Orthogonality and Eigenvectors

§1. Introduction

Recall:

1) P is unitary if P* = P~L.

2) The matrix of transition between orthonormal bases is unitary.

3) Matrices A and B are unitary similar if B = P71AP with P unitary so A and B
represent the same transformation with respect to different orthonormal bases.

We find unitary similar matrices which are of one or another special form.

§2. Schur Decomposition

Theorem (Schur decomposition) Given a square matrix A there is a unitary P with
A = P71 AP upper triangular. If A is real and has only real eigenvalues then P can be
selected to be real.

Note A has the eigenvalues of A along its diagonal because A and A are similar and A
has its eigenvalues on the diagonal.

Proof By induction assume the result is true for order n — 1 matrices and let A be order
n. Let v be an eigenvector with value A. Normalize v, that is, replace v by v/|v] if
necessary. Extend v to an orthonormal basis v, wq, ..., w,_1 using Gram-Schmidt. Let
Q be the matrix of transition to this basis. So Q is unitary and Q~'AQ is of form

1 0 ... 0

which is also unitary. Then QU is unitary and (QU) tA(QU) = U"YQ1AQ)U =

1 0 ... O A k... % 1 0 ... 0 A X *
0 0 0 0

] y-1 : C : 1% ] v-ilov
0 0 0 0

which is upper triangular. il

Remark  The proof gives an algorithm for finding P.



§3. Normal Matrices
Lemma 1 Let A and B be unitary similar. Then A is normal iff B is normal.

Proof Let P be unitary with B = P*AP. Then B* = P*A*P and P* = P~!. So
B*B— BB* = P*A*PP*AP — P*APP*A*P = P*(A*A— AA*)P. Thus B*B— BB* =
iff A*A— AA*=0.1

Lemma 2 If A is normal then for each ¢, the i-th row of A has the same length as the
i-th column of A.

Proof (Aei,Aei> = <ei,A*AeZ-) = (ei,AA*eZ) = (A*ei,A*ei>. Thus ||Aez|| = ||A*ez||
The left side is the length of the i-th column of A. The right side is the length of the i-th
column of A* that is, the i-th row of the conjugate of A; but the conjugate of a vector
has the same length. ll

The argument in the proof works for any vector x instead of e;, which proves the following
lemma, whose converse is also true.

Lemma 3 If A is normal then ||Ax| = [|[A*x|| for all x.

Theorem (Unitary Similar Diagonalization) For a square matrix A, A is unitary
similar to a diagonal matrix iff A is normal, that is, there is a unitary P with P~'AP = A
diagonal iff A*A = AA*.

Proof =: Suppose P~1AP = A is diagonal. Diagonal matrices are normal since AA* =

A0
( 0 - ) = A*A. By Lemma 1, A is normal.

<: By the previous theorem (Schur), A is unitary similar to an upper triangular matrix
A. We show A is diagonal. By Lemma 1, A is normal and by Lemma 2, the i-th row of
A has the same length as its i-th column. If A is not diagonal, then select i so that the
i-th row is the first row with a nonzero off-diagonal element:

t11 O 0 0
0 oo 0 0
0 O *

The length of the i-th column is |¢;;| but the length of i-th row is greater than |t;|, a
contradiction. So A can have no nonzero off-diagonal elements. |l
Since the columns of P are eigenvectors of A, the next corollary follows immediately.

Corollary There is an orthonormal basis of eigenvectors of A iff A is normal.
Lemma Let A be normal. Ax = A\x iff A*x = \x.

Proof ~ Ax = Ax is equivalent to [[(A — AI)x|| = 0. It is easy to show A — Al is normal,
so Lemma 3 shows that ||(A — AI)*x| = [[(A* — AI)x|| = 0 is equivalent. This in turn is
equivalent to A*x = \x. I

Proposition (Eigenspaces are Orthogonal) If A is normal then the eigenvectors
corresponding to different eigenvalues are orthogonal.
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Proof  Suppose Av = Av and Aw = uw, where \ # p. (v, Aw) = (v, uw) = u({v, w).
However, (v, Aw) = (A*v,w) which by the lemma is (Av,w) = A(v,w). So u(v,w) =
Av,w) but since A # p, (v,w)=0. 11

Remark The above proposition provides the key to computing the matrix P in the Diag-
onalization Theorem. For each eigenspace, find a basis as usual. Orthonormalize the basis
using Gram-Schmidt. By the proposition all these bases together form an orthonormal
basis for the entire space. Examples will follow later (but not in these notes).

64. Special Cases

Corollary If A is Hermitian (A* = A), skew Hermitian (A* = —A or equivalently i A is
Hermitian), or unitary (A* = A~!), then A is unitary similar to a diagonal matrix and A
has an orthonormal basis of eigenvectors.

Proof These types of matrices are normal. Apply the previous theorem and corollary.

Proposition

If A is Hermitian then the eigenvalues of A are real.

If A is skew Hermitian then the eigenvalues of A are imaginary.
If A is unitary then the eigenvalues of A are of length 1.

Proof We note A* = A if A is Hermitian, A* = —A if A is skew Hermitian, and A* = A~}
if A is unitary. For convenience, combine these cases as A* = + A+

Suppose Ax = Ax with x # 0. Then (x, Ax) = (x,Ax) = A\(x,x), whereas (A*x,x) =
(£ATx x) = (£ F1x, x) = :I:Xﬂ(x,x).

(x,x) # 0 since x # 0, so canceling gives \ = 27" which shows ) is real, imaginary or
of length one for the respective cases.

§5. The Real Case

A real matrix can have non-real eigenvalues (as we saw when we diagonalized a rotation
matrix) since characteristic polynomials with real coefficients can have non-real roots. If
A is Hermitian, which for a real matrix amounts to A is symmetric, then we saw above it
has real eigenvalues.

Theorem (Orthogonal Similar Diagonalization) If A is real symmetric then A has
an orthonormal basis of real eigenvectors and A is orthogonal similar to a real diagonal
matrix A = P~'AP where P~! = PT,

Proof A is Hermitian so by the previous proposition, it has real eigenvalues. We would
know A is unitary similar to a real diagonal matrix, but the unitary matrix need not be
real in general. By the Schur Decomposition Theorem, P~!AP = A for some real upper
triangular matrix A and real unitary, that is, orthogonal matrix P. The argument of the
last theorem shows A is diagonal. |

Remark The converse to this theorem holds: If A is real and orthogonal similar to a
diagonal matrix, then A is real and symmetric.

Remark Since not all real matrices are symmetric, sometimes an artifice is used. For
example, AT A and AAT are symmetric even when A is not.
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