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Abstract

Through the use of regularizing vectors, all regular quaternary
Hadamard matrices of orders 10 and 18 have been successfully iden-
tified. Of these, two matrices of order 10 and 184 matrices of order
18 were found to have unbiased mates. Converting the quaternary
Hadamard matrices of order 18 to real Hadamard matrices, the study
uncovered that six matrices of order 36 having unbiased pairs were
connected to the extremal Pless symmetry code. Additionally, the
study uncovered exactly 28 non-regular quaternary Hadamard ma-
trices of order 18, thereby yielding the first examples of non-regular
Hadamard matrices of order 36.

1 Introduction

In a recent classification of quaternary Hadamard matrices of order 18,
Ostergérd and Paavola [9] identified 1,955,625 inequivalent matrices. We
have discovered that all but 28 of these matrices are equivalent to regular
ones. Furthermore, our finding indicates that out of the 1,955,625 regular
matrices, only 184 have unbiased mates, and six are related to the Pless sym-
metry code. As a direct application of our findings, we use the 28 non-regular
quaternary Hadamard matrices of order 18 to construct the first known ex-
amples of Hadamard matrices of order 36 that are not equivalent to any
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regular matrix. The classification of quaternary Hadamard matrices of or-
der 10 was completed by Lampio, Szollési and Ostergard in 2013 [6]. By
analyzing these smaller matrices, we found that every quaternary Hadamard
matrix of order 10 is equivalent to a regular matrix.

2 Preliminaries

A quaternary Hadamard matriz H of order n is a square matrix with entries
from the set {1,—1,4, —i} satisfying HH* = nl,, where H* denotes the
conjugate transpose of H. Matrices with only real entries are referred to as
Hadamard matrices.

A quaternary permutation matriz is a matrix with entries in {1, —1, 0,7, —i}
such that each row and column contains exactly one nonzero element. Two
quaternary Hadamard matrices H and K are said to be (Hadamard) equiv-
alent if there exist quaternary permutation matrices P and () such that
H = PK(@. A similar equivalence notion applies to standard Hadamard
matrices.

Definition 1. The sum of all entries of a Hadamard matric H = [H;;] is
called the excess of H.

The maximum excess of a Hadamard matrix is an invariant for the ma-
trix, and Hadamard matrices with different maximum excesses are Hadamard
inequivalent, see [5] for details.

A (quaternary) Hadamard matrix is called normalized if all entries in
its first row and first column are equal to 1. Every (quaternary) Hadamard
matrix is equivalent to a normalized one. The matrix entries of a square
matrix M are represented by M;;.

A (quaternary) Hadamard matrix H is called regular if all row (or col-
umn) sums equal the same complex number. Note that when the order of
the matrix is n and the row sum is s, then n = |s|%. For n = 18, we may
assume that s = 3 + 3i.

For a vector v = (vy,...,v,), the diagonal matrix D = [D;;] with entries
Dy = v; for i = 1,...,n is denoted by diag(v). Given an n X n quaternary
Hadamard matrix H, a row vector

v=(v1,...,0,) € {£1,Xi}"
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is called a absolutely reqularizing vector if the matrix
K = Hdiag(v)

is absolutely reqular. That is, there exists a constant ¢ > 0 such that for all

row indices 1,
n n
E Kij E Hl-jvj
Jj=1 Jj=1

Two regularizing vectors v and w are considered equivalent if there exists
a scalar a € {£1,+i} such that v = cw. Unless otherwise specified, the
number of regularizing vectors refers to the count of inequivalent classes
under this relation.

= C.

The following property is utilized effectively for our computational searches.

Lemma 1. Let v be a reqularizing vector for a quaternary Hadamard matriz
H of order 18. Split H = [Hy|Hs], where Hy and Hy have nine columns,
then

Hlvl + HQUQ = (3 + 3Z)u,

where v = [vi|ve] and u is a vector with entries in {1,—1,i,—i}. It follows
that Hyvy + Havy = 0 (mod 3) in the ring of Gaussian integers modulo 3.

A linear code of length n and dimension k is a linear subspace C' of Fy of
dimension k. Elements of C' are called codewords. In the case where g = 3,
the code is referred to as a ternary code.

The distance between two codewords is equal to the Hamming distance
between the two codewords. The weight of a codeword is the number of non-
zero elements it has. The minimum distance of a linear code is equal to the
minimum distance between two codewords, or equivalently, the minimum
distance is equal to the minimum weight of its non-zero codewords. We
denote a linear code of length n, dimension k and distance d as a [n, k, d]
code. The dual of a code C, denoted C* is defined by

Cr={zeF|z-c=0forall ceC}.

A code is said to be self-dual provided C = C*. A [n,n/2,d] code C over F
is said to be eztremal if C' is self-dual and d = 3|n/12] + 3.



The construction of extremal codes is an active research problem, having
theoretical applications in combinatorics and design theory [3] and practical
applications in data transmission [4].

3 Regular quaternary Hadamard Matrices of
Order 18

The Hadamard matrix H is said to be of skew-type if H + H' = 21,,. There
are approximately twenty million known Hadamard matrices of order 36, and
all are known to be equivalent to regular ones [8]. A recent result [2] found
that every known skew-type Hadamard matrix of order 36 is equivalent to
a regular one. In an attempt to either find some Hadamard matrices of
order 36 that are not equivalent to regular ones or else show that every
Hadamard matrix is equivalent to a regular one, it is natural first to test the
known quaternary Hadamard matrices of order 18. Denoting by Q the set of
1,955,625 inequivalent quaternary Hadamard matrices of order 18 in [9], we
devise a fast algorithm to test the regularity of elements of Q.

3.1 An algorithm to test regularity

For each H € Q, the aim is to find all vectors v with entries in {1, —1,4, —i}
having an inner product of £3 &+ 3¢ with every row of H. Thereafter, we can
make H regular by multiplying the rows of Hdiag(v) by 1,—1, i, or —i. To
facilitate the computation, we follow the algorithm outlined below.

The Algorithm:
(i) Split H = [H,|H,|, where H; and Hj have 9 columns.
(ii) Compute Hyv and Hyv for all vectors v having entries £1, +i.

(iii) Find all vector pairs v, w such that Hyv+ Hyw = 0 (mod 3) in the ring
of Gaussian integers modulo 3.

(iv) Concatenate each pair v, w. Define Ry to be the set of concatenated
vectors v, w vectors with entry sum 3 + 3¢, whose inner product with
every row of H is £3 =+ 3.

Remark 1. Implementing the algorithm, we found all regularizing vectors
for each of the 1,955,625 quaternary matrices of order 18. As a first result,
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we have the following.

Theorem 1. The outcome of the search reveals that out of 1,955,625 qua-
ternary Hadamard matrices of order 18:

(i) Ry =0 for 28 matrices.
(i1) 1,955,597 matrices are regular.

Example: Below is an example of a non-regular Quaternary Hadamard
matrix of order 18, where — stands for —1 and j for —i.

~11111111111111111 17
11111144 4—————— i
111———1j34i—-——35117%
11-1—-j4i>354j1ij=i-1
11i—-155—-9115-1T——4i—
11jjii>ijji=11j5i——
1i=-2511i=-15-1-1—j1i
1il1ji—jji—34il1j435>54

I SR A B A B Sy B A A AR B O
Q= |17 2112555555027
1—411—--131413=——37
l—j——j—iididijgjliljl
1—-i—jijil—-11%—351%j
1—jil-11—--——jil157—4T1l
1-31j—di—il1j3%5431i-
1jij2i—-1—-437i>11—13
15—-%id1j1—5F44diiij-=
15 —-1-1-5ij%5i—-13574il

The 28 matrices are available at https://www.cs.uleth.ca/ hadi/36

4 Regular Hadamard matrices of order 36

A quaternary Hadamard matrix of order 2n can be converted to a Hadamard
matrix.

Lemma 2. Let H be a quaternary Hadamard matriz of order 18. Split
H=A+1iB, A, B (0,%1)-matrices of order 18. Then letting

K=A®C+B®D

where C' = [I ﬂ and D = E i}, K is a Hadamard matriz of order 36.

Furthermore, if H s reqular, then K is regular.

As a first application, upon converting the non-regular quaternary Hadamard
matrices of order 18 to Hadamard matrices, we found the first 28 examples
of non-regular Hadamard matrices of order 36. The fact that only a very



small fraction of quaternary Hadamard matrices of order 18 are non-regular
is an indication that non-regular Hadamard matrices of order 36 are quite
rare, and a reason that none were known before this work. We were able to
identify 16 Hadamard inequivalent classes of non-regular Hadamard matrices
of order 36 belonging to two excess inequivalent classes as follows.

e 8 equivalence classes where each matrix had a maximum excess of 204,
and

e 8 equivalence classes where each matrix had a maximum excess of 208.

Remark 2. The computation is done by splitting the matriz into two halves,
each having 18 columns. For every one of the 2'® sign-flip patterns on both
halves, we store all of the row sums in two separate arrays. We then loop
over the 2'® x 2 combinations, adding the two stored row sum values for
each row, taking their absolute value, and then computing the excess.

Two examples of non-regular Hadamard matrices of order 36 are shown
below for the first time. These are two examples of Hadamard matrices of
order 36 with maximum excess 204 and 208, respectively.

r-i-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1—11
11717111111111111111111 1 111111111111
-1-1-17-1-1-1-1-1111-1-1-1-1-1-1-1—-——
1111111111111 1111—-—=-=—-—-—-——-—————————— 1
-1-1-1-1111-1-1----1-1-1111-1-1-—--1-—
1117111111 —-—=—=————— 11111111 —-——————— 1 —--
-1-17-117---111-1-11-11-1--1-1---=-111-
1117111 —---11—-———— 1-11-——-——=—-1111-1-11—-——
-1-11-111-11—-—-———— 1---1--1111-11-1-1
111711 --1---1--1-1-1---1--111---1-1111
-1-117---111---11111-11—-—-—-———— 111-11-—
1t1171---11----11-1---1--1-1-1111-11--—
-1-117---1--1117--1-1--11111---1--1-11
1t111- - -1--111--1----111-1--111-1--1—
-1-1111————— 1I-117-— - —-1--11-1-11-111-1
1t11717117--———-1-1--1--1-1--11----1-111-11
-111-—=1—-——=—— t11r111-11-111--11--11—-———
H’ i1117--1---1-11-1---1-111--11--11-=-1-1
204 —|-11-1--111--11-1---11-1--11—---—-1111-
117----1117--11-11-111----11--=-1111-—-—
-117-111---11-1-1--111--1-1--111-—--1—
11 - -1--—-11-1111-11---1111-11—-—--—-1——
-117-1---1--1--1111-111--11111—-—-———— 1
11— ———— 1--117-11-1-111--11-1---—-1-111
-117-1-11-1-11---11—-———— 11-11-11--11-—
117----1-111117---11--1-111--1-11--11--—
-117--17--1-1-11--11-1--1-1---1111-1-1
117--1171-1--———=1--=-11-11-1—-—-——— 11-1-1111
-117--11-11-1-11---1--1--1-=-11--1111-—
117--117--1-1111---1--11-1--11--111-——
-117--1-11-1---11-11---11--11-1--1-11
11--1111—-—=——— 117-11---11--11-11-1--1-—
-117---11-11-1---111-11-1-1-=-1-=-11--1
11---11-11—-—-—-—— 117---1-1111-1--11--11
-1--1-117-11--11----1111-1--1-11-1--1
Lt11-1--1-11--11---1111—-—-——— 1111 —-————-11.
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5 Regular quaternary Hadamard matrices of
order 10

Following a similar process, we used the complete classification of quaternary

Hadamard matrices of order 10 by Lampio, Szoll6si and Ostergard [6], and

found regularizing vectors for each of the matrices.

The complete classification of quaternary Hadamard Matrices of order 10
contains ten inequivalent matrices. Each of these ten matrices had multiple

regularizing vectors.



Matrix Number of Vectors
176
304
432
152
304
232
132
232
80
112

o

© 00 O T Wi+~

Table 1: Summary of computational results for order 10.

6 Unbiased quaternary Hadamard matrices
of small order

Unbiased complex Hadamard matrices, linked to unbiased bases, were intro-
duced a long time ago, see [10].

Definition 2. Quaternary Hadamard matrices H, K of order n are called
unbiased if HK* = (a+1ib)L, where L is a quaternary Hadamard matriz and
la 4+ ib| = v/n. K is called an unbiased mate for H.

It is clear from the definition that each row of K is an absolutely regu-
larizing vector for H, and n must be a sum of two squares. It is shown in
[1] that the number of mutually unbiased quaternary Hadamard matrices of
order n = 2k, k odd, is at most two. In our search for regularizing vectors,
we often found many vectors, and in some cases, sufficient vectors were found
to form a quaternary Hadamard matrix. This prompted us to search for all
quaternary matrices of order 18 admitting an unbiased mate. We did this by
adding a sixth step to our algorithm [3.1]

(v) Exhaustively search for sets of 18 mutually orthogonal vectors in Rpy.

For our search, we used the Cliquer program [7]. By only allowing regular-
izing vectors with a sum of 3 + 37, we ensure that each clique of 18 mutually
orthogonal vectors results in an inequivalent unbiased mate. The 18 mutually
orthogonal vectors then form the rows of the unbiased mate.
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Out of 1,955,625 Quaternary Hadamard matrices, only 184 had at least
one unbiased mate. The number of unbiased mates for each H ranged from 1
to 5220, as shown in Table [2| below. In total, there were 95,589 inequivalent
unbiased pairs.

# of unbiased mates # matrices

0 1,955,443
1 58
2 24
3 11
4 9
5 2
8 16
18 2
32 1
36 38
38 2
40 2
272 1
5184 14
5192 1
5208 1
5216 1
5220 1

Table 2: Sorting the quaternary Hadamard matrices by the number of in-
equivalent unbiased mates.

6.1 Application to Extremal Codes

Converting each of the 184 Quaternary Hadamard matrices with unbiased
pairs to real Hadamard matrices, we obtained 6 monomially equivalent ex-
tremal codes with 3-rank 18 and minimum distance 12. Each ternary code
was generated by the rows of the matrices, where the entries of the matrices
were regarded as elements of [F3.

Two inequivalent classes of quaternary Hadamard matrices were flagged,
each containing three matrices. One class was recognized as type I and the
other of type 2, as described in [9]. From the two equivalence classes of
Hadamard matrices, we obtain two monomially equivalent extremal codes

Table[3|shows the numbers of the codes from the 184 Quaternary Hadamard



matrices with unbiased pairs. In total, there were 6 extremal codes, 68 near
extremal codes and 39 self-dual codes with minimum distance 6. The re-
maining codes were not found to be self-dual.

(3-rank, Minimum Distance) Count

(14, 9) 9
(14, 12) 3
(16, 6) 18
(16, 9) 40
(16, 12) 1
(18, 6) 39
(18, 9) 68
(18, 12) 6

Table 3: Count of (3-rank, minimum distance) pairs.

Each Hadamard matrix leading to an extremal code had varying numbers
of mates. In the first Hadamard equivalence class, one of the three Quater-
nary Hadamard matrices had 272 inequivalent mates to form an unbiased
pair, while the other two matrices had 18 mates respectively. When we tran-
sition to Hadamard matrices, the unbiased mates also formed extremal codes,
and all 308 matrices were found to be Hadamard equivalent.

In the second Hadamard equivalence class, all three Quaternary Hadamard
matrices had 1 mate respectively. As before, when we transitioned to Hadamard
matrices, the mates also formed extremal codes, and the three matrices were
found to be equivalent.

The six Hadamard matrices that lead to extremal codes, as well as a
summary of their equivalence, can be found in Appendix [A]

6.2 Order 10 unbiased quaternary Hadamard matrices

Following a similar process as for order 18, two quaternary Hadamard matri-
ces of order 10 had unbiased mates. The result of the computation is found
in the following table.
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Matrix Regularizing Vectors Largest Clique Unbiased Mates

0 176 6 0
1 304 6 0
2 432 10 36
3 152 4 0
4 304 6 0
) 232 5 0
6 132 5 0
7 232 3 0
8 80 4 0
9 112 10 1

Table 4: Summary of computational results for order 10.

The unbiased pair corresponding to matrix 9 can be found in Appendix
[Bl The example corresponding to matrix 2 can be found in [1].
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A Extremal Codes from Unbiased Quater-

nary Hadamard Matrices of Order 18

Below are the quaternary Hadamard matrices of order 18 that were found

to give rise to extremal codes, as well as some additional information about

each matrix.

e H,, Hy, and H3 are Hadamard equivalent.

e H,, Hs and Hg are Hadamard equivalent.

e H, has 272 unbiased mates.

e H; and H, have 18 unbiased mates each.

e H,, Hs and Hg have 1 unbiased mate each.
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B Unbiased Quaternary Hadamard Matrices
of Order 10

Below is the unbiased pair corresponding to matrix 9 from Table [4]

I I
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