Math 1410–Solutions for Assignment 6

Submitted Friday, November 4

1. Given the vectors $\underline{a} = (1,1,1)$, $\underline{b} = (-2,-1,2)$, and $\underline{v} = (3,4,7)$. Express the vector \underline{v} as a linear combination of \underline{a} and \underline{b} .

Solution:

We want to find scalars c_1 and c_2 such that $\underline{v} = c_1 \underline{a} + c_2 \underline{b}$, or

$$c_1(1,1,1) + c_2(-2,-1,2) = (3,4,7).$$

Focusing on the first component of each vector (i.e. the *x* coordinate), we have $c_1(1) + c_2(-2) = (3)$, or $c_1 - 2c_2 = 3$, which is a linear equation. Focusing on the second and third components of each vector gives us two more linear equations, which together form the following linear system:

$$\begin{cases} c_1 - 2c_2 = 3\\ c_1 - c_2 = 4\\ c_1 + 2c_2 = 7 \end{cases}$$

To solve this system, we form its augmented matrix:

Notice that the entries in the first three columns of this augmented matrix are the components of the vectors \underline{a} , \underline{b} , and \underline{v} respectively. Now we need to find the reduced echelon form of this matrix:

$$\begin{array}{c|c}
-R1 + R2 \\
-R1 + R3 \\
\end{array}
\begin{bmatrix}
1 & -2 & 3 \\
0 & 1 & 1 \\
0 & 4 & 4
\end{bmatrix}$$

\sim	1	0	5	
-2R2 + R1	0	1	1	
-4R2 + R3	0	0	0	

The solution is $c_1 = 5$ and $c_2 = 1$. Therefore, $\underline{v} = 5\underline{a} + 2\underline{b}$.

2. Show that the $span\{(-1,0,1), (-2,0,-2)\}$ consists of all three dimensional vectors with the second component 0.

Solution:

We need to show that every vector of the form (x, 0, z), where x and z are real, is in $span\{(-1,0,1), (-2,0,-2)\}$. A vector is in the span of (-1,0,1)and (-2,0,-2) if it is a linear combination of (-1,0,1) and (-2,0,-2). So, we need to show that every vector of the form (x, 0, z) is a linear combination of (-1,0,1) and (-2,0,-2). To do this, we solve the following system (shown as an augmented matrix) for c_1 and c_2 :

$$\begin{bmatrix} -1 & -2 & | x \\ 0 & 0 & | 0 \\ 1 & -2 & | z \end{bmatrix}$$

$$\sim -R1 \qquad \begin{bmatrix} 1 & 2 & | -x \\ 0 & 0 & | 0 \\ 1 & -2 & | z \end{bmatrix}$$

$$\sim R2 \longleftrightarrow R3 \qquad \begin{bmatrix} 1 & 2 & | -x \\ 1 & -2 & | z \\ 0 & 0 & | 0 \end{bmatrix}$$

$$\sim -R1 + R2 \qquad \begin{bmatrix} 1 & 2 & | -x \\ 0 & -4 & | x + z \\ 0 & 0 & | 0 \end{bmatrix}$$

_

$$\begin{array}{c}
\sim \\
-\frac{1}{4}R2 \\
\sim \\
-2R2 + R1
\end{array}
\begin{bmatrix}
1 & 2 & -x \\
0 & 1 & -\frac{x+z}{4} \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{array}{c}
\sim \\
1 & 0 & \frac{z-x}{2} \\
0 & 1 & -\frac{x+z}{4} \\
0 & 0 & 0
\end{bmatrix}.$$

For any real x and z, there is a solution for c_1 and c_2 . Thus, every vector of the form (x,0,z) is in the span of (-1,0,1) and (-2,0,-2). Hence, $span\{(-1,0,1), (-2,0,-2)\}$ consists of all three dimensional vectors with the second component 0.

- 3. Given $S = \{(1,0,1,1), (0,1,1,1), (1,1,0,1)\},\$
 - (a) determine whether the vector $\underline{v} = (-2, -3, 3, -1)$ is in the span of *S*,

Solution:

Again, \underline{v} is in the span of *S* if it is a linear combination of the vectors in *S*. To determine if it is, we solve the following system for c_1 , c_2 , and c_3 :

	[1	0	1	-2	2	
	0	1	1	-3	3	
	1	1	0		3	
	1	1	1	-	1	
	-				_	
	1	0		1 -	-2	
	0	1		1 -	-3	
-R1 + R3	0	1	<u> </u>	1	5	
$-\kappa_1 + \kappa_4$	0	1	()	1	
	_					_

\sim -R2+R3 -R2+R4	$\left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$	$ \begin{array}{c} 1 \\ 1 \\ -2 \\ -1 \end{array} $	$\begin{bmatrix} -2 \\ -3 \\ 8 \\ 4 \end{bmatrix}$
\sim $-\frac{1}{2}R3$	$\left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$	$ \begin{array}{c} 1 \\ 1 \\ -1 \end{array} $	$\begin{bmatrix} -2\\ -3\\ -4\\ 4 \end{bmatrix}$
$\sim -R3 + R1 -R3 + R2 R3 + R4$	$ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	0 0 1 0	$\begin{bmatrix} 2\\1\\-4\\0 \end{bmatrix}$

The system is consistent, so \underline{v} is a linear combination of the vectors in *S*. Ergo, \underline{v} in the span of *S*.

(b) and if the vector is in the span, write it as a linear combination of elements of *S*.

Solution:

From the work above, we see that $c_1 = 2$, $c_2 = 1$, and $c_3 = -4$. Hence,

 $\underline{\mathbf{v}} = 2(1,0,1,1) + 1(0,1,1,1) - 4(1,1,0,1).$

- 4. Which of the following subsets are subspaces of \mathbb{R}^3 ? You need to justify your claim.
 - (a) $\{(x,0,z): x = 3z\}$

Solution:

Every vector in this set has the form (3z, 0, z). To determine if this set is a subspace of \mathbb{R}^3 , we need to determine if it is closed under vector

addition and scalar multiplication.

To check closure under vector addition, let $\underline{v}_1 = (3z_1, 0, z_1)$ and $\underline{v}_2 = (3z_2, 0, z_2)$ be any vectors in the set. Then,

$$\underline{\mathbf{v}}_1 + \underline{\mathbf{v}}_2 = (3z_1, 0, z_1) + (3z_2, 0, z_2)$$
$$= (3z_1 + 3z_2, 0, z_1 + z_2)$$
$$= (3(z_1 + z_2), 0, (z_1 + z_2)),$$

so $\underline{v}_1 + \underline{v}_2$ is also in the set. Consequently, the set is closed under vector addition.

To check closure under scalar multiplication, let $\underline{v}_0 = (3z_0, 0, z_0)$ be any vector in the set and let *s* be any scalar. Then,

$$s\underline{v}_0 = s(3z_0, 0, z_0) = (s(3z_0), 0, s(z_0))$$
$$= (3sz_0, 0, sz_0) = (3(sz_0), 0, (sz_0)),$$

so $s\underline{v}$ is also in the set. Thus, the set is closed under scalar multiplication. Since it is closed under both vector addition and scalar multiplication, this set is a subspace of \mathbb{R}^3 .

(b) $\{(x, y, z): x + 3y - 2z = 5\}$

Solution:

Let \underline{v} be any vector in this set. In order for this set to be a subspace of \mathbb{R}^3 , it must be closed under scalar multiplication. Thus, this set must contain every scalar multiple of \underline{v} , including $0\underline{v} = \underline{0} = (0,0,0)$. However, (0,0,0) does not satisfy x + 3y - 2z = 5, so (0,0,0) is not in the set.

Therefore, this set is NOT a subspace of \mathbb{R}^3 .

(c)
$$\{(x, y, z): 3x + 3y - z = 0\}$$

Solving the equation 3x + 3y - z = 0 for *z*, we find that every vector in this set has the form (x, y, 3x + 3y). As before, to determine if this set is a subspace of \mathbb{R}^3 , we need to determine if it is closed under vector addition and scalar multiplication.

To check closure under vector addition, let $\underline{v}_1 = (x_1, y_1, 3x_1 + 3y_1)$ and $\underline{v}_2 = (x_2, y_2, 3x_2 + 3y_2)$ be any vectors in the set. Then,

$$\underline{\mathbf{v}}_{1} + \underline{\mathbf{v}}_{2} = (x_{1}, y_{1}, 3x_{1} + 3y_{1}) + (x_{2}, y_{2}, 3x_{2} + 3y_{2})$$

= $(x_{1} + x_{2}, y_{1} + y_{2}, 3x_{1} + 3y_{1} + 3x_{2} + 3y_{2})$
= $((x_{1} + x_{2}), (y_{1} + y_{2}), 3(x_{1} + x_{2}) + 3(y_{1} + y_{2}))$

Since $\underline{v}_1 + \underline{v}_2$ is also in the set, the set is closed under vector addition.

To check closure under scalar multiplication, let $\underline{v}_0 = (x_0, y_0, 3x_0 + 3y_0)$ be any vector in the set and let *s* be any scalar. Then,

$$s\underline{v}_{0} = s(x_{0}, y_{0}, 3x_{0} + 3y_{0}) = (sx_{0}, sy_{0}, s(3x_{0} + 3y_{0}))$$
$$= (sx_{0}, sy_{0}, 3sx_{0} + 3sy_{0})$$
$$= ((sx_{0}), (sy_{0}), 3(sx_{0}) + 3(sy_{0})).$$

Since <u>sv</u> is also in the set, the set is closed under scalar multiplication. Since the set is closed under both vector addition and scalar multiplication, it is a subspace of \mathbb{R}^3 .

(d)
$$\{(x, y, z) : xy + z = 0\}$$

If this set is a subspace of \mathbb{R}^3 , then it must be closed under vector addition. However, the vectors (1,0,0) and (0,1,0) are in the set, but their sum, (1,0,0) + (0,1,0) = (1,1,0), is not.

Since this set is not closed under vector addition, it is NOT a subspace of \mathbb{R}^3 .

(e) $\{(x, y, z): x^2 = 0\}$

Solution:

If $x^2 = 0$, then x = 0, so every vector in this set has the form (0, y, z).

To check if this set is closed under vector addition, let $\underline{v}_1 = (0, y_1, z_1)$ and $\underline{v}_2 = (0, y_2, z_2)$ be any vectors in the set. Then,

$$\underline{\mathbf{v}}_1 + \underline{\mathbf{v}}_2 = (0, y_1, z_1) + (0, y_2, z_2)$$
$$= (0, y_1 + y_2, z_1 + z_2),$$

which is also in the set, so the set is closed under vector addition.

To check closure under scalar multiplication, let $\underline{v}_0 = (0, y_0, z_0)$ be any vector in the set and let *s* be any scalar. Then,

$$s\underline{v}_0 = s(0, y_0, z_0) = (0, sy_0, sz_0),$$

which is also in the set, so the set is closed under scalar multiplication. Since the set is closed under both vector addition and scalar multiplication, it is a subspace of \mathbb{R}^3 .

(f)
$$\{(x, y, z): x+3y-z=0 \text{ and } 2x-3y+z=0\}$$

Solving the linear system formed by the equations x + 3y - z = 0 and 2x - 3y + z = 0, we find that x = 0 and z = 3y, so every vector in the set has the form (0, y, 3y).

To check if this set is closed under vector addition, let $\underline{v}_1 = (0, y_1, 3y_1)$ and $\underline{v}_2 = (0, y_2, 3y_2)$ be any vectors in the set. Then,

$$\underline{\mathbf{v}}_1 + \underline{\mathbf{v}}_2 = (0, y_1, 3y_1) + (0, y_2, 3y_2)$$
$$= (0, y_1 + y_2, 3y_1 + 3y_2)$$
$$= (0, (y_1 + y_2), 3(y_1 + y_2)),$$

which is also in the set, so the set is closed under vector addition.

To check closure under scalar multiplication, let $\underline{v}_0 = (0, y_0, 3y_0)$ be any vector in the set and let *s* be any scalar. Then,

$$s\underline{v}_0 = s(0, y_0, 3y_0) = (0, sy_0, s(3y_0))$$
$$= (0, (sy_0), 3(sy_0)),$$

which is also in the set, so the set is closed under scalar multiplication. Since the set is closed under both vector addition and scalar multiplication, it is a subspace of \mathbb{R}^3 .

5. Consider the system of the linear equations AX = 0, where A is any $n \times m$ matrix and X a column vector of dimension m. Show that

$$S = \{X : AX = 0\},\$$

the solution set of the system, is a subspace of \mathbb{R}^m .

To show that *S* is a subspace of \mathbb{R}^m , we need to show that it is closed under vector addition and scalar multiplication. To show closure under vector addition, let X_1 and X_2 be any column vectors in *S*. Then, $AX_1 = 0$ and $AX_2 = 0$, so

$$A(X_1 + X_2) = AX_1 + AX_2 = 0 + 0 = 0,$$

which shows that $X_1 + X_2$ is also a solution of AX = 0. In other words, $X_1 + X_2$ is also in *S*, so *S* is closed under vector addition.

To show closure under scalar multiplication, let X_0 be any column vector in *S* and let *c* be any scalar. Then, $AX_0 = 0$, so

$$A(cX_0) = cAX_0 = c(AX_0) = c(0) = 0,$$

which shows that cX_0 is also a solution of AX = 0. In other words, cX_0 is also in *S*, so *S* is closed under scalar multiplication.

Since *S* is closed under vector addition and scalar multiplication, it is a subspace of \mathbb{R}^m .

6. (Bonus) A plane in \mathbb{R}^3 is the set of all vectors (x, y, z) satisfying an equation like ax + by + cz = d. Show that a plane is a subspace if and only if it contains the origin.

Solution:

Since this is an "if and only if" statement, we need to prove it in both directions.

 (\Longrightarrow) Assume that the plane is a subspace of \mathbb{R}^3 , and pick any vector \underline{v} in the plane. Then, the plane must be closed under scalar multiplication, so it must contain every scalar multiple of \underline{v} , including $0\underline{v} = \underline{0} = (0,0,0)$. In

other words, the plane must contain the origin.

(\Leftarrow) Assume that the plane contains the origin. Then, (0,0,0) must satisfy the equation ax + by + cz = d, which means that d = 0.

Now, let $\underline{v}_1 = (x_1, y_1, z_1)$ and $\underline{v}_2 = (x_2, y_2, z_2)$ be any vectors in the plane. Then, $ax_1 + by_1 + cz_1 = 0$ and $ax_2 + by_2 + cz_2 = 0$, so

$$a (x_1 + x_2) + b (y_1 + y_2) + c (z_1 + z_2)$$

= $ax_1 + ax_2 + by_1 + by_2 + cz_1 + cz_2$
= $(ax_1 + by_1 + cz_1) + (ax_2 + by_2 + cz_2)$
= $(0) + (0) = 0,$

so the plane contains $\underline{v}_1 + \underline{v}_2$. Thus, the plane is closed under vector addition.

Next, let $\underline{v}_0 = (x_0, y_0, z_0)$ be any vector in the plane and let *s* be any scalar. Then, $ax_0 + by_0 + cz_0 = 0$, so

$$a(sx_0) + b(sy_0) + c(sz_0) = asx_0 + bsy_0 + csz_0 = s(ax_0 + by_0 + cz_0) = s(0) = 0,$$

so the plane contains $s\underline{v}_0$. Hence, the plane is closed under scalar multiplication.

Ergo, the plane is a subspace of \mathbb{R}^3 .