
Dimension of Bases

Dimension Theorem: All bases for a vector space V have the same number of vectors. This number,
denoted dim(V ), is called the dimension of V .

Lemma: No proper (strict) subset of a basis is a basis.

Proof: Suppose, say, {u1,u2, . . .} and {u2, . . .} are both bases. Since {u2, . . .} spans, we see u1 is a
lin. comb. of {u2, . . .}. Write u1 = c2u2 + · · ·. Then 0 = −1u1 + c2u2 + · · · contradicting lin. indep. of
{u1,u2, . . .}.

Proposition: If {w1,w2, . . .} is a basis and v1 = c1w1 + · · · with c1 6= 0 then {v1,w2, . . .} is also a basis.

Proof: Lin. indep.: If a1v1 + a2w2 + · · · = 0 then replacing v1 gives a1(c1w1 + · · ·) + a2w2 + · · · = 0.
The coefficient of w1 is a1c1 so since {w1,w2, . . .} is lin. indep. we have a1c1 = 0. But c1 6= 0 so a1 = 0.
Thus a2w2 + · · · = 0 and again by lin. indep. of {w1,w2, . . .}, the rest of the ai’s are zero.
Span: Given u, since {w1,w2, . . .} span write u = a1w1 + a2w2 + · · ·. Now c1w1 = v1 − c2w2 − · · ·, so
u = a1c

−1
1 (v1 − c2w2 + · · ·) + a2w2 + · · ·, which is a lin. comb. of {v1,w2, . . .}.

Steinitz Replacement Theorem: If {v1,v2, . . .} and {w1,w2, . . .} are different bases for a vector space,
then (after relabeling) there are vectors v1 /∈ {w1,w2, . . .} and w1 /∈ {v1,v2, . . .} such that {v1,w2, . . .} is
also a basis for the vector space.

Proof: Since the bases are different and {v1,v2, . . .} cannot be a proper subset of {w1,w2, . . .} by the
lemma, we may assume (after relabeling of v’s) that v1 /∈ {w1,w2, . . .}. Since {w1,w2, . . .} span, write
v1 = c1w1 + · · · + cnwn where ci 6= 0 (which may require relabeling of w’s). Now if w1, . . . ,wn were all
in {v1,v2, . . .} then 0 = −1v1 + c1w1 + · · · + cnwn which contradicts that {v1,v2, . . .} is a basis — recall
v1 6= wi. Thus (after further relabeling of the w’s) we may assume w1 /∈ {v1,v2, . . .}. The Proposition
completes the proof.

Proof of Dimension Theorem: Let {v1,v2, . . .} and {w1,w2, . . .} be two different bases. Apply the
Steinitz Replacement Theorem, noting that {v1,w2, . . .} has the same number of vectors as {w1,w2, . . .}
and that {v1,w2, . . .} has more vectors in common with {v1,v2, . . .} than {w1,w2, . . .} has.
By repeated use of the Steinitz Replacement Theorem we can transform the second basis so that it always
has the same number of vectors as {w1,w2, . . .} while making the intersection with {v1,v2, . . .} progressively
larger. This process can only stop when the second basis is {v1,v2, . . .}. Thus {w1,w2, . . .} and {v1,v2, . . .}
have the same number of elements.

Remark for infinite case: A similar proof works in the infinite case. However, the Steinitz Replacement
Theorem must be used an infinite number of times. Each use of it requires an arbitrary choice (namely,
that of the vector to label as v1). An infinite number of arbitrary choices cannot be made without a special
axiom: the axiom required is The Axiom of Choice.


