 1,−3) =

(
1√
12

, 1√
12

, 1√
12

, −3√
12

)
,

and w3 = 1
||q

3
|| q

3
= 1√

6
(−2, 1, 1, 0) =

(
−2√

6
, 1√

6
, 1√

6
, 0

)
.

Then, {w1, w2, w3} is an orthonormal basis of the span ofS.

(b) Use part (a) to see if the vector(1, 2, 2,−2) is in
span{(1, 1, 1, 1), (1, 1, 1,−1), (1, 2, 2, 0)}.

Solution:

Let a = (1, 2, 2,−2) and b = (1, 2, 4,−2).

There are two ways of using part (a) to determine which ofa and
b are in the span ofS. For part (b), one method will be used, and for
part (c), the other method will be used.
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We begin by calculating the projection ofa onto the span ofS using
its orthonormal basis{w1, w2, w3}:

projw1
a + projw2

a + projw3
a

= (a ◦ w1) w1 + (a ◦ w2) w2 + (a ◦ w3) w3

= 3
2

(1
2, 1

2, 1
2, 1

2

)
+ 11√

12

(
1√
12

, 1√
12

, 1√
12

, −3√
12

)
+ 2√

6

(
−2√

6
, 1√

6
, 1√

6
,0

)
=

(3
4, 3

4, 3
4, 3

4

)
+

(11
12,

11
12,

11
12,−

11
4

)
+

(
−2

3, 1
3, 1

3, 0
)

= (1, 2, 2,−2) .

Since a is equal to its own projection onto the span ofS, a must be
in the span ofS.

(c) Repeat part (b) for the vector(1, 2, 4,−2).

Solution:

This time we calculate the projection of ofb onto the span ofS using

its orthogonalbasis
{

q
1
, q

2
, q

3

}
:

projq
1

b + projq
2

b + projq
3

b

=
b ◦ q

1
q

1
◦ q

1
q

1
+

b ◦ q
2

q
2
◦ q

2
q

2
+

b ◦ q
3

q
3
◦ q

3
q

3

= 5
4 (1, 1, 1, 1) + 13

12 (1, 1, 1,−3) + 4√
6

(−2, 1, 1, 0)

=
(5

4, 5
4, 5

4, 5
4

)
+

(13
12,

13
12,

13
12,−

13
4

)
+

(
−4

3, 2
3, 2

3, 0
)

= (1, 3, 3,−2) .

Since b is not equal to its projection onto the span ofS, b is not in
the span ofS.
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3. (a) Find the eigenvalues of the matrix

A =

 3 0 0
0 1 3
0 3 1

 .

Solution:

The eigenvalues ofA are the values of the scalarλ for which the equa-
tion Ax = λx has a non-zero solution for the column vectorx.

The equation above may be rewritten asAx−λx = 0, which in turn
becomes(A−λI)x = 0. For a fixed value ofλ, this equation repre-
sents a homogeneous linear system. This system will have a non-zero
solution exactly when its coefficient matrix is not invertible. In other
words, there is a non-zero solution forx exactly when the determinant
of A−λI is 0.

Consequently, to find the eigenvalues ofA, we calculate the determi-
nant of A−λI , set it equal to 0, then solve forλ.

|A − λI |

=

∣∣∣∣∣∣
 3 0 0

0 1 3
0 3 1

 − λ

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 3 0 0

0 1 3
0 3 1

 −
 λ 0 0

0 λ 0
0 0 λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3−λ 0 0

0 1−λ 3
0 3 1−λ

∣∣∣∣∣∣
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= (3−λ)
∣∣∣∣ 1−λ 3

3 1−λ

∣∣∣∣
= (3−λ)

[
(1−λ)2−32

]
= (3−λ)

[
1−λ−λ−λ2−9

]
= (3−λ)

[
λ2−2λ−8

]
= (3−λ) [(λ−4)(λ+2)] .

The above expression, which is a polynomial inλ, is equal to 0 when
λ is 3, 4, or−2. Thus, the eigenvalues ofA are 3, 4, and−2.

(b) Find a basis for each of the eigenspaces of the matrixA.

Solution:

An eigenspace of a matrixB is the solution set of the linear system
(B−λI)x = 0, whereλ is an eigenvalue ofB. Since the matrixA
above has three eigenvalues, it will have three eigenspaces.

To find the basis of each eigenspace ofA, we solve each of the three
linear systems obtained by replacingλ in the equation(A−λI)x = 0 with
an eigenvalue ofA.

λ = 3: The augmented matrix for the system(A−3I)x = 0 is

 3− (3) 0 0 0
0 1− (3) 3 0
0 3 1− (3) 0


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=

 0 0 0 0
0 −2 3 0
0 3 −2 0


∼

R1←→ R3

 0 3 −2 0
0 −2 3 0
0 0 0 0


∼

R2+R1

 0 1 1 0
0 −2 3 0
0 0 0 0


∼

2R1+R2

 0 1 1 0
0 0 5 0
0 0 0 0


∼

1
5R2

 0 1 1 0
0 0 1 0
0 0 0 0


∼

−R2+R1

 0 1 0 0
0 0 1 0
0 0 0 0

 .

The general solution to this system is

 x
y
z

 =

 x
0
0

 = x

 1
0
0

,

so the basis of this eigenspace is{(1, 0, 0)}.

λ = 4: The augmented matrix for the system(A−4I)x = 0 is

 3− (4) 0 0 0
0 1− (4) 3 0
0 3 1− (4) 0


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=

 −1 0 0 0
0 −3 3 0
0 3 −3 0


∼

R2+R3

 −1 0 0 0
0 −3 3 0
0 0 0 0


∼
−R1
−1

3R1

 1 0 0 0
0 1 −1 0
0 0 0 0

 .

The general solution to this system is

 x
y
z

 =

 0
z
z

 = z

 0
1
1

,

so the basis of this eigenspace is{(1, 0, 0)}.

λ =−2: The augmented matrix for the system(A− (−2)I)x = 0 is

 3− (−2) 0 0 0
0 1− (−2) 3 0
0 3 1− (−2) 0



=

 5 0 0 0
0 3 3 0
0 3 3 0


∼

−R2+R3

 5 0 0 0
0 3 3 0
0 0 0 0


∼

1
5R1
1
3R2

 1 0 0 0
0 1 1 0
0 0 0 0

 .
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Hadi Karaghani
Highlight

Hadi Karaghani
Highlight



The general solution to this system is

 x
y
z

 =

 0
−z

z

 = z

 0
−1

1

,

so the basis of this eigenspace is{(0,−1, 1)}.

(c) Orthonormalize the vectors found in (b) by applying the Gram-Schmidt
process, if necessary.

Solution:

The vectors(1, 0, 0), (0,−1, 1), and(0, 1, 1) are already orthogonal,
so we do not need to use the Gram-Schmidt process. We do need to
normalize these vectors, however:

1
||(1, 0, 0)|| (1, 0, 0) = 1

1 (1, 0, 0) = (1, 0, 0),

1
||(0,−1, 1)|| (0,−1, 1) = 1√

2
(0,−1, 1) =

(
0, −1√

2
, 1√

2

)
,

and 1
||(0, 1, 1)|| (0, 1, 1) = 1√

2
(0, 1, 1) =

(
0, 1√

2
, 1√

2

)
.

(d) Use the vectors found in (c) to form an orthonormal matrixP diago-
nalizingA.

Solution:

P is a 3×3 matrix whose columns are the vectors found in (c) i.e.

P =


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2

 .
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We now verify thatP diagonalizesA:

PtAP =


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2


t  3 0 0

0 1 3
0 3 1




1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2



=


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2




3 0 0

0 2√
2

4√
2

0 −2√
2

4√
2



=

 3 0 0
0 −2 0
0 0 4

 = D.

D is a diagonal matrix, soP diagonalizesA.

(e) Find the entry in the first row and first column ofA7.

Solution:

Since PtP = I andP is square,P−1 = Pt . Then,PtAP= D

=⇒ P(PtAP)Pt = P(D)Pt

=⇒ A = PDPt

=⇒ A2 = (PDPt)(PDPt) = PD2Pt

=⇒ A3 =
(
PD2Pt

)
(PDPt) = PD3Pt , etc.
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Continuing, we obtainAn = PDnPt . Thus, A7 = PD7Pt

=


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2


 3 0 0

0 −2 0
0 0 4

7


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2


t

=


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2


 37 0 0

0 −27 0
0 0 47




1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2



=


1 0 0

0 −1√
2

1√
2

0 1√
2

1√
2




37 0 0

0 27
√

2
−27
√

2

0 47
√

2
47
√

2



=


37 0 0

0 −27+47

2
27+47

2

0 27+47

2
−27+47

2

 .

So, the entry in the first row and first column ofA7 is 37, or 2187.

4. Repeat Problem 3 for the matrix

A =

 1 2 0
2 1 0
0 0 −1

 .
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(a) Find the eigenvalues of the matrix

A =

 1 2 0
2 1 0
0 0 −1

 .

Solution:

As in Problem 3, we calculate the determinant ofA−λI , set it equal
to 0, then solve forλ.

|A − λI |

=

∣∣∣∣∣∣
 1 2 0

2 1 0
0 0 −1

 − λ

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1−λ 2 0

2 1−λ 0
0 0 −1−λ

∣∣∣∣∣∣
= (−1−λ)

∣∣∣∣ 1−λ 2
2 1−λ

∣∣∣∣
= (−1−λ)

[
(1−λ)2−22

]
= (−1−λ) [(1−λ−2)(1−λ+2)]

= (−1−λ) [(−1−λ)(3−λ)]

= (1+λ)2(3−λ) .

The above polynomial is equal to 0 whenλ is −1 or 3. Thus, the
eigenvalues ofA are−1 and 3.
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(b) Find a basis for each of the eigenspaces of the matrixA.

Solution:

As in Problem 3, we find the basis of each eigenspace ofA by solv-
ing both of the linear systems obtained by replacingλ in the equation
(A−λI)x = 0 with an eigenvalue ofA.

λ =−1: The augmented matrix for the system(A− (−1) I)x = 0 is

 1− (−1) 2 0 0
2 1− (−1) 0 0
0 0 −1− (−1) 0



=

 2 2 0 0
2 2 0 0
0 0 0 0


∼

1
2R1

 1 1 0 0
2 2 0 0
0 0 0 0


∼

−2R1+R2

 1 1 0 0
0 0 0 0
0 0 0 0

 .

The general solution to this system is x
y
z

 =

 −y
y
z

 = y

 −1
1
0

 + z

 0
0
1

 ,

so the basis of this eigenspace is{(−1, 1, 0), (0, 0, 1)}.
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Tip: Keep in mind that if the eigenvalue is repeated two times, then you should be able to find a basis consisting of two vectors. Always check to see that the eigenvectors corresponding to different eigenvalues are orthogonal.



λ = 3: The augmented matrix for the system(A−3I)x = 0 is

 1− (3) 2 0 0
2 1− (3) 0 0
0 0 −1− (3) 0



=

 −2 2 0 0
2 −2 0 0
0 0 −4 0


∼
−1

2R1
−1

4R3

 1 −1 0 0
2 −2 0 0
0 0 1 0


∼

−2R1+R2

 1 −1 0 0
0 0 0 0
0 0 1 0


∼

R2←→ R3

 1 −1 0 0
0 0 1 0
0 0 0 0

 .

The general solution to this system is

 x
y
z

 =

 y
y
0

 = y

 1
1
0

,

so the basis of this eigenspace is{(1, 1, 0)}.
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(c) Orthonormalize the vectors found in (b) by applying the Gram-Schmidt
process, if necessary.

Solution:

Like the vectors in Problem 3, the vectors(−1, 1, 0), (0, 0, 1), and
(1, 1, 0) are already orthogonal, so we just need to normalize them:

1
||(−1, 1, 0)|| (−1, 1, 0) = 1√

2
(−1, 1, 0) =

(
−1√

2
, 1√

2
,0

)
,

1
||(0, 0, 1)|| (0, 0, 1) = 1

1 (0, 0, 1) = (0, 0, 1), and

1
||(1, 1, 0)|| (1, 1, 0) = 1√

2
(1, 1, 0) =

(
1√
2
, 1√

2
,0

)
.

(d) Use the vectors found in (c) to form an orthonormal matrixP diago-
nalizingA.

Solution:

As in Problem 3, the columns ofP are the vectors found in (c) i.e.

P =


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0

 .
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Note
You notice that you have different choices in deciding on the shape of the matrix P. For example you may switch the first column and the second etc. This does not affect the next steps, except of course, the order of the diagonal entries of D changes.



We now verify thatP diagonalizesA:

PtAP =


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0


t  1 2 0

2 1 0
0 0 −1



−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0



=


−1√

2
1√
2

0

0 0 1

1√
2

1√
2

0




1√
2

0 3√
2

−1√
2

0 3√
2

0 −1 0



=

 −1 0 0
0 −1 0
0 0 3

 = D.

D is a diagonal matrix, soP diagonalizesA.

(e) Find the entry in the first row and first column ofA7.

Solution:

As shown in Problem 3,An = PDnPt . Thus, A7 = PD7Pt

=


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0


 −1 0 0

0 −1 0
0 0 3

7


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0


t
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Note
Again no need to do this long multiplications. You may write the first and the last matrices right away.



=


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0


 −1 0 0

0 −1 0
0 0 37



−1√

2
1√
2

0

0 0 1

1√
2

1√
2

0



=


−1√

2
0 1√

2

1√
2

0 1√
2

0 1 0




1√
2

−1√
2

0

0 0 −1

37
√

2
37
√

2
0



=


−1+37

2
1+37

2 0

1+37

2
−1+37

2 0

0 0 −1

 .

So, the entry in the first row and first column ofA7 is

−1+37

2
=
−1+2187

2
=

2186
2

= 1093.
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Note
Again you do not need to find all the entries here. Think and find out how to cut the volume of computations here. 




