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Abstract

Although it is known that the maximum number of variablesmo amicable orthog-
onal designs of order'®, wherep is an odd integer, never exceeds22, not much
is known about the existence of amicable orthogonal dedigisng zero entries
that have B+ 2 variables in total. In this paper we develop two methodotwstruct
amicable orthogonal designs of ord@ip2vherep odd, with no zero entries and with
the total number of variables equal or nearly equalrie-2. In doing so, we make a
surprising connection between the two concepts of amicsgike of matrices and an
amicable pair of matrices. With the recent discovery of & ietween the theory of
amicable orthogonal designs and space-time codes, thés pagy have applications
in space-time codes.

AMS Subject Classification: Primary 05B20.

Keywords: Amicable orthogonal designs, amicable set of matrices tlad® Seidel ar-
ray, circulant matrices.

1 Preliminaries

A complex orthogonal desigif ordernand type(s;, S, - - ., ) denotedCOD(n; 81, S, - - -,
) in variablesxy, xo, ..., X, is @ matrixA of ordern with entries in the set

{0,e1x1,€2%2, . . ., EkX

*Both authors are supported by an NSERC Discovery Grant - isrou
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whereg; € {+1,+i} for eachj, which satisfies

k
AN =5 (5pX)In,
=1
whereA* denotes the conjugate transposedadndly, is the identity matrix of orden.
A complex orthogonal design in whia) € {£1} for all j is called a (real) orthogonal
design and is denotedD(n; s, Sy, . . ., S)-

An amicable pair of complex orthogonal designs

ACOD(n;s1, 9, .- -,Sat1,to, ... 1)

of ordern and type(ss, s, . .., S t1,t2, . . ., |) consists of two complex orthogonal designs
A andB with
A=COD(n;s1,%,...,%)

and
B =COD(n;ty,tp,...,4)

such thatAB* = BA". In the case of (real) orthogonal designs, that is, when mopbex
entries are present we use the nota#h@®D(n; s, Sp, ..., S 1,12, . ., 1)) instead. An ami-
cable pair of orthogonal designs can be used to generateguial designs. We refer the
reader to [3, pages 262, 267] and [6, Section 2.] for details.

A well-known method introduced by Goethals and Seidel in718§, and subse-
guently extended by Kharaghani [11] has been extensivag ts construct orthogonal
designs. LeBj, j =1,2,3,4 be circulant matrices of orderwith entries in{0, £x, £xo,

., X} satisfying
4

k
> BiBj =Y (5iX)In. (1)
=1 =1

Then the Goethals-Seidel array

Bi B,R BR BR
—B,R B BR —BiR
—BsR —BjR B BR
—BsR BR -BR B

GS=

gives anOD(4n; 81, S, . . ., ), WhereR is the back-diagonal identity matrix, that R—=
rjk] whererj, = 1if j+k=n+1 and 0 otherwise. See [3, page 107] for details. Matrices
Bj, j = 1,2,3,4 satisfying equation (1) are callégpe(s;, s, ..., S).

It is theoretically impossible to extend the Goethals-8katray to an array of order
eight without imposing any restrictions on the matricese@ay to restrict variables is as
follows. A pair of matricesA, B is said to bemicablef AB' —BA = 0, andanti-amicable
if AB'+BA' = 0. A set{A,A,,...,Aom} of square real matrices is said to imicableif

t t _
Z “1A2)) ~ Po2j)Porzi-1) =0



for some permutatiow of the set{1,2,...,2m}. We say thatA(,j_1) matcheswith
Ag(2j)- Clearly a set of mutually amicable matrices is amicablé,the converse is not

true in general.

Kharaghani [11] was able to extend the Goethals-Seidey aoran array involving
eight variables, which permits the use of an amicable seigiftenatrices. A set of
matrices{A A,B,B,C,C,D,D} is said to bespecial amicabl®f type (s, S, Sz, S4; t1, t2,
ts, ta) if:

e {A/AB,B,C,C,D,D} is amicable wher&X matcheX for eachX € {A B,C,D},
e A B,C,D are type(s1, S, S3,S4) in variablesxy, xo, X3, x4, and
b A? §767 [3 are type(tlat27t37t4) in Variab|e$’1a)’27y37y4-

As a nice application of special amicable sets of matricesam be shown that each
special matching leads to amfinite family of orthogonal designs. In Theorem 1 we give
a different surprising application.

2 Amicable pairs of orthogonal designs

In this section we introduce a method to generate many dasfseamicable pairs of full
(no zero entries) orthogonal designs with a maximum numberapables for the first

time.
Theorem 1. If there is a special amicable set of circulant matrices afarn and type
(s1,2,S3,4;t1,t2, t3,14) then there exist:

AOD(8n; s1,%,S3, 545 t1,1t2,13,14)

and
AOD(8n; 2s1,2Sp, 253, 254; 2t1, 2to, 2t3, 2ts).

Proof. Let {A, A,B,B,C,C,D,D} be the special amicable set ofmatrlces wheneatches
with A, B with B, etc. AAt + BE +CC! 4 DD' = (S1X2 + SpX3 + S3X3 + s4x4) andAA! +
BB +CC! + DD = (t1y2 +toy3 + tay3 +tay3)In. LetN = I;® ARandN = I, ® ARwhere
Ris the ordem back-diagonal identity matrix. Set

0 B C D

M — -B 0 D' -C
- -C -D 0 B |’

-D C! -B 0

o B ¢ D

- | € o0 ¢

- -C Dt 0 -B

b ¢ B 0



Consider the 2 by 2 matrices,

10 01 01 10
(E0) s (02) po(0 1), ano-ps o (1),

Let

U = NoI+M®S

~

U = NQ+MxP
ThenU, U form a pair of amicable orthogonal designs

AOD(8n, S1,2,S3, 4, t17t27t37t4)7

as we now show. The fact thidtis anOD(8n; s;, S, S3,S4) follows sinceUU! = (NNt +
MMY @1+ (NM +MNY) ® S, hereNN + MMt = I, ® (AA' + BB +CC' +DD') = 14 ®

(31X2 + %5 + 53X 4 54%2) In by assumption, whil&M! + MN! = 0 sinceNM! is skew
(which can be established by using the fact that products ags&RB are symmetric).

A similar argument shows that is anOD(8n; ty, to, t3, t4). To show thatUUt = UU!

we expand the produttU! to see how the fact that the matrices form an amicable set of
matrices is used. First note that

UGt = (N + MV © Q — (MR + NN @ P

We need to show thatUt is a symmetric matrix. Sinc® is a symmetric matrix an@ is
skew, we need to show that the matNi' + MM! =

f(A,B)+f(C,D) —CD+DC BD — DB —BC+CB
DICt—C!D!  f(A B)—g(C,D) BC!+C'B BD! +D'B
—D'B' + B'D! CB! +B'C f(A,C)—g(B,D)  CD'+D'C
CiBt —B!(C! DB' +B'D DC! +C'D f(A,D)—g(B,C)

wheref (X,Y) = XXt 4+ YY! andg(X,Y) = XX 4 Y'Y is symmetric and the matrix

0 BRA! - ARB! CRA'—ARC! DRA!— ARD!
MR NNt | —BRA'+ARE 0  DRA+ARD —C'RA'-ARC
—CRA' + ARCt  —D'RA! — ARD 0 BIRA! + ARB

—DRA'+ ARD! CIRA'+ARC —B'RA!—ARB 0

is skew. Noting that all the matricés B,C, D, A B,C, D are circulant, we must only show
that each of the diagonal blocks NN! + MM! are symmetric, and this reduces to the
single requirement that:

AA! — AAL 1+ BB - BB +CC' - CCl+ DD — DD = 0.

But this is exactly the requirement that the matri(@%s,&, B,B,C,C,D, f)} form an ami-
cable set of matrices whefematches withA, B with B, etc. This completes the proof of
the first part.



For the second part of the theorem we take:

U = N®H+M®SH,

U = NQH+M®PH,

whereH = i _11 ) The rest of the proof is similar to the proof of the first paft o

the theorem. O

Remark 1.

¢ We have found many special amicable sets of circulant nestiiic [6, 7, 8, 9, 10].
Each of these sets can be used to generate new pairs of aenictizigonal designs.

e One can usén |, Im®P, In®Q, In® R and a complex Hadamard mat®en,
of order 2n instead ofl ,P,Q,R andH respectively to get many amicable pairs of
complex orthogonal designs.

¢ In a frequently referenced paper [14], Tarokh, Jafarkhai alderbank show a
link between the theory of amicable orthogonal designs aadestime codes. The
results of this paper may have applications in space-tindeo

e There is a connection between the concegrotiuct designsitroduced by Robin-
son [3, 13] and the construction here; this will be discussedforthcoming paper.

Next we present an example that generates new pairs of al@micabhogonal designs
of order 24. This example shows the power of the method pteddrere. As usual for
brevity, by (a3, ay, ...,ax) we mean a circulant matrix with the first roay, ap, . . ., a.

Example 1.

Consider the special amicable $ét= (a,b,c),B=(—b,a,d),C=(—c,—d,a),D =
(d,—c,b), A= (e f,g), B=(—g,—h,e),C= (—f,e h),D = (—h,g,—f)}, which in fact
gives rise to arOD(24;3 3,3, 3,3,3,3,3), an instance of a Plotkin array [8, 9, 12]. By
Theorem 1 we obtain the following new AODs:

AOD(24; 33,3,3: 3,3,3,3),
AOD(24; 6,6,6,6; 6,6,6,6).

These designs are shown in Tables 1 and 2.

A theorem of Wolfe [3, p. 227 Cor 5.32] says that the maximusaltoumber of
variables in the two matrices of an AOD of ordét® p odd, is Zx + 2. For the case of
24 = 23.3 the maximum number of variables is2+ 2 = 8. These examples achieve the
bound. Furthermore, there are no zero entries in the sec@ml, &vhich is obtained from
the first AOD by the construction given in Theorem 1.
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Table 1. An AOD(24; 3,3,3,3; 3,3,3,3) whekfe= —a, B= —D, etc.

LODOIOO®OCOLOCOUWODOoowWoVouw
O+-00WOLCOWOTO+OTOVOY VWO DO+ O
DoOrToLOcCcOoOULOVOoOWO DOCOOLOWOO
OCVUOLCO+-OIO+-OUWOVOWOI+-O VWO DO
IouLoooopLoOovocooocowoo®ouwouw
OCCco+-o00O+-OoWOTOUOIOWLWIO-O VO
fcoovoupuoow-ocoowoWouwurIroovovwo
OICUWO+-0ODOULOI VO DO+-OOLCOWO D
vouLocowocoWoouLouwWoWvo®OIOo
OCWO+-OTIOULOIODO+0O VWO DOOWO DO L
LocovocoWo+w-ooouwLowWwO®oIrovo
O-OTOWOIODOL DO+-0O VOO D®OCcOoW
VOTOVWOOUWOVOWDOLOTIOWOTIOwO
OCWOLEODVO DO+-0O0DO+-0OLcOoVOoOCcOow
I0o0O0O VOO ULOWOVWLOIODOIOw-wOWO
OCODOW+0O VO DOO+-0LO0VOLSOWO W
Vo VOoOITOoO0OV0OoOULOUWIODOLO-OWOIO
O DOOWOLCDO-O0OVOOLOVOw-OILO VO o
CWOoOOOoOULWOLECODOIOWO+-0O+-00WOoLo
VO DO+-0O0OVOIOVOLEOVOLOWLO DOTI
cuLouwWoEOoODOWOWO+-O0TITOUVO LSOO
-0 VO DOOIOVO VO VOULOLCODOIOWL
OCOOLOWDOWOLEO-OTOWOLEO-0W0WO
DO+-O0 VOOYOVOTITOULOLCOVOIOWLO D

0000 TOTOCLCOVO TOTOMOO O VO Q
00000 TOTOLCOVO WOTOMTBCO VO QO
0OO0OTOLOCOVOTOTOMO BOOOO O O
0CL0OTOLOCOVOTOTOMO BLO O VO
TOL00O0VLOTOLCOMO BOTOO VOO0 T
0OCTOOLO0VO0LVLOTOLCOMO BOT VO OO O
COoONO0OVOLVOLOTOOTBOLVOOLONO 20
OmBOoONOoOVOLVOLOTEOLVOLOOILONOQ
NOVOBOLOTOVOOLO O LVAOLOILO
opNocoVoOmBOLOTOVLROBOVOOANOLOIL
OomOoONMOTOVOLOOLVLOLOBAOOLONO
coomoNoOTOoOVDOLNULVOLOBOOaOo<CLCOoN
TOBOMOOBO VO ULVOMONONO BO VO
OCTOBOMTBO VOLOOLVOMONONO TOOQ
COMOTOOLOBOOUMONO VO BOVOANO
oOmomMoTRLNO MO LVOOMONOLVvOoOOVON
MOTO®@OOLOOLO OO LVOMOOVONO WO
OCMOoOTO®LONLOOONOLOMOVONO ®
OO LOoOLNOC0OLOLCOTOVOMO VOANO
CTovooooNOCOoNOLCOTOLVOMO VoA
OO0 BOUCOLONOTOLVOLCO VOANOMO
OO LVOOCONONOTOLVOCOVONOM
cCLoLO0OBOONOCLOLVOLCOTONOMO VO
VLOLOTBOOLONOCLCOVOLOTONOMO ©

Table 2: An AOD(24; 6,6,6,6; 6,6,6,6) whefe= —a, B= —b, etc.

- 0O ccWyIT -« I T 02000 g oo+«
L-oO0Icoycrgle-csTyoodoyop-u
OO0+ TT - +-WWOOOITwe 0o PO
gGHthhHFfeEEegGthFeEgG
Ccw- w00 WUITITOOT I o Qo
IclLw-20UL+-0WET o0 cITwPo@pwy ©w
ITWwW-+-2oolLULIT oo oP+«*“YCcWy oo
CIopulL+-Q0o+-LETIgwWoO-LTcoy® o
EEffHHFFHHggffeeggEEgghh
QUWL-<STw-pu CTOO-UL owoO 00 o c
- ITWWIIOOULU 5P+ 00 oge oWy
L-CTOWETOO-UL 50 oWO 5T c @
LWWESODD0 0D~ Ow*cC ggcclly
PWICODowW DO L OU-T S T c0
CEODUWWw - 002D wcESn0c uy oo
TcO oW+ L eEgGFthgGthFEe
ooWwc s ggffeethfoFFeehh
OoowWIco0w-L oW o0 v WeTLc
©OODO--0OITVOO0cCSouly, 5T
oW o0« LWy ehHgGHhEefFfFGth
«+-00291T00 000 VLULES O GT WL
“Lowo0cxz o0 pyoywowL I <O oS T
OO0 0000 OPITLULEECOOT Ty O
o0+-UL OWDOWOET+~ULICWOETw, O

Meo0OTAOTEILOOLCTCAOTOMNTSgOOCm
0000 T T T TCLCOOTTTTONONC g ol o
ocoNTNMOCLCOOOTOTLONLCTAN g ©Q
0VOTTLACCOOTTTTONMN BT ®gO o
NomooQLoouoNoToCaoanC ©Q O o9 m®
TTL200 0T TLACNMN T OCTT O LT g
<osocOoOcOmMeNoTaCo0N ST AMDo
aaDDCCCCbbddaaCCbbAADDbb
Tooe0CmsmoenNoeLaNdCo0TA0NO ©g
0000 oaeaTTOLOLAaTBBOLOANALaLg
cOC 8o NNoDPLUNoLLN LM BT
[CRCR I NaNaR R NGNS -IN- ISR IN- - I IR gP= gfa la)
AoCesaenNcgoc0en0oocaomnosOoALac 0
TTOCMONCcooLo0oommO00AN®©cOQ
<saoemOoTaoemoCooaomoTNOOPELBOoTA
CCmMOMTTOoodcoommO0o0OdcOQ0

emATIL 8o emsCcTcOOCaemno0oA<
MMoToToCcooeocdcNOecONOOOAN®
cCo0oem o A<M ascl<OTOCamMO 0T
coocoonNACgCceaLllTToOoommoonNN
emMsC<o0O<mosNOTOOsCOoOLm
coccooLdC<oaoNNUTUOUoOOgECoooNOOMm
cpooenc<nosAcCOoOodcLCNoTOT NN O
vooocscscoonA<C<ooCCTTOODNM O O

DaaD

igns

Some new orthogonal desi

3 Application

An amicable pair of orthogonal designs of oraheran be used to construct an orthogonal

design of order 4. Applying the method in this paper, we first searched for all f

amicable orthogonal designs of order 24 involving eighialales obtaining:AOD(24;
2,2,4,16; 22,4,16), AOD(24; 22,10,10; 22,10,10), AOD(24; 24,6,12; 24,6,12),
AOD(24; 4,4,8,8; 4,4,8,8), andAOD(24; 6,6,6,6; 6,6,6,6). Using these and known

construction methods we generated orthogonal designsief 86 involving 10 variables.

Note that by theory 10 is the maximum possible number of e&in an OD of order 96.

In total we were able to generate 31 new full ODs of order 9&indriables. Their types
are listed in Table 3. We use the standard notatgnnstead of repeating ¢-times.



Table 3: Types of new full ODs of order 96 in 10 variables

(67,183), (42,85,125,24), (45,8,,203), (45,82,12, 24), (2,4,6,127),
(2,4,6,103,12,143), (2,4,6,83,12,163), (2,4,62,125,18), (2,4,64,12 183),
(2,4,65,12,,36), (2,42,84,103), (2,42,6,84,12>), (2,44,6,12,203),

(2,44,62,12,18 36), (2,45,8,143), (2,45,6,8,12,24), (22,10,,12), (22,105, 143),
(

(

(

22,62,105,30), (22,4,62,12 164), (22,4,63,16,183), (22,44,16,203),
227 447 627 167 48)’ (247 47 67 127 223)’ (247 47 67 1227 187 36)1 (247 427 87 163);
24,42,8,12,.24), (25,105,223), (25,6,100,30p), (25,4,16,223), (25,4,6,12 16,48)

4 The existence of amicable orthogonal arrays

Not much is known about the existence or the structure ofdiilogonal designs with a
maximum number of variables. In order to investigate thetexice of orthogonal designs,
there is a need for plug-in arrays similar to Goethals-Seidays. In this section we find

some new arrays; see Theorem 2.

We begin with a simple example of a pair of orthogonal desmramall order with
the maximum possible number of variables.

Example 2.

isanAOD(2;1,1;1,1).
As noted in [3], this remarkable pair of matrices is suffi¢ciemprovide many sets of

matrices with very useful properties as follows:

Lemma 1 (Wolfe [15]). Given an integer a= 25u where u is odd, & 1, there are two sets
P ={Po,...,Ps} and Q = {Qo,...,Qs} of signed permutation matrices of order n such
that:

i. P consists of disjoint pairwise anti-amicable matrices,
ii. Q consists of disjoint pairwise anti-amicable matrices, and

iii. foreachiand j, RQ;' = Q;R".

Proof. Compare with [5, Lemma 6] in which another related set is gigkeut note that
Q11 andQq2 should be interchanged there).

Let

0 1 0 1 10
S:(1 0)’ P:(_ O)’ andQ:PS:—SP:(O _).
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These matrices can be obtained from Example 2 by wridingal + bP andB = xQ+yS
LetRbe the back-diagonal identity matrix of orderThe required set® andQ are found
as follows. DefinePy = (¢5_41) ®R A= (&K 1) @ P® (®F,,,S) ®Rfor 0< k <s,
Q= (®_;9®R, andQc = (@) ®Q® (&5, ;S ®Rfor0<k<s.

The pairwise anti-amicable property of part 1 of this lemmldoivs becausé andP
are pairwise anti-amicable, as &e Sandl @ P. Similarly for part 2 of this lemma but
use the fact tha® andQ are pairwise anti-amicable as & Sandl ® Q. The case
0<i < jin part 3 of this lemma follows becaugex Sandl ® Q are amicable, the case
0 < j < i follows becaus® ® Sandl @ P are amicable, and the case<d = j follows
becaus# andQ are amicable. The remaining cases can be easily handled. O

A set ofnear type Imatrices is a sef” of commuting matrices withd = ctb for all
b,c € C. Near type 1 matrices include order one matrices in a singtable, order two
circulant or negacirculant matrices in two variables, dreldrder four matrices presented
in Remark 2 below.

We now embark on a method, similar in spirit to the method fiesteloped in [2].
Given the odd integem we write the binary expansion efasn= 1+ €2+ 29 4 2%2
.4 20m wheree € {0,1}, and 1< 01 < 02 < a3 < --- < Oy Before giving the general
result, by way of illustration we consider the case- 9= 1+23. Soe =0, a; = 3 and
m=1.

Example 3.

Let (x1,..., Xn) denote the circulant matrix with first rows,..., x,. Consider the
following circulant matriceg\g, A; andAy:

Ap = (a7070707070707070)7
A = (0,b,¢,0,0,0,0,0,0),
Ay = (07 0,0, b7 —¢,0,0,0, O)v

wherea, b andc are near type 1 matrices, and 0 is the zero matrix of the sanoher.or
Construct symmetric matrice® and Hermitian matricell; as follows:

= 1(A+A) =1(a+4,0,0,0,0,0,0,0,0),
Ho= S(Ac—AY) =1i(a—4a'0,0,0,0,0,0,0,0),

= A+A,  =(0,b,c,0,0,0,0,c,bh,
Hi= i(Ar—A)) =(0,ib,ic,0,0,0,0,—ic', —ib'),

= A+A, =(0,0,0b,—c,—c,b'0,0),
Hy= i(A2—A) =(0,0,0,ib,—ic,ic',—ib",0,0).

Replacea, b, andc with &, b, andcrespectively, giving matricedo, A1, Ao, S, S1. S,
Ho, H1, andH,. LetH be a Hadamard matrix of orde?,2uch as

1 1

8



Construct the matricefPy, ...,Ps} and{Qy, ...,Qs} of Lemma 1 for the integer2
Let

A = SPH+Hy®PH

1 1
+S1® 5 (P+Py)H +Hi@ 5 (P~ Py)H
1 1
+S @5 (PatPs)H +Ho@ 5 (P~ Po)H,
and similarly

B = S®QH+Hy@QH
- 1 ~ 1
+S® §(Q2+Q3)H +H1®§(Q2—Q3)H

+§2®%(Q4+Q5)H +|:|2®%(Q4—Q5)H-

Then, as we will show in the proof of Theorem 2, béthndB are complex orthogonal
arrays each involving three near type 1 matrices suchABat= BA*. If the near type 1
matrices are of order one, then we obtairAQ0D(288;32,128; 32,128) in six variables
a, b, c, & b, & If the near type 1 matrices are negacyclic of order two ifedéint variables,

that is, of the form:
( X; Yj)
—Yi X )’

then we obtain aACOD(576; 32,128;; 32,,128,) in 12 variables.

A pair of two variableGolay sequencesf length 2, j > 0, can be constructed induc-
tively as follows. (b;c) is the sequence of length 1. The sequence of length 2 0 is
(X,Y;X,=Y) where(X;Y) is the sequence of length 2 and “” denotes concatenation
of sequences; see also [2]. In Example 3, the Golay sequéncd, —c) was used to
defineA; andAo.

Theorem 2. For every odd integer n where-a 14 €2+ 2% 292 4 ... 4+ 29m with e €
{0,1}, and1 < a1 < 02 < --- < O, there is a pair A, B of arrays each involving=s
1+ €+ 2m near type 1 matrices such that:

m
AN = 2571 <x§+2ex§m+1+22“i1(x§jl+x§j)> | 2s-1p,
=1

m

BB = 2=71 (i%+28>”<%m+1+ 22‘”"1<>”<%;1+>”<%j)> |25 10,
=1

AB* = BA",

where %, ..., Xom, (@nd also ¥m1 if € = 1) are the s matrices in A ankb, ..., Xom, (and
alsoXom.1 If € = 1) are the s matrices in B. This pair of arrays can be used to give
amicable pair of complex orthogonal designs of or@&¥ 1n each involving s variables,
and an amicable pair of complex orthogonal designs of o2fn each involving2s
variables.



Proof. We generalize the construction of Example 3.

Let {Xo,...,Xs—1} be a collection of near type 1 matrices. Defie= (xo,0n_1). Let
(X;Y) be a pair of Golay sequences of lengthZ in Xoj_1, Xoj for j=1,...,mand
construct

Aoj1 = (0
Ay = (0

Lierom -ty h X
0

OZGj_Z’ 2“i+1_1+...+2am71+% (n—1) )7

T+e+201- Ty %171 20'1_2’Y’O2°‘J'+1_1+-~-+2°‘m*1+%(nfl))'
If e =1 also takéAom+1 = (0,X2m+1,0n—2). Thus we have matricesAy in s variablesx,

k=0,...,s—1.

Use a Hadamard matrid of order 25~ and the matrices af = {Po,Py,...,Pxs 1},
Q: {Q07 Q17 ceey QZSfl} of Lemma 1.

Construct:
1 t
i
HO = E(AO_AE))a
and fork=1,...,s—1:
S = Ac+AL
Hy (A — AY).
Define
A = SRPH+Hy®PH (2)
s—1 1 1
+3 (S«®§(PZK+PZK+1)H‘|‘Hk®§(P2k—P2k+1)H)- 3)
K=1

To show thatAA" is a multiple of an identity matrix, use the fact tH&y, Py} U {Px +
Px+1: 1 <k < s} is a collection of anti-amicable matrices and the set ofSaknd Hy
form a commuting set of Hermitian matrices; also becausaysgquences are involved,
simplify Agj 1AL 1 + AgjAh; = 2%72(x5; 1 +5;)In to obtain the expression fokA"
given above.

Replace eacky with % giving matricesA, S, andHy and define
B = $®QoH+Ho®QH

s-1
~ 1 ~ 1

+3 (Sk ® 5(Qac+ Qawr1)H +Hic® 5 (Qa — Q2k+1)H) :

K=1

ThenBB* is a multiple of an identity matrix andB* = BA" by arguments similar to those

given above foAA".
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Note that the entries dfare inX = {0, £, +-ixx : 0 < k < s} as long as the entries for
S andHg are inX. Clearly the entries of summands of (2) areXinFor the summands of
(3), &, Hk, k> 0, have entries itX sinceAy andA}( are disjoint, While%(PZKi P 1)H
have entries i{0,+1} since? is a collection of disjoint signed permutation matrices. If
the near type 1 matrices are negacirculant matrices aredefr @ne, then we obtain an
amicable pair of complex orthogonal designs of ord®r h each involvings variables.
If the near type 1 matrices are negacirculant matrices aérango in different variables,

that is, of the form:
( Xk YK)
Yk X )’

then we obtain an amicable pair of complex orthogonal desigorder 25n each involv-
ing 2svariables. O

Remark 2.

e The CODs obtained in the previous theorem halmostthe maximal possible
number of free variables.

e Itis possible to make use of a pair of complex Golay sequefsses[1] for details)
instead of a pair of Golay sequences in our constructiontl@sake of brevity we
omit this.

e Matrices of form
X1 X2 X2 X2
X2 X1 X2 =X
—X2 —X2 X1 X2
X2 X2 —X2 X1

are near type 1 matrices. Example 3 extends to givaGDD(1152; 3296,128, 384%;
32,96,128,,384%) in 12 variables.

X =

Acknowledgment. The authors are indebted to a referee for many suggestiorwh
significantly improved the final version of this paper.
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